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Abstract: In this paper, we consider collaborative attitude estimation problem of a multi-
agent system. The agents are equipped with sensors that provide directional measurements and
relative attitude measurements. We present a bottom-up approach where each agent runs an
extended Kalman filter (EKF) locally using directional measurements and augments this with
relative attitude measurements provided by neighbouring agents. The covariance estimates of the
relative attitude measurements are geometrically corrected to compensate for relative attitude
between the agent that makes the measurement and the agent that uses the measurement before
being fused with the local estimate using convex combination ellipsoid (CCE) method to avoid
data incest. Simulations are undertaken to numerically evaluate the performance of the proposed
algorithm.
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1. INTRODUCTION

The problem of collaborative state estimation over sensor
networks has drawn significant attention in the past 20
years (Roumeliotis and Bekey, 2002). In this problem,
different agents share measurements and state-estimates
to improve overall state estimation. Sharing data in this
way, however, introduces the possibility of data incest
(Julier and Uhlmann, 1997). To see this, consider a net-
work of individual estimators each estimating some states
while communicating with other nodes on the network.
Information received from other agents will depend on
information transmitted by the agent itself in preceding
communications, potentially reinforcing its own hypothesis
and increasing the risk of overconfidence in the resulting
state estimates (Julier and Uhlmann, 1997).

To overcome these challenges there are two main ap-
proaches: a top down approach where the full state estima-
tion is formulated as a joint estimation problem and then
the computation is decentralised to each node (Carrillo-
Arce et al. (2013); Luft et al. (2018); Zhu and Ren (2020)),
and the bottom up approach, where each agents runs an
independent estimator locally and fuses data from other
agents taking precautions to avoid data incest (Olfati-
Saber, 2005, 2006). The key enabling step in the bottom
up approach is a methodology to provide safe fusion of
correlated data into a local agent state estimation such
that it retains the common uncertainty of the original
random variables. This problem has been studied since the
60s (Schweppe, 1968; Kahan, 1968; Bertsekas and Rhodes,
1971). In more recent work (Julier and Uhlmann (1997),
Julier and Uhlmann (2017)) Julier and Uhlmann proposed
the Covariance Intersection (CI) algorithm which restricts

the fusion problem to a family of convex combinations
of the inverse covariance matrices and is the most com-
monly used data fusion method in multi-agent problems.
The CI algorithm, however, is known to be too conser-
vative in certain situations (Julier and Uhlmann, 2007).
The Inverse Covariance Intersection (ICI) method (Noack
et al., 2017) computes the maximum possible common
information shared by the estimates to be fused, and is
known to be less conservative than the CI method. An
alternative solution is the Convex Combination Ellipsoid
(CCE) fusion method which arises from the set-theoretic
fusion technique (Schweppe, 1968; Ros et al., 2002). The
CCE method shares a similar structure with CI, however
it improves the tightness of the fusion result while avoiding
unnecessary uncertainties as the byproduct of the fusion
process (Zamani et al., 2023).

All these fusion algorithms are originally formulated in
global Euclidean space, and there have been many at-
tempts to adapt these classical methods to systems that
live on smooth manifolds, particularly Lie groups. One
popular approach is to consider the fusion problem as
finding the optimal mode of the posterior distribution by
solving an optimization problem (Bourmaud et al., 2016;
Barfoot, 2017). In (Wolfe and Mashner, 2011; Chirikjian
and Kobilarov, 2014), the authors solved the fusion prob-
lem by posing a set of algebraic equations using the Baker-
Campbell-Hausdorff formula. Recent work in equivariant
filter theory (Mahony et al., 2020) and geometric extended
Kalman filtering (Mueller et al., 2017; Ge et al., 2023) has
provided a strong understanding of the geometry of filter-
ing and data fusion. In particular, these works demonstrate
that it matters in which coordinates the generative noise



model for a measurement is posed and provides formulae
and methodology to transform covariance from one set of
coordinates to another (Ge et al., 2023).

