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Abstract— This paper provides a flexible solution to the
problem of building and maintaining a very-large-scale map
using multiple vehicles. In particular, we consider producing
a map of landmarks on the scale of thousands of kilometres
in an outdoor environment. The algorithm is distributed across
multiple vehicles each given the task of producing and updating
a local map. The vehicles are equipped with a range of sensors
and selectively communicate maps to and from a central
station in a bandwidth-constraint environment. The potentially
overlapping local maps are asynchronously transmitted back
to a central fusion centre where a global map repository is
maintained. The work addresses two of the most common issues
of mapping in large-scale environments, namely, computational
complexity and limited communication bandwidth. The pro-
posed communication architecture is scalable and is capable of
dealing with time-varying overlapping map sizes. A general data
fusion framework based on covariance intersection is proposed
to tackle the problem of redundant information propagation
that is caused by communicating sub-maps of arbitrary size in
the network. We also provide an analysis on the applicability of
covariance intersection, as compared to the optimal approach
when no cross-correlation is known between estimates from
different vehicles. We further analyse the solution using a
number of illustrative examples.

I. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) is a
popular technique [1]–[3] to address complex mapping prob-
lems under conditions of process and sensor noise and
possible modeling errors. This algorithm first appeared in a
seminal paper by Smith, Self and Cheeseman [4] and it has
received a considerable amount of attention by the robotics
community [5]–[8]. Broadly speaking, SLAM is the process
of concurrently building a map of the environment and using
the map to estimate the location of the robot in an unknown
environment.

Although most of the initial interest in SLAM considered
the problem of mapping and localisation with a single
vehicle, the first decade of the twenty-first century saw a
substantial interest in multi-vehicle localisation and mapping.
The advantages of using multiple, cooperative, vehicles in
exploration and mapping applications, compared to the single
vehicle case are well known and intuitive, e.g. redundancy,
improved accuracy in mapping etc. [9]–[11].

At a high-level, information fusion is the fundamental
tool required for multi-vehicle SLAM as, on an abstract
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Fig. 1. The red lines on the Australia map indicate the roads from which
video has been captured and automatically analysed for road signs. The
challenge addressed in this paper is how to further automate this task by
having a fleet of ad-hoc surveying vehicles efficiently communicating their
observations to a central server.

level, the problem is about combining numerous sources
of information (that may be correlated) about a common
parameter in order to increase ones knowledge about the
parameter.

In multi-vehicle SLAM the problem of where this fusion
occurs and how information is shared is a practical problem
and is one that motivates much of the work in this paper
(along with similar work discussed subsequently). Different
multi-vehicle data fusion architectures have been suggested
and implemented for tasks such as autonomous navigation
[12]–[14], exploration and mapping [15]–[17] and target
tracking [18], [19].

The most obvious and traditional data fusion architecture
is a fully-centralised one where all the raw sensor data
from multiple sources is transmitted to a central station for
fusion (e.g. using a large Kalman filter). Works such as
[20] and [21] provide fully-centralised approaches to the
multi-vehicle SLAM problem. The main disadvantage of a
centralised solution is the communication and networking
complexity required. The central station also offers a single
point of failure and thus centralised solutions in general are
less redundant and robust. In addition, the sophistication
and heavy computational load at the central station might
lead to an undesirable computational bottleneck. However,
centralised solutions are convenient in numerous practical
applications where it is undesirable for the vehicles to
communicate between themselves.

In contrast to the centralised systems, fully decentralised
architectures often have no central processing station. In such
systems, individual stations (e.g. individual vehicles) can
perform data fusion in a fully autonomous manner, while
receiving information from and transmitting information to
other particular stations. In other words, fusion occurs locally



at each station on the basis of local observations and the
information received from neighbouring stations. Examples
of decentralised SLAM can be found in [22]–[24]. Note that
if the networking topology resembles a complete graph then
such decentralised systems offer no advantage in terms of
communication requirements. Of course, in general, decen-
tralised solutions are more robust to failure of a given station.

Both fully-centralised and conventional decentralised ar-
chitectures have proven to be effective in numerous mapping
applications. However, without additional local processing it
turns out that both methods fail to provide a practical and
flexible solution to large-scale (millions of mapping points)
mapping where limited bandwidth and processing power are
a real concern. This is particularly true when the constraint
of a centralised architecture is dictated by the problem. This
will be discussed in more details in Sections II and III.

