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Abstract— In this paper we examine the conditions

in which data fusion can be performed by neglect-

ing the unmodeled correlation between two information

sources without compromising the consistency of the

system. More specifically, we explore those situations

in which one can disregard the correlation information

and achieve a consistent estimate by simply adding the

respective estimates’ information matrices. This estimate

will deliver considerably better performance than the

widely employed Covariance Intersection (CI) algorithm

in terms of estimation uncertainty.

I. INTRODUCTION

In data fusion and estimation problems, multiple
noise-corrupted variables are often combined (fused)
together to obtain an improved estimate of some un-
derlying state together with a measure of accuracy.
A common assumption is that observations of a state
are conditionally independent if the state is the only
common underlying information. That is, once the state
is known, observations become independent. However,
this independence assumption cannot be guaranteed.
For instance, two observations from a sensor platform
mounted on a vehicle can be affected by the same
process noise (e.g. be correlated through a common
vibration). In addition, the observations can be esti-
mates (rather than raw sensor measurements) that share
prior information reported from a common information
source. If the statistics of the correlations can be tracked
down and identified, the full joint probability function
[1] can be used to obtain the minimum mean squared
error (MMSE) estimates of the target state. Otherwise,
one of the many suboptimal approaches should be
applied.
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Several methods have been developed to address
the data fusion problem when exact knowledge of
the correlation between information sources is not
available. Methods based on Kalman filtering (KF)
simply ignore the unmodeled correlations by assuming
independence between the prior estimation error and
the new information error. This presumption has been
sufficient for a wide range of practical situations and
has been successfully implemented in applications such
as navigation [2], sensor fusion [3], map building
[4] and target tracking [5]. Nevertheless, since the
independence assumption is only an approximation to
reality, it can potentially lead to serious problems. An
example of such a case is the famous ’double counting’
problem in distributed sensor networks which leads to
information redundancy and over-confident estimates
resulting from discarding the common information be-
tween two nodes; see [6]. In practice, a typical solution
to avoid over-confident estimation relies on artificially
inflating the covariance of the combined estimate. This
method is ad-hoc and unreliable as the level of inflation
cannot be precisely quantified and is largely application
dependent.

Several works have tackled the inconsistency issue
caused by ignoring the correlation by applying conser-
vative fusion algorithms such as Covariance Intersec-
tion (CI). CI was first introduced in a seminal paper
by Julier and Uhlmann [7] and has since been used
in a wide spectrum of applications, particularly in
the field of decentralised and distributed fusion [8]–
[10]. The main benefit of using CI in data fusion
applications is the ability of this algorithm to generate
consistent estimates, regardless of the degree of corre-
lation between the information sources. However, CI
often results in highly conservative estimates, i.e. the
estimated covariance can be much larger than the actual
covariance.

In this paper we examine the conditions in which
data fusion can be performed by neglecting the un-
modeled correlation between two information sources
without compromising the consistency of the system.



We explore those situations in which one can disregard
the correlation information and achieve a consistent
estimate by simply adding the respective estimates’
information matrices. This estimate will deliver con-
siderably better performance than the suboptimal CI.

This work is motivated by a practical project with the
aim of developing a distributed fusion system to map
a large-scale environment. The data fusion algorithm is
distributed across multiple vehicles, each given the task
of producing and updating a local map. The vehicles
are equipped with a range of sensors and selectively
communicate maps to and from a central station [8].
The local maps obtained from different vehicles are
not independent; e.g. all vehicles share information
obtained from the central station. Hence, an appropriate
fusion strategy must be deployed to tackle the problem
of correlated submaps.

The rest of this paper is arranged as follows: Section
II provides some preliminaries on the data fusion
problem under study. Section III outlines three classical
fusion methods given correlated estimates. In Section
IV conditions on consistent fusion, while ignoring the
unknown correlation, will be derived for fusing two
unbiased estimates. Simulations are provided in Section
V and Conclusions are drawn in Section VI.

II. PRELIMINARIES

We consider two (random variable) estimates a ⇠
N (c⇤, ˜Paa) and b ⇠ N (c⇤, ˜Pbb) of some fixed param-
eter c⇤. The estimation error of a and b are defined by
the random variables

˜a = a� c⇤ , ˜b = b� c⇤ (1)

where, in this case,

E[

˜a] = 0 , ˜Paa = E[

˜a˜a>] (2)
E[

˜b] = 0 , ˜Pbb = E[

˜b˜b>
] (3)

Although the true values ˜Paa and ˜Pbb may not be
known, consistent approximations Paa and Pbb are
assumed available where 1

Paa � ˜Paa , Pbb � ˜Pbb (4)

The cross-correlation matrix between the two esti-
mates is denoted by ˜Pab and is defined by

˜Pab = E[(a� c⇤)(b� c⇤)>] = E[

˜a˜b>
] (5)

This matrix may be known or unknown and may even
be zero in some applications.

