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Abstract— This paper considers the problem of obtaining
high quality pose estimation (position and orientation) from
a combination of low cost sensors, such as an inertial mea-
surement unit and vision sensor. A non-linear complementary
filter is proposed that evolves on the Special Euclidean Group
SE(3). Exponential stability of the filter is proved. Simulation
results are presented to illustrate simplicity and demonstrate the
performance of the proposed approach. Experimental results
reinforce the convergence of the filter.

Index Terms— Non-linear Filter, Complementary Filter, Spe-
cial Euclidean Group.

I. INTRODUCTION

A fundamental problem in autonomous flight control of
unmanned aerial vehicles is that of obtaining an accurate
estimate of the position and orientation, or pose, of the
vehicle. The underlying pose estimation problem is common
to a wide range of applications including virtual reality,
submersible robots and ground vehicles. Existing algorithms
often rely on data obtained from military grade Inertial
Measurement Units (IMU) and high quality camera systems
with associated cost and export restrictions that prohibits
commercial applications. By comparison, cheaper commer-
cial grade IMUs commonly experience high levels of non-
Gaussian noise in their gyrometer and accelerometer mea-
surements that often leads to instability of classical Kalman
and extended Kalman filter algorithms.

In prior work it has been shown that angular velocity and
orientation (or attitude) can be estimated from the output of
a low cost IMU [13], [8], [6] for a vehicle that is in quasi-
stationary, or hover, flight. Conversely, translational position
and velocity can not be estimated from a low cost IMU for
more than a few seconds due to unbounded growth of errors
[2]. Global Positioning System (GPS) can be used to bound
error growth. However, such a strategy cannot be employed

G. Baldwin is with Departement of Engineering, Australian Na-
tional University, ACT, 0200, Australia and National ICT Australia Ltd.,
Grant.Baldwin@anu.edu.au

R. Mahony is with Departement of Engineering, Australian National
University, ACT, 0200, Australia,Robert.Mahony@anu.edu.au

J. Trumpf is with Department of Information Engineering, Research
School of Information Science and Engineering, Australian National
University, ACT, 0200, Australia and National ICT Australia Ltd.,
Jochen.Trumpf@anu.edu.au

T. Hamel is with I3S-CNRS Nice-Sophia Antipolis, France,
thamel@i3s.unice.fr

T. Cheviron is with LRBA, DGA, Vernon and IRCCyN,
UMR 6597, Ecole Centrale de Nantes/CNRS, Nantes, France,
Thibault.Cheviron@dga.defense.gouv.fr

National ICT Australia Limited is funded by the Australian Governments
Department of Communications, Information Technology and the Arts and
the Australian Research Council through Backing Australias Ability and the
ICT Centre of Excellence Program.

in situations where the GPS signal is unreliable, eg. indoors,
urban canyon environments or in military environments,
and there is considerable interest in algorithms that do
not require GPS. Inertial vision systems are systems that
combine IMU and on-board camera measurements for pose
estimation [11], [7]. Two recent international conferences
have had workshops on inertial vision systems [18], [4].
Classical approaches, such as linear and extended Kalman
filter techniques [9], [12] have proven difficult to apply
robustly with low quality sensor systems [13]. Nevertheless,
most of the recent examples of autonomous aerial robotic
vehicles over the last few years have relied heavily on the
combination of inertial sensor and vision systems [5], [1],
[15] and there is significant interest in developing simple
robust estimators that use inertial and visual sensor systems
for pose estimation.

In this paper we study the design of complementary filers
on the special Euclidean groupSE(3) to provide estimates
of the pose and velocity of a rigid body. The work is
an extension of the passive complementary filter developed
on the orthogonal groupSO(3) [8], [6]. The work draws
from earlier work on attitude estimation that exploited the
quaternion formulation [14], [17], [16]. We propose two
filters; a direct complementary filter, and a non-linear passive
complementary filter. The passive filter has a number of
advantages over the direct filter in its stability and noise
sensitivity. Simulations of the performance of the filters are
provided.