Despite some fundamental work (e.g. [18], [24]), the prob-
lem of selective communication has been widely neglected in
the study of multi-vehicle information fusion (e.g. [25]). In
large-scale, low-bandwidth mapping applications, sending all
the local information to the central station is not feasible due
to the limited system and communication resources present
in practice. Information tailoring is necessary to avoid high
communication costs and other bandwidth constraints in a
distributed data collection system. Consequently, only the
most valuable information should be selected and transmit-
ted. This is the avenue that we follow in this paper.

In addition, the majority of the existing multi-vehicle
SLAM techniques suffer from the growing size of the local
maps within individual nodes. Due to the large number of
features and the rapidly increasing map size, the SLAM
algorithm fails to fulfil the requirements of large-scale ap-
plications. The ramification is an immense memory and
computational load on the vehicles. Consequently, appro-
priate strategies must be applied to limit the size of the
SLAM filters in very large-scale environments. We discuss
a particular pruning strategy in this paper.

The contribution of this work is the development of a
multi-vehicle data fusion framework for a real-world inspired
road mapping application. We introduce a hierarchical data
fusion architecture and a communication scheme that allows
the communication of sub-maps of arbitrary size. A practical
pruning algorithm based on a measure of information gain is
introduced to overcome the problem of progressively grow-
ing map sizes at individual vehicles. The communication
bandwidth is reduced significantly by selectively transmitting
sub-maps with the largest information contribution to a cen-
tral server, where a global map repository is maintained. The
proposed communication architecture is flexible in the sense
that it is capable of dealing with dynamically changing map-
sizes in the entire system. In addition, the fusion algorithm
offered in this paper ensures that map estimates are integrated
in a consistent and robust fashion.

II. PROBLEM DESCRIPTION / MOTIVATION

The motivation behind this work is a project called Au-
toMap where geographically located information from the

Fig. 2. Road Sign Detection and Localisation in AutoMap Project.

road scene is gathered continuously on a very large scale by
a fleet of distributed vehicles such as taxis, garbage trucks,
delivery vans etc and sent back to a central server where a
global database is compiled (Figure 1 gives an indication of
the size of the problem that we are addressing). Advanced
computer vision algorithms [26] are used to automatically
extract and geolocate, e.g. road signs from recorded video
that are of interest to third party companies like mapping
companies and road asset managers (see Figure 2) [27]. Such
information is currently collected in a manual fashion and
updated only every few years which is a very costly and error
prone process. A setup as described in this paper enables a
continuously updated database of road scene information at a
fraction of the cost compared to the manual alternative. Each
sensor platform, as installed in each fleet vehicle, consists of
three cameras, a Global Positioning System (GPS), a 3-axis
accelerometer, a 3-axis gyroscope, a 3-axis magnetometer, a
processing unit and a 3G modem. Data from the sensors are
continuously stored on a local hard drive, and later analysed
by the local processing unit in order of importance to
maximise a cost function representing the value of extracted
information.

A. Resource Constraints

Analysing the vast amount of information gathered from
the sensors and transmitting it back to the central server
is a challenging task as the platform installed in each
vehicle suffers from a number of constraints. These con-
straints can be categorised as 1) Communication bandwidth
2) Processing power, and 3) Memory and storage. One
of the key constraints this paper sets out to address is
the limited communication bandwidth provided by the 3G
modem. The limited communication bandwidth not only
makes it impossible to transmit all raw sensory data to a
central server and analyse it there, but even the amount
of extracted, symbolic information poses a challenge (see
Example 1 below). Clearly, a communication architecture
that allows selective communication is needed to handle this
case.

Example 1. Consider a scenario with n vehicles collecting
measurements and tasked at mapping a given environment.
Each vehicle traverses d kilometres per day and each kilo-
metre contains m map objects (road signs) on average.
The size of each vehicle’s map is given by N = m · d
and it is assumed this map size is initialised at the start
of the day. A map represented by a covariance matrix



is then assumed to require b ·N2 bytes to transmit and
the communication cost for each byte is given by c. The
communication protocol requires k transmissions of b ·N2

bytes per kilometre of road data. A simple calculation shows
that the total communication cost using this method is

Ctotal = d3m2nkbc (1)

per day. The communication cost (and bandwidth) in this
example is proportional to the cube of the distance driven
by each vehicle over a fixed period of time. Consequently,
the above solution is not feasible for very-large-scale ap-
plications like AutoMap which exhibit limited system and
communication resources. For example, let n = 10, d = 200,
m = 10, k = 0.1, b = 8, c = $3 × 10−8 ($30 for 1GB of
3G data) and N = md = 10 × 200, then Ctotal = $192
per day. In this case, the cost of complete communication is
prohibitive and a more efficient solution is required. Similar
analysis can be done for the processing power and memory
requirements.