1This inequality is in the sense of matrix positive definiteness.

Let c ⇠ N (c⇤,Pcc) denote a third estimate of c⇤

obtained via a linear combination of a and b. That is

c = K1a+K2b (6)

where a,b 2 Rn and K1,K2 2 Rn⇥n. The error in
this estimate is

˜c = c� c⇤ (7)

and obeys E[

˜c] = 0 when K1 +K2 = I.
The true covariance ˜Pcc = E[

˜c˜c>] is calculated by

˜Pcc = K1
˜PaaK

>
1 +K2

˜PbbK
>
2 +K1

˜PabK
>
2 +K2

˜PbaK
>
1

(8)
and calculation of this term requires ˜Pab =

˜P>
ba be

known (when it is non-zero).
In this paper we are mainly interested in the con-

struction of an estimate Pcc of ˜Pcc when the cross-
correlation ˜Pab is non-zero but unknown. We are
further interested in certain properties of the resulting
Pcc. In particular, we are interested in the property of
consistency

Pcc � ˜Pcc (9)

where ˜Pcc is given by (8). In this case, (8) holds for
any estimator defined by the linear combination (6) but
the computation (8) requires knowledge of the cross-
correlation ˜Pab or some estimation thereof.

In many cases, one is not interested in the class of
estimators defined by arbitrary parameters K1+K2 = I
but rather in some optimal estimator. In this case, we
note the following estimator defined by

(K⇤
1,K

⇤
2) = argmin

(K1,K2)
tr(

˜Pcc) s.t. K1 +K2 = I (10)

˜Pcc =
⇥
K1 K2

⇤  ˜Paa
˜Pab

˜PT
ab

˜Pbb

� 
K>

1
K>

2

�
(11)

where the pair K1 and K2 are chosen to minimise the
trace of ˜Pcc. Solving the above constrained optimisa-
tion problem for K1 and K2 yields an optimal value
for ˜Pcc in the form of

˜P⇤�1

cc =

˜P�1
aa + (

˜P�1
aa

˜Pab � I)( ˜Pbb � ˜P>
ab
˜P�1
aa

˜Pab)
�1 ·

(

˜P>
ab
˜P�1
aa � I) (12)

As noted, in this paper we are concerned, primarily
with the construction of a consistent estimate Pcc of
˜Pcc when the cross-correlation ˜Pab is non-zero but
unknown. To this end we define consistency against
the optimal value ˜P⇤

cc which in turn is defined as that
˜Pcc with the minimum trace over all estimators of the
form (6).



Definition 1. Suppose ˜Paa and ˜Pbb are given along
with ˜Pab =

˜P>
ba. Suppose ˜Pab =

˜P>
ba is non-zero. An

estimate Pcc of ˜Pcc is said to be consistent if

Pcc � ˜P⇤
cc (13)

where ˜P⇤
cc is an optimal value for ˜Pcc given by (12).

This definition of consistency is particularly useful
for the purposes of studying information fusion algo-
rithms as it relates practical estimators (particularly
their uncertainty estimate) with an ideal estimator that
could be constructed if the cross-correlation between
individual estimators were known (and it was known
that individual estimates were not over-confident).

It is generally true that ignoring the correlation
information ˜Pab when fusing a and b can lead to
overly confident results; i.e. the resulting estimate of
Pcc will be inconsistent as per Definition 1. Some
algorithms, such as covariance intersection (CI), on
the other hand are designed to generate consistent
estimates when the cross-correlation is unknown. In
many cases, the resulting estimators are considerably
conservative. We explore those situations in which
one can simply ignore the correlation information and
achieve a consistent estimate by simply adding the re-
spective estimates’ information matrices. This estimate
will deliver considerably better performance than the
suboptimal covariance intersection. The specific details
of the estimators in question will become clear as the
paper progresses.

III. THREE CLASSICAL FUSION ALGORITHMS

In this section we outline three well-known estima-
tion algorithms given the setup provided in the previous
section. Each estimator assumes different information
to be available for computation. We are mainly focused
on the computation of the estimator’s covariance in this
paper as we will later be concerned with consistency.