Section II reviews the structure and properties ofSE(3).
Section III describes the proposed target system, including
the analysis framework and sensor characteristics. A direct
complementary filter is developed in section IV, followed
by the development of a passive complementary filter in
section V. Section VI discusses the practical concerns of
implementing these filters via discrete integration. Section
VII presents simulation results for the passive complemen-
tary filter, demonstrating its performance and characteristics.
Section VIII presents experimental results confirming the
behaviour of the filter on real world data.

II. BACKGROUND THEORY

Let {A} denote an inertial frame attached to the earth,
such thate3 points vertically down. We consider the problem
of estimating the pose of a body-fixed-frame,{B}, that is
attached to a vehicle of interest. The vehicle is equipped with
an inertial measurement unit (IMU) and camera. We assume
for simplicity that IMU and camera are co-located at the
origin of the body-fixed-frame, denotedp ∈ {A}, expressed
as a point in the inertial frame. The attitude of the vehicle is



given by a rotation matrixR that represents the attitude of
{B} with respect to{A}. Positions and vectors expressed in
the inertial frame,{A}, will be denoted by lower case letters
while positions and vectors expressed in other frames will be
denoted by upper case letters. Letv ∈ {A} denote the linear
velocity andΩ ∈ {B} denote the angular velocity of the
body-fixed-frame. Note that it is common to work with the
linear velocity in the inertial frame and the angular velocity
in the body-fixed-frame.

The standard expression for the kinematics of{B} is

ṗ = v, (1a)

Ṙ = RΩ× (1b)

whereΩ× is the skew symmetric matrix

Ω× =





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0





(2)

In this paper we will also need to work with the full body
fixed-frame-representation of the body-fixed-frame kinemat-
ics. Let

P = −RT p, V = RT v, ω× = (RT Ω)×

denote the position and translational velocity of the vehicle
in the body fixed frame. Note that the position is the origin
of {A} expressed in{B}. Equation 1a becomes

Ṗ = Ω×P − V. (3)

The pose of the body-fixed-frame,(R, p), comprises both
the attitude and position of{B} relative to an inertial frame.
The pose can interpreted as an element of the Special
Euclidean group of dimension three,SE(3). We represent
an element ofSE(3) by a matrix

T =

(

R p
0 1

)

∈ R
4×4 (4)

This format, commonly known as homogenous coordinates,
preserves the group structure ofSE(3) with theGL(4) opera-
tion of matrix multiplication. The inverse element associated
with T is

T−1 =

(

RT −RT p
0 1

)

=

(

RT P
0 1

)

(5)

The kinematics ofT ∈ SE(3) in matrix form are

Ṫ = TA (6)

whereA denotes the body-fixed-frame velocity of the system

A =

(

Ω× V
0 0

)

∈ se(3) (7)

It is easily verified that Eq. 7 is a matrix representation of
the kinematics Eqn’s. 1.

We think ofA as an element of the Lie-algebra ofSE(3)
denotedA ∈ se(3), wherese(3) is identified with the subset
of 4 × 4 matrices with an upper left skew symmetric3 × 3

block and bottom row zero. The correspondence of body-
fixed-frame velocities(Ω, V ) to an elementA ∈ se(3) is
denoted by a wedge operator

A = (Ω, V )
∧ (8)

Note that the wedge operator associates an element ofse(3)
with a particular frame of reference. Thus,A in Eq. 8 is
associated with the body-fixed-frame{B} since Ω and V
are expressed in{B}. The adjoint operator,AdT : se(3) →
se(3) is defined as

AdT A := TAT−1. (9)

The adjoint operator acts to change the frame of reference
associated with an element of the Lie-algebra. Thus,

AdT (Ω, V )∧ = (ω, v)∧.

We define an inner product and induced matrix norm on
the set ofRn×n matrices

〈A,B〉 := 1
2 tr(AT B)

〈A,A〉 = 1
2 tr(AT A) = ‖A‖2

F

(10)

where‖(·)‖F is the classical Frobenius norm.
Let Pa and Ps be projection operators decomposing an

matrix M ∈ R
n×n into an anti-symmetric component

Pa(M) and a symmetric componentsPs(M), given by

Pa(M) =
1

2
(M − M), Ps(M) =

1

2
(M + M)

III. FILTER DESIGN AND ERROR CRITERIA FOR
ESTIMATION ON SE(3)

In this section, a detailed analysis of the natural error
coordinates and cost functions are presented for an estimation
problem onSE(3).