In this paper, we consider a bottom up approach to the
problem of collaborative attitude estimation, where each
node estimates its own attitude as well as taking relative
measurements of other nodes. The problem is posed on
the Lie group SO(3) representing the attitude of a single
agent of interest, termed the ego-agent. The information
used are local directional measurements, angular velocity,
and a noisy relative attitude measurement of the ego-
agent as observed by a neighbouring altruistic-agent along
with the altruistic agent’s own state estimate (estimated
attitude and its error covariance). This relative attitude
measurement, combined with the altruistic agent’s state
estimate, is effectively an attitude measurement of the
ego-agent, and can be fused into the ego-agent’s state es-
timation, at the appropriate point, in the filter algorithm.
However, in a collaborative communication scenario, the
altruistic agent’s state estimate is itself dependent on
shared information from the ego-agent, and this relative
pose measurement should not be treated as an independent
measurement. Furthermore, the attitude measurement is
observed from the perspective of the altruistic agent and
is written in these coordinates. The covariance of the
measurement must be transformed into the ego-state co-
ordinates to avoid incorrect inference. The contribution
of the paper is to combine the geometric modification of
the covariance into the correct coordinates with the CCE
fusion method to obtain a high-performance bottom up
collaborative state estimation scheme for multi-agent atti-
tude estimation. We provide a Monte-Carlo simulation to
demonstrate the performance of the proposed estimation
algorithm together with the geometric modifications.

2. PRELIMINARIES
2.1 Special orthogonal group SO(3)

Attitude of an agent is represented as a rotation matrix R
in the special orthogonal group R € SO(3). The identity
element of SO(3), denoted id, is the identity matrix. Given
arbitrary X, Y € SO(3), the left and right translations
are denoted by Lx(Y) := XY and Rx(Y) := YX. The
Lie algebra s0(3) of SO(3) consists of all skew-symmetric
matrices of the form

0 —Uusz u2
u/\ = us 0 —Ux s
—UuU2 U1 0

and is isomorphic to the vector space R?. We use the wedge
()" : R? — s0(3) and vee (-)V : s0(3) — R? operators
to map between the Lie algebra and vector space. The
Adjoint map for the group SO(3), Adx : 50(3) — s0(3) is
defined by

Adx[u"] = Xu"X T,
for every X € SO(3) and u”" € s0(3). Given particular
wedge and vee maps, the Adjoint matrix is defined as the
map Ad¥% : R? — R3

AdY% u = (Adx u")".
The adjoint map for the Lie algebra ad,~ : s0(3) — s0(3)
is given by

adyr v = [u,0"].

We define the adjoint matrix ad, : R® — R3 to be:
adY v = [u",v"]"
Let expg : 50(3) — SO(3) denote the matrix exponential
(G denotes the SO(3) group) and note that this is a one-
parameter Lie-subgroup. In order to improve the analogy
to the fusion literature that is usually written in R"
coordinates we will use the B (‘boxplus’) operator for the
exponential map
X Bu=Xexpg(u"),

for X € SO(3) to represent the state and u € R?® to
represent a certain noise process. Let SO°(3) C SO(3)
be the subset of SO(3) where the exponential map is
invertible and note that SO°(3) is almost all of SO(3),
excluding only those points with a rotation of 7 radians.
The logarithm map logg : SO°(3) — s0(3) and log§ :
SO°(3) — R? is well defined on SO°(3).
The Jacobian J,» : 50(3) — s0(3) is defined to be the left-
trivialised directional derivative of expg : s0(3) — SO(3)
at a point u" € s0(3) on SO(3). Given an arbitrary
w”™ € 50(3), it satisfies

JuA [u/\] = DLexpG
where the tangent space Teyp, (ur)SO(3) is isomorphic to
50(3) via left trivialisation. Equivalently, D expg (u”)[w”] =
DLeypg (uh)Jur [0] € Texpe urySO(3). Tts matrix form,
denoted by J,, € R3*3 is given by (Chirikjian, 2011)
Lcosfull el = sinful

