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Linear Systems Snapshots

Recent joint work with Paul: We Go Tensor!!

Greetings and Apologies
why Paul cannot come and why this talk is not about linear systems

Invariant Factors/Jordan Structure of A ⊗ B

polynomial models versus Clebsch-Gordan formula (SL2-reps)

Polynomial Sylvester Equations
How to solve AX + BX = C or

P

m

i=1 AiXBi = C

Tensor Products of Behaviors
tensor product of vector spaces B1 ⊗F B2 (2D-behavior!)

tensor product of modules B1 ⊗F [z] B2 (smaller 1D-bahavior)

Realization Theory for Tensored Behaviors
Parametrizations of Yang–Mills instantons; separable 2D-systems
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Back to the Talk: Motivation

Algorithmic Engineering: Design of Algorithms

Most computational tasks can be reformulated as optimization tasks on

Riemannian manifolds. This includes most computational tasks form e.g.

Numerical Linear Algebra
eigenvalues, singular values, ...

Control Theory
Riccati equations, balanced realizations,...

Robotics; Quantum Control and Computer Vision
grasping problems, quantum computation, camera estimation problems
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Motivation: The Core Problem

Riemannian Optimization: For a 6∈ M , find the optimum x∗ of the

least squares distance function

||x − a||2

on a Riemannian manifold M .

Optimal Control: Find a control u(t) for the control system

ẋ = f(x, u)

on M , that steers an initial point x0 ∈ M optimally to x∗ ∈ M .
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Motivation: The Core Problem

Standard numerical recipes often not applicable or too ad hoc.

→ Iterative Methods! Follow your nose to find solutions!

Standard optimization methods (Lagrange multipliers, augmented

Lagrangians,...) are often not applicable nor well-adapted to

structure

Good algorithm design employs the geometry of constraint
set. → Riemannian Optimization Methods!

Result of optimization process often has to be realized

experimentally.

→ Algorithms as Control Systems/Control of Algorithms!

Need good examples/prototypes for the theory.

Develop a theory for Riemannian symmetric spaces!
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Motivation: Linear Algebra

Least Squares Eigenvalue Computation:

Matrix Diagonalization:
Minimize ‖A − X‖2 on M = {SX0S

−1|S invertible}.

C-Numerical Range:
Minimize ‖A − X‖2 on M = {UCU−1|U unitary}.

Singular Value Computation:
Minimize ‖A − X‖2 on M = {UX0V

−1|U, V unitary}.

Lower Rank Approximation:
Minimize ‖A − X‖2 on M = {X ∈ R

n×m|rkX ≤ r}.
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Motivation: Control Theory

Least Squares Model Reduction:

Hankel/Toeplitz Approximation:
Minimize ‖A − X‖2 on M = {X Hankel operator| rkX ≤ r}.

Proper Orthogonal Decomposition (POD):
Minimize ‖A − XX>‖2 on M = {X ∈ R

n×r|X>X = Ir}.

Norm Balanced Realizations:
Minimize ‖F − SAS−1‖2 + ‖G − SB‖2 + ‖H − CS−1‖2 on

S ∈ GL(n).

LinSys2007 – p.7/58



Motivation: Control Theory Cont’d

ẋ = Ax + Bu, y = Cx.

Controllability/Observability Gramians

Wc =

∫ ∞

0

etABB>etA>dt, Wo =

∫ ∞

0

etA>C>CetAdt.

Goal: Find balancing state space transformation such that

SWcS
> = S−>WoS

−1 = diagonal.

Solution: For N := diag(1, ..., n) find minimizer of fN : GL(n, R) → R

fN (S) := tr(N(SWcS
>+ S−>WoS

−1)).

Where are the optimal control problems?
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Motivation: Control of Spin Systems

The time evolution of N coupled spin 1
2 particles is governed by

Ẋ(t) = −i
(

Hd +

m∑

j=1

uj(t)Hj

)

X(t), X(0) = I.

Schrödinger Equation on SU(2N )

Optimal Control Problems:

Find controls u1(·), . . . , um(·) that steer the Schrödinger Equation

to a maximum of the transfer function

f : SU(2N ) → R, f(X) := Re tr(C∗XAX∗).

If the above problem has at least one solution, then try to find a

time-optimal one.
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Motivation: Control of Density Operators

In presence of spin relaxation, the time evolution on density operators is

ρ̇ = −i
[

Hd +

m∑

j=1

ujHj , ρ
]

−
r∑

i=1

[

λi,
[

λi, ρ
]]

Lindblad Master Equation

Optimal Control Problems:

Find controls u1(·), . . . , um(·) that steer the Lindblad Equation to a

maximum of the transfer function

f(ρ) := Re tr(C∗ρ).

