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Practical Considerations in Precise Calibration of a
Low-cost MEMS IMU for Road-Mapping

Applications
Ashkan Amirsadri, Jonghyuk Kim, Lars Petersson, Jochen Trumpf

Abstract—This paper addresses the theoretical and experimen-
tal development of a calibration scheme to overcome the intrinsic
limitations of a low-cost Micro-Electrical-Mechanical System
(MEMS) based Inertial Measurement Unit (IMU). The two-stage
calibration algorithm was developed and tested successfully on
a six-degree of freedom prototype MEMS IMU to determine
the deterministic and stochastic errors of the sensor. This paper
makes use of artificial observations known as pseudo-velocity
measurements resulting from a specific scheme of rotation to
calibrate the IMU in the laboratory environment. The proposed
structure is then modified and utilised as a basis for the IMU’s
error estimation in outdoor navigation applications. For this pur-
pose, the designed calibration method is applied to an integrated
GPS/MEMS IMU system, showing improved navigational and
road sign positioning performance in a test vehicle.

Index Terms—Bias, Scale-Factor Error, Static Calibration,
Dynamic Calibration, the Extended Kalman Filter (EKF).

I. INTRODUCTION

The last two decades have witnessed an increasing trend
towards the use of navigation and positioning technologies
in land vehicle applications. The demand for high quality
navigation information on one hand and the well-known
limitations of the Global Positioning System (GPS) on the
other hand have driven the research into employment of
Inertial Navigation Systems (INS) in positioning and mapping
applications. Probably one of the most widely used inertial
sensor assemblies is the Inertial Measurement Unit (IMU). A
tri-axial IMU, like the one implemented in this work, includes
a triad of gyroscopes and accelerometers, all placed in an
orthogonal arrangement with respect to each other.

In spite of their widespread utilisation, the high cost and
complexity of traditional inertial navigation systems create
some constraints on their use in general purpose civilian appli-
cations. The advent of Micro-Electrical-Mechanical Systems
(MEMS) has enabled the manufacturing of low-cost inertial
sensors. MEMS-based IMUs have proved their use in a myriad
of applications from robotics to integrated navigation systems.
These sensors are capable of providing reasonably accurate
navigation data over short intervals of time. Nevertheless, the
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major challenge in dealing with them is their notorious error
characteristic which leads to degraded performance in the
long term [1]. Consequently, determining the associated errors
(such as noises, biases, drifts and scale factor instabilities)
becomes indispensable in the utilisation of these sensors in
real-world navigation applications.

The work in this paper is strongly motivated by a project
called AutoMap which aims at developing cost effective meth-
ods for automatic creation of digital maps [2]. The project ex-
ploits computer vision algorithms for road sign extraction from
video footage captured by land vehicles. The AutoMap project
requires continuous positioning information of the fleet vehicle
in order to localise the detected landmarks. For this purpose,
inertial sensors are used alongside the GPS to obtain synergetic
observation effects. The utilisation of low-cost MEMS IMUs
enables the development of data collection sensor platforms
at a reasonable cost. Consequently, the study and calibration
of the MEMS IMU in this work is of vital importance to the
future development of the AutoMap technology.

Over the years, several calibration techniques have been
developed in different works to address the problem of ac-
cumulative errors presented in inertial sensors. Grewal et
al. [3] and Foxlin & Naimark [4] designed a Kalman filter
with precise maneuvers to calibrate low-cost IMU sensors for
less demanding applications. Their methods have difficulties
generating accurate external calibration values such as bias
and scale factor errors and they often require costly and high-
precision equipment which may not be available to researchers
for general orientation measurement applications. Nebot &
Durrant-Whyte [5] implemented an algorithm for online initial
calibration and alignment of an IMU with six degrees-of-
freedom (DoF) for land vehicle navigation applications. Kim
& Golnaraghi [6] studied a calibration process using an
optical tracking system. Park & Gao [7] and Syed et al.
[8] investigated the lab calibration of MEMS-based IMUs
by developing a turn table test procedure. Hall & Williams
[9] developed an electromechanical system for automated
calibration of IMUs using GPS antennas. Titterton & Weston
[10], Farrel [11] and Shin & Sheimy [12] used a velocity
matching alignment method where the attitude of the IMU was
being initialised by the GPS velocity information. A common
finding of the majority of prior works on calibration is that
they do not account for the time-varying errors associated
with inertial sensors. We will address this issue by constantly
and continuously estimating and compensating for the IMU’s
stochastic errors. Although online error estimation and fault-
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detection techniques were previously investigated in other
publications such as [13], the context in which they appear in
this work is different in implementation and application. The
method in [13] investigates the fault detection of IMU and
GPS in a GPS/INS fusion system for outdoor applications.
However, unlike our method, it does not address the stand-
alone calibration of the inertial sensors for removing the time-
varying errors in the lab environment.

