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Overview and Key Contribution

• In linear algebra terms, we consider the problem:
given a real square matrix A, when and how can
we find a real diagonal matrix Λ  such that  ΛΑ  is
stable (eigenvalues with negative real part)

• We explain the origins of the problem: distributed
formation control.
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Outline

• Formations and Rigidity
• Controlling a formation for rigidity:

architecture
• Controlling a formation for rigidity:

Equations of motion
• Stabilising a matrix by diagonal

multiplication.
• Conclusions and questions
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• A formation is a collection of agents (point agents for us) in two or
three dimensional space

• A formation is  rigid if the distance between each pair of agents does
not change over time

• Rigidity can be secured by maintaining the distance between a subset
of the agent pairs

• In a rigid formation, normally only some distances  are explicitly
maintained, with the rest being consequentially maintained.

The distances ab,bc,cd,ad and 
ac are explicitly maintained and
the distance bd is maintained as 

a result of the topology.    

a b

cd

Rigid Formations
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MINIMALLY RIGID NONRIGID

NONRIGIDRIGID, BUT NOT
MINIMALLY RIGID

a b a b

cd
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d cc

ba
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cd

Rigid Formations
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Rigid Formations

• Consider a point formation F = ({p1, p2,… pn},L) with
m maintenance links defined by (i,j) ∈ L, moving
along a trajectory p(t) with each distance dij = || pi -
pj|| constant. Along such a trajectory:

(
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Rigid Formations

• Consider a point formation F = ({p1, p2,… pn},L) with
m maintenance links defined by (i,j) ∈ L, moving
along a trajectory p(t) with each distance dij = || pi -
pj|| constant. Along such a trajectory:

(
•  These scalar equations may be gathered as:

 0
where R(p)  is m × 2n
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Rigid Formations

x4 - x3   y4 - y3x3 - x4    y3 - y400(3,4)
x4 - x2    y4 - y20x2 - x4    y2 - y40(2,4)

0x3 - x2    y3 - y2x2 - x3    y2 - y30(2,3)
x4 - x1    y4 - y100x1 - x4    y1 - y4(1,4)

0x3 - x1    y3 - y10x1 - x3    y1 - y3(1,3)
00x2 -x1    y2 - y1x1 - x2    y1 - y2(1,2)
v4v3v2v1

Sample two dimensional Rigidity
Matrix--a Matrix Net ∑ xi Mi +yi Ni  in

coordinates of points.
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General form of Rigidity Matrix

Agent j

Agent k

Link m

row m

block column kblock column j
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Rigid Formations

     In a rigid two-dimensional formation, the only motions possible are
translation (2 directions) and rotation. Hence nullspace of R(p) has
dimension 3.

• R(p) has 2n columns

Theorem: Assume F  is a two-
dimensional formation  with n ≥ 3
points.  F  is rigid iff

rank R(p) = 2n - 3
Note that R has the same rank for all p  except a set of
measure zero. So almost all formations with the same graph
are either rigid or not rigid. We can speak of the graph being
generically rigid or not.
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Outline

• Formations and Rigidity
• Controlling a formation for rigidity:

architecture
• Controlling a formation for rigidity:

Equations of motion
• Stabilising a matrix by diagonal

multiplication.
• Conclusions and questions
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Controlling for Rigidity

• To maintain a distance between two agents, either:
 The task can be one for which both agents are

responsible, or
 One agent of the pair only can be given the task of

control (which would seem to be more efficient)
• Control schemes for the two types turn out to be

very different
• One-way control is effectively new, and will be

addressed here.
• Our algorithms sense relative position of

neighbours, and  control distance
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Leader First-Follower Formations

• We shall consider
 Formations with n agents and the minimum number of

links for maintaining rigidity--which is 2n-3
 Formations with a leader first-follower structure

Leader: he/she can
go anywhere, and
does not have to look
at anyone.
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Leader First-Follower Formations

• We shall consider
 Formations with n agents and the minimum number of

links for maintaining rigidity--which is 2n-3
 Formations with a leader first-follower structure

LeaderFirst-follower. He/she
maintains distance from
leader, but can change
bearing (freedom to
move on a circle)
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Leader First-Follower Formations

• We shall consider
 Formations with n agents and the minimum number of

links for maintaining rigidity--which is 2n-3
 Formations with a leader first-follower structure

LeaderFirst-follower

An ordinary follower:
no degree of freedom,
two distances to
maintain
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Leader First-Follower Formations

• We shall consider
 Formations with n agents and the minimum number of

links for maintaining rigidity--which is 2n-3
 Formations with a leader first-follower structure

LeaderFirst-follower

More ordinary followers



NICTA Linear Systems Workshop 17

Leader First-Follower Formations

LeaderFirst-follower

Above figure represents formation by a directed graph

The leader and first follower give translational and
rotational freedom to the formation; all other agents must
be ordinary followers, with two constraints, to ensure
rigidity

Any such digraph yields a minimally rigid formation --
check 2n-3 edges.
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Leader First-Follower Formations

LeaderFirst-follower

The above digraph is acyclic.