Let {E} denote a new frame of reference representing the
best estimate of{B}. We represent the frame{E} by an
element

T̂ :=

(

R̂ p̂
0 1

)

∈ SE(3)

The kinematics ofT̂ are given by

˙̂
T =T̂ Â = T̂

(

Ω̂, V̂
)∧

(11)

(12)

whereV̂ ∈ {E} andΩ̂ ∈ {E} denote the linear and angular
velocities of frame{E}. The goal of the estimator design
is to choose suitable values for(Ω̂, V̂ ), as functions of the
measured variables, to ensures thatT̂ (t) → T (t).

A. System Measurements

The sensor suite considered consists of an inertial mea-
surement unit (IMU) along with a camera. The IMU provides
direct measurement of angular velocity of the body-fixed-
frame {B}. We assume that the camera is observing a
known target and use a classical pose estimation algorithm
to estimate the pose of{B}. Linear velocity, though not
measured directly, can be reconstructed from the integral



of acceleration measurements and the derivative of position
component of pose measurements,

Since the present paper is an initial investigation we will
assume a simple measurement model that does not include
bias terms and calibration errors that commonly occur for
low-cost sensor systems. The measurement model used is

Ωy = Ω + nΩ(t),

Vy = V + nV (t),

Ry = RT
nR(t)R,

Py = P + np(t),

where n(·)(t) denotes a centred Gaussian noise process.
The pose estimate algorithms used for the reconstruction of
(Ry, Py) are computationally demanding and these estimates
are low bandwidth. The IMU data is high bandwidth while a
high-bandwidth estimate of the linear velocity must also be
estimated to ensure good properties of the resulting filter.

IV. DIRECT FILTER

The coordinatesT of {B} relative to{A} may be inter-
preted as a coordinate transformation

T : {B} → {A} :

(

x
1

)

7→ T

(

x
1

)

=

(

Rx + p
1

)

The estimator frame coordinate frame transformationT̂ :
{E} → {A} and its inverseT̂−1 : {A} → {E} are defined
analogously. Thus we can construct an error coordinate
transformations

T̄ = T−1T̂ : {E} → {B}
In attitude and position one has

T̄ =

(

R̄ p̄
0 1

)

R̄ =RT R̂, p̄ = RT (p̂ − p)

If T̄ → I, whereI denotes the identity matrix, then̂T → T .
The cost function considered in the sequel is

L(T̄ ) := ||I − T̄ ||2F . (13)

SetP̄ = −R̄T p̄ = R̂T (p− p̂). Noting that d
dt

(T̂ T̂−1) = 0,
yields the following kinematics

˙̄T =T̄ Â − AT̄ (14)

=T̄ (Â − AdT̄−1 A)

=T̄ Ā

whereĀ =
(

Ω̄, V̄
)∧ ∈ se(3) and

Ω̄× =Ω̂× − AdR̄T Ω× (15)

V̄ =V̂ − R̄T V + AdR̄T (Ω)P̄ (16)

Theorem 1 (Direct Filter onSE(3)): Consider the sys-
tem defined in Section III with error measurēT , given by
Eq. 14, along withΩ̂ and V̂ given by:

Ω̂ = AdR̄T
y
(Ωy) + KRPa(R̄)T (17)

V̂ = R̄T
y Vy + KP P̄ (18)

where (Ry, Py, Ωy, Vy) are noise free measurements of
the true system in the body fixed frame, with̄Ry = RT

y R̂.
Then, for any initial condition such that

tr(R̄(0)) 6= −1
∥

∥I − T̄
∥

∥

F
converges exponentially to zero. It follows that

T̄ → I exponentially andR̂ → R and p̂ → p.
Proof: [Theorem 1] Recall the dynamics of the deviation

T̄
˙̄T = T̄A − ÂT̄

Define the following candidate Lyapunov functionL

L = 1
2

∥

∥I − T̄
∥

∥

2

F

= tr(I − R̄) + 1
2 ‖p̄‖

2
2

= LR + LP ,

whereLR = tr(I − R̄) andLP = 1
2 ‖p̄‖

2
2.