[l [l

For an arbitrary uv” € s0(3), the inverse of its Jacobian is
given by

1
Ju_1:213+2u/\+<

(—un) " D eXpG(u/\)[w/\]7

Ju = 13—

1 1+ cos ||ul] ) A2
2 ; w
l[ull>  2ljullsin fJul

2.2 Concentrated Gaussians on SO(3)

We use the concept of a concentrated Gaussian to model
distributions on SO(3). For a random variable X € SO(3),
the probability density function is defined as

p(X; X, 1, %) = qe™ 30086 (X7 X) =) T2 o (X1 X) =)

(1)
where « is a normalizing factor. The stochastic parameters
are 4 € R3, a mean vector in local coordinates, and
Y € S4(3) a positive-definite symmetric 3 x 3 covariance
matrix parameter. The geometric parameter X € SO(3)
is termed the reference point and plays the role of the
origin of the local coordinates. We will term a concentrated
Gaussian zero-mean if p = 0. In this case the distribu-
tion corresponds to the classical concentrated Gaussian
Chirikjian and Kobilarov (2014); Bourmaud et al. (2016)
where one can think of the reference point X € SO(3) as
a sort of ‘geometric’ mean. We will write X ~ N (u, X)
for the random variable X € SO(3).

Lemma 2.1. Given an arbitrary concentrated Gaussian
distribution p(X) = Nx, (¢1,%1) on SO(3), then th
zero-mean concentrated Gaussian distribution ¢(X) =
Nx,(0,35) with parameters

X2 = X1 GXpG(le)

S = Ju, 51,



minimises the Kullback-Leibler divergence p(X) with re-
spect to ¢(X) up to second-order linearisation error.

Proof. The Kullback-Leibler divergence between p(X)
and ¢(X) is given by

KL(p||q) = Ep[log(p) — log(q)]
=Cp+ %log(%r) + %log det(25)

1
+ 5By llogh (X5 X) TS5 log (X3 X)),

where C, is the negative entropy of p(X). Taking the
derivative of KL(p||g) with respect to 3o in the direction
u yields

Dy, KL (p(X)|la(X))[u] =
5 (55 = 55 B flogs (X5 X) o (X3 X) 7125 ).

The critical point is given by

Sp = Epllogg (X5 ' X) logg (X5 X) ). (2)

Define ¢1 : R? = R3 and ¢ : R? — R? as
$1(X) = log (X' X) — pu,
$2(X) = logg (expg (—) X1 X),
one has
$2(X) = logg (expg (111) " expg (01(X) + ). (3)
Taking the Taylor series of (3) at ¢1(X) = 0 up to first
order yields:
¢2(X) ~ Dlogg (id) © DLy (u)—1 © Dexpg (p1)[¢1(X)]
= Jﬂl 1 (X)
Substitute the result into (2):
Sy = Ep[¢2(X)¢2(X) ]

~ B[y 61(X) (T, 61(X)) ]

= JuBplo1(X) 61 (X) "1,

=J, 51,
where the last equality follows from the definition of ¥; =
Ep[¢1(X) 1 (X)"].
Corollary 2.2. Given an arbitrary zero-mean concentrated
Gaussian distribution p(X) = Nx, (0,%;), choose and fix
X2 € SO(3), then the concentrated Gaussian ¢(X) =
Nx, (2, X2) for parameters

pz = logg (X5 ' X1)
-1 -T
Yo =, %0,
minimises the Kullback-Leibler divergence with p(X) up
to second-order linearisation error.

