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IntroductionIntroduction

� This paper considers the structure of uncertain linear systems
building on concepts of “robust unobservability and “possible
controllibility”.

� One reason for considering the issue of observability for uncertain
systems might be to determine if a robust state estimator can be
constructed for the system. Similarly, one might consider the issue
of controllability to determine if a robust state feedback controller for
the system.

� In this case, one would be interested in the question of whether the
system is “observable” or “controllable” for all possible values of the
uncertainty.

� The notions of controllability and observability are also central to
realization theory. For example, it is known that if a linear time
invariant system contains unobservable states or uncontrollable,
those states can be removed in order to obtain a reduced dimension
realization of the system’s input-output behavior.
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� For the case of uncertain systems when one is interested in the
issue of “minimal realization”, a natural extension of this notion of
observability is to consider robustly unobservable states which are
“unobservable” for all possible values of the uncertainty.

� Similarly, a natural extension of the notion of controllability is to
consider “possibily controllable” states which are “controllable” for
some possible value of the uncertainty.

� We formally define these notions of robust unobservability and
possible controllability in terms of certain constrained optimization
problems.

� We then apply the S-procedure to obtain conditions in terms of
unconstrained LQ optimal control problems dependent on Lagrange
multiplier parameters.
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� We then develop a geometric characterization for the set of robustly
unobservable states. We also (partially subject to some conditions)
develop a geometric characterization of the set of possibly
controllable states

� These characterizations imply that the set of robustly unobservable
states is in fact a linear subspace.

� Similarly (under some conditions), we show that the set of possibly
controllable states is a linear subspace.

� These characterizations leads to a Kalman type decomposition for
the uncertain systems under consideration (provided the required
conditions are satisfied).
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Problem FormulationProblem Formulation

� We consider the following linear time invariant uncertain system:

ẋ(t) = Ax(t) + B1u(t) + B2ξ(t);

z(t) = C1x(t) + D1u(t);

y(t) = C2x(t) + D2ξ(t)

� x ∈ R
n is the state, u ∈ R

m is the control input, y ∈ R
l is the

measured output, z ∈ R
h is the uncertainty output, and ξ ∈ R

r is
the uncertainty input.

� The system uncertainty is described by an integral quadratic
constraint on the uncertainty input.
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Integral Quadratic Constraint

� On a time interval [0, T ], we consider uncertainty inputs
ξ(·) ∈ L2[0, T ] such that for any control input u(·) ∈ L2[0, T ]
and any corresponding solution x(·) to the system state equations
defined on [0, T ], then ξ(·) ∈ L2[0, T ], and

∫ T

0

(

‖ξ(t)‖2 − ‖z(t)‖2
)

dt ≤ d

where d > 0 is a given constant.

� The class admissible uncertainty inputs is denoted Ξ.
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The uncertain system can be represented by the following block
diagram.

-

�

- -

∆(·)

u y

ξ z

Nominal
System
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� Our fundamental question:

� Given such an uncertain system model, can we construct a
simpler uncertain system model with smaller state dimensions in
the state equations such that it will realize the same set of
input-output behaviours as the original uncertain system model.

� The corresponding problem in linear systems theory is given a
state space model, construct a state space model of smaller
state dimension (minimal realization) with the same transfer
function matrix.

� Based on an analogy with the linear time invariant systems result,
our results provide a candidate method of achieving such
reduced order models for uncertain linear systems. Verification
that our results in fact lead to these reduced dimension
realizations for uncertain systems could be verified using some
other results and is the subject of future research.
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Definition. The robust unobservability function for the above uncertain
system on [0, T ] is defined as

Lo(x0, T )
∆
= sup

ξ(·)∈Ξ

∫ T

0

‖y(t)‖2dt

where x(0) = x0.

� This definition extends the standard definition of the observability
Gramian for linear time invariant systems.



LinSys2007 10

Notation.

D
∆
= {d ∈ R : d > 0}.

Definition. A non-zero state x0 ∈ R
n is said to be robustly unobserv-

able on [0, T ] if
inf
d∈D

Lo(x0, T ) = 0.

A non-zero state x0 ∈ R
n is said to be (differentially) robustly unob-

servable if it is robustly unobservable on [0, T ] for all sufficiently small
T > 0.

The set of all differentially robustly unobservable states is referred to as
the robustly unobservable set U .