Taking the time derivative ofLR, substituting forΩ̂ from
Eq. 17 and settingRy ≡ R andΩy ≡ Ω yields

L̇R = − tr( ˙̄R)

= − tr(R̄(Ω̂× − AdR̄T Ω×))
= − tr(R̄(AdR̄T Ω× + KRPa(R̄)T − AdR̄T Ω×)))
= −KR tr(R̄Pa(R̄)T )

Given that R̄ = Ps(R̄) + Pa(R̄), and that
tr(Ps(R̄)Pa(R̄)T ) = 0, the derivative ofLR becomes

L̇R = −KR

∥

∥Pa(R̄)
∥

∥

2

F

Let, (θ̄, ā) denote the angle-axis coordinates ofR̄. One
has [10]

R̄ = exp(θ̄ā×), log(R̄) = θ̄ā×

cos(θ̄) = 1
2 (tr(R̄) − 1), ā× = 1

sin(θ̄)
Pa(R̄) (19)

The cost functionLR may be written

LR = tr(I − R̄) = 2(1 − cos(θ̄)) = 4 sin(θ̄/2)2. (20)

Substituting forsin(θ̄)ā× = Pa(R̄) gives

L̇R = − KR sin2(θ̄)||ā×||2F = −KR sin2(θ̄)

= − 4KR sin2(θ̄/2) cos2(θ̄/2) = −KR cos2(θ̄/2)LR.

For θ 6= ±π then LR is exponentially decreasing to zero.
Note thatθ = ±π if and only if tr(R̄) = −1.

Taking the derivative ofLP and settingVy ≡ V andPy ≡
P yields:

L̇P = p̄T ˙̄p

= p̄T (R̄V̂ − V + Ω×p̄)

Given thatp̄T Ω×p̄ = 0 and substitutinĝV from Eq. 18

L̇P = −KP ‖p̄‖2
2 = −2KPLP

This insuresLP converges exponentially to zero and there-
fore T̂ → T exponentially. The result follows directly.

In this proof we have assumed ideal measurements
(Ry, Py,Ωy, Vy). Clearly, in such a case it is unnecessary to
filter, however, even in the presence of noisy measurements



the expected response of the proposed filter will be as given
in the theorem.

The output of the direct complementary filter estimator
suffers from coupling between measurement errors. Firstly,
the angular velocity estimate, Eq. 17, is adjointed by the
instantaneous rotational error,̄R. The instantaneous rotation
error is derived from the measurementRy, which is typically
corrupted by low frequency noise. This corrupts the high
frequency angular velocity estimate with a low frequency
noise. Secondly, the linear velocity estimate, Eq. 18, will
propagate low frequency noise present inRy by both the
measurement term,̄Ry, and the innovation term,KP P̄ =
KP R̂T (p̂ − p) = KP (R̄T P − P̂ ).

V. COMPLEMENTARY FILTER ONSE(3)

The problems associated with the direct filter can be linked
to the interpretation of the error term̄T = T−1T̂ . The
error term was interpreted as a coordinate transformation
T̄ : {E} → {B}. However, the error can be viewed as
the coordinates of{E} expressed with respect to the body-
fixed-frame{B}. That is, T̄ is associated with the frame
of reference{B}. The non-linear geometry of the Lie-group
SE(3) introduces a complexity that is not present in classical
linear filtering; the errorT̄ is defined with respect to the
moving frame{B} and not the inertial frame{A}. This
causes undesirable coupling of system dynamics into the
error term. In particular, when the system undergoes rotation
there is a corresponding variation of the translational error
that is due to the change of reference frame and not a
translational error. The solution is to represent the errorterm
T̄ in the inertial frame.

