
Chapter 6
Dictionary Learning on Grassmann
Manifolds

Mehrtash Harandi, Richard Hartley, Mathieu Salzmann
and Jochen Trumpf

Abstract Sparse representations have recently led to notable results in various visual
recognition tasks. In a separate line of research, Riemannian manifolds have been
shown useful for dealing with features and models that do not lie in Euclidean spaces.
With the aim of building a bridge between the two realms, we address the problem of
sparse coding and dictionary learning in Grassmann manifolds, i.e, the space of linear
subspaces. To this end, we introduce algorithms for sparse coding and dictionary
learning by embedding Grassmann manifolds into the space of symmetric matrices.
Furthermore, to handle nonlinearity in data, we propose positive definite kernels
on Grassmann manifolds and make use of them to perform coding and dictionary
learning.

6.1 Introduction

In the past decade, sparsity has become a popular term in neuroscience, information
theory, signal processing, and related areas [7, 11, 12, 33, 46]. Through sparse rep-
resentation and compressive sensing, it is possible to represent natural signals like
images using only a few nonzero coefficients of a suitable basis. In computer vision,
sparse and overcomplete image representations were first introduced for modeling
the spatial receptive fields of simple cells in the human visual system by [33]. The
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linear decomposition of a signal using a few atoms of a dictionary has been shown
to deliver notable results for various visual inference tasks, such as face recognition
[46, 47], image classification [30, 48], subspace clustering [13] and image restora-
tion [31] to name a few. While significant steps have been taken to develop the theory
of the sparse coding and dictionary learning in Euclidean spaces, similar problems
on non-Euclidean geometry have received comparatively little attention [8, 20, 22,
26]. This chapter discusses techniques to sparsely represent p-dimensional linear
subspaces in Rd using a combination of linear subspaces.

Linear subspaces can be considered as the core of many inference algorithms in
computer vision and machine learning. Examples include but not limited to modeling
the reflectance function of Lambertian objects [4, 34], video analysis [9, 14, 18,
21, 41, 42], chromatic noise filtering [39], domain adaptation [16, 17], and object
tracking [37]. Our main motivation here is to develop new methods for analyzing
video data and image sets. This is inspired by the success of sparse signal modeling
and related topics that suggest natural signals like images (and hence video and image
sets as our concern here) can be efficiently approximated by superposition of atoms
of a dictionary. We generalize the traditional notion of coding, which operates on
vectors, to coding on subspaces. Coding with subspaces can then be seamlessly used
for categorizing video data. Toward this, we first provide efficient solutions to the
following two fundamental problems on Grassmann manifolds: (see Fig. 6.1 for a
conceptual illustration):

 

(a) (b) 

Fig. 6.1 A conceptual diagram of the problems addressed in this work. A video or an image set can
be modeled by a linear subspace, which can be represented as a point on a Grassmann manifold.
a Sparse coding on a Grassmannmanifold. Given a dictionary (green ellipses) and a query signal
(red triangle) on the Grassmann manifold, we are interested in estimating the query signal by a
sparse combination of atoms while taking into account the geometry of the manifold (e.g, curvature).
b Dictionary learning on a Grassmann manifold. Given a set of observations (green ellipses) on
a Grassmann manifold, we are interested in determining a dictionary (red triangles) to describe the
observations sparsely, while taking into account the geometry. This figure is best seen in color
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1. Coding. Given a subspaceX and a setD = {Di}Ni=1 withN elements (also known
as atoms), where X and Di are linear subspaces, how can X be approximated
by a combination of atoms in D ?

2. Dictionary learning. Given a set of subspaces {Xi}mi=1, how can a smaller set of
subspaces D = {Di}Ni=1 be learned to represent {Xi}mi=1 accurately?

Later, we tackle the problem of coding and dictionary learning on Grassmannian
by embedding the manifold in Reproducing Kernel Hilbert Spaces (RKHS). To this
end, we introduce a family of positive definite kernels on Grassmannian and make
use of them to recast the coding problem in kernel spaces.