However, we can contemplate graphs with cycles

Intuitively, one can see that acyclic formation rigidity control is easy:

•   Acyclicity induces an order.

•   Design local controllers in order, getting triangularly coupled
system
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Leader First-Follower Formations

LeaderFirst-follower

LeaderFirst-follower

But we may have a

cyclic structure!
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Leader First-Follower Formations

LeaderFirst-follower

Rigidity control of structure with cycle is certainly harder.

There is a clear feedback mechanism, and so worry about
instability.

Our work has focussed on this case.

We shall provide a small-signal (linearised system) analysis.
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Outline

• Formations and Rigidity
• Controlling a formation for rigidity:

architecture
• Controlling a formation for rigidity:

Equations of motion
• Stabilising a matrix by diagonal

multiplication.
• Conclusions and questions
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Getting to equations

• Suppose that the formation is correctly located before time
0, with agent j at position p0j.

• At time 0, we find that all agents are displaced from their
correct positions. Agent j is displaced by δpj (which is a 2-
vector).

• We separate gross motion of the formation (translation and
rotation) from correction of its shape. For shape correction,
 The leader will not move
 The first follower will correct his/her distance from the leader, but

otherwise not move
 The other followers will seek to correct their distances.
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Motion of ‘other’ followers

• Suppose agent j has to maintain distance from agents k and
m.

• It looks at these agents and, noting their present position
(displaced from the nominal by δpk and   δpm), figures
where it should have to move in order to restore the
distances to the correct value.This needs relative positions.

• This position will be displaced from the nominal because
agents k and m are displaced from the nominal. Identify
this target position displacement from the nominal as δ*pj,
and note that this is a function of δpk and   δpm.

• Agent j then moves to reduce the distance from this target
position, assuming pk and pm do not move.
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Motion of ‘other’ followers

• This position will be displaced from the nominal because
agents k and m are displaced from the nominal. Identify
this target position displacement from the nominal as δ*pj,
and note that this is a function of δpk and   δpm.

• Agent j then moves to reduce the distance from this target
position, assuming pk and pm do not move :

Here, to get the distance reduction property, we need
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Motion of ‘other’ followers

We need to properly evaluate

as a linear expression in
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Motion of ‘other’ followers

We need to properly evaluate

as a linear expression in

Original position, poj,p0k,p0m
p0k

p0j
Target position, poj+δpj*poj+δpj*

Displaced position, poj+ δpj etc
p0k+δpk

p0j+δpj

pom+δpm

p0m
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Motion of ‘other’ followers

Since

there follows
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Motion of ‘other’followers

With Aj, this is
an adjustable
diagonal matrix

This 2 by 6 matrix is a
submatrix of the rigidity matrix.

row m

block column k
corresponding to
agent k

block column j
corresponding
to agent j
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Motion of First Follower

• First follower needs to correct its distance from leader
• Impose the additional requirement that it never moves on a

line orthogonal to the line joining it to the leader.
• With pj and pk denoting the coordinates of the first

follower and leader, we obtain:

There results:
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Motion of FF and leader

• For the purposes of controlling formation shape,
the leader (agent k say) does not move:

Adjustable 2 by 2 matrix Again part of rigidity
matrix plus zero row
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Formation motion
• Number the agents from 1 to n, with the first

follower and leader as agents (n-1) and n
• Number the edges so that edges (2j-1) and 2j are

out-edges  of vertex j, for j = 1,2,…(n-2). Edge
2n-3 goes from first follower to leader.

• Putting the various equations together, we get:

R is the rigidity matrix and Λ is block 2 £ 2 and
adjustable.
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Formation motion

R is the rigidity matrix and Λ is block 2 £ 2 and
adjustable.