Analogous to the adjoint operatorAdT that changes
frames of reference associated with elements inse(3), there
is an inner-automorphism operator

IT : SE(3) → SE(3) IT (Q) := TQT−1, T ∈ SE(3),

that acts to change the frame of reference associated with
an element of the Lie-groupSE(3). In particular, if T̄ is
associated with{B}, andT ∈ SE(3) is the coordinates of
{B} with respect to an inertial frame{A}, thenIT (T̄ ) is
associated with the inertial frame{A}.

Let
T̃ := IT (T̄ ) = T̂ T−1 (21)

denote the errorT̄ represented in the inertial frame of
reference. In the coordinate representation ofT̃ one has

T̃ =

(

R̃ p̃
0 1

)

where

R̃ =R̂RT

p̃ =p̂ − R̃p

It is straightforward to verify that

P̃ = −R̃T p̃ = R(P̂ − P ).

Note that T̃ does not have an interpretation as a mapping
operator.

The goal of the filter is to drive the error term̃T → I.
Analogous to the previous case, we consider the cost function
Eq. 13,

L(T̃ ) :=
1

2
‖I − T̃‖2

F .

The kinematics ofT̃ are

˙̃T =T̃ AdT (Â − A),

=T̃ Ã, (22)

whereÃ =
(

Ω̃, V
)∧

∈ se(3) and

Ω̃× = AdR(Ω̂ − Ω)×

Ṽ =R(V̂ − V ) + Ω̃×p

Theorem 2 (Complementary filter onSE(3)): Consider
the system defined in section III with deviation measureT̃ ,
given by Eq. 21, along witĥΩ and V̂ given by

Ω̂× =Ωy× − KR AdRT Pa(R̃y) (23)

V̂ =Vy − (Ω̂ − Ωy)×P + KP (P̂ − Py) (24)

where (Ry, Py, Ωy, Vy) are noise free measurements of
the true system in the body fixed frame, with̃Ry = R̂RT

y .
Then, for any initial condition such that

tr(R̃(0)) 6= −1

||I − T̃ ||2F converges exponentially to zero. It follows that
T̃ → I exponentially andR̂ → R and p̂ → p.

Proof: [ Theorem 2] Recall the dynamics of the devia-
tion T̃ from Eq. 22. Define the following candidate Lyapunov
functionL

L = 1
2 ||I − T̃ ||2F

= tr(I − R̃) + 1
2 ||p̃||22

= LR + LP

(25)

Where againLR = tr(I − R̃) andLP = 1
2 ||p̃||22.

Taking the time derivative ofLR, substituting forΩ̂ from
Eq. 23 and lettingRy ≡ R and Ωy ≡ Ω yields L̇R =
−KR||Pa(R̃)||2F , and by analogous argument to that used in
the previous proof,LR is exponentially decreasing to zero.

Taking the time derivative ofLP , letting Vy ≡ V and
Py ≡ P yields

L̇P = p̃T ˙̃p

= p̃T (R̂V̂ − R̂V + R̂(Ω̂ − Ω)×P )

substituting forV̂ from Eq. 24

L̇P = −KP ||p̃||22 = −2KPLP

This insuresLP converges exponentially to zero and
thereforeT̂ converges exponentially toT .

The complementary filter avoids the problems identified
with the direct filter. The estimation dynamics Eq. 23
and Eq. 24 contain no cross terms between measurements.



Changes between frames are avoided by making error com-
parisons in the inertial frame.

A disadvantage of the complementary filter formulation
is the increased complexity in the linear velocity estimate,
Eq. 24, with the term(Ω̂ − Ωy)×P . This cross product
between the position of origin in the body fixed frame and
the error in angular velocity couples the linear velocity to
orientation, as a correction for the convergence in orienta-
tion. However, as will be demonstrated in the next section,
this term can be omitted without affecting the exponential
convergence of the filter.

VI. PRACTICAL IMPLEMENTATION

The filters developed in the prior two sections may be
implemented using any sensible interpolation scheme. In
this section we discuss implementing such integration with
complementary filter described in section V.