6.2 Problem Statement

In this section, we formulate the problem of coding and dictionary learning on the
Grassmannian. Throughout this chapter, bold capital letters denote matrices (e.g X)
and bold lowercase letters denote column vectors (e.g, x). The notation xi (respec-
tively Xi,j) is used to demonstrate the element in position i of the vector x (respec-
tively (i, j) of the matrix X). 1d ∈ Rd and 0d ∈ Rd are vectors of ones and zeros. Id
is the d × d identity matrix. ‖x‖1 = ∑

i |xi| and ‖x‖ = √
xTx denote the �1 and �2

norms, respectively, with T indicating transposition. ‖X‖F =
√

Tr
(
XTX

)
designates

the Frobenius norm, with Tr(·) computing the matrix trace.
In vector spaces, by coding we mean the general notion of representing a vector

x (the query) as some combination of other vectors di belonging to a dictionary.
Typically, x is expressed as a linear combination x = ∑N

j=1 yjdj, or else as an affine

combination in which the coefficients yj satisfy the additional constraint
∑N

j=1 yj = 1.
(This constraint may also be written as 1T y = 1.)

In sparse coding one seeks to express the query in terms of a small number of
dictionary elements. Given, a query x ∈ Rd and a dictionary D of size N , i.e, Dd×N =
{d1, d2, . . . , dN } with atoms di ∈ Rd , the problem of coding x can be formulated as
solving the minimization problem:

�E(x,D) � min
y

∥∥∥x −
∑N

j=1
yjdj

∥∥∥2

2
+ λf (y). (6.1)

The domain of y may be the whole of RN , so that the sum runs over all linear
combinations of dictionary elements (or atoms), or alternatively, the extra constraint
1Ty = 1 may be specified, to restrict to affine combinations.

The idea here is to (approximately) reconstruct the query x by a combination of
dictionary atoms while forcing the coefficients of combination, i.e, y, to have some
structure. The quantity �E(x,D) can be thought of as a coding cost combining the
squared residual coding error, reflected in the energy term ‖ · ‖2

2 in (6.1), along with
a penalty term f (y), which encourages some structure such as sparsity. The function
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f : RN → R could be the �1 norm, as in the Lasso problem [40], or some form of
locality as proposed in [43].

The problem of dictionary learning is to determine D given a finite set of obser-
vations {xi}mi=1 , x ∈ Rd , by minimizing the total coding cost for all observations,
namely

h(D) �
m∑
i=1

�E(xi,D) , (6.2)

while enforcing certain constraints on D to be satisfied to avoid trivial solutions.
A “good” dictionary has a small residual coding error for all observations xi while
producing codes yi ∈ RN with the desired structure. For example, in the case of
sparse coding, the �1 norm is usually taken as f (·) to obtain the most common
form of dictionary learning in the literature. More specifically, the sparse dictionary
learning problem may be written in full as that of jointly minimizing the total coding
cost over all choices of coefficients and dictionary:

min
{yi}mi=1,D

m∑
i=1

∥∥∥xi −
N∑
j=1

yijdj
∥∥∥2

2
+ λ

m∑
i=1

‖yi‖1. (6.3)

A common approach to solving this is to alternate between the two sets of variables,
D and {yi}mi=1, as proposed for example by [2] (see [12] for a detailed treatment).
Minimizing (6.3) over sparse codes yi while dictionaryD is fixed is a convex problem.
Similarly, minimizing the overall problem overDwith fixed {yi}mi=1 is convex as well.

In generalizing the coding problem to a more general space M , (e.g, Riemannian
manifolds), one may write (6.1) as

�M (X ,D) � min
y

(
dM

(
X , C(y,D)

)2 + λf (y)
)
. (6.4)

Here X and D = {Dj}Nj=1 are points in the space M , while dM (·, ·) is some
distance metric and C : RN × M N → M is an encoding function, assigning an
element of M to every choice of coefficients and dictionary. Note that (6.1) is
a special case of this, in which C(y,D) represents linear or affine combination,
and dM (·, ·) is the Euclidean distance metric. To define the coding, one need only
specify the metric dM (·, ·) to be used and the encoding function C(·, ·). Although
this formulation may apply to a wide range of spaces, here we shall be concerned
chiefly with coding on Grassmann manifolds.

A seemingly straightforward method for coding and dictionary learning is through
embedding manifolds into Euclidean spaces via a fixed tangent space (the concepts
related to differential geometry, such as tangent spaces will be shortly defined). The
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Algorithm 1: Log-Euclidean sparse coding on Grassmann manifolds.

Input: Grassmann dictionary {Di}Ni=1, Di ∈ G (p, d); the query sample X ∈ G (p, d).
Output: The sparse code y∗.