If the above problem has at least one solution, then try to find a

time-optimal one.
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Lie Groups & Lie Algebras
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Tutorial: Lie Groups and Lie Algebras

Examples:

(a) The real orthogonal group

O(n, R) := {X ∈ R
n×n| XX> = In}

(b) The special unitary group

SU(n) := {X ∈ C
n×n| XX∗ = In, det X = 1}

(c) The local unitary group

SUloc(2
N ) := {X1 ⊗ ... ⊗ XN | X ∈ SU(2)},

where ⊗ denotes the Kronecker product of matrices.
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Tutorial: Lie Groups and Lie Algebras

Definition. A vector space V with a bilinear operation [ , ] : V × V → V

(i) [x, y] = −[y, x]

(ii) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

is called a Lie Algebra.

Theorem. Let G ⊂ GL(n, R) be a matrix Lie group. Then the tangent

space g := TIG at the identity is a Lie algebra with Lie bracket:

[X, Y ] = XY − Y X.
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Tutorial: Lie Groups and Lie Algebras

Examples

(a) The Lie algebra of O(n, R) is

o(n, R) := {Ω ∈ R
n×n| Ω> = −Ω}.

(b) The Lie algebra of SU(n) is

su(n) := {Ω ∈ C
n×n| Ω∗ = −Ω, trΩ = 0}

(c) The Lie algebra of SUloc(4) is

{Ω1 ⊗ I2 + I2 ⊗ Ω2 | Ω1, Ω2 ∈ su(2)} ⊂ su(4).
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Controllability on Lie Groups
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Controllability on Lie Groups

History

Geometric Function Theory: Bieberbach Conjecture; Semigroups

of univalent functions, Löwner-, Beltrami equation (C. Löwner)

Nonlinear Control Theory: Controllability, Observability

(R. Hermann, R.W. Brockett, A. Krener, I. Kupka, H. Sussmann,...)

Lie Theory of Semigroups: Lie wedges; Cones in Lie Algebras

(J. Hilgert, K.-H. Hoffmann, J. Lawson, G.I. Ol’shanskii)

Control Sets & Dynamical Systems: Chain-Recurrency, Transitivity

(F. Colonius, W. Kliemann, L. San Martin)
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Controllability on Lie Groups

G connected matrix Lie group with Lie algebra g.

Bilinear control system on G

(Σ) Ẋ =



Ad +
m∑

j=1

ujAj



X, X(0) = I,

where Ad, A1, ..., Am ∈ g.

Reachable set

R(I) = {XF ∈ G | ∃u1, ..., um and T ≥ 0 : X(T ) = XF }
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Controllability on Lie Groups

Structure of reachable sets:

Theorem (R.W. Brockett, H. Sussmann, V. Jurdjevic)

(i) The closure R(I) of the reachable set is an (infinitesimally

generated) Lie subsemigroup of G.

(ii) If there is no drift, i.e. Ad = 0, then R(I) is a Lie subgroup of G.

(iii) If G is compact, then the closure R(I) is a Lie subgroup of G.
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Controllability on Lie Groups

Controllability Concepts:

Accessibility: The reachable set R(I) has an interior point.

Controllability:
R(I) = G.

System Lie Algebra:

L := smallest Lie subalgebra of g containing A1, ..., Am, Ad, i.e. the

smallest subspace containing all the iterated Lie brackets

Ad, A1, ..., Am, [Ad, Ai], [Ai, Aj ], [Ad, [Ai, Aj ]], ...
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Controllability on Lie Groups

Controllability Results

Theorem (Jurdjevic/Sussmann)

Σ is accessible if and only if the system Lie algebra is L = g.

A bilinear system Σ is controllable if and only if

(i) Σ is accessible. (ii) R(I) is a subgroup of G.