Corollary 2.2 follows directly from Lemma 2.1.
3. PROBLEM FORMULATION

The problem we target is to design a fully distributed
algorithm to estimate the absolute attitude of individual
agents collaboratively in a multi-agent system. Each agent
is equipped with an onboard inertial measurement unit
(IMU) that provides bias-free angular velocity w € R? in
the body frame. With non-rotating, flat earth assumption,
the deterministic system kinematics are given by

Ri(t+1) = R;(t) expg (At w;(t)"). (4)

Note that the subscripted index i refers to i*" agent and
the index t refers to the time step. We will drop the time
step notation where it is clear in order to simplify notation.

The agent ¢ also has extrinsic sensors such as a magne-
tometer that measures known directions (magnetic field)
in the body-frame. The ¢th direction measurement ‘z, for
agent ¢ is given by

i, _ DT

(5)

where dy for ¢ = 1,...,n are a collection of known
reference directions. Using these measurements, the agent
can run a filter-based algorithm locally to estimate its
own state and the associated covariance (Markley and
Crassidis, 2014)(Fornasier et al., 2022).

In addition, each agent can communicate with agents in
its neighbourhood and has a sensor capable of measuring
relative attitude of its neighbouring agents. If two agents
i and j have states R;, R; € SO(3) then the relative state

jRi of j with respect to i is defined to be
o mip
'R, = R R; € SO(3).

The relative state can be thought of as the attitude of
agent 7 expressed as perceived by a sensor on agent j.

Alternatively, consider left translation of the whole space
by Lp-i. Then id = LpiR; = R;'R; = I3 and
J J

jRi = Ly R = Rj_lRi. That is, the relative state is

J
the coordinates of agent i with respect to new group
parametrisation that place agent j at the identity attitude.

A relative state sensor on agent j may directly measure
the physical relative attitude of agent i or may measure
the relative angular difference between the states. Physical
attitude measurements are associated with directly mea-
suring the direction cosines that make up the entries of
the matrix 'R, € SO(3). Such measurements are typically
inner products like iZerg that correspond to cosines of
angles between known or measured vectors. For a physical
relative attitude measurement, an appropriate model is

K3
That is, the generative measurement noise model is a zero-
: J ) )
mean concentrated Gaussian process 'y, ~ N R, 0,Q;)-

Conversely, a relative angular sensor measures the under-
lying angle from one attitude to another. For example,
if two attitudes are connected through a physical gimbal
system then the sensor will measure Euler angles between
the two states. Another example is when a vision system or
similar system estimates the relative axis of rotation and
relative angle from itself to another agent rather than the
direction cosines (Chatterji et al., 1998). The measurement
in this case, which we denote by z to distinguish it from
(6), is appropriately modelled by

Tz =expe (Tm+)) R ~N(0,Qp)  (7)
where 7p, = 1ogG(R;1R,») € 50(3) is the angle-axis 'p, =
fa” for a rotation of # rad around an axis a € S2. In
this case, the generative noise measurement model is a
concentrated Gaussian “z; ~ Niq(’;, Q;) with non-zero
mean.



" Directional ..
measurements ., j

Relative measurement

Inter-agent communication

(‘/yiv Q/) (]:‘J; ]5./)

Fig. 1. Illustration of the experimental setup to improve
the estimate of agent 7. The dotted lines represent
each agent’s measurements of known directions which
is used to locally estimate their own states. The
dashed line refers to the inter-agent measurement
Jy; taken by agent j. The solid line represents the
communication from agent j to agent i.
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Fig. 2. Implementation structure of the estimators and the
information flow on each agent.

4. ALGORITHM

We propose a filter-based algorithm to solve the attitude
estimation problem. Each agent estimates its own state
R € SO(3) and the associated covariance P € S, (3). We
use subscript and superscript for the agent that is being
estimated and the agent that is making the estimation,
respectively. Fig 2 demonstrates the overview of different
steps in the proposed filter algorithm for an ego-agent
(shown in blue) and an altruistic agent (shown in red). In
this section, we focus on the details of the filter running on
the ego-agent i, which can be separated into three stages:
predict (using IMU input), update (using directional mea-
surement) and fusion (using relative measurements).