First we address error coupling in the translation term from
the angular velocity measurement. Recall Eq. 24:

V̂ = Vy − (Ω̂ − Ωy)×P + KP (P̂ − Py)

The(Ω̂−Ωy)×P term will not exactly cancel with the(Ω̂−
Ω)×P term in the Lyapunov function due to the noise in the
measurementΩy. While zero mean random noise will ensure
that the expected value of the resulting filter has the desired
properties, the cross term increases the high frequency noise
in the position estimate. We may eliminate this noise in the
position estimate by discarding the problematic terms, by
using a modified form of the estimation equations.

Proposition 3 (Convergence for altered̂V ): Consider the
statement of Theorem 2. Letα and β be two positive
constants such that

LR <
1

2
α2e−2βt

over a bounded translation area such that

||P (t)|| ≤ ||Pmax||, for all t.

The estimation dynamics of Eq. 23 and

V̂ = Vy + KP (P̂ − Py) (26)

instead of Eq. 24 then the exponential convergence ofT̃
remains valid.

Proof: [Proposition 3] Recall the deviation measure
from Eq. 21. LetL = 1

2 ||P̃ ||2 be a candidate Lyapunov
function

L̇ = P̃T (−RV̂ + RV − R(Ω̂ − Ω)×P )

L̇ = P̃T (−KP P̃y − R(Ω̂ − Ω)×P )

L̇ = −KP ‖P̃‖2 − P̃T R(Ω̂ − Ω)×P

L̇ ≤ −2KPL −
√

2L‖(Ω − Ω̂)×‖ ‖Pmax‖

Given that‖(Ω̂ − Ω)×‖ is bounded byKRαe−βt, L̇ can be
bounded as follows

L̇ ≥ −2KPL −
√

2LKRαe−βt ‖Pmax‖
L̇ ≤ −2KPL +

√
2LKRαe−βt ‖Pmax‖

Let W =
√

2L, with Ẇ = L̇
2W

. Substituting, we have

Ẇ ≥ −KP
W
2 − 1

2KRαe−βt ‖Pmax‖
Ẇ ≤ −KP

W
2 + 1

2KRαe−βt ‖Pmax‖
Let

Ẇ1 = −KP
W
2 − 1

2KRαe−βt ‖Pmax‖
Ẇ2 = −KP

W
2 + 1

2KRαe−βt ‖Pmax‖
Then W1 < W < W2 and, Clearly, if bothW1 and W2

converge to zero, thenW converges to zero. It is straight
forward to show that

W1 = e−KP tW1(0)

−KRα‖Pmax‖
2 (e−βt − e−KP t)

As β and KP are both greater than zero, the exponential
terms converge to zero. Analogously,W2 converges to zero
and thusW converges to zero. SinceW1 and W2 both
converge exponentially to zero,W converges exponentially
to zero.

As will become apparent from the figures in section VII,
this modified form ofV̂ allows a temporary divergence in
the position estimate while the system undergoes a transition
to correct large orientation error. The selection of gainsKP

andKR, addressed in section VI-B, allows this deviation to
be controlled to an extent.

A. Discrete integration onSE(3)

Euler integration is the simplest form of numerical integra-
tion. The value over time is incremented as if the derivative
is constant at the last received value between samples.

yt+τ = yt + τ ẏ(t)

Whereτ is the time step. InSE(3), the Euler step must be
constrained to lie on the Lie group. A simple choice is

T (t + τ) = exp(τA(t))T (t)

where exp is the matrix exponential. Note that there are
explicit forms for the matrix exponential onSE(3) based on
Rodriguez formulae that are computationally tractable. For
our filters one obtains

Â(t) =
(

Ω̂(t), V̂ (t)
)∧

T̂ (t + τ) = exp(τ T̂ (t)Â(t)T̂ (t)−1)T̂ (t)

where we multiply by the exponential ofAdT (t) Â(T )

corresponding to˙̂
T−1 = T̂−1 Ad

T̂
Â.

As an alternative to Euler integration, we may use Runge-
Kutta integration to attempt to eliminate this high frequency
noise. The second-order method [19], which integrates by an
estimate of the derivative at the midpoint of the step, is

yt+τ = yt + k2

k2 = τ f(t + 1
2τ, yt + 1

2k1)
k1 = τ f(t, yt)

whereτ is again the time step. For our system inSE(3) we
make the simplification thatf(t, y(t)) is independent oft, as



the estimator converges to the true state without additional
kinematics.