Let G be a compact connected Lie group. Then Σ is controllable if

and only if it is accessible.
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Controllability on Lie Groups: Spin Systems

Example: Nuclear Magnetic Resonance (NMR)

Ẋ = −i
(

Ad +

2N∑

j=1

ujAj

)

X, X(0) = I

Schrödinger equation on SU(2N )

Drift Term: Ad =
∑

k<l

λk,l σkz · σlz

Control Hamiltonians:

Aj = σjx for j = 1, . . . , N

Aj = σjy for j = N + 1, . . . , 2N
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Controllability on Lie Groups: Spin Systems

Pauli Matrices

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

,

σkx =

N factors
︷ ︸︸ ︷

I2 ⊗ · · · ⊗ I2 ⊗ σx
︸︷︷︸

k-th position

⊗I2 ⊗ · · · ⊗ I2

and σky, σkz analogously.
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Controllability on Lie Groups: Spin Systems
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Controllability on Lie Groups: Spin Systems

Structure of reachable sets of the Schrödinger equation

Theorem (Schulte-Herbrüggen ’98): For coupling terms λk,l describing

a connecting spin-spin interaction graph, the NMR-Schrödinger equation is

controllable on SU(2N ).

Theorem (Albertini/Alessandro ’01): The closures of the reachable sets

of the NMR-Schrödinger equation are exactly the Lie subgroups

K = SU(m1) ⊗ ... ⊗ SU(mr), m1 + ... + mr = 2N .
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Controllability on Lie Groups: Spin Systems

Structure of reachable sets of the Lindblad equation

The Liouville Master equation

ρ̇ = −i
[

Hd +

m∑

j=1

ujHj , ρ
]

is controllable on each isospectral set {UρU ∗|U ∈ SU(2N )}, iff the

spin-spin coupling graph is connected.

The Lindblad equation

ρ̇ = −i
[

Hd +

m∑

j=1

ujHj , ρ
]

−
r∑

i=1

[

λi,
[

λi, ρ
]]

is generically accessible, but is never controllable!

Description of reachable sets for Lindblad equation: unknown!LinSys2007 – p.25/58



Controllability on Lie Groups: Spin Systems

Accessibility of the Lindblad equation

The Lindblad equation

ρ̇ = −i
[

Hd +
m∑

j=1

ujHj , ρ
]

−
r∑

i=1

[

λi,
[

λi, ρ
]]

is accessible, if and only if the system Lie algebra is one of the 14 following

types.
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Controllability on Lie Groups: Spin Systems

Accessibility of the Lindblad equation

Theorem: Let Hd, H1, ..., Hm ∈ gl(N, R) with N ≥ 2. The Lindblad

equation is accessible on R
N \ {0} if and only if the system Lie algebra

A ⊂ gl(N, R) is conjugate to one of the following types:

sl(2, R), gl(2, R) and gl(N/2, C), if N = 2.

so(N) ⊕ R, if N ≥ 3.

su(N/2) ⊕ eiα
R and su(N/2) ⊕ C, if N is even and N ≥ 3.

sp(N/4) ⊕ eiα
R, sp(N/4) ⊕ C and sp(N/4) ⊕ H, if N = 4k.

g2 ⊕ R, if N = 7.

spin(7) ⊕ R, if N = 8.

spin(9) ⊕ R, if N = 16.

sl(N, R) and gl(N, R), if N ≥ 3.
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Controllability on Lie Groups: Spin Systems

Accessibility of the Lindblad equation

sl(N/2, C), sl(N/2, C) ⊕ eiβ
R and gl(N/2, C), if N is even and

N ≥ 3.

sl(N/4, H), sl(N/4, H) ⊕ eiβ
R and sl(N/4, H) ⊕ C, if N = 4k.

sl(N/4, H) ⊕ sp(1) and sl(N/4, H) ⊕ H, if N = 4k.

sp(N, R) and sp(N, R) ⊕ R, if N is even and N ≥ 3. sp(N/2, C),

sp(N/2, C) ⊕ eiβ
R and sp(N/2, C) ⊕ C, if N = 4k.

spin(9, 1, R) and spin(9, 1, R) ⊕ R, if N = 16.

Here, α and β have to satisfy α ∈ (π
2 ,−π

2 ) and β ∈ [π
2 ,−π

2 ].
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Optimization on Reachable Sets
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Optimization on Reachable Sets

History

Optimization on Riemannian Manifolds: Conjugate Gradient,

Newton-, Jacobi Methods on Manifolds

(U.H., K. Hüper, R. Mahony, M. Shub, S. Smith, J. Manton)

Isospectral Flows: Gradient and Hamiltonian flows

(A. Bloch, R.W. Brockett, P. Deift, U. H., J. Moser, A.P. Veselov)

Geometric Integration of ODEs & PDEs: Runge-Kutta Methods

on Manifolds; Butcher Trees; Magnus Expansions

(P. Crouch, E. Hairer, A. Iserles, G. Wanner, H. Munte-Kaas,..)
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Optimization on Reachable Sets

Final Point Characterization: NMR Spin Systems

Find a unitary matrix Xmax ∈ K that maximizes the transfer function

f : K → R, f(X) := Re tr(C∗XAX∗)

over the closure of the reachable set

K = SU(m1) ⊗ ... ⊗ SU(mr).