This paper provides a systematic framework for both lab
and in-field calibration of a 6-DoF MEMS-based inertial mea-
surement unit. The proposed calibration scheme is comprised
of two distinct phases which are implemented sequentially.
Firstly, fixed errors are removed from the stationary IMU dur-
ing a designed laboratory test in a process referred to as static
calibration. Secondly, the extended Kalman filter (EKF) is
utilised in a context known as dynamic calibration to estimate
the time-varying errors. An intuitive concept called a pseudo-
measurement based approach was taken to tackle the dynamic
calibration problem in the lab environment. The pseudo-
measurement method is closely related, but not identical to
the concept of zero velocity update (ZUPT) in [14] and [15].
ZUPT is often used for outdoor applications and it involves
performing calibration and resetting the sensor’s errors while
the vehicle is stationary. However, as will be seen later in this
paper, the pseudo-measurement methodology dynamically and
continuously estimates and removes the time-varying errors of
inertial sensors. In addition, the relaxed rotational scheme in
the lab environment, which will be described later, provides
a more general type of motion for the calibration experiment
compared to the ZUPT method.

Although the pseudo-measurement concept is mainly de-
signed for lab calibration, it can easily be expanded to in-
corporate GPS measurements to calibrate low-grade IMUs
in outdoor navigation applications. Unlike [7], [8], [16], the
calibration solution described here is independent of any
advanced equipment such as turn tables and it does not require
precise maneuvers explained in [3], [4]. It provides a simpler
operational solution than [14], [17] in that it does not require
the frequent stoppage of the vehicle to perform calibration.
Moreover, in contrast to [18], [19] it does not require a thermal
model and a thermal calibration of the sensor.

The rest of this paper is arranged as follows. Section II
starts with a brief overview on the calibration procedure
and providing the preliminary definitions. Subsection II-A
explains a methodical solution for static calibration of an
IMU. Section II-B employs the state space representation to
formulate the dynamic calibration algorithm in the extended
Kalman filtering context. This section introduces the pseudo-
measurement concept and a specific scheme of rotational
movement as the main contribution of this paper. Section III
provides the IMU calibration results followed by the results of
the GPS/MEMS-based IMU fusion system. This system is a
real-world navigation application of the pseudo-measurement
based calibration framework provided earlier. Finally, the
conclusions are drawn from the results in Section IV.

II. CALIBRATION SCHEME

Calibration is widely defined as the process of comparing
instrument outputs with known reference information. In this
process, the coefficients are determined that force the output
to agree with the reference information for any range of output
values. The error characteristic of MEMS components is
often highly nonlinear and temperature dependent. In addition,
MEMS-based IMUs are typically not compensated for errors
such as biases and scale factors. To achieve the desired
accuracy, it is therefore crucial to model the dominating errors
and analyse their effects in navigation applications.

Accelerometer bias is defined as an offset in the output
that varies randomly from time to time after removing the
gravitational term. Gyro bias offset is the measured angular
velocity when no rotational motion is present. On the other
hand, the scale factor errors of the accelerometer and gyro
are errors which are proportional to the sensed quantities. The
errors caused by the bias and scale factor in the inaccurate
sensor reading accumulate with time and will subsequently
lead to the systematic error known as the integration drift in
the velocity, position and attitude provided by the unit. The
calibration model used in this paper is a simple linear model
where the scale factor (SA) and bias (βA) are, respectively,
the multiplicative and additive factors of the generic variable
A. That is

A(t) = SAÃ(t) + βA(t) (1)

where A denotes the real value of the quantity which is being
calibrated, and Ã is the direct reading from the sensor. Other
error sources such as axis misalignment errors are not taken
into account in this work1. Interested readers are referred to
[13] and [21] for axis misalignment estimation.