III. THE HIERARCHICAL DATA FUSION ARCHITECTURE

This paper introduces a single-level hierarchical architec-
ture with a central base station, called the central fusion
center (CFC), to combine the local maps obtained from
individual vehicles into a global map. As argued in Section
II-A, by virtue of the very-large-scale nature of the problem,
it is practically unrealistic to process and maintain all the
map data locally at individual vehicles.

The hierarchical architecture aims to increase the process-
ing done locally by the individual vehicles. A local SLAM
algorithm is implemented in each vehicle in order to build
a local map of the detected landmarks and concurrently
estimate the location of the vehicle as it explores the en-
vironment (see Figure 3). Each vehicle shares a selection of
its local information with the CFC (via a cellular network).
The CFC is responsible for maintaining a global map and
for integrating the information collected by the vehicles in a
consistent fashion (see Figure 4). A feedback configuration
in the system provides a route for the communication of sub-
maps of the global map back to the local filters in individual
vehicles. As such, individual vehicles indirectly have access
to the information obtained by other vehicles in the system.

Fig. 3. The distributed information fusion model keeps the central map
repository up-to-date.

z1(k)

z2(k)

z3(k)

z1(k)

z2(k)

z3(k)

Sensors

1

Central Fusion Centre 
(CFC)

Central Map Repository!

z1(k)

z2(k)

z3(k)

Local&
Processor

Local&
Processor

Local&
Processor

Monday, 31 October 11
Fig. 4. A single-level hierarchical architecture

A. The local SLAM filter (LSF)
The local SLAM filter is a local implementation of the

single-vehicle SLAM algorithm. The LSF estimates a state
vector and a covariance matrix based on the observed sensor
measurements and the information received from the CFC
(e.g. as an initial prior). The state and covariance at the LSF
in vehicle i is given by

x̂i(k|k) =
[

x̂i
v(k|k)

x̂i
m(k|k)

]
(2)

Pi(k|k) =
[

Pi
vv(k|k) Pi

vm(k|k)
Pi

vm
T (k|k) Pi

mm(k|k)

]
(3)

where vehicle and map components are denoted by the
subscripts v and m respectively. This paper will not dwell
on the details of the local SLAM filter as such algorithms
have been considered numerous times in the literature [1],
[28]. The dimension of x̂i(k|k) is different for each i as the
local environment (e.g. the number of landmarks observed
etc.) is different for each vehicle.

B. Map information
Given a state estimate x̂(k|k) with covariance P(k|k),

the so-called information vector and information matrix are
defined by a bijective mapping

ŷ(k|k) = P−1(k|k)x̂(k|k), Y(k|k) = P−1(k|k) (4)

The reason for considering the information-based represen-
tation for states and covariances is that the interpretation,
communication and the fusion1 of a group of estimates is
more convenient in this form.

From Equation (3) we then define the total map informa-
tion at each vehicle i as

Yi
mm(k|k) = Pi

mm

−1
(k|k) (5)

Eric Nettleton’s thesis [18] provides two important results
concerning the cross-correlation between vehicle state es-
timates x̂i(k|k) under some pretty common assumptions.
Suppose that the size of x̂i

m(k|k) is the same for all i;
i.e. we can think of x̂i

m(k|k) as a local estimate of the
complete global map. Also suppose that the association (i.e.
ordering) amongst the elements of x̂i

m(k|k) is consistent
between vehicles and that

E[(x̂i
m(k|k)− xm(k))(x̂j

m(k|k)− xm(k))>] = 0 (6)

1For brevity, we typically only discuss those equations for computing the
information matrix Y(k|k) while the corresponding computation of ŷ(k|k)
is expected to be known.



where xm(k) is the actual map of the environment. Then
the covariance of the best, linear unbiased, estimate of the
global map is simply

Ymm(k|k) =
∑
i

Yi
mm(k|k) (7)

Moreover, under these assumptions

E[(x̂i
v(k|k)− xi

v(k))(x̂
j
v(k|k)− xj

v(k))
>] = 0 (8)

where xi
v(k) is the actual ith vehicle location.