Relative Numerical Range

Range of f = Re WK(C, A), where

WK(C, A) := {tr(C∗XAX∗) | X ∈ K}

denotes the relative C-numerical range of A.
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Optimization on Reachable Sets

Example 1: The C-numerical range

For C, A ∈ C
2N×2N

the C-numerical range of A is

W (C, A) := {tr (C†UAU †) | U ∈ SU(2N )} ⊂ C.

Basic Properties:

• It generalizes the classical numerical range of A

W (A) := {x†Ax | ‖x‖ = 1}.

• W (C, A) is compact and connected.

• W (C, A) is star-shaped. [Cheung & Tsing ’96]

• W (A) is convex. [Hausdorff 1919], [Töplitz 1918]
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Optimization on Reachable Sets

The C-numerical range

Basic Properties:

• W (C, A) is convex if C or A are Hermitian. [Westwick ’75]

Proof via symplectic geometry; convexity of images of moment
maps (Atiyah..).

• W (C, A) is a circular disk centered at the origin if C or A are

unitary block-shift matrices. [Li & Tsing ’91]

No symplectic geometry proof known!
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Optimization on Reachable Sets

Example 2: The local C-numerical range

For C, A ∈ C
2N×2N

the local C-numerical range of A is given by

Wloc(C, A) := {tr (C†UAU †) | U ∈ SUloc(2
N )} ⊂ C.

Basic Properties:

• Wloc(C, A) is compact and connected.

• However, Wloc(C, A) is in general neither convex nor star-shaped.

• An Lie-theoretic analog of Li and Tsing’s circular disk result is in

preparation.

LinSys2007 – p.34/58



Optimization on Reachable Sets

Shapes of the Local C-Numerical Range
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-0.25

0

0.25

0.5

0.75

N = 3 Spins
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Optimization on Reachable Sets

Open Problems

When is the local numerical range a disc? What is the radius of this

disc?

When is the relative C-numerical range WK(C, A) convex?

Develop numerical methods for computing the local C-numerical
radius!
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Optimization on Reachable Sets

Geometric Optimization Methods:

Gradient Method

Jacobi-type Method

Newton Method

Conjugate Gradient Method

All of them exploit the intrinsic manifold structure of the reachable sets of

the Schrödinger Equation (Riemannian geometry and Lie Theory) and do

not use the ambient vector space.

LinSys2007 – p.37/58



Optimization on Reachable Sets

Gradient Method:

xk+1 := expxk
(−αk∇f(xk)) ,

where ∇f(x) is the gradient of f , αn a step size and expx(·) the

Riemannian exponential map at x.

Newton Method:

xk+1 := expxk

((
− Hf (xk)

)−1
∇f(xk)

)

,

where Hf (x) is the Hessian operator of f and expx(Ω) the Riemannian

exponential map at x.
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Geometric Optimization Methods

Numerical Experiments for SUloc(2
N ): Gradient Flow

−0.5 0 0.5 1
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0.6
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Re

Im
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trace-function
steps

N = 3, n = 8: Gradient flow for Example II
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Geometric Optimization Methods

Numerical Experiments for SUloc(2
N ):

1 2 3 4 5 6 7 8
Iterations

1. ´ 10-9

1. ´ 10-6

0.001

1

1000
Èf-ma

x
È

N = 5, n = 32: C randomly chosen; A = U0CU †
0 .

Solid line: Newton method; dashed line: conjugate gradient
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Time-Optimal Control on Lie Groups
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Time-Optimal Control on Lie Groups

Pontryagin Maximum Principle (Jurdjevic, Sussmann)

• Advantage: Always possible. Necessary condition.

• Disadvantage: Little information on optimal control!

Lie Theory on Symmetric Spaces (Brockett, Khaneja)

• Advantage: Full information on optimal control.

• Disadvantage: Restricted to Riemannian symmetric spaces!
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Time-Optimal Control on Lie Groups

General Notation:

G compact, connected Lie Group with Lie algebra g.

Bilinear control system on G

(Σ) Ẋ =
(

Ad +

m∑

j=1

ujAj

)

X, X(0) = I

with Ad, A1, ..., Am ∈ g. Let k denote the Lie algebra generated by

A1, ..., Am.

Assumptions:

• (Σ) is controllable, i.e. g = L.