The measurement errors in an IMU can be categorised
into deterministic and stochastic errors [22]. The term
deterministic errors refers to fixed biases and scale factor
errors. In contrast, stochastic errors vary randomly from time
to time which is an intrinsic nature of MEMS sensors. In this
paper, the calibration is performed through two consecutive
steps. At first, the deterministic errors presented in the raw
sensor measurements will be compensated using controlled
experimental methods to calculate the conditioned inertial
quantities. This is called the static calibration procedure. The
method employs a variation of the six-position static and
rate tests which are discussed in different works [8], [10]. In
the second stage, the conditioned accelerations and angular
rates from the first step are fed into the designed calibration
module as inputs. This structure estimates the stochastic
errors presented in the sensor. This step is referred to as
the dynamic calibration. The pseudo-measurement concept
provided by a relaxed rotational movement is introduced in
this phase as a tool for estimating the time-varying errors of
the implemented IMU during a mission.

A. Static Calibration
The deterministic type of errors in an IMU can usually be

1Since, in the MEMS quality sensor under study, all components are
assembled in a single, automated PCB assembly step, misalignment errors
can be kept to a minimum.
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determined in controlled laboratory tests. Several procedures
(e.g. [23], [24], [25]) have been proposed in the literature
to remove the fixed errors of inertial sensors. Typically, for
obtaining the biases of inertial sensors, the simplest method is
to measure the output reading while the sensor is stationary.
The methodology which has been used in this paper is
described here2. The scale factor of the gyro is determined
by using the information from the sensor’s data sheet. Using
the employed Analog-Digital Converter (ADC) specifications
and sensor’s sensitivity, a rough estimate, S0g , of the scale
factor is calculated:

S0g = 2(nb−1)(
Vref

Sgyro
) (2)

where Vref , Sgyro and nb are the ADC reference voltage,
the gyroscope’s sensitivity and the number of ADC bits
respectively. After taking into account the calculated scale
factor, the bias value, β0g, is simply determined using the
average value of gyro reading over a sufficiently large period
(e.g. 2 minutes) so that Equation (1) leads to a zero value for
a static IMU (a gyro at rest experiences an angular rotation
equal to the Earth rotation rate, which is considered negligible
for our application). Therefore,

β0g = −S0gω̃avg (3)

where ω̃avg is the average sensor reading for angular rate and
β0g and S0g denote the gyro’s constant bias and scale factor,
respectively.
Determining the unknown errors of an accelerometer is more
subtle than for a gyro. In this paper, the Earth’s gravity
is used as a physical standard for calibrating the IMU. An
accelerometer at rest on the Earth’s surface will indicate 1g
along the vertical axis,

−→ax +−→ay +−→az = −→g (4)

Taking the `2 Norm of Equation (4) yields:√
||−→ax||2 + ||−→ay||2 + ||−→az ||2 = g (5)

Similar to the structure of Equation (1), we define the
following equation for each axis:

ā = S0aãavg + β0a (6)

where ãavg denotes the average sensor reading and ā is the
resulting conditioned acceleration after compensating for the
deterministic bias β0a and scale factor S0a. Substituting the
above equations into Equation (5) and squaring both sides of
the equation yields

(S0a,xãx,avg + β0a,x)
2

+

+ (S0a,yãy,avg + β0a,y)
2

+

+ (S0a,zãz,avg + β0a,z)
2

= g2

(7)

In theory, at least 6 equations are required to solve for

2Expert readers may skip the static calibration section.

the 6 unknown errors of Equation (7). In this work, to be
prudent, 12 equations are formed by placing the IMU at 12
different tilt angles, and measuring the accelerations while
the sensor is at rest. At each tilt angle, the corresponding
reading for each axis is measured and averaged over a random
period of time. The average values are then fed into Equation
(7) to constitute the required set of equations. By taking
advantage of regression analysis and curve fitting techniques
on the obtained polynomials, the unknown errors of the
accelerometer can be successfully computed.