However, in practice the assumption that

E[(x̂i
m(k|k)− xm(k))(x̂j

m(k|k)− xm(k))>] = 0 (9)

is typically not justified and individual vehicle maps x̂i
m(k|k)

may only partially overlap and be of different sizes. There-
fore, the results of Nettleton above are not always applicable
(as noted in much of Nettleton’s own work, e.g. [24]).

C. Selective communication
Given the practical scenario envisioned for this work, it

follows that limited communication bandwidth constrains the
transmission of information to and from the CFC. Conse-
quently, the accuracy of the central map should be optimised
in some manner as a function of the information sent by the
individual vehicles under the limited bandwidth constraints.
As discussed later in Subection IV-D, we use the information
gain (between the local sub-maps known at the CFC and the
improved maps resulting from the local SLAM algorithm)
as a measure to select the most informative sub-map within
the local SLAM algorithm for communication.

IV. COMMUNICATION SCENARIO

In this section we consider the communication sequence
for a single vehicle, e.g. one of the components shown in
Figure 4, and discuss the process of information fusion when
the shared information between the CFC and an individual
vehicle is correlated and of differing sizes. The proposed
communication block diagram is shown in Figure 5. Note
the addition of a so-called channel filter (CHF); shown at the
vehicle (but note that such a channel filter is also identically
replicated at the CFC for each vehicle). The CHF maintains
an information vector ŷCH(k|k) and matrix YCH(k|k)
representing the newly acquired and shared information.

We consider the following sequence of steps:
1) Communicating the CFC information to the vehicle
2) Updating the channel filter using the map information

from the CFC
3) Updating the local SLAM filter
4) Selecting the local vehicle sub-map to communicate to

the CFC
5) Updating the channel filter using the selected sub-map

from the LSF
6) Updating the global map using the communicated in-

formation from the local vehicles
In this paper, the first three steps and the last three steps are
referred to as downlink and uplink respectively. We outline
the downlink in detail and note the uplink is essentially
equivalent modulo semantics.

Fig. 5. Single-vehicle Information Communication Block Diagram

A. Communicating the CFC information to the vehicle

All the landmarks2 within the global map held by the
CFC that are in a pre-defined radius around the vehicle are
transmitted to the vehicle3.

This so-called regional map that is sent from the CFC to
the ith vehicle is denoted by Mi

R(ŷ
i
R,Y

i
R). This information

will be received at the communication channel filter (CHF)
of the local vehicle.

B. Updating the channel filter using the map information
from the CFC

Vehicle information is never communicated and conse-
quently the channel filter will never maintain any states other
than map states.

Let’s assume that the communicated regional information
map and the existing information map in the channel filter are
given by Mi

R(ŷ
i
R,Y

i
R) and Mi

CH(ŷi
CH ,Y

i
Ch) respectively.

Under the independence assumptions discussed previously
by Nettleton, and where ŷi

CH and ŷi
R represent complete

and overlapping maps then

Yi
CH(k|k) = Yi

CH(k|k − 1)

+ [Yi
R −Yi

CH(k|k − 1)]

= Yi
R (10)

where Yi
CH(k|k) denotes the ith channel’s information

matrix at time k given the updated information at time k from
the regional sub-map. However, if the channel map informa-
tion and the transmitted map have different sizes and/or there
is some cross-correlation between the shared information and
the existing data in the channel then this approach may lead
to inconsistent estimates of the common information between
nodes. A method to overcome inconsistency is to employ
covariance intersection (CI) [29] to calculate the common
information between two nodes4.

We now drop the superscript i where there is no danger
of confusion (and in this section we consider only the

2When we say information is transmitted it is typically meant that the
corresponding state vector (or information space representation) and the
corresponding marginalised covariance (or information space equivalent) is
transmitted.

3We assume that the CFC can access the global coordinates of the sensor
platforms on demand.

4See the appendix for a result concerning estimation consistency, CI and
fusion while neglecting cross-correlations (as a formal justification for the
use of CI in the subsequent discussions). We are not aware of a similar
formal argument along the lines given in the appendix for justifying CI
(and we show that for some cross-correlations simply neglecting the cross-
correlation will outperform CI and remain consistent).



communication between the CFC and a single vehicle i).
The CI algorithm requires both information matrices to be
of the same size. Thus, define the map domain MF as the
union of the landmarks in the channel MC(ŷCH ,YCH) and
the regional map MR(ŷR,YR) as shown in Figure 6.