•   Three eigenvalues at origin corresponds to no motion of the
     leader, and motion of first follower restricted to occurring on
     line joining first follower to leader

•    Choose coordinates so that y coordinate axis is on line
      perpendicular to that joining first follower to leader.

•    Then we can drop some terms
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Formation motion

Coordinates of pi are ξ2i-1, ξ2i.

First (2n-3) rows and
columns of Λ.  Still block
diagonal and adjustable

First (2n-3)
columns of R

+ constant

The constant excitation comes from the initial and thereafter
constant displacment of the leader and one coordinate of the
first follower
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Formation motion: one last thing

First (2n-3) rows and
columns of Λ.  Still block
diagonal and adjustable

First (2n-3)
columns of R

The special assignations of edge ordering and vertex
ordering ensure that generically, all leading principal
minors are nonzero. (Tricky graph theory result)

Key question: Can we stabilize through choice of the
(block) diagonal matrix?

+ constant
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Nontriviality

• The problem is nontrivial.
• It is easy to find examples where choice of

‘obvious’ diagonal matrix (based on simplest local
control law below) leads to instability.



NICTA Linear Systems Workshop 36

Outline

• Formations and Rigidity
• Controlling a formation for rigidity:
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• Controlling a formation for rigidity:
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• Stabilising a matrix by diagonal
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• Conclusions and questions
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Linear Algebra Problem

• In linear algebra terms, we consider the problem: given a
real square matrix A, when and how can we find a real
diagonal matrix Λ  such that  ΛΑ  is stable (eigenvalues
with negative real part)

• Note that we have not exploited fact that Λ  can be taken as
block  diagonal.

• Problem has been considered for complex A and Λ and a
condition is known such that one can assign eigenvalues
(Friedland 1975)

• Eigenvalue assignment problem is an example of inverse
eigenvalue problem;  far more results exist for complex
case.
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Linear Algebra Problem

• In linear algebra terms, we consider the problem: given a
real square matrix A, when and how can we find a real
diagonal matrix Λ  such that  ΛΑ  is stable (eigenvalues
with negative real part)

• We cannot hope for an eigenvalue assignment result.
Consider

•  Through real diagonal scaling one can never get a matrix
    with a complex eigenvalue.

•   Same is true if 0 is replaced by small nonzero value.
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Linear Algebra Problem
• In linear algebra terms, we consider the problem: given a real

square matrix A, when and how can we find a real diagonal matrix
Λ  such that  ΛΑ  is stable (eigenvalues with negative real part)

• If all k by k principal minors of an n by n matrix are zero, the
coefficient of sn-k in the characteristic polynomial is zero. Diagonal
scaling cannot change a zero principal minor into a nonzero one.
Therefore a necessary condition for stabilisability is that there
exists at least one k by k principal minor which is nonzero

• Friedman result on eigenvalue assignment for complex case is that
assignment is achievable when all leading principal minors are
nonzero.

• Our result for the real case is that stabilizability is achievable,
again when all leading principal minors are nonzero.
 Note that this property holds generically as a result of graph theory

considerations!
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Outline of proof
Proof is by induction. Base step is trivial. Suppose that an
(r-1) by (r-1) real matrix with nonzero leading principal
minors can be stabilised by real diagonal multiplication. Let
A be r by r with nonzero leading principal minors.

Choose diagonal Λ1 such that Λ1A11 has all eigenvalues with
negative real parts (using induction). Now consider the DE

This is stable for suitably small ε iff (singular perturbation theory)

Leading principal minor condition assures λ2 exists.
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Conclusions and Questions
• We have demonstrated an example of a nontrivial

decentralized control problem, with a nontrivial solution
and an associated nontrivial problem of linear algebra.

• Associated linear algebra problems:
 What more can be done utilizing a block diagonal structure for Λ?

 What is the set of achievable eigenvalues, or what can be said
about the set? Could one achieve arbitrary real eigenvalues?

 When can one ensure that the eigenvalues are not widely
dispersed?
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Conclusions and Questions
• Associated control problems:

 Can one characterize the set of linear stabilising laws?
 Can one characterize the set of nonlinear stabilising

laws?
 Can one work with large perturbations?
 Can one work with other formation leader structures?
 Can one gracefully integrate formation shape control

and formation motion control to an objective?
 What formations will be hard to control (i.e. need large

signals or suffer badly from noise)?
 Can one generalize from point agents?
 Can one handle three dimensional problems?
 Can one use graph theory properties to simplify, e.g.

decomposition of a directed graph into cyclic parts?
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Questions?