B. Dynamic Calibration

Due to the nature of low-cost MEMS inertial units, the
deterministic errors from Section II-A tend to vary from time
to time. Drifts in angle measurements pertaining to the gyro
errors, cause the gravity vector to be incorrectly subtracted
from the acceleration vector, producing a virtual bias in the
predicted acceleration. On the other hand, changes in the
environmental conditions, especially the ambient temperature
can change the bias and scale factor values. These errors are
integrated into progressively larger errors in velocity, which
are accumulated into even greater errors in position. It is well
known that the bias terms affect the estimated velocity and
attitude linearly with time, while they affect the estimated
position quadratically [26]. For these reasons, the MEMS-
based IMU sensors need to be calibrated frequently during a
mission to avoid the accumulation of error and the integration
drift phenomena.

The purpose of the designed dynamic calibration process is
to statistically estimate the stochastic errors such as turn-on
bias and in-run bias, by augmenting them into the state of a
stochastic observer [27]. The EKF is used in this paper as the
nonlinear state estimator to determine the IMU’s stochastic
errors. This structure receives a set of measured data from
the IMU and estimates the unknown biases and scale factors
of the components embedded in the sensor. However, prior to
the implementation, the fixed errors are removed from the raw
measurements using the static calibration procedure explained
in Section II-A. Therefore,

ā(t) = S0aã(t) + β0a (8)

ω̄(t) = S0gω̃(t) + β0g (9)

where similar to the notation used in Equation (6), ā and ω̄
denote the statically conditioned IMU measurements after the
removal of deterministic errors. For the dynamic calibration,
the acceleration and angular velocity equations for each axis
are defined as3

ab(t) =
(
1 + Sb

a(t)
)
ā(t) + βb

a(t) (10)

ωb(t) =
(
1 + Sb

g(t)
)
ω̄b(t) + βb

g(t). (11)

The two previous equations link the conditioned values ā
and ω̄ from (8) and (9) to the real acceleration and angular

3This is the model which is used for the dynamic calibration. Note that
Equations (8) and (9) are related to the static calibration phase and should
not be confused with Equations (10) and (11) introduced here.
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rate values in the body-fixed frame (ab and ωb). The t index
is used to represent the time-varying nature of the error terms.
However, for the sake of simplicity in the notation, continuous
or discrete time index (t and k) of these errors are dropped
for most equations from now on.

Although this paper will not dwell on the detailed Kalman
filtering equations, it provides the required steps to construct
the filter model. Equations (25) and (28) below provide the
full discretised system model used with a standard EKF
construction. The first step in designing the filter is to identify
the state vector x for equations of the model. For a tri-axial
IMU, there are 3 orthogonally mounted accelerometers and 3
orthogonal gyroscopes. Since each axis has an unknown bias
and an unknown scale factor, the calibration process consists of
determining a total number of 12 unknowns. These unknowns
are used as a part of the state vector to be estimated directly
by the filter. In addition to the above unknown variables, linear
velocities of the IMU in the Earth-fixed navigation frame, and
the four-component quaternion vector constitute the state vec-
tor. A quaternion vector has been preferred over Euler angles
to describe the attitude of the sensor in different maneuvering
situations4. As a result, the state x can be constructed as
a 19 × 1 vector, consisting of velocity, body attitude and
stochastic errors (biases and scale factors) according to the
following discrete-time representation:

x(k) = [ vn(k) q(k) βb
a(k) βb

g(k) Sb
a(k) Sb

g(k) ]
T
.
(12)

State Transition Model: The next step is to construct a
discrete-time state transition model in the form of the fol-
lowing equation:

x(k) = f(x(k − 1), u(k), w(k)). (13)

where u(k) and w(k) denote the control input and the pro-
cess noise respectively. The conditioned values obtained from
Equations (8) and (9) are used as control inputs for the process
model. Therefore, u is a 6× 1 vector such that,

u(k) = [ āb
x(k) āb

y(k) āb
z(k) ω̄b

x(k) ω̄b
y(k) ω̄b

z(k) ]
T
.
(14)

