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Passive systems
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Passivity-preserving
model reduction

(A,B,C) — (A, B, O)

dim = n dim=r<n

AN
Sy

G(s) =C(sI—A)"'B+D ~ positive real
D

Projection method: Find U,V € R™ " suchthat U'V =1,

and

A=UTAv, B=U'B, C=CV



Ex: Stochasically balanced
model reduction

(ARE) AP+ PA'—(B4+PCY(D+D"Y""(B+PCH'=0
Solution set: P < PPy

Stochastic balancing: TP_T'=X=7T"TP 'T"!

Y. = diagonal matrix consisting of

the singular values of P_P_"

Truncation: Ul = {Ik O} T V=71




Antoulas’ observation

Consider the class of approximants G(s) that retains I' stable
spectral zeros of the original function; 1.e., I stable zeros of

G(s)+ G(—s)'

Then, if $1,$52,---,8+ € C4 are the mirror images (in the
imaginary axis) of these spectral zeros, the interpolant

G(s;)=G(s;), j=1,2,...,r

1s positive real. In other words, the passivity property 1s
preserved in such a model reduction procedure.



Spectral zeros

A B
G(s) + G(—s)" ~ —AT| —CT

The spectral zeros are the A for which

the matrix A — A€ is singular, where

C B" D+D'

C BT |D+D'|

Recall notation:

G(s) ~




Sorensen’s algorithm

Partial real Schur decomposition:

i A A - T
A B X X ¥1 [x
—AT —CT Y = Y R Y Y — I’r’
c BT D+DT||z| |0] z| |z
Singular value decomposition: Q,%%Q,"'=X"Y
A=UTAV, B=U'B, C=CV Vi=XQ,X™!
] . B 1 8 o ~1
G(s)=C(sI —A)'B+D positive real U:=YQy2




Interpolation 1n the matrix case

Sorensen’s solution satisfies
G{8s)2 = G(8s)25; J=1s0ses?
where z; := Zr; # 0 with r; is the right

eigenvector of R corresponding to s;

Moreover, G satisfies
TA T
zj G(=s;) = z; G(=s;)

for each 7 such that (—s;I; — /i) is invertible.



Analytic interpolation
with degree constraint

Given: 1(sj,wj):s; € Cy }§:0
sj 7 sk if 7 # k, s real {wj_}_wky -
Sj T Sk 1 k=0

w; = Wy iijng

Find: Positive real function

f

7

o f analytic for Re{z} >0

* Re{f(z)} > 0 for Re{z} >0

suchthat (1)  f(sg) =wg, k=0,1,...,r

(ii) T rational of degree at most I



Complete parameterization

THEOREM. To each real monic Hurwitz polynomial p of degree n
there is a unique pair (a, 3) of real monic Hurwitz polynomials of
degree n such that

(i) f := B/« is positive real,

(1) flss) =w4, 7=0,1,...,m,and

(iii) a(s)B(—s) + a(—s)B(s) = p(s)p(—s).

Conversely, any pair («a, 3) of real polynomials of degree n satisfying
(i) and (ii) determines, via (iii), a unique (modulo sign) Hurwitz
polynomial p of degree n. The map p — («, 3) is a diffeomorphism.

() & (i) g f(s) + f(—s) = DL, roots of p=

a(s)a(—s) spectral zeros




Non-linear coordinates

The manifold of all («, 3) such that f = 3/« is positive real
has two foliations:

A foliation with one leaf for each choice of spectral zeros
(Kalman filtering)

Another foliation with one leaf for each choice of wy, w,, ...,w

n

THEOREM. The two foliations
intersect transversely so that each
leaf in one meets each leaf in the
other 1n exactly one point.




Optimization approach

Given (p, w), maximize

/.

dw
w? + s3

pliw) |°
T (itw)

log|f (iw) + f(—iw)]

over all positive real f subject to n
| () = [J(s+3))
f(Sj):wja F=bhl..,n j=1

This optimization problem has a unique solution,
which has the form

F=2 where a(s)8(~5) + a(-5)B(s) = pls)p(~s)

determined via the dual problem



Dual problem

Given p and any w € H*> such that w(s;y) =wg, k=0,1....,r,
minimize

p(iw) |
T (iw)

/_00 ([w(zw) + w(—1w)]|Q(iw) —

log Q(zw))

w? + 82

over all Q € Q, where

T

Q = {Q(iw) =Red) — % | Q(iw) > 0} .

1w + 8
k=0 _I_ k

Convex optimization problem with a unique solution

optimal o and _ Y
o(s)B(—s) + a(—)(E) = p)(—s) ™ =



Maximum entropy solution

Choose the spectral zeros in the mirror image

of the interpolation points; i.e.,

p(s) =7(s)".

Then the primal problem amounts to maximize

f " loglf (iw) + f(—iw)] -2

2 2
o0 w* + Sj

over all positive real f satisfying the interpolation

constraints.

linear problem  Cf. Mustafa-Glover




Back to the dual problem

> dw ,
JP(Q) T /;m [‘I’Q—Plog@] w2+S% > INInN
P(s) := i (G(s) + G(—s)'], P(iw):= p(iw) |
2 ’ - T(iw)
 Maximum entropy solution for (s ‘ P=1

* The Antoulas-Sorensen solution also requires choosing
interpolation points in zeros of & plus § =00



The Antoulas-Sorensen method
as the maximum entropy solution

G(oo) = wo:=D
G(sp) = wp:=G(s), k=12...,7
where s1, $9,...,5, chosen in the mirror image of

a self-conjugate set of spectral zeros.

