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About the title...

Darlington Synthesis is old (1939), and was mainly studied in a
system theoretic framework in the ’70 and later (Anderson,
Vongpaniltlerd, Dewilde and others) but it occurs in some new
problems (like mobile phones SAW filters)

Some physical constraints in these filters make the optimal
tuning an interesting mathematical problem where Darlington
synthesis plays a crucial role.

In this application it’s important to solve the real problem!



Surface Acoustic Wave Filters

The filter is constituted of two transducers Σ1 and Σ2.
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Figure 1: The left transducer Σ1.
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Figure 2: The right transducer Σ2.



MAIN PROBLEMS IN SYMMETRIC
DARLINGTON SYNTHESIS

a) Size constraint.

Given S p × p symmetric and Schur (13) of
deg n, find a 2p × 2p inner (14) extension

S =

 S11 S12

S21 S

 2p

which is symmetric and of minimal degree.



b) Degree constraint

Given S p × p symmetric and Schur of
deg n, find a (2p + q) × (2p + q) inner

extension

S =

 S11 S12

S21 S

 2p + q

which is symmetric and of same degree n.



Remarks

• Problem a) in general will have no solution smaller than p

(and, in fact, we need S strictly contractive). For the
complex case a solution which uses state space tools is
already known (BEGO 2006, submitted).

• Problem b) is known to have a solution (Vongpanitlerd 1970,
Anderson-Vongpanitlerd 1973) of degree 2p + n.

• Since we ask S to be symmetric and not hermitian, we
should expect different results if we require S to be have
real coefficients.
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Central Idea

If S =

 S11 S12

S21 S22

 is inner (and S22 strictly contractive),

than
S−1

21 ST
12

is all pass; and also,

det S = − det S12 det S−∗
21



Example: suppose S is scalar Schur; we look for S11, S12, S21

such that

S =

 S11 S12

S21 S


is symmetric and inner

Theorem 1 There exists a symmetric inner extension of S of the
same degree if and only if 1 − SS∗ has only zeros of even
mutiplicities.

PROOF. Let us write S as p11

q
p12

q

p21

q
p22

q





Then S inner implies S∗ = S−1 i.e.

1

q∗

 p∗
11 p∗

21

p∗
12 p∗

22

 =
q

q∗

1

q

 p22 −p12

−p21 p11


which yields:

p11 = p∗
22 p12 = −p∗

21

and in view of symmetry we get

p21 = −p∗
21

i.e.

qq∗(I − SS∗) = qq∗ − p22p∗
22 = p21p∗

21 = p2
21

as wanted.



But we can always constuct a higher degree extension.

Theorem 2 Assume now S = s
q

; then qq∗ − ss∗ will
admit the factorization

qq∗ − ss∗ = (r1r
∗
1)

2r2r
∗
2

with r2 stable and with simple zeros. Then −s∗

q

r∗
2

r2

(r1r∗
1)r∗

2

q
(r1r∗

1)r∗
2

q
s
q


is a minimal degree symmetric inner extension of S.



PROOF. It’s obviously symmetric; we only show it’s inner. But
this is easy. In fact:

 −s∗

q

r∗
2

r2

(r1r∗
1)r

∗
2

q

(r1r∗
1)r

∗
2

q
s
q


=

 s∗

q

(r1r∗
1)r

∗
2

q

(−r1r∗
1)r2

q
s
q

  −r∗
2

r2
0

0 1





So, a symmetric inner extension is not trivial even in the scalar
case.

Are things much more difficult in the multivariable case?

In fact, not really: in the scalar case we were looking at double
zeros of 1 − SS∗.

In the mutivariable case, surprisingly, we just need to look for
double zeros of det(I − SS∗)!



Strategy

• Construct a symmetric extension S of dimension 2p × 2p

and degree 2n (it’s well known it’s always possible).

• Peel away double zeros of det(I − SS∗) from the
extension to reduce the degree.