Since the conditioned sensor measurements are still in
the body-fixed frame, superscript ‘b’ is used for the vector
components in (14). For constructing the discrete-time model,
we first present the continuous-time equation models followed
by the discretization process. The first set of equations of
the state transition model (Equation (13)), links the rate of
change of velocity to the state vector x, and the control inputs
u according to

v̇n = an = Cn
b a

b + gn (15)

where āb =
[
ābx āby ābz

]T
is formed by extracting the

first three components of the control input vector in (14) and
the 3 × 3 matrix Cn

b transforms the acceleration quantities

4Attitude parameterization using the quaternion is more computationally
efficient and numerically accurate than the Euler angle method.

in the body-fixed frame to the navigation frame. The gravity
vector gn =

[
0 0 g

]T
with g denoting gravity, is used

to compensate the effect of the local gravity on the measured
acceleration along the Earth’s z-axis. Substituting Equation
(10) into (15) results in the velocity equations for the state
transition model, that is

v̇n = Cn
b

(
(1 + Sb

a) ◦ āb
)

+ Cn
b β

b
a + gn. (16)

where ◦ represents the Hadamard product as in [28]. This
type of product (also known as the component-wise product)
is between two matrices or vectors with the same dimensions5.
Cn

b should be expressed in terms of the filter states (in this
case, the quaternions). This is done by using the quaternion
transformation as

C
n
b =

 q20 + q21 − q22 − q23 −2(q0q3 − q1q2) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 − q21 + q22 − q23 −2(q0q1 − q2q3)
−2(q0q2 − q1q3) 2(q0q1 + q2q3) q20 − q21 − q22 + q23


(17)

The second set of equations for the state transition model
expresses the orientation of the IMU platform using gyro
measurements,

q̇ =
1

2
[q⊗]ω̌b

nb (18)

where

[q⊗] =

[
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

]
and ω̌b

nb =

 0

ωb
x

ωb
y

ωb
z

 .
(19)

Equation (18) expresses the rate of change of the quaternion
in terms of the quaternion and angular velocities from the gyro.
In this way, q̇ is indirectly linked to the state vector x and
control input u. Substituting Equation (11) into (18) results in
the second set of equations for the state transition model, that
is

q̇ =
1

2
[q⊗]

(
(1 + Šb

g) ◦ ω̄b
nb + β̌b

g

)
(20)

where ω̄b
nb is the modified angular velocity (extracted from the

control input vector in (14)), according to

ω̄b
nb =

[
0 ω̄b

x ω̄b
y ω̄b

z

]T
(21)

and similar to the notation used in Equation (19),

Šb
g =

[
0 Sb

g,x Sb
g,y Sb

g,z

]
(22)

β̌b
g =

[
0 βb

g,x βb
g,y βb

g,z

]
. (23)

The differential equations for the last 12 states in Equation
(12) are simply:[

β̇b
a β̇b

g Ṡb
a Ṡb

g

]T
= 0. (24)

5Let A and B be m×n matrices with entries in C. The Hadamard product
of A and B is defined by [A ◦ B]ij = [A]ij [B]ij for all 1 ≤ i ≤ m, 1 ≤
j ≤ n.
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This set of equations is based on the assumption that the
stochastic errors of inertial sensors vary slowly compared
to the dynamics of the moving vehicle. Hence, they are
considered as constant values between two consecutive IMU
samples throughout the EKF’s prediction stage. As will be
shown in the next section, these varying errors are estimated
during each iteration of the filter. Equations (16), (18) and (24)
are the fundamental equations that enable the computation of
the state x of the sensor from an initial state x(0) and a series
of measurements ãb and ω̃b. The salient point here is that these
equation are valid for general motion of the IMU in 3D space,
regardless of the motion. Since the discrete form of the EKF is
used in this paper, the above continuous-time state transition
model is discretised [27] using the forward Euler method [29]:

vn(k)
q(k)
βb
a(k)
βb
g(k)

Sb
a(k)
Sb
g(k)

 =


vn(k − 1)
q(k − 1)
βb
a(k − 1)
βb
g(k − 1)

Sb
a(k − 1)
Sb
g(k − 1)

+

+


Cn

b (k)
(
(1 + Sb

a(k)) ◦ āb(k)
)

+ (∆T )Cn
b (k)βb

a(k) + gn(k)
(∆T )

2
[q ⊗ (k)]

(
(1 + Šb

g(k)) ◦ ω̄b
nb(k) + β̌b

g(k)
)