� The set U is analogous to the unobservable subspace in linear time
invariant systems theory.
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Definition. The possible controllability function for the uncertain system
defined on the time interval [0, T ] is defined as

Lc(x0, T )
∆
=

sup
ǫ>0

inf
ξ(·)∈Ξ

inf
u(·)∈L2[0,T ]

[

‖x(−T )‖2

ǫ
+

∫ T

0
‖u(t)‖2dt

]

where x(0) = x0.

� This definition extends the standard definition of the controllability
Gramian for linear time invariant systems.

� This definition is more complicated that the corresponding
observability definition due to the requirement to enforce a terminal
condition on the state.
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Definition. A non-zero state x0 ∈ R
n is said to be possibly controllable

on [0, T ] if

sup
d∈D

Lc(x0, T ) < ∞.

A non-zero state x0 ∈ R
n is said to be (differentially) possibly control-

lable if it is possibly controllable on [0, T ] for all sufficiently small T > 0.

The set of all differentially possibly controllable states is referred to as the
possibly controllable set C.

� The set C is analogous to the controllable subspace in linear time
invariant systems theory.
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Optimal Control CharacterizationsOptimal Control Characterizations

� We can apply the S-procedure to provide characterizations of the
possibly controllable set and the robustly unobservable set in terms
of certain LQ optimal control problems and corresponding Riccati
differential equations.
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An Unconstrained Optimization Problem for Robust
Unobservability

� We define a function Vτ (x0, T ) as follows:

Vτ (x0, T )
∆
= inf

ξ(·)∈L2[0,T ]

∫ T

0

(

−‖y‖2

+τ‖ξ‖2 − τ‖z‖2

)

dt.

� Here τ ≥ 0 is a given constant.

Observation. Note that by setting ξ(·) ≡ 0, we can see that

Vτ (x0, T ) ≤ 0 ∀τ ≥ 0.

Since Vτ (x0, T ) is the infimum of a collection of functions which are
affine linear in τ , then Vτ (x0, T ) must be a concave function of τ .
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Theorem. A state x0 ∈ R
n robustly unobservable on [0, T ] if and only

if
sup
τ≥0

{Vτ (x0, T )} = 0

� We can calculate Vτ (x0, T ) by using a Riccati equation approach
to solving the corresponding optimal control problem.



LinSys2007 16

Theorem. Let τ > 0 be given such that

τI − D′
2D2 > 0.

Then
Vτ (x0, T ) > −∞ ∀x0 ∈ R

n

if and only if the Riccati differential equation

−Q̇ = A′Q + QA

−(QB2 − C ′
2D2) [τI − D′

2D2]
−1

(B′
2Q − D′

2C2)

−C ′
2C2 − τC ′

1C1;Q(T ) = 0

has a solution Qτ (t) defined on [0, T ]. In this case,

Vτ (x0, T ) = x′
0Qτ (0)x0.
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A family of Unconstrained Optimal Control Problems for Poss ible
Controllability

� For the uncertain system defined on the time interval [0, T ], we
define functions W ǫ

τ (x0, T ) and Wτ (x0, T ) as follows for τ ≥ 0:

W ǫ
τ (x0, T )

∆
= inf

[ξ(·),u(·)]∈L2[0,T ]

‖x(T )‖2

ǫ

+

∫ T

0

(

‖u‖2 + τ‖ξ‖2 − τ‖z‖2
)

dt

subject to x(0) = x0;

Wτ (x0, T )
∆
= sup

ǫ>0
W ǫ

τ (x0, T ).

� Again the controllability case is more complicated than the
observability case due to the terminal constraint on the state.
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Theorem. A non-zero state x0 ∈ R
n is possibly controllable on [0, T ]

if and only if

sup
ǫ>0

sup
τ≥0

W ǫ
τ (x0, T ) = sup

τ≥0
Wτ (x0, T ) < ∞

� We can calculate W ǫ
τ (x0, T ) by using a Riccati equation approach

to solving the corresponding optimal control problem.
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Theorem. Let τ > 0 be such that I − τD′
1D1 > 0. Then

W ǫ
τ (x0, T ) > −∞ ∀x0 ∈ R

n

if and only if the Riccati differential equation

−Ṗ ǫ =

A′P ǫ + P ǫA

−(P ǫB1 − τC ′
1D1) (I − τD′

1D1)
−1

(P ǫB1 − τC ′
1D1)