Fig. 6. The map domain MF is the union map obtained by combining
the regional map domain sent from the CFC and the existing map domain
in the channel filter.

Two projection matrices are defined GR2F and GC2F and
consist of 0 and 1 elements. These matrices inflate ŷR and
ŷCH to match the cardinality of the union MF by padding
those components in each respective vector by zero when the
landmark indexed by that component is present only in the
other vector. The CI algorithm is then given by

YCH(k|k) = ω[GC2F (k|k)YCH(k|k − 1)GT
C2F (k|k)]

+(1− ω)[GR2F (k|k)YR(k|k)GT
R2F (k|k)] (11)

where YCH(k|k) denotes the ith channel’s information
matrix at time k given the updated information at time k
from the regional sub-map.

The new information received from the CFC is given by

I∗(k|k) = YCH(k|k)−GC2FYCH(k|k − 1)GT
C2F (12)

The information increment is sent to the LSF, e.g. see
Figure 5 to be combined with the locally running SLAM
filter. Computing the increment prevents double counting of
information in the LSF as discussed next.

C. Updating the local SLAM filter
When the local SLAM filter receives the information

increment from the channel filter it uses this information to
update its estimates. For this purpose, proper projection ma-
trices GN2H and GL2H are defined as previously discussed
in order to inflate the information increment vector i(k|k)
and the local information vector ŷ(k|k) to the size of the
union domain MH . In constructing the former projection
matrices, in addition to padding the respective vectors with
zeros at those elements corresponding to the non-overlapping
landmarks, we must also pad components into i∗(k|k) with
zero to correspond with the vehicle components in ŷ(k|k).
Recall no vehicle state is communicated. The update is done
according to:
Y(k|k) = GL2HY(k|k − 1)GT

L2H +GN2HI∗(k|k)GT
N2H

(13)
and as the LSF is typically executed in the standard
state space it follows that x(k|k) = Y−1(k|k)ŷ(k|k) and
P(k|k) = Y−1(k|k) as before.

D. Selecting the local vehicle sub-map to communicate to
the CFC

This algorithm is motivated by the AutoMap practical
application where the primary objective is to construct and
maintain a high-quality global map at a centralised station
using information collected (and pre-processed to some de-
gree) at local vehicles. Since the communication bandwidth
is limited as previously noted, the ’most informative’ sub-
map5 needs to be selected and transmitted back to the CFC.

There are numerous measures of informativeness. The
simplest method involves selecting a sub-map based on the
measured information gain. In this application, the informa-
tion gain is computed by taking the information matrix of
the available local landmarks (in the LSF) and comparing
this with the existing channel information (all the informa-
tion transmitted from the LSF previously). We define the
information gain of the local map according to:

I(k|k) = Ymm(k|k)−GC2M (k|k)YCH(k|k)GT
C2M (k|k)

(14)
where Ymm(k|k) = Pmm

−1(k|k) and an appropriate (as in
previous arguments) inflation matrix GC2M has been used.

Assume that I(k|k) encodes the information gain regard-
ing a total number of p landmarks. Due to the existing
communication constraints, the information of q landmark
(q < p ) will be transmitted where q is determined by the
available bandwidth or an allocated communication budget
for time k. The q landmarks with the highest information
gain will be selected for transmission. The simple method
which is used here is done by picking up the q landmarks
with the largest diagonal elements in the I(k|k) matrix.
The selected information sub-map for communication to the
CFC will be denoted by ŷ∗mm(k|k) and Y∗mm(k|k). This
information sub-map is sent to the channel filter prior to
transmission to the CFC (see Figure 5).

E. Pruning the local SLAM filter

As mentioned before in this paper, in large-scale mapping
applications, it is imperative to prevent the size of the local
map within the individual vehicles from growing unbound-
edly. To achieve this, pruning algorithm is implemented at
each communication time to limit the size of the SLAM filter.
Landmarks with the lowest information gain are eliminated
from both the LSF and CHF of each vehicle to reduce the
size of the local map to a pre-defined constant npr, without
comprising the integrity of the system.

The salient point here is that, this pruning method is
distinct from the standard computationally efficient solutions
to the SLAM problem, in a sense that the information (and
cross-information) of the discarded landmarks is not lost,
due to the previous communication of information to the
CFC. This information can be restored locally at any time
by downloading the map information from the server.