0
0
0
0


(25)

where ∆T is the sampling time of the IMU.
Observation Model: The observation model is generally

constructed in order to provide a relationship between the
observations, the state vector and the control input according
to the following equation:

z(k) = h(x(k), u(k), v(k)). (26)

where v(k) denotes the observation noise. The sensor’s veloc-
ity in the earth-fixed navigation frame is used as the basis for
constructing the observation model, that is

z(k) =
[
vnx (k) vny (k) vnz (k)

]T
(27)

In the proposed dynamic calibration method, the raw IMU
data is collected for rotational movements of the sensor
about several arbitrary axes where no translational movement
is imposed on the sensor’s center of mass6. Moreover, the
calibration starts from the stationary mode with zero initial ve-
locity. As a result of this specific scheme of motion (assuming
the linear acceleration caused by manual rotation is negligible),
velocity in the navigation frame can be considered equal to
zero throughout the calibration process. Since in reality no
measuring instrument is used to directly measure the velocity
of the sensor in the navigation frame, the term “pseudo-
velocity” is used for referring to the mentioned measurements.
The pseudo-velocity measurements are used as the filter’s
observation, therefore

∀k : z(k) =
[

0 0 0
]T

+ v(k) (28)

6The method does not require advanced maneuvers of the sensor. The IMU
is simply held by hand and rotated around several arbitrary axes by delicate
wrist movements.

It is important to note that Equation (28) is just the simple
case of the general observation model described by Equation
(27). In applications where the velocity of the sensor is
known at each time, this velocity can be used to form the
observation model in order to correct the estimated states from
the prediction phase of the EKF. This will be shown in Section
III where the designed calibration procedure is used as a basis
to form the structure of a GPS/INS integrated system.

After the filter is initialised, it enters a loop as long as
IMU measurements exist. At any given time (k), the EKF
first predicts the state based upon the state estimate from
the previous time (k − 1). Subsequently, pseudo-velocity
observation at the current time is used for further correction of
this prediction and to provide a better estimate of the system
states. The estimated state and covariance are augmented
with the mean and covariance of the process noise. Through
this recursive solution of prediction and update, the EKF
efficiently estimates the bias and scale factor errors presented
in the inertial sensors.

III. EXPERIMENTAL RESULTS

The inertial data was collected from a prototype IMU known
as ThinIMU Micro7which is an extremely small and very
thin inertial measurement unit with an on-board processor.
ThinIMU Micro chip includes an integrated dual-axis gyro
[IDG-300 Datasheet, InvenSense, Inc.] for X and Y axes, and
a yaw-rate gyro [ADXRS610 Datasheet, Analog Devices Inc.
2007] for Z axis. It also includes a three axis accelerometer
[MMA7340L Datasheet, Freescale Semiconductor, Inc., 2007].
Due to the miniature footprint and low price, it is ideal
for applications like AutoMap with its size, weight and cost
constraints and it can be easily integrated into a motion
capturing suit or a navigation platform. This IMU is depicted
in Figure 1.

Figure 1: ThinIMU Micro consists of three accelerometers
and three gyros in an orthogonal arrangement. (Dimensions:

31.5 × 25 × 5 (mm)).

The static calibration procedure outlined in Section II-A
was performed to obtain the deterministic errors of the sensor.
Removing the stochastic errors associated with the IMU was
tested for both a stationary and a rotating IMU using the
dynamic calibration algorithm described in Section II-B.

The left graph in Figure 2 illustrates the change in the
roll and pitch angles for 10 data sequences before and after
carrying out the dynamic calibration process. The measure-
ments for all the sequences were collected from a static IMU,

7 Designed and developed by Felix Schill at the School of Engineering,
Australian National University.
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Figure 2: The roll and pitch angles of a stationary sensor with and without the dynamic calibration (left). The figure on the
right is the enlarged view of the Euler angles for the dynamically calibrated sensor.