′

−
P ǫB2B

′
2P

ǫ

τ
− τC1C

′
1; P ǫ(T ) = I/ǫ

has a solution P ǫ
τ (t) defined on [0, T ]. In this case,

W ǫ
τ (x0, T ) = x′

0P
ǫ
τ (0)x0.
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In order to calculate Wτ (x0, T ) we will also consider the following
Riccati Differential Equations:

Ṡǫ =
ASǫ + SǫA′

−(B1 − τSǫC ′
1D1) (I − τD′

1D1)
−1

(B1 − τSǫC ′
1D1)

′

−
B2B

′
2

τ
− τSǫC1C

′
1S

ǫ; Sǫ(T ) = ǫI;

Ṡ =
AS + SA′

−(B1 − τSC ′
1D1) (I − τD′

1D1)
−1

(B1 − τSC ′
1D1)

′

−
B2B

′
2

τ
− τSC1C

′
1S; S(T ) = 0

which are solved backwards in time.
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Theorem. Let τ > 0 be such that I−τD′
1D1 > 0. Also suppose there

exists an ǫ0 > 0 such that for all ǫ ∈ (0, ǫ0), all non-zero x0 ∈ R
n then

W ǫ
τ (x0, T ) > 0. Then for any ǫ ∈ (0, ǫ0), the above Riccati equations

have solutions Sǫ
τ (t) > 0 and Sτ (t) ≥ 0 defined on [0, T ] and for any

x0 6= 0

W ǫ
τ (x0, T ) = x′

0 [Sǫ
τ (0)]

−1
x0 > 0.

Also, if Sτ (0) > 0 then

Wτ (x0, T ) = x′
0 [Sτ (0)]

−1
x0 > 0.

Furthermore, if the matrix Sτ (0) ≥ 0 is singular and x0 is not contained
within the range space of Sτ (0), then

Wτ (x0, T ) = ∞.
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Notes

� Although the result is useful in proving our results, it suffers from the
difficulty that the Riccati equation for Sτ may have a finite escape
even if Wτ (x0, T ) remains finite.

� For all of the Riccati equations being considered, we can choose the
time interval [0, T ] sufficiently small to ensure that there exists a
solution to the Riccati equation on that interval at least for a given
value of τ .

� The Riccati equation for Sǫ is obtained from the Riccati equation for
P ǫ by making the substitution Sǫ = [P ǫ]−1.

� The Riccati equation for S is obtained from the Riccati equation for
Sǫ by taking the limit as ǫ → 0.
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� The Riccati equation for S corresponds to the Riccati equation for Q
for the dual system

ẋ = −A′x + C ′
1ξ;

y = B′
1x − D′

1ξ;

z = B′
2x

� This suggests a duality between robust observability and possible
controllability. However, technical difficulties arise if the Riccati
equation for Sτ does not have a positive definite solution or has a
finite escape time.
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Geometric Results on Robust UnobservabilityGeometric Results on Robust Unobservability

Lemma. If the time interval [0, T ] is chosen sufficiently short then fol-
lowing statements are equivalent:

1. There exists an x0 ∈ R
n such that the supremum in

supτ≥0 Vτ (x0) is achieved at τ = 0.

2. The transfer function from input ξ to output y is zero; i.e.,

G(s)
∆
= C2(sI − A)−1B2 + D2 ≡ 0.

3. For all x0 ∈ R
n, the supremum in supτ≥0 Vτ (x0) is achieved at

τ = 0.

� This lemma is used to prove the following geometric
characterisations of differential robust unobservability.



LinSys2007 25

Theorem. Suppose that G(s) ≡ 0. Then a state x0 is differentially
robustly unobservable if and only if it is an unobservable state for the pair
(C2, A).

� The above theorem implies that when G(s) ≡ 0 the robustly
unobservable set is a linear space equal to the unobservable
subspace of the pair (C2, A).
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� From the above theorem and the fact that G(s) ≡ 0, it follows that
we can apply the standard Kalman decomposition to represent the
uncertain system as shown below.

u
Observable

Unobservable +

y

z

z

z

ξ

1

2

∆

� Note that all of the uncertainty is in the unobservable subsystem.
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We now consider the case in which G(s) 6≡ 0.