T (t + τ) = exp(τ d
dt

(exp(1
2τA(t))T (t))T (t)

For implementation in our system, this translates into

Ω̂(t)× = Ωy(t)× + KR AdR(t)T Pa(R̃y(t))T

V̂ (t) = Vy(t) − (Ω̂(t) − Ωy(t))×P (t)

−KP (P̂ (t) − P (t))

Â(t) = (Ω̂(t), V̂ (t))
∧

T̂ (t + 1
2τ) = exp(1

2 T̂ (t)Â(t)T̂ (t)−1)T (t)

Ω̂(t + 1
2τ) = Ωy(t)× + KR AdR(t+ 1

2
τ)T Pa(R̃y(t))T

V̂ (t + 1
2τ) = Vy(t) − (Ω̂(t + 1

2τ) − Ωy(t))×P (t + 1
2τ)

+KP (P̂ (t + 1
2τ) − Py(t))

Â(t + 1
2τ) =

(

Ω̂(t + 1
2τ), V̂ (t + 1

2τ)
)∧

T̂ (t + τ) = exp(τ T̂ (t + 1
2τ)Â(t + 1

2τ)T̂ (t + 1
2τ)−1)T̂ (t)

where again we make the adjustment of the direction of
integration as previous. While this method reduces the high
frequency noise from Euler integration, it still incorporates
the same noise in the position estimate.

B. Gain selection

The values of the gainsKP and KR correspond to the
cross over frequencies between the response to the pose
measurementsRy and Py and the velocity measurements
Ωy andVy. Values of the gains corresponds to the crossover
frequencies in radians per second. Values will typically be
selected based on analysis of the sensors used, but will lie
somewhere between zero and the Nyquist frequency of the
sampling rate of the pose measurement. Values higher than
the Nyquist frequency of the pose measurement may be used
to aggressively counteract off-set errors occurring due to
dropped frames or missing pose measurements when tracking
moving targets.

When employing the modified form of̂V , the system will
undergo a divergence in the position estimate during periods
of high angular velocity. The ratioKP /KR determines the
relative timing of this divergence appearing in the position
estimate. A high value will delay the divergence and spread it
over time. Conversely a low value may cause an immediate,
sharp, spike.

VII. SIMULATION RESULTS

The proposed design of the complementary filter has
been simulated using MATLAB 7.1. Both the system and
estimator are initialised to random elements of a translational
subspace ofSE(3)

• The rotation, R, is initiated to a rotation ofπ − 0.1
around random axis selected uniformly.

• The position, p, is a selected from the cube
(−10..10,−10..10,−10..10) under a uniform random
distribution.

Repeated testing using this selection identifies numerical
errors that may not be apparent when either the target or
estimate is initialised to the identity matrix or other elements
of SE(3) inside the unit cube.
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Fig. 1. T̃ vs. time (in iterations) forSE(3) convergence from random
element to another random element with no sensor noise. Typical result
from repeated testing.
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Fig. 2. T̃ vs. time (in iterations) forSE(3) convergence from random
element to another random element with noise variances of 1.0 on all
sensors. Typical result from repeated testing.

Simulations were performed using a variety of white noise
processes and both the original and modified (proposition 3)
complementary filter dynamics. All images depict simula-
tions of the same randomly generated system with changes
only to the filter parameters. The filter parameters areKR =
1, KP = 1, τ = 10−1, with no sensor noise or bias and
iteration via Euler integration unless otherwise specified.
Noise variances have been selected to be excessively high to
create adverse conditions. Noise was added to measurements
as follows

• Ry: Noise as a rotation byθ radians around a uniform
randomly selected axis, whereθ is drawn from a zero
mean Gaussian process with a specified variance in
radians.

• Py, Ωy and Vy: Noise added as a three independent
component vector drawn from a Gaussian process with
a specified variance in units.