while the sensor was left unchanged on the table between two
sequences. As can be seen from the figure, the attitude for
the uncalibrated IMU diverges with time due to the bias terms
presented in the sensor. Furthermore, there is a considerable
difference between the attitude results of the uncalibrated IMU
from sequence to sequence. This might be due to the variations
of the turn-on bias which is an undesirable characteristic of
MEMS IMUs. Consequently, it is crucial to remove the bias
and scale factor errors associated with the sensor. As can
be seen from the figure, the estimated Euler angles after
performing the dynamic calibration phase using the pseudo-
velocity concept are approximately fixed during the filter run.
Figure 2 (right) is the enlarged view of the calibrated roll and
pitch for all the data sequences.
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Figure 3: Test Vehicle’s Trajectory

As the second contribution of this work, the calibration
scheme described in this paper is applied to a designed
GPS/INS integrated system comprising the ThinIMU Micro
IMU and an ordinary GPS receiver. The development of the
GPS/INS navigation system is enabled through the augmen-
tation of the dynamic calibration method described in Section

II-B. The integration system is designed by incorporating
the developed EKF structure used to estimate the dynamic
states of an IMU, with GPS velocity measurements. The main
difference between this system and the calibration structure
described in Section II-B is the use of GPS outputs instead
of the so-called pseudo-velocity measurements as the EKF
observed quantities according to

∀k : z(k) =
[
V GPS
x (k) V GPS

y (k) V GPS
z (k)

]T
+ vk (29)

The described GPS/INS algorithm was run on a data se-
quence collected by driving around a test vehicle on the
trajectory shown in Figure 3. The path was chosen to in-
clude interesting types of vehicle motion for our navigation
application (e.g. straight line, slight turn and sharp turn).
The test vehicle is equipped with ThinIMU Micro and a
Ublox 5 GPS antenna. Please note that since the physical
distance between the two sensors is negligible in our setup,
the velocity experienced by the IMU is considered to be
the same as the GPS velocity. The GPS velocity updates of
Equation (29), which are calculated directly from the GPS
positioning information, correct and estimate the biases and
scale factor errors presented in the IMU. In addition, the
structure is capable of estimating the position, velocity and
attitude (PVA) of the moving platform. The tuning process of
the EKF is a crucial step in the fusion implementation. Tuning
was performed by assigning appropriate values to the state
covariance matrix (Q) and the observation covariance matrix
(R)8. The effectiveness of the tuning process was verified
by monitoring the velocity innovations and the normalised
innovation square (NIS) as a measure of the filter’s accuracy.
Figure 4 compares the fusion system’s performance for the
calibrated and uncalibrated inertial sensors for a segment of
the nominated trajectory. The behaviour of the accelerometer
bias is illustrated in Figure 5. Other estimated errors are not
shown here but they follow the same type of behaviour. Figure

8The exact value of all the tuning parameters are available from the authors
on request.
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Figure 4: The GPS/INS integration results for uncalibrated (top) and calibrated (bottom) IMU. The figures at the right are the
enlarged view of the left figures.

6 shows an example map output which is acquired by running
the sign detection and the GPS/INS fusion algorithms on real
data captured by the test vehicle. The estimated trajectory of
the vehicle and the location of the detected road signs are
illustrated.
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Figure 5: Stochastic biases of the accelerometer

IV. CONCLUSIONS AND FUTURE WORK

A simple and effective calibration procedure was developed
and tested successfully on a low-cost 6-DoF MEMS IMU.
Pseudo-velocity measurements were utilised as the virtual
observations for estimating the sensor’s stochastic errors in
the lab. The proposed method overcomes the most important
deficiencies associated with previous work in the area.

The effectiveness of the calibration method was investigated
through designing a GPS/MEMS-based IMU fusion system for

outdoor applications. Although not presented in this paper,
promising navigation results were attained for the GPS/INS
integration for land vehicles under deliberate GPS dropout.
The performance of the fusion system during GPS outage
periods can be further improved using a nonlinear smoothing
method [30]. Running the filtering algorithm both in forward
and backward directions and combining the results using a
smoother enables the fusion system to alleviate the sensor
drifts.

Finally, the utilisation of ThinIMU Micro with the
developed calibration procedure has enabled the AutoMap
project to accurately localise survey vehicles and geo-locate
the road signs of interests. The encouraging results merit
further investigation into other application domains of the
low-cost IMU under study. The calibration methodology
discussed in this paper can potentially be used in other field
applications with parsimonious consumption of resources.
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