• Show minimality when there are no double zeros left.

• Add one dimension to S to get an extension of degree n.

• Extend (with some changes) to the real case.
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Tools
All quite simple...

• Inner completion of a wide inner: easy in state space. But
need a frequency domain expression!

• A symmetric constant matrix T (of dim > 1) always has a
complex solution v to

vT Tv = 0

if T and v are real, must look at the signature of M .

• If M is symmetric inner and has factorizations

M = QT
1 M1Q1 M = QT

2 M2Q2

then M = QT
3 M3Q, where Q is the left least common

multiple of Q1, Q2.
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Tools
All quite simple...

• Inner completion of a wide inner: easy in state space. But
need a frequency domain expression!

• A symmetric constant matrix T (of dim > 1) always has a
complex solution v to

vT Tv = 0

if T and v are real, must look at the signature of M .

• If M is symmetric inner and has factorizations

M = QT
1 M1Q1 M = QT

2 M2Q2

then M = QT M3Q, where Q is the left least common
multiple of Q1, Q2.



Remark. We can assume, without loss of generality, that
(I + S) is invertible in the closed right half-plane.



Symmetric extension of degree 2n

For the minimum-phase solution S21 of

S21S∗
21 = I − SS∗

we construct a square extension of the same McMillan degree: S11 S12

S21 S





Lemma 3 Define

S0 :=

 S11S−1
21 ST

12 S12

ST
12 S

 =

 S11 S12

S21 S

  S−1
21 ST

12 0

0 I


then S0 is symmetric and inner of degree 2n.

PROOF. We need to show that

• Q := S−1
21 ST

12 is inner of degree n and

• the (1, 1) term od S0, which is S11S−1
21 ST

12, is symmetric.



Q = S−1
21 ST

12 is all pass: in view of symmetry

(I − S∗S)T = I − SS∗

or
(S∗

12S12)T = S21S∗
21

and
S−1

21 ST
12(S

∗
12)

T (S∗
21)

−1 = QQ∗ = I

Since S21 is outer, Q is inner.



To show that Q has degree n and is symmetric, we need

Theorem 16: if

 S11 S12

S21 S

 is a minimal degree inner

extension of [S21, S], then the following DSS factorization holds

S12(I + S)−1 = −MS∗
21(I + S∗)−1 (1)

and it’s also:

S11 = M − S12(I + S)−1S21

(want to see Theorem 16?)



Now Q is stable and

Q = S−1
21 ST

12 =

all−pass︷ ︸︸ ︷
S−1

21 (I + S)︸ ︷︷ ︸
stable

degree n

(I + S∗)−1(S∗
21)

T︸ ︷︷ ︸
antistable
degree n

degree n
inner︷︸︸︷
MT

so Q has degree n.



the (1, 1) term of S0, S11Q is symmetric.

S11Q = [M + S12(I + S)−1S21]S
−1
21 ST

12

= M S−1
21 (I + S)︸ ︷︷ ︸

β−1

(I + S∗)−1(S∗
21)

T︸ ︷︷ ︸
(β∗)T

MT

+S12(I + S)−1ST
12

Since T := β−1(β∗)T is all-pass, it is symmetric

T ∗ = (β−1(β∗)T )∗ = βT (β−1)∗ = [(β∗)T ]−1β = T −1

as wanted.

T is called phase function in stochastic realization.



In conclusion, S0 is a symmetric extension of degree 2n. Well
known! (see Anderson-Vongpanitlerd 1973)

What about minimal dimension?



Theorem 4 Let S21 be the outer factor of I − SS∗ and let

S0 =

 S11 S12

S21 S

  S−1
21 ST

12 0

0 I


be the symmetric inner extension of the wide inner function
[S21, S]. Then there exists an inner symmetric extension S
of S of n + k where k is the number of odd zeros of

φ(z) := det Q(z) = det S−1
21 (z)ST

12(z)

that is, if r1, r2,, ..., rm are the multiplicities of the zeros of
φ, we set

k :=
m∑

i=1

(ri mod 2)



The idea is that, if det Q has a double zero, we can
reduce the degree of S0 by 2.