4.1 Predict and update

The filter follows the conventional EKF design methodol-
ogy, including the predict and update step. The informa-
tion state of the filter, which approximates the true dis-
tribution of the system state on SO(3), is a concentrated
Gaussian distribution, given by

R;i(t) ~ Nsz(t)(Q Pzz(t))

When an IMU input is available, it will be used to
propagate the state estimate R;, which also acts as the
reference point in the information state of the filter, using
the full nonlinear model (4). The covariance estimate
Isf will be propagated by linearising the system model.
When the agent receives the directional measurement,
under the assumption that every extrinsic measurement
is independent, we can perform the standard Kalman
fusion in logarithmic coordinates, followed by a covariance
reset step which transforms the posterior into a zero-
mean concentrated Gaussian (Mueller et al. (2017); Ge
et al. (2023)). For detailed implementation of the filter,
see Fornasier et al. (2022); Ge et al. (2023).

4.2 Fusion using relative measurements:

The core contribution of this work lies in the preprocessing
and fusion steps shown in Figure 2. When agent j makes
a relative attitude measurement ’y, or 7z, of agent i,
it broadcasts the measurement and the associated noise
covariance (); of the measurement model, as well as
agent j’s own state estimate (Rﬁ,ﬁj) to agent i. As
demonstrated in Fig 2, it takes two steps to fuse the inter-
agent information with agent i’s own estimate. Firstly
in the preprocessing stage, the relative measurement is
combined with both agent ¢ and agent j’s state estimate,
which generates a new estimate of agent i, denoted by
(Rf, ]53) We use the superscript j to distinguish it from
agent ¢’s estimate. Then we implement the CCE fusion
method to fuse (R7, P/) with (RZ, P}).

Geometric transformation of the measurement model:
We consider both measurement models in (6) and (7).
The second measurement model requires an extra step to
transform it into a zero-mean concentrated Gaussian. As
given in (7), the relative measurement can be expressed as
a concentrated Gaussian with non-zero mean,

T2; ~ Nia(logg (R; ' R:), Q;).

By applying Lemma 2.1, one gets the following approxi-
mation:

Ty~ NR;lRf, ©, Jlogé(RglRi)Qi‘]lzgé(R;lRi))'
Such modification requires the knowledge of the noiseless
configuration output R;lRi which is not available in
practice. In this paper, we will assume the measurement
noise is small and use the measurement ’z; as a proxy for
the relative state. Alternative algorithms that exploit the
two state estimates R; and Ri directly are also possible.
The measurement model can now be transformed as follow:

j T
Wi~ Nty (0 Jiogg (2 @i hogy 72



or equivalently,
jy< %Rj_lRiEEIij, Rj NN(OaQ;)7 (8)

K3

: * __ . na
With @5 = Jogs 00, @irogy 00,
Preprocessing relative measurements: — Given the mea-
surement model
7y, = R;'R; B
and the error state models

kg~ N(07 Qj) (9)

R;=R;Be;, & ~N(0,P) (10)
Rj=R;Be;, &5 ~N(0,P;) (11)

substituting (11) into (9) yields
Ty, = (R; Bej) ' R Br;
= expG(f&:j)Rj_lRi H Kj
= Rj_lRi H Ad(R;lRi)*l (76]‘) H Ky
Replace R; using (10),

Ty, = R;'R; @ Adp-1 (e, (—€5) B R

= Rj&Ri B Adexpg (—<)) Ad(f?/;lz”zi)fl(_f?j) B rj.

Take the Taylor expansion of Ad.,

expg (
Adlpg (—eyy = Is — ad], +O(|es).

Assume that both ; and ¢; are small, then ad.,(¢;) and
the higher-order terms can be approximated to be zero:

Yy, = R 'R, BAd

;) one has

(12)

where the new measurement noise -

J
- T
w) ~NOAd o) PIAd gy +Qy).

is given by

One can now reconstruct a new estimate of R; from (12)
by left multiplying by R;. The new estimate is a zero mean
Gaussian N 4; (0, P/) where the parameters are given by

R =Ry,

v
P] = Ad{ig)s

7 v T
Py Ad( 3Ry +Qj.