A. Minimum Trace Fusion of Two Normally Dis-
tributed Estimators with a Known Degree of Correla-
tion

We consider two estimates a ⇠ N (c⇤, ˜Paa) and b ⇠
N (c⇤, ˜Pbb) of some fixed parameter c⇤. Suppose two
consistent estimates of a and b with Paa � ˜Paa and
Pbb � ˜Pbb are available and the cross-correlation ˜Pab

is known. Replacing ˜Paa and ˜Pbb in (12) by Paa and
Pbb respectively, automatically generates a consistent
estimate P⇤

cc � ˜P⇤
cc if ˜Pab =

˜P>
ba is known. This is a

consequence of Eq. (8). Therefore, when Paa and Pbb

are consistent and ˜Pab is known then the combined
estimate

P⇤
cc
�1

= P�1
aa + (P�1

aa
˜Pab � I)(Pbb � ˜P>

abP
�1
aa

˜Pab)
�1 ·

(

˜P>
abP

�1
aa � I) (14)

is by definition consistent (as per Definition 1). As
noted, the problem in practice is that ˜Pab is typically
unknown.

B. Fusion of Two Normally Distributed Estimators
with an Unknown Degree of Correlation: Covariance
Intersection

In many practical applications the degree of cor-
relation between different information sources is not
available. A common solution in this case is to use
the well-known covariance intersection (CI) algorithm.
Suppose again we have two estimates a ⇠ N (c⇤, ˜Paa)

and b ⇠ N (c⇤, ˜Pbb) of some fixed parameter c⇤. Sup-
pose consistent estimates Paa � ˜Paa and Pbb � ˜Pbb

are available. The cross-correlation ˜Pab is unknown
(cannot be used in the fusion algorithm) and may be
non-zero. Then CI is defined by a convex combination

PCI
cc

�1
= !P�1

aa + (1� !)P�1
bb (15)

PCI
cc

�1
c = !P�1

aa a+ (1� !)P�1
bb b (16)

where c ⇠ N (c⇤,Pcc) is an estimate of c⇤ and where
! 2 (0, 1) is calculated according to some criteria; e.g.
such as minimising the trace of the resulting covariance
matrix PCI

cc .
We note here simply that for all ! 2 (0, 1), CI is

guaranteed consistent as per Definition 1; i.e. PCI
cc �

˜P⇤
cc and is often considerably conservative. We point

to the literature [7] for further discussion of the CI
algorithm and its consistency.

C. Fusion of Two Normally Distributed Estimators
with an Unknown Degree of Correlation: Assuming
Zero Correlation

Suppose again we have two estimates a ⇠
N (c⇤,Paa) and b ⇠ N (c⇤,Pbb) of some fixed param-
eter c⇤ and each estimate is consistent; i.e. Paa � ˜Paa

and Pbb � ˜Pbb. The cross-correlation ˜Pab is unknown
(cannot be used in the fusion algorithm) and may be
non-zero. Let c ⇠ N (c⇤,Pcc) denote an estimate of
c⇤.

Now if a and b were in fact uncorrelated, then
substituting ˜Pab = 0 into (14) yields

P0
cc
�1

= P�1
aa +P�1

bb (17)



which can be computed and is subsequently (by defi-
nition) consistent as per Definition 1. We also have

P0
cc
�1

c = P�1
aa a+P�1

bb b (18)

for completeness. This solution is optimal (in the sense
of a minimum trace) when ˜Pab is indeed zero.

The main question motivating the subsequent work
in this paper is summarised in the following.

Question 1. If one computes P0
cc
�1

= P�1
aa +P�1

bb when
˜Pab is non-zero, is P0

cc consistent as per Definition 1?

It is easily observed that P0
cc  PCI

cc . Thus, if
P0

cc � ˜P⇤
cc, i.e. if P0

cc is consistent as per Definition 1,
then it follows that estimation via P0

cc is typically more
desirable than estimation via PCI

cc . It will turn out that
the inequality P0

cc � ˜P⇤
cc holds for only some values

of ˜Pab. In those cases, it so happens that one may
simply ignore (set to zero) the cross-correlation and
perform optimal (minimum trace) fusion. The result
will be sub-optimal (as expected) but better (in terms
of the trace) than covariance intersection. The result, as
per the definition of consistency, will be conservative
(non-optimistic) as desired.

IV. CONDITION ON CONSISTENT ESTIMATION
UNDER UNKNOWN CORRELATION

It is well known that the CI algorithm guarantees the
combined estimate to be consistent as per Definition
1. However, the consistency of P0

cc
�1

= P�1
aa + P�1

bb ,
i.e. simply ignoring the correlation, when ˜Pab is non-
zero has yet to be established. As per Definition 1
consistency requires

P0
cc � ˜P⇤

cc (19)

where ˜P⇤
cc is computed by (12).