HOW?
Find an inner function R of maximal degree such that

S :=

 (R∗)T 0

0 I

 S0

 R∗ 0

0 I


is analytic. Then S will be a symmetric, inner
extension of S of minimal degree.



TWO (SPECIAL) CASES!

We look at these because we can always multiply by a unitary
function and its transposed. Let T (s) be q × q symmetric and
let

bω(z) :=
1 − zω̄

z − ω

1) Geometric muliplicity 2: Suppose T (s) is divisible on the
right by  (b∗

ω(z))2 0

0 Iq−1





Then

T =

 b2
ωt11 b2

ωT12

b2
ωT21 T22


so that b∗

ω 0

0 Iq−1

  b2
ωt11 b2

ωT12

b2
ωT21 T22

  b∗
ω 0

0 Iq−1


is analytic.



2) Suppose T (s) is divisible on the right by
b∗

ω(z) 0 0

0 b∗
ω(z) 0

0 0 Iq−2





Then

T (z) =

 bω(z)T11(z) bω(z)T12(z)

bω(z)T21(z) T22(z)


where T11 is 2 × 2

Previous idea does not work; but, if H is symmetric, we can
write it as

H = UT Λ2U

with U unitary and Λ positive diagonal (Takagi decomposition).
We can thus assume that

T11(ω) =

 λ2
1 0

0 λ2
2





Let now v :=
[

λ2 iλ1

]
Then

vT11(ω)vT =
[

λ2 iλ1

]  λ2
1 0

0 λ2
2

  λ2

iλ1

 = 0



Thus define the Blascke factor Rω as follows: let Pv be the
projection matrix onto the span of v and

Rω(z) := bω(z)P ∗
v + I − P ∗

v

Then
PvT11P T

v = 0

and thus
(R∗

ω(z))T bω(z)T11(z)R∗
ω(z)

is analytic in ω, as wanted.



Thus we can reduce the degree of S by 2 as
long as we have double zeros. The process

ends when all the zeros are simple.



Minimality

Theorem 4 claims that we can get an extension of degree n + κ.
We show now it has minimal degree.

Proposition 5 All rational inner extensions of a contractive
rational function S, can be written in the form L 0

0 I

 S

 R 0

0 I


where L, R and S are inner, and S is a minimal degree inner
extension of S.



The second result we need is:

Lemma 6 Let S and be minimal symmetric extension of S. Define

φŠ(s) := det Š−1
21 (s)Š12(s)

and let κ denote the number of distinct zeros of φŠ with odd
multiplicity. Then

φS := det S−1
21 (s)S12(s)

has degree greater than or equal to κ.



Theorem 7 Let S be a symmetric Schur function, strictly

contractive at infinity and let Š =

 Š11 Š12

Š21 S

 be its minimal

extension with Š21 outer; define Q := Š−1
21 ŠT

12, and let κ be the
number of distinct zeros of det Q in C+ with odd algebraic
multiplicity. Then S has a symmetric inner completion of degree
n + κ. This completion of S has minimal degree among all the
symmetric completions of S.



PROOF. We apply Theorem 4 to obtain a completion of degree

2n − n0 − 2` = n + κ.

We now prove that this completion has minimal McMillan
degree. Let Σ be any symmetric completion of S. By
Proposition 5, it can be written on the form

Σ =

 L 0

0 I

 S1

 R 0

0 I


where L, R and S1 are inner, and S1 is a minimal degree inner
completion of S. Let

S1 =

 S11 S12

S21 S22

 .



The completion Σ being symmetric, we must have

(LS12)T = S21R ⇔ S−1
21 ST

12 = RL̄.