Geometric correction of distributions:  The concentrated
Gaussian distributions that are being fused can be written
as N (0, P}) and N, (0, P/). Although the covariance

Pf and ng are both symmetric matrices, they are still
associated with distributions expressed in different coordi-
nates. Fusing these covariance matrices directly, without
correcting for the associated change of coordinates, will in-
troduce artifacts and errors in the information state of the
resulting filter, decreasing consistency and compromising
performance of the algorithm.

In order for the ego-agent to compensate for the change of
coordinates in the measurement recieved from the altruis-
tic agent, it must transform the measurement concentrated
Gaussian into a concentrated Gaussian in its local coordi-
nates. That is, it must solve for p!" and P/* such that
N (0, P)) m~ N (™, P7).

7

Applying Corollary 2.2 then one has
- a1l A
pit=logg (R Ry'y;)
Fj* —1pj 7—T
P = Ju{*PijJu{* .

Data Fusion Now the targeting distributions are trans-
ported into the same coordinate, and the next step is
to perform data fusion to the two distributions. Rewrite
the distributions into ellipsoidal sets on s0(3), defined as

£(0, B) = {u" € 50(3) : [l < 1} and £(u3", PI") =
{u € 50(3) : |Ju — Mg*||?5;*—1 < 1}. Given these two

prior ellipsoids have nonenllpty intersection, the convex
combination Z(at, P;") of them is given by

2
P

i

. L 1y -1
Pz'+:kX’X:(O‘Pf 1+(1_a)PiJ* 1) ,

2
=1=d d = | e ey
(%+e5)

it =x (1= a)P "),

i

J*
1

where a € [0,1] is a freely chosen gain in this paper.
Alternatively, one can choose an optimal «o* such that
o* = argmin,, det(P}).

Note that given the outputs of CCE fusion method, the
posterior is a concentrated Gaussian with non-zero mean,
that is, R; ~ Ny (a*,P;"). However, the next fusion
iteration requires the distribution to have a zero mean,
hence the goal of the reset step is to identify I:’f such that

R; ~Np (0, P") ~» N 0,P?). (13)

1
Similar to the coordinate change in the previous steps, this
may be solved by using Lemma 2.1. The reset covariance

P? is found to be

R; expg ut (

PP = Jae POl
Note that the reset step only modifies the covariance
estimate and does not change the attitude estimate of
agent 1.

5. NUMERICAL EXPERIMENT

In this section, we provide a numerical evaluation of the al-
gorithm proposed in Section 4. A Monte-Carlo simulation
is undertaken to validate the performance of both the pro-
posed geometric modifications and the fusion algorithm.

5.1 System implementation

In the Monte-Carlo setup we use the following randomi-
sation and run 1000 experiments. We simulate two inde-
pendent oscillatory trajectories for agent ¢ and j, with the
noise-less angular velocity generated by
wi(7) : = (10]sin(7)], |cos(T)|, 0.1|sin(7)|) rad/s
w;(7) + = (|sin(7)], 0.5|cos(7)], 5|sin(7)|) rad/s,
and subsequently corrupted by additive Gaussian noise
with covariance diag(0.32,0.2%,0.12). The trajectory is
realized using Euler integration (4) and a time step At =
0.02s. The initial states estimates of the agents are offset

from each other by 180 degrees with initial errors sampled
from N g (0, I3).