Now given consistent estimates Paa and Pbb and a
known cross-correlation ˜Pab, a consistent representa-
tion of the combined estimate P⇤

cc can be computed
using Eq. (14). As explained in Subsection III-A, the
resulting estimate automatically generates a consistent
estimate, i.e.

P⇤
cc � ˜P⇤

cc (20)

As a consequence of (19) and (20), if the inequality

P0
cc � P⇤

cc (21)

holds, the consistency of P0
cc can be guaranteed as per

Definition 1.

A. Consistency Analysis in One-Dimension

Suppose we have two estimates a ⇠ N (c⇤, ˜Paa)

and b ⇠ N (c⇤, ˜Pbb) of some fixed parameter c⇤ 2 R.
Consistent estimates of a and b with Paa � ˜Paa and
Pbb � ˜Pbb are available. The cross-correlation ˜Pab is
unknown (cannot be used in the fusion algorithm) and
is non-zero. The following is the main result of this
subsection.

Theorem 1. Suppose one computes

P 0
cc
�1

= P�1
aa + P�1

bb (22)

P 0
cc
�1

c = P�1
aa a+ P�1

bb b (23)

Then,
P 0
cc � P ⇤

cc (24)

if and only if

�
p

PaaPbb  ˜Pab  0, or (25)
 
P�1
aa + P�1

bb

2

!�1

 ˜Pab 
p

PaaPbb (26)

where P ⇤
cc is computed via (14) using the consistent

Paa � ˜Paa and Pbb � ˜Pbb and the true ˜Pab.

That is in particular, P 0
cc is consistent as per Defi-

nition 1 when ˜Pab obeys one of the theorem’s stated
inequalities.

Proof: The inequality (24) can be written as

P 0
cc
�1  P ⇤

cc
�1

P�1
aa +P�1

bb  P�1
aa +

(P�1
aa

˜Pab�1)(Pbb� ˜P>
abP

�1
aa

˜Pab)
�1

(

˜P>
abP

�1
aa �1)

P�1
aa + P�1

bb  Paa + Pbb � 2

˜Pab

PaaPbb � ˜P 2
ab

(Paa + Pbb)(PaaPbb � ˜P 2
ab)  PaaPbb(Paa + Pbb � 2

˜Pab)

Rearranging gives

˜Pab

h
(Paa + Pbb)

˜Pab � 2PaaPbb

i
� 0

and thus

˜Pab  0, or ˜Pab �
2PaaPbb

(Paa + Pbb)

However, the joint covariance matrix

P =


Paa

˜Pab
˜P>
ab Pbb

�

must be positive definite which yields the upper and



lower bounds on ˜Pab and gives

�
p

PaaPbb  ˜Pab  0, or

 
P�1
aa + P�1

bb

2

!�1

 ˜Pab 
p

PaaPbb

This completes the proof.
This theorem suggests that if the ignored correlation

˜Pab obeys the inequalities stated in the theorem then the
solution provided by P 0

cc will still deliver a consistent
estimate. An important point here is that P 0

cc is always
smaller than PCI

cc regardless of the correlation and thus
offers a higher quality estimate. We state an equivalent
result in a different way via the following corollary.

Corollary 1. Consider the same one-dimensional prob-
lem setup as applied in the preceding theorem. For all
consistent Paa and Pbb there exists a choice of ˜Pab 6=
0 such that P 0

cc > P ⇤
cc holds with strict inequality.

Similarly, for all Paa and Pbb there exists a different
choice of ˜Pab 6= 0 such that P 0

cc < P ⇤
cc holds with strict

inequality.

B. Consistency Analysis in Higher Dimensions
Consider two n-dimensional estimates (n 2 N)

a ⇠ N (c⇤, ˜Paa) and b ⇠ N (c⇤, ˜Pbb) of some fixed
parameter c⇤ 2 R. We consider a special case where
consistent estimates Paa � ˜Paa and Pbb � ˜Pbb are
available and are defined in the form of:

Paa = �a · In (27)
Pbb = �b · In (28)

where �a and �b are scalars and In denotes the (n⇥n)
identity matrix. The cross-correlation ˜Pab is unknown
but assumed to be in the form of

˜Pab = ⇢ · In (29)

where ⇢ is the scalar correlation coefficient. The fol-
lowing theorem summarises the main result of this
subsection.