From Lemma 6 we know that the degree of the unitary matrix
S−1

21 ST
12 cannot be less than κ. This yields

κ ≤ deg S−1
21 ST

12 = deg RL̄ ≤ deg R + deg L,

and finally,

n + κ ≤ n + deg R + deg L = deg Σ.



Extensions of higher dimension

We have seen that, if we impose the extension of the p × p

matrix to be of dimension 2p × 2p, we cannot, in general obtain
a symmetric extension which preserves the McMillan degree.
Quite surprisingly, we can obtain a realization of the same
McMillan degree as S if we allow for a slightly bigger extension,
namely one of dimension (2p + 1) × (2p + 1).

Theorem 8 Let S be a strictly contractive symmetric p × p Schur
function of degree n. Then S has a symmetric inner extension of
dimension (2p + 1) × (2p + 1) and McMillan degree n.

PROOF. Let Š =

 Š11 Š12

Š21 S

 be the minimal extension S



with Š21 outer. We know, from Lemma 3, that Q = Š−1
21 ŠT

12 is
inner and that

Š

 Q 0

0 I

 =

 Š11Q Š12

ŠT
12 S


is symmetric of degree 2n − n0, where n0 is the number of
zeros of Š21 on the imaginary axis. But then the matrix

Se :=


Š11Q 0 Š12

0 det Q 0

ŠT
12 0 S


is inner of degree n + 2(n − n0) and the matrix



Q :=

 Q 0

0 det Q

 has exactly n − n0 double zeros (all the

zeros of Q are double!). But then, in view of Lemma ??, we can
obtain a reduction of degree by 2(n − n0), as wanted.

Remark 9 It should be stressed that the above results rely on the
fact that we work over the complex field. The situation for real
coefficients functions is more complicated, as shall be seen next.



Extensions of higher dimension which
preserve the degree

We have seen that, if we impose the extension of the p × p

matrix to be of dimension 2p × 2p, we cannot, in general obtain
a symmetric extension which preserves the McMillan degree.
Quite surprisingly, we can obtain a realization of the same
McMillan degree as S if we allow for a slightly bigger extension,
namely one of dimension (2p + 1) × (2p + 1).



Theorem 10 Let S be a strictly contractive symmetric p × p Schur
function of degree n. Then S has a symmetric inner extension of
dimension (2p + 1) × (2p + 1) and McMillan degree n.

PROOF. Let Š =

 Š11 Š12

Š21 S

 be the minimal extension S

with Š21 outer. We know, from Lemma 3, that Q = Š−1
21 ŠT

12 is
inner and that

Š

 Q 0

0 I

 =

 Š11Q Š12

ŠT
12 S


is symmetric of degree 2n − n0, where n0 is the number of



zeros of Š21 on the imaginary axis. But then the matrix

Se :=


Š11Q 0 Š12

0 det Q 0

ŠT
12 0 S


is inner of degree n + 2(n − n0) and the matrix

Q :=

 Q 0

0 det Q

 has exactly n − n0 double zeros (all the

zeros of Q are double!). But then, in view of Theorem 4, we can
obtain a reduction of degree by 2(n − n0), as wanted.

Remark 11 It should be stressed that the above results rely on the
fact that we work over the complex field. The situation for real
coefficients functions is more complicated.



The real case

To avoid getting lost with signatures, we need:

Lemma 12 Let T be a symmetric inner function. Suppose B1 and
B2 are degree one Blaschke factors with a zero in ω1 and ω2

respectively, ω1 6= ω2, and that T factors as

T = BT
1 T1B1

T = BT
2 T2B2

(2)

with T1 and T2 analytic. Then T = BT T0B where T0 is analytic
and B is the Least Common Right Multiple (LCRM) of B1 and
B2.
If T has real coefficients, and B2 = B̄1, then B and T0 are real.