• The “fast” subgroup K := exp(k) is compact.
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Time-Optimal Control on Lie Groups

Given: Initial state X0 = I and final state XF ∈ G

Problem: Find controls u1(·), ..., um(·) and minimal time

T = Topt(XF ) s.t. the corresponding solution X(t) of (Σ) satisfies

X(0) = X0, X(T ) = XF .

Remark:

This is difficult! Solutions known only for small dimensional
problems (n ≤ 4)!

Note, there are no bounds on the controls.
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Time-Optimal Control on Lie Groups

Time-Optimal Torus Theorem

Theorem (Khaneja, Brockett, Glaser ’01). Let G/K be a compact

Riemannian symmetric space, defined by a Cartan decomposition

g = k ⊕ p, p := k⊥. Let A⊥
d be the orthogonal projection of Ad onto p

and a be a maximal abelian subalgebra of p containing A⊥
d . Then:

Each X ∈ G has a decomposition

X = UΣV with U, V ∈ K and Σ ∈ exp a.

The minimal time is

Topt(X) = min
{

t ≥ 0
∣
∣
∣

(

t · conv W(A⊥
d )
)

∩ exp−1(Σ) 6= ∅
}

,

where X = UΣV and W(A⊥
d ) denotes the Weyl orbit of A⊥

d .
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Time-Optimal Control on Lie Groups

Examples of Riemannian Symmetric Spaces

SU(n)/SO(n) is a compact Riemannian symmetric space

SU(4)/
(
SU(2) ⊗ SU(2)

)
is a Riemannian symmetric space (good

news!)

SU(8)/
(
SU(2)⊗ SU(2)⊗ SU(2)

)
is NOT a Riemannian symmetric

space (bad news!)

Theory works well for 2-Spins, but not for N ≥ 3 Spins!
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Computation of Time-Optimal Trajectories

Global Optimal Control Approach.

Combines simulated annealing & gradient descent.
Works on any Riemannian symmetric space.

Example: NMR-Schrödinger equation on SU(4)

Ẋ = −2πi
(

Hd +

4∑

i=1

uiHi

)

, X(0) = I,

Hd := σz ⊗ σz, H1 := I2 ⊗ σx, H2 := I2 ⊗ σy, H3 := σx ⊗ I2,

H4 := σy ⊗ I2.

K = SU(2) ⊗ SU(2).
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Computation of Time-Optimal Trajectories

Optimization Algorithm for the NMR-Case:

Let X(t, u) = U(u1, ..., u6)Σ(t1, t2, t3)V (u7, ..., u12),

U(u1, . . . , u6) = e−i2πu1H1e−i2πu2H2e−i2πu3H1e−i2πu4H3e−i2πu5H4e−i2πu6H3

V (u7, . . . , u12) = e−i2πu7H1e−i2πu8H2e−i2πu9H1e−i2πu10H3e−i2πu11H4e−i2πu12H3

Σ = et12πi(σx⊗σx)et22πi(σy⊗σy)et32πi(σz⊗σz)

To compute the minimal time T (X), we combine simulated annealing

with gradient methods to solve the nonlinear optimization problem:

min f(t, u) := |t1| + |t2| + |t3|,

subject to g(t, u) := 4 − Retr(X∗
F X(t, u)) = 0

where t = [t1, t2, t3], u = [u1, u2, ..., u12] ∈ [−1, 1] × · · · × [−1, 1]
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Computation of Time-optimal Trajectories

Numerical Results:

XF = e−
iπ
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Optimization in Quantum Control

Alternative Approach: GRAPE Algorithm:

Use piecewise constant controls (M switches, time length T ).

Optimize cost function via gradient descent on finite-dimensional

space of input values R
M (using Armijo step size)

Plot achieved optimal inputs and transfer function as function of T .
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2-Spin Case: Optimal inputs at spin 1, resp. spin 2 for T = 0.5 seconds
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Optimization for Quantum Control

Conclusions and Open Problems:

Resonably well developed optimal control theory is emerging for

Riemannian symmetric spaces.

Many challenging open problem in different mathematical areas:

Control Theory: A complete description of the reachable sets of

the Schrödinger equation in terms of couplings, i.e. in terms of the

spin-spin interaction graph. Fast optimal control algorithms.

Linear Algebra: Reliable algorithms for computing relative

numerical ranges.

Geometric Optimization/Computing: Riemannian optimization

algorithms proved to be efficient tools for small N ∼ 5; however for

large N ∼ 20 there is still work to do.
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