5The ‘most-informative’ sub-map is necessarily ambiguous. Intuitively
one would like to consider the available communication resources and
subject to this constraint then select those landmarks in the local vehicle’s
map that will reduce the uncertainty in any resulting global map constructed
at the CFC.



−100 −80 −60 −40 −20 0 20 40 60 80 100
−80

−60

−40

−20

0

20

40

60

80

100

120

 

 

East (m)

N
or

th
 (m

)

Map Estimates

Vehicle Paths
True Landmarks
Vehicle1
Vehicle2
Vehicle3

Fig. 7. The SLAM estimates from individual vehicles (no communication).
No map information is communicated between the vehicles and the CFC.
The 3σ uncertainty ellipses are shown in the figure.

V. SIMULATION AND RESULTS

Simulations were conducted to evaluate the performance
of the communication algorithm proposed in this work. The
simulation consisted of 3 vehicles driving around overlapping
circular trajectories in an environment of 100 landmarks.
A non-linear unicycle motion model was implemented to
estimate the 2D position and orientation of each vehicle. In
addition to the motion sensors, vehicles were also equipped
with a range/bearing sensor which provided observations to
landmarks along their line of sight.6

The first part of the results concentrates on the landmark
localisation performance. Two separate runs were performed
using identical system configurations, noise parameters and
observations7. During the first run, none of the vehicles
communicated any information to the server and each vehicle
simply constructed a local map of its observed landmarks.
In the second run, the vehicles communicated their map
information at regular intervals with the CFC, according to
the bandwidth efficient algorithm described in Section IV. At
each communication interval, in addition to the information
of newly discovered landmarks, the map information of up
to q = 10 landmarks with the highest information gain (See
Equation 14) was also transmitted to the CFC. In order to
limit the size of the local map within the individual vehicles,
a pruning algorithm with npr = 15 was implemented to
cut the number of the LSF landmarks to 15 (see Subsection
IV-E). Subsequently, the available regional map information
from the CFC was communicated to each vehicle for fusion,
as described in Subsection IV-A.

The results of the mentioned runs are illustrated in Figures
7 and 8 respectively. The resulting mean and the 3σ covari-

6The open source SLAM simulation software by Tim Bailey (available
from http://www-personal.acfr.usyd.edu.au/tbailey) was modified and ex-
tended to multiple vehicles for use in simulations in this work.

7The exact value of all the system parameters are available from the
authors on request.
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Fig. 8. The multi-vehicle SLAM estimates obtained by selectively
communicating map information to the CFC (using q = 10). The 3σ
uncertainty ellipses are shown in the figure.

ance ellipses of the estimated landmark positions are shown
in each figure alongside the true location of the landmarks.
Figure 9 shows the overlaid, enlarged view of the small
rectangles shown in Figures 7 and 8. As can be seen from
the figures, the landmark localisation accuracy of the multi-
vehicle SLAM with periodic communication outperforms the
case where no communication exists.

Figure 10 shows the uncertainty of the obtained map for
different values of maximum communicated map size (q).
The trace of the map covariance matrix was used here as
a commonly accepted measure of uncertainty estimation, cf.
[30]. The results suggest that, although the overall uncer-
tainty decreases with the number of communicated local
landmarks, the performance quickly converges towards a
threshold, as the maximum communicated sub-map size
increases. This threshold corresponds to the communication
of the entire local maps. This is due to the fact that the
algorithm dynamically selects the most informative sub-maps
(landmarks with the highest information gain) to transmit.
Consequently, if communicated, the landmarks which have
not been observed recently and have an insignificant informa-
tion contribution will have a very small effect on the quality
of the global map.

Figure 11 shows the changes in the size of the global and
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local maps for the duration of the exploration, with npr = 15.
As can be seen, the pruning algorithm effectively prevents
the local map from growing unboundedly. Preliminary evi-
dence suggest that the simulation is comparable in terms of
performance and at some points the landmark localisation
accuracy improves by applying the pruning algorithm.