Theorem. Suppose that G(s) 6≡ 0. Then a state x0 is differentially
robustly unobservable if and only if it is an unobservable state for the pair

(

[

C1

C2

]

, A).
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� The above theorem implies that when G(s) 6≡ 0, the robustly
unobservable set is a linear space equal to the unobservable

subspace of the pair (

[

C1

C2

]

, A).

� From this theorem, it follows that we can apply the standard Kalman
decomposition to represent the uncertain system as shown below:

u

Unobservable

Observable y

z

∆

ξ

� In this case, all of the uncertainty is in the observable subsystem or
in the coupling between the two subsystems.
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Geometric Results on Possible ControllabiltyGeometric Results on Possible Controllabilty

� The results in this case depend on the transfer function H(s) to be
the transfer function from the input u(t) to the output z(t); i.e.,

H(s) = C1(sI − A)−1B1 + D1.

Theorem. Suppose that H(s) ≡ 0. Then a state x0 is differentially
possibly controllable if and only if it is a controllable state for the pair
(A,B1).

� The above theorem implies that when H(s) ≡ 0 the robustly
unobservable set is a linear space equal to the unobservable
subspace of the pair (A,B1).
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� From the above theorem and the fact that H(s) ≡ 0, it follows that
we can apply the standard Kalman decomposition to represent the
uncertain system as shown below.

+Controllable

Uncontrollable

y

z

ξ

∆

u

� In this case, we only have uncertainty in the uncontrollable
subsystem.
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� In the case that H(s) 6≡ 0, we have only a partial result as follows:

Theorem. Suppose that H(s) 6≡ 0. Then a state x0 is differentially pos-
sibly controllable only if it is a controllable state for the pair (A, [B1 B2]).

� To date we have been unable to prove the converse part of this
theorem. If it were true, we would be able to represent the uncertain
system as shown below in this case:

+

Uncontrollable

Controllable y

∆

ξ

u

z

+
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Kalman DecompositionsKalman Decompositions

We can now combine our results to obtain a Kalman decomposition for
the uncertain system at least in some cases:

Case 1 G(s) ≡ 0, H(s) ≡ 0. In this case, we would apply the
standard Kalman decomposition to the triple (C2, A,B1) to obtain the
situation as illustrated in the following block diagram.
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z

Controllable

Observable

Uncontrollable

Observable

Controllable

Unobservable

Uncontrollable
Unobservable

u
+

y

∆

+
ξ
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Case 2 G(s) 6≡ 0, H(s) ≡ 0. In this case, we would apply the
standard Kalman decomposition to the triple

(

[

C1

C2

]

, A,B1)

to obtain the situation as illustrated in the following block diagram.
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ξ

Controllable

Observable

Uncontrollable

Observable

Controllable

Unobservable

Uncontrollable
Unobservable

u
+

y

∆
z
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� Note that in order to guarantee that the condition H(s) ≡ 0 we
need to make a further restriction on the controllable observable
block in the above diagram so that it in fact it only had an output y
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DiscussionDiscussion
� Why do we consider differential versions of controllability and

observability?

� In the case of observability, it removes technical problems by
ensuring that for at least one τ , the Q Riccati equation has a
solution on [0, T ] and so Vτ (x0, T ) > −∞ for at least one
value of τ .

� In the case of controllability, it rules out counter examples of the
form

ẋ = ax + ξ
z = x

for which there exists a particular time varying uncertainty
satisfying the IQC on [0, T ] and which drives any initial condition
to zero at the particular time T . Such a system would be possibly
controllable on [0, T ] and yet the control input u does not affect
the system at all. Requiring T to be arbitrarily small rules out this.
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� Note that the decompositions presented do not depend on the size
of the uncertainty bound but only on the structure of the system.

� What happens if we considered constant norm bounded uncertainty
rather than the IQC description considered?

� It seems that in this case, the situation is much more
complicated. For example

ẋ =

[

0 0
δ −1

]

x +

[

1
δ

]

u

with |δ| ≤ 1 has a possibly controllable set which is a cone not a
subspace; e.g. the controllability matrix is

[

1 0
δ 0

]
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Future ResearchFuture Research

� Resolve the possible controllability question for the case H(s) 6≡ 0.

� Relate results to question of minimum realization for uncertain
systems.

� Extend to the case of structured uncertainty.