All noise variance are specified independently. Typical re-
sults for tests with no noise are indicate in figure 1.

The system proved highly stable under noise on the
measurementsRy, Py, andVy, yet sensitive to noise inΩy.
Despite this, when noise is applied to all sensors, the filter
achieves a good degree of convergence as depicted in figure
2. Contrasting the results of figures 3 and 4, it is clear that
the majority of the disturbance is due to the noise on the
angular velocity sensor. When this is removed, the filter is
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Fig. 3. T̃ vs. time (in iterations) forSE(3) convergence from random
element to another random element with noise variances of 1.0 on only the
angular velocity sensor. Typical result from repeated testing.
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Fig. 4. T̃ vs. time (in iterations) forSE(3) convergence from random
element to another random element with noise variances of 1.0 on all sensors
except the angular velocity sensor. Typical result from repeated testing.

comparatively well behaved. It should be noted, that not only
does angular velocity noise cause delayed convergence and
oscillation in the rotation estimate, it also induces an offset
error in the position estimate.

Analysis of the effects of noise on other sensor yields
less dramatic results. Noise on the orientation sensor delayed
convergence of the rotation component and causes oscilla-
tions around the set point. Similarly, noise on the position
or linear velocity sensors causes oscillations around the set
point, though it did not delay convergence.

Changing the estimate dynamics to those of proposition
3 resulted in the temporary divergence of the position while
the angular slope is high, as depicted in figure 5.

Under high angular noise, the modified form ofV̂ remains
stable, undergoing little additional disturbance than thestan-
dard form, as depicted in figure 6.

VIII. EXPERIMENTAL RESULTS

We applied the filter developed in section V to experimen-
tally obtained data to analyse the real world performance
of the algorithm. We used experimental data obtained by
Thibault Cheviron [3] from a radio controlled helicopter in
hover over a visual target. The experimental platform consists
of a Microstrain 3DMG IMU and a Philips Webcam mounted
on a Vario Benzin-Acrobatic 23cc radio controlled helicopter,
as depicted in figure 7. The inertial sensor data is acquired
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Fig. 5. T̃ vs. time (in iterations) forSE(3) convergence from random
element to another random element with no sensor noise usingV̂ of
proposition 3. Typical result from repeated testing.
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Fig. 6. T̃ vs. time (in iterations) forSE(3) convergence from random
element to another random element with noise variances of 1.0 on only
the angular velocity sensor usinĝV of proposition 3. Typical result from
repeated testing.

at a rate of 50 Hz, and vision measurements at a rate of 10
Hz.

Data from the Vision and IMU measurements were har-
monised, to place them in the same (body fixed) frame
of reference, and the filter applied. The pose estimate was
initiated at no rotational or position offset. Filter gainsof
KR = 1 andKP = 10 were selected by hand tuning. A pre-
filter was used to estimate velocity from acceleration and
pose measurements. No bias correction was performed on
either the gyrometer measurements or velocity estimate.

The results obtained using the experimental data are
depicted in figures 8 and 9. These graphs compare estimate
from the 3DMG IMU’s industrial filter, vision measurements
and our filter. As can be seen, our filter quickly overcomes
the error in initial conditions and tracks the moving target
well.

IX. CONCLUSIONS

In this paper we have provided theoretical developments
for both a direct and complementary filter, evolving directly
on the SE(3) manifold with exponential convergence. We
developed methods for practical implementation of these
filters and identify theoretically based guidelines for gain
selection.

We provided simulations analysing the effects of noise in
various sensor measurements on the complementary filter.



Fig. 7. Experimental Platform: Vario Benzin-Acrobatic 23cc radio con-
trolled helicopter, fitted with low-cost, lightweight camera and IMU.
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Fig. 8. Attitude estimate from experimental results, comparing estimates
from the IMU’s industrial filter, vision measurements and our filter.
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Fig. 9. Position estimate from experimental results, comparing estimates
from vision measurements and our filter.

We identified a high set-point sensitivity to angular velocity
noise, and a moderate convergence time sensitivity to orien-
tation sensor noise.

We provided experimental results verifying the operation
of our filter on real world data.
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