We conclude this section by providing a cost analysis
for the solution provided in this work and a conventional
communication algorithm with no selective communication
(e.g. [25]). For this purpose, the values provided in the
scenario explained in Example 1 from Section II are used.8

These values can be found in Table I. Table II provides
a summary of the calculated data regarding each strategy.
Although it is assumed that our communication scenario
communicates more frequently (20 times more often), the
total communication cost is substantially smaller than that of
[25]. To reflect the actual network costs, the total communi-
cation cost is also compared after considering an overhead
cost due to the carrier’s flag fall fee.
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Fig. 10. The performance of the algorithm in terms of the uncertainty
of the obtained global map at the CFC for different values of maximum
communicated sub-map sizes.
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Fig. 11. The local and global map sizes for npr = 15. The results are
shown in the case where the vehicles close their loops twice. The vertical
dashed lines demonstrate the communication times.

TABLE I
VALUES FROM EXAMPLE 1, SECTION II.

n d m k b c
10 vehicles 200 km 10 signs/km 0.1 com./km 8 bytes 30 $/GB

8Please note that the values used in this example are not related to the
values used in the simulation.

VI. CONCLUSION

This paper presented an efficient data fusion framework
for the problem of multi-vehicle SLAM for very-large-scale
road mapping applications. The solution is efficient in terms
of both computational complexity and communication band-
width. A practical pruning algorithm based on information
gain was applied to overcome the problem of growing map
sizes at the local nodes. An analysis on the applicability of
covariance intersection was also provided to justify the use
of this algorithm in the paper. The proposed communication
architecture is capable of dealing with dynamically changing
map-sizes in the system and is able to consistently fuse
this map information in order to build a global map. The
mapping solution is potentially scalable to environments with
thousands of vehicles and many millions of landmarks.
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VII. APPENDIX

The following theorem justifies the use of covariance
intersection in the presence of non-zero but unknown cor-
relation. It indicates that there are cases where consistency
can be achieved by simply neglecting (setting to zero) the
unknown correlation. Such an approach will outperform
covariance intersection in these cases. However, the theorem
also shows that neglecting the unknown correlation will
cause inconsistency in the general case. We have not seen a
formal statement of such a result and thus we included it for
completeness.

Consider two estimates a ∼ N (c∗,Paa) and b ∼
N (c∗,Pbb) of some fixed parameter c∗. Let c ∼ N (c∗,Pcc)
denote the best linear unbiased estimate of c∗ obtained via a
linear combination of a and b. We are mainly interested in
the construction of Pcc or its estimate. All matrices thus-far
are strictly positive-definite.

If a ∼ N (c∗,Paa) is consistent then Paa ≥ Pcc. If
Pab = E[(a− c∗)(b− c∗)>] ≥ 0 is the correlation between
the two estimators (Pab may be zero) then

P−1cc = P−1aa + (P−1aaPab − I)(Pbb −P>abP
−1
aaPab)

−1 ·
(P>abP

−1
aa − I) (15)

is exact. If Pab = 0 then P−1cc = P−1aa +P−1bb .
The covariance intersection algorithm presumes Pab > 0

but that Pab is unknown and computes

P̃−1cc = ωP−1aa + (1− ω)P−1bb (16)

where ω ∈ [0, 1]. Typically, ω is chosen to minimise some
measure of P̃cc. Note it is known that P̃cc ≥ Pcc; i.e. c̃ ∼
N (c∗, P̃cc) is consistent.

Let P̂−1cc = P−1aa + P−1bb where P̂cc is computed simply
by neglecting the existence of a non-zero Pab. Obviously,
Pcc = P̂cc when Pab = 0. Then P̂cc ≤ P̃cc.

The main result of this section is summed up in the
following theorem.

Theorem 1. For some Paa and Pbb there exists a choice of
Pab > 0 such that Pcc < P̂cc < P̃cc holds with strict
inequality. However, for all Paa and Pbb there exists a
different choice of Pab > 0 such that P̂cc < Pcc holds
with strict inequality.

For reasons of brevity, a proof of this theorem and
surrounding analysis will be presented in a future article.

This theorem states that neglecting (defining to be zero)
the cross-correlation when combining two unbiased estimates
may lead to a consistent solution that out-performs the so-
lution given by covariance intersection. However, obviously
this is dependent on the particular cross-correlation and only
holds for some values of the individual estimator covariances.
Moreover, for any individual estimator covariances there are
values of cross-correlation such that if one were to simply ne-
glect it than the corresponding solution will be inconsistent.
Thus, if one suspects a non-zero cross-correlation between
two estimators then using covariance intersection is the safest
route to achieving a consistent estimate (as it is guaranteed
to be consistent) even though it is more conservative than
simply neglecting (defining to be zero) the cross-correlation.