PROOF. Let B̃2 := BB∗
1 and B̃1 := BB∗

2 ; since B is the
LCRM of B1, B2, the functions B̃1 and B̃2 are left coprime.
Since B has a single zero both in ω1 and ω2, B̃2 must have a
zero in ω2 and B̃1 a zero in ω1. Using the equality
B1B∗

2 = B̃∗
2B̃1,

BT
1 T1 = TB∗

1 = BT
2 T2B2B∗

1 = BT
2 T2B̃∗

1B̃2 (3)

The term on the right-hand side is analytic, and B̃2 and B̃1 are
left coprime. This means that there exists stable matrix
functions X, Y such that

B̃∗
1B̃2Y = B̃∗

1 − X. (4)

Multiplying the last term of (3) by Y , we get:

BT
2 T2B̃∗

1B̃2Y = BT
2 T2B̃∗

1 − BT
2 T2X,



so that BT
2 T2B̃∗

1 is analytic; BT
2 is a simple Blaschke factor

with a zero in ω2, so it has full rank in ω1. Therefore also T2B̃∗
1

is analytic.

Consider now

T1 = (BT
1 )∗BT

2 T2B̃∗
1B̃2 = B̃T

2 (B̃∗
1)T T2B̃∗

1B̃2

In view of (4) we can write:

Y T T1Y

= (B̃∗
1 − X)T T2(B̃∗

1 − X)

= (B̃∗
1)T T2B̃∗

1 − XT T2B̃∗
1 − (B̃∗

1)T T2X + XT2X

which implies that T0 = (B̃∗
1)T T2B̃∗

1 is analytic, since all the
other terms are.



If T has real coefficients and B2 = B̄1, since B is the LCLM of
B1 and B2, it is invariant under conjugation, and so it must
have real coefficients, and thus so does T0.



Lemma 13 Let T be a real coefficients p × p stable symmetric
function having a real zero ωl of multiplicity rl and such that all
partial multiplicities of ωl are equal to 1. Factorize T as
T = T1Ql, where Ql(s) = UBrl,ωl

(s)U∗ and U is unitary;
define Z := ker Ql(ωl) and let il be the signature of the matrix
T1(ωl)|Z . Then T admits the analytic real coefficients
factorization T = BT T2B with B inner of degree (rl − |il|)/2
and T2 stable.



PROOF. the idea is to use the same argument as in the complex
case, that is, to find a vector u such that

uT T1(ωl)u = 0

Nevertheless, while this is always possible in the complex case,
here it can only be done if the metric induced by T1(ωl) is
indefinite.



For example

uT

 1

−1

 u = 0

has solution uT = [1, 1], while

uT

 1

1

 u = 0

has only the zero solution.

the general result is thus as follows:



Minimal dimension real extension

Theorem 14 Let S be a symmetric extension of a strictly
contractive symmetric p × p Schur function of degree n with real
coefficients; let nc be the number of complex zeros with odd
multiplicity and let ωl, 1 ≤ l ≤ k be its real zeros ; let il be
defined as in Lemma 13 for 1 ≤ l ≤ k and set

nr :=
k∑

l=1

|il|

Then S has a symmetric real coefficients inner extension of
dimension (2p) × (2p) and McMillan degree n + nc + nr. The
degree of the extension is minimal.



PROOF. In view of Lemma 12, we can get rid of all double
complex zeros (because also the conjugate will be double and
thus we can factor out the real least common multiple). As for
the real zeros, put together Lemma 13 and Lemma 12.



Degree n real extension of higher dimension

As in the complex case, we can try to increase the dimension
beyond 2p while keeping the degree equal to n. Results by
Vongpanitlerd (1970) show that there exists such an extension of
dimension 2p + n. Nevertheless it’s not difficult to see that a
better bound can be achieved. In fact, we can always write an
extension S in Smith-McMillan form as

S = πT δ−1σsmπ

where δ and σsm are diagonal polynomial and π is a real
unimodular polynomial matrix. Since S is inner, its zeros are
antistable and thus Szeros := σsmσ−∗

sm is inner. Since the
reduction to the Smith-McMillan form of S does not change its



signature, the previous results show that, if we take

Se :=

 S
−Szeros


we easily see that Se has only double zeros and the residual
matrix of the real zeros has zero signature. Thus, using Lemma
12, it can be reduced to an extension of degree n.