The extrinsic sensor on agent j measures two known
directions
dy =(0,1,0) and ds = (1,0,0).

with the output function (5), while the sensor on agent i
only measures the first direction. The measurements for
each direction are corrupted with additive Gaussian noise
sampled from N(0,diag(0.22,0.12,0.3%)). In this experi-
ment, we design the agent ¢ to use only the directional mea-
surement of dy, while agent j has access to measurements
of both directions. In consequence, without the relative
measurements from agent j, the state of the ego agent
i is unobservable — a single directional measurement is
insufficient to determine the full attitude of the vehicle.
In this way, the experiment emphasises the role of the
shared information in the filter and exacerbates errors
due to information incest. Both agents receive directional
measurements at 20Hz.

Agent j makes relative attitude measurement of agent i at
1Hz, which is corrupted by Gaussian noise N(0,Q;). The
non-homogeneous noise covariance is given by diag(0.52,
0.3%, 0.22). We run separate simulations with both of the
measurement noise models considered in (6) and (7).

For comparison, we implement two filters on agent i
using different measurements, aside from the proposed
algorithm. One filter only uses the extrinsic directional
measurements and disregards relative inter-agent measure-
ments. The second filter uses both extrinsic and relative
measurements, however, it only does a naive fusion in the
logarithmic coordinates, as in (Wolfe and Mashner, 2011).

5.2 Result

Average State Error (Agent i) with 25th and 75th Percentile

—— EKF without relative measurement (Agent i)
—— EKF with relative measurement (Agent i)
—— Geometric EKF with relative measurement(Agent i)

Rotation Error (deg)
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Fig. 3. Direct physical measurement of relative state (6).
Mean rotation error (e := arccos((tr(R™'R) — 1)/2))
with a shaded area representing the 25th and 75th
percentiles.

Fig 3 and 4 demonstrate the performance of the proposed
algorithm (in blue) compared with the EKF using only
directional measurement (in red) and the EKF using a
naive fusion scheme (in green). Note that the noise param-
eters were chosen to demonstrate the relative advantages
of the geometric modifications to be proposed. That is,
while we found that the proposed method outperformed
the alternatives regardless of the noise model, the par-
ticular parameters used to generate the plots shown here

were chosen to emphasise the performance advantage. In
particular, the measurement errors are larger than would
be desirable in a real application, leading to relatively large
attitude error in the plots.

Average State Error (Agent i) with 25th and 75th Percentile

—— EKF without relative measurement (Agent i)
—— EKF with relative measurement (Agent i)

—— Geometric EKF with relative measurement(Agent i)
10? b

Rotation Error (deg)

Fig. 4. Relative angle measurement (7). Mean rotation
error (e := arccos((tr(R™1R) — 1)/2)) with a shaded
area representing the 25th and 75th percentiles.

As expected, the local filter solution with only a single
direction measurement available does not converge as the
system is unobservable, as shown in both Fig 3 and
4. Fig 3 shows the algorithm performance in the case
where the direct physical measurement model (6) is used.
It demonstrates an advantage in the proposed fusion
algorithm during the transient of the algorithm but has
similar asymptotic performance to the naive filter. This
is to be expected, since the geometric modification in the
data fusion step corrects for the difference between the
filter estimate and relative state measurement coordinates.
As the filter converges this difference becomes negligible
and the benefit of the geometric correction is lost.

This is not the case for measurement model (7), as shown

in Fig 4, since the relative state measurement ’z, is taken
in coordinates around agent j. The relative state between
the two agents ¢ and j does not converge to identity in
general, and the geometric correction to compensate for
the coordinate representation remains critical.

6. CONCLUSION

In this paper, we propose a collaborative attitude estima-
tion problem where agents run local filter-based algorithms
which fuse the estimates and relative measurements com-
municated by neighboring agents. We utilize the concept of
concentrated Gaussians on SO(3) and exploit the geomet-
ric properties of the underlying space. The proposed algo-
rithm combines an EKF running locally on the agent with
the CCE fusion of relative state measurements. We provide
geometric corrections in the algorithm to incorporate Lie
group geometric insights that improve filter performance.
The simulation results demonstrate the convergence of
the proposed fusion method, and shows the improvements
gained from applying the correct geometric modifications
with different measurement noise models.
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