Theorem 2. Suppose one computes

P0
cc
�1

= P�1
aa +P�1

bb (30)

P0
cc
�1

c = P�1
aa a+P�1

bb b (31)

Then,
P0

cc � P⇤
cc (32)

if and only if

�p
�a�b  ⇢  0, or (33)

✓
�a�1

+ �b�1

2

◆�1

 ⇢  p
�a�b (34)

where P⇤
cc is computed via (14) using the consistent

Paa � ˜Paa and Pbb � ˜Pbb and the true ˜Pab = ⇢ · In.

That is, P0
cc is consistent as per Definition 1 when

⇢ obeys one of the inequalities in Equations (33) and
(34). The proof for theorem 2 is fundamentally similar
to the proof provided for the one-dimensional case in
theorem 1, thus not provided here to avoid repetition.

This theorem suggests that if ⇢ in (29) obeys the
inequalities stated in the theorem then the solution
provided by P0

cc will still deliver a consistent estimate.
An important point here is that P0

cc is always smaller
than PCI

cc of (15) regardless of the correlation and thus
offers a higher quality estimate. Similar to the one-
dimensional case, we state an equivalent result via the
following corollary.

Corollary 2. Consider the same n-dimensional prob-
lem setup as applied in the preceding theorem. For
all consistent Paa and Pbb there exists a choice of
˜Pab 6= 0 such that P0

cc > P⇤
cc holds with strict

inequality. Similarly, for all Paa and Pbb there exists a
different choice of ˜Pab 6= 0 such that P0

cc < P⇤
cc holds

with strict inequality.

V. SIMULATION

We now provide two simulations to exemplify the
theorems stated in Section IV. The first simulation
considers the fusion of two unbiased one-dimensional
estimates a ⇠ N (0, ˜Paa) and b ⇠ N (0, ˜Pbb) into
estimate c. The covariances of the input estimates are
given by Paa = 1 and Pbb = 0.3. Fig. 1 compares the
covariance of the combined estimate c as a function of
the cross-correlation ˜Pab for the three classical methods
outlined in Section III. If the ignored correlation ˜Pab

satisfies the inequalities (25) and (26), the covariance
of the obtained estimate P 0

cc is greater than the covari-
ance of the optimal estimate provided by (14), thus
guaranteeing a consistent estimate. The covariance of
the solution obtained by using CI is always greater than
both P ⇤

cc and P 0
cc.

Fig. 2 shows the fusion of two unbiased two-
dimensional estimates a and b represented by Paa and
Pbb where

Paa =


1 0

0 1

�
and Pbb =


2 0

0 2

�
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Fig. 1. Comparison of the covariance of the combined estimate as
a function of the true cross-correlation P̃ab. For those values of P̃ab

where P 0
cc is larger than the optimal value P ⇤

cc, consistent estimates
can be achieved when the correlation is ignored. The intersection
points of P 0

cc and P ⇤
cc can be found by looking at the boundaries

in (25) and (26). As expected, the conservative CI estimate PCI
cc is

always larger than both P ⇤
cc and P 0

cc.

These estimates are represented by their correspond-
ing 2� uncertainty ellipsoids. The combined estimate
c using CI and the method ignoring the correlation
have been shown. The dashed ellipsoids (green) are
the calculated P⇤

cc estimates using different values of
the cross-correlation matrix (obtained using equal sam-
pling) defined by ˜Pab = ⇢·I as described in Subsection
IV-B. For those values of the cross-correlation ˜Pab

in which the exact optimal value P⇤
cc is enclosed by

the ellipsoid defined by P0
cc, it is safe to ignore the

cross-correlation and still be consistent. However, if
the ellipsoid representing the optimal P⇤

cc encloses the
P0

cc ellipsoid then ignoring the correlation generates
an inconsistent estimate. The CI algorithm achieves a
consistent, yet conservative estimate.

VI. CONCLUSIONS

This paper analysed the consistency and applicability
of three notable fusion algorithms for combining cor-
related random variables. It was shown that, although
ignoring the non-zero correlation can cause inconsis-
tency in the general case, there are cases where the
consistency of the combined estimate can be achieved
by simply neglecting the correlation. We derived con-
ditions on the correlation under which one may simply
ignore the correlation (as if it were zero) and apply an
optimal fusion algorithm. Such conditions were given
in the one-dimensional case and in a special case of
high-dimensional estimation. This method of fusion
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Fig. 2. Comparison of the obtained estimate c resulting from
fusing 2-D estimates a and b using different fusion techniques. 2�
uncertainty bounds have been shown using the covariance ellipsoids
(circles here).

will be considerably less conservative than covariance
intersection.
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