In fact, this reduction might still not be minimal. For a minimal
one we have the following:

Theorem 15 Let Ssm be the Smith-McMillan form of T and
factor it as

Ssm = δ−1σcσrdτrs

where all the matrices are diagonal, δ is the denominator matrix,
τc contains all the complex zeros, τrd contains the highest even
number of real zeros of geometric multiplicities greater than one
and τrs has only real zeros with partial multiplicities equal to 1.
Let r be the number of non constant diagonal entries of τrs Then
there exists an extension of dimension 2p + r and degree n.



PROOF. Set

Smz := τrsτ
−∗
rs

 Ir−1

det σc

σ
−∗
c


The zeros of σc are all complex and will not change the
signature. Then

Se :=

 S
−Smz


has the wanted dimension, double zeros with the right signature
and thus it can be reduced to degree n.



In conclusion...



Thank you for your
attention!



Inner extension

From Darlington synthesis it’s well known that, if S is a Schur
function of degree n, then there exists an inner completion of
the same degree. In the case a function is wide inner, its
completion can be easily computed using state space formulas
(see e.g. Fuhrmann 1995); nevertheless, a frequency domain
expression which makes use of the information about the entries
seem to be lacking. The following lemma provides one.



Theorem 16 Let S be a p × p Schur function strictly contractive at some
point of iR, and such that I + S is invertible in H∞. Let S21 be a
spectral factor of Ip − SS∗. Every inner completion S of [S21 S] can
be written as:

S =

24 M − MS∗
21(I + S∗)−1S21 −MS∗

21(I + S∗)−1(I + S)

S21 S
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where M is a left inner factor of (I + S)−1S21, i.e.

MS∗
21(I + S∗)−1 (6)

is stable. The extension S has same degree as [S21 S] if and only if M

has minimal degree (i.e. it is the DSS factor).



PROOF. It is easily verified that (5) provides an inner extension
of [S21 S]. Conversely, to see that every inner extension can be
written in this form, let

S =

 S11 S12

S21 S


be an inner completion of [S21 S] and put

M = S11 − S12(Ip + S)−1S21. (7)



Using the fact that S is inner, i.e.

S11S∗
11 + S12S∗

12 = Ip

S11S∗
21 + S12S∗ = 0

S21S∗
21 + SS∗ = Ip

(8)

and (7), we can show that

MM∗ = S11S∗
11 − S11S∗

21(Ip + S∗)−1S∗
12 − S12(Ip + S)−1S21S∗

11

+S12(Ip + S)−1(I − SS∗)(Ip + S∗)−1S∗
12 = I

i.e. M is inner and

S12 = −MS∗
21(I + S∗)−1(I + S). (9)

Thus

S11 = M + S12(Ip + S)−1S21 (10)

M − MS∗
21(I + S∗)−1S21 (11)



Notice that −S12(I + S)−1 is stable whereas S∗
21(I + S∗)−1

is antistable, so that M is a left inner factor of S12(I + S)−1.

Let n′ be the degree of [S21 S]. It can then be shown that S has
degree n′ if and only if M and S12(I + S)−1 are left coprime.

Back to (1).



A few definitions

To fix ideas, we work with functions analytic in C+

• We define for a rational function R(s) the function R∗ as:

R∗(s) := RT (−s) (12)

• We say that a function analytic in C+ is Schur if

R(iω)R∗(iω) ≤ I ω ∈ R ∪ ∞ (13)

• A Schur function is inner if

R(iω)R∗(iω) = I ω ∈ R (14)