THEOREM. For sg > 0 sufficiently large, let f;, be the maximum

entropy solution corresponding to the interpolation conditions

fso(S0) = wo, fs,(sk) =wk, k=1,...,r

Then, as sg — 00, fs, — G pointwise (except in the poles of é’)




G(s)=C(sI —A)™ B+ D
A = —A+hKC A := diag(s1, s2, ..., Sr)
B = 2wo(QC*+h)

AQ + QA* + hh* =0




Global-analysis approach

Since we have a smooth parameterization, the reduced-order
solution obtained by the (numerically efficent) Sorensen
algorithm (or some other method) can be tuned to specifications
by moving the

* spectral zeros

* interpolation points

while passivity and degree are preserved.



A benchmark problem

3 . . 0 T T T T T
Original system:
reduced model by Antoulas-Sorensen
8‘5 _+_ 384 _+_ 633 + 982 _|_ 78 _+_ 3 ok system 0_1‘ degreesbyAnaIytic.IﬂterpoIation
G(S) — Stochastically balanced truncation

§9 4+ 7st + 1483 + 2182 +23s+ 7

Antoulas-Sorensen:

Singular Value(dB)
@D

(s) = s® +2.553s% + 2.906s + 1.173
s34+ 6.68152 + 8.459s + 3.07

=10

-12

Global-analysis approach: W e

£(s) 1.002s° + 2.84s% + 1.927s + 0.8978
S) =
s3 + 7.298s2 + 6.084s + 2.099




Singular Value(dB)

A large-scale problem:
A CD player

Model reduction: deg G = 120 — degé =12

Antoulas-Sorensen solutions:
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Singular Value(dB)
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Discrete-time NP interpolation
with degree constraint

Given:
Zos Zis -+vs Zy |z | <1 (distinct) such that Pick matrix
n — —
Find: Carathéodory function 1 — 252 | p—g

f

T o f analytic for [z| <1 fee
_I_
* Re{f(z)} >0 for|z| <1

For simplicity

such that (1) f(zk) = Wk, k= 0: 1: ey T .
normalize:

(ii) T rational of degree at most N (20, wo) = (0,1)




f=-, a, 3 €S, Schur polynomials of degree n

Q™

?n_{(a,ﬁ)esnxsnf—ge&r}

f€G+ ‘Ref—%(ﬁ /6*):1@*6+a6*>0

o* 2 oot
f

V"

1
§(a*6 + af*) = pp*, pe€S, rootsare
spectral zeros

Re(a*B) = |p|?




Complete parameterization

?n_{(a,ﬁ)esnxsnf—ge&r}

THEOREMI. To each monic p € §,, there is a unique
pair (a, 3) € P, such that f = (§/« satisfies

(i} flag) =wy, k=0,1,...,n
(ii) Re(a*B) = |p|*

The correspondence p <+ « is a diffeomorphism, which

can be extended to the boundary as a homeomorphism.




Optimization approach

Given (p, w), maximize

/“ p(e) | .

() log [Re f(e'?)] do 7(z) = H(l — Z2)
over all f € C¢ subject to

f(zk):?ﬂk, k=0,1,...,'n,

This optimization problem has a unique solution,
which has the form

f= p a,B€S, where Re(a*f)=|p|?

y
(87

determined via the dual problem:



n

7(z) = | | (1 — Zk2)
Dual problem 1

Given (p, w), minimize the strictly convex functional
n - 2

" p(ezﬁ) 10 do

=R — . ] —

JP(Q) ekz:;]wqu /;ﬂ_ 7-(67’9) 0g Q(e )2’7{'

over the convex set of all (90,41, --,qn) such that

i0y . 5 dk _

Q(e"”) := Re (kz_ol—ikew) >0, forall §e|[—mn x|

THEOREM. There 1s a unique minimum.
a(e‘ie)
T(e?)

and  Re(af) = |p|’

S

= Q(e")

Then f = g, a,3 €S, where




Primal problem reformulated

Ip(P) = f_ﬂPlog@jﬁ > ax
0y 12
i L e (o - p(e®)
d(z) = | hT, Py = |25
(2) = 5 |G(2) + G(z™1) () = | "remy
A P .
Optimal solution: ®(2) = (2) where Q solution of

Q(2)  the dual problem

Maximum entropy solution for P =1




Dual problem reformulated

Jp(Q) := / [®Q — Plog Q)] :ﬁ » min
1 eif) |
P(z2) := 5 [G(z) +G(z™Y)T], P(e?) := ﬁge“ﬁ;
Q%) =ReY augs(e%) 20 where  gx(z) = 15
k=0

For P = 1, the optimal solution: &1
where & optimal solution of primal problem



Kullback-Leibler divergence
py (z)

D(y||g) := lim aup — log PN () dr

N—oc L

If the stationary processes y and 7 have spectral

densities ® and P, respectively, then

Dla) =5 [ [(@- &) —log@d)] 72

— T

Anderson, Moore and Hawkes

rediction-error
b Stoorvogel, van Schuppen

approximation




Consequently,

1_ .~ 1 " df

| - -
—

constant

The maximum entropy solution @ is the minimum

prediction-error approximant in the model class

3 " | _ 1
d1(2) = Requgk(ete) >0 gr(2) := 1 — Zez
k=0

The Antoulas-Sorensen approach corresponds to the choice of
basis functions in which z,, z,, ..., z_are spectral zeros.




Conclusions

* The Antoulas-Sorensen solution 1s essentially
- the maximum entropy solution
- the minimum prediction-error solution in a
model class with spectral zeros at spectral zeros of
the function to be approximated

It can in general be improved by smooth tuning of
the spectral zeros and the interpolation points
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