Initialization.
for i ← 1 to N do

di ← logP(Di);
end
A ← [d1|d2| · · · |dN ] ;

Processing.
x ← logP(X );

y∗ ← arg miny
∥∥x − ATy

∥∥2
2 + λ ‖y‖1;

embedding function in this case would be logP(·), where P is some default base
point.1

By mapping points in the manifold M to the tangent space, the problem at hand
is transformed to its Euclidean counterpart. For example in the case of sparse coding,
the encoding cost may be defined as follows:

�M (X ,D) � min
y

∥∥∥logP(X ) −
N∑
j=1

yj logP(Dj)

∥∥∥2

P
+ λ‖y‖1 (6.5)

where the notation ‖ · ‖P reminds us that the norm is in the tangent space at X .
We shall refer to this straightforward approach as Log-Euclidean sparse coding (the
corresponding steps for Grassmann manifolds in Algorithm 1), following the ter-
minology used in [3]. Since on a tangent space only distances to the base point
are equal to true geodesic distances, the Log-Euclidean solution does not take into
account the true structure of the underlying Riemannian manifold. Moreover, the
solution is dependent upon the particular point P used as a base point.

Another approach is to measure the loss of X with respect to the dictionary D,
i.e, �M (X ,D), by working in the tangent space of X , rather than a fixed point
P [8, 26]. The loss in this case becomes

�M (X ,D) � min
y∈RN

1T y=1

∥∥∥
N∑
j=1

yj logX (Dj)

∥∥∥2

X
+ ‖y‖1 (6.6)

1The function that maps each vector y ∈ TPM to a point X of the manifold that is reached after
a unit time by the geodesic starting at P with this tangent vector is called the exponential map.
For complete manifolds, this map is defined in the whole tangent space TPM . The logarithm
map is the inverse of the exponential map, i.e, y = logP(X ) is the smallest vector y such that
X = expP(y).
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Following [26], given a set of training data {Xi}mi=1, Xi ∈ M , the problem of
dictionary learning can be written as

min
{yi}mi=1,D

m∑
i=1

∥∥∥∥
N∑
j=1

yij logXi
(Dj)

∥∥∥∥
2

+ λ

m∑
i=1

‖yi‖1 (6.7)

s.t. 1Tyi = 1, i = 1, 2, . . . ,m.

Similar to the Euclidean case, the problem in (6.7) can be solved by iterative optimiza-
tion over {yi}mi=1 and D. Computing the sparse codes {yi}mi=1 is done by solving (6.6).
To update D, [26] proposed a gradient descent approach along geodesics. That is,
the update of Dr at time t while {yi}mi=1 and Dj, j �= r are kept fixed has the form

D (t)
r = expD(t−1)

r
(−η�). (6.8)

In Eq. (6.8) η is a step size and the tangent vector � ∈ TDr (M ) represents the direc-
tion of maximum ascent. That is � = gradJ (Dr),2 where

J =
m∑
i=1

∥∥∥
N∑
j=1

yij logXi
(Dj)

∥∥∥2
. (6.9)

Here is where the difficulty arises. Since the logarithm map does not have a closed-
form expression on Grassmann manifolds, an analytic expression for � in Eq. (6.8)
cannot be sought for the case of interest in this work, i.e, Grassmann manifolds.
Having this in mind, we will describe various techniques to coding and dictionary
learning specialized for Grassmann manifolds.

6.3 Background Theory

This section overviews Grassmann geometry and provides the groundwork for tech-
niques described in following sections. Since the term “manifold” itself is often used
in computer vision in a somewhat loose sense, we emphasize that the word is used
in this chapter in its strict mathematical sense.

One most easily interprets the Grassmann manifolds in the more general context
of group actions, to be described first. Consider a transitive (left) group action of
a group G on a set S. The result of applying a group element g to a point x ∈ S is
written as gx. Choose a specific point x0 ∈ S and consider its stabilizer Stab(x0) =

2On an abstract Riemannian manifold M , the gradient of a smooth real function f at a point x ∈ M ,
denoted by gradf (x), is the element ofTx(M ) satisfying 〈gradf (x), ζ 〉x = Dfx[ζ ] for all ζ ∈ Tx(M ).
Here, Dfx[ζ ] denotes the directional derivative of f at x in the direction of ζ . The interested reader
is referred to [1] for more details on how the gradient of a function on Grassmann manifolds can
be computed.
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{g ∈ G | gx0 = x0}. The stabilizer is a subgroup ofG, which we will denote byH, and
there is a one-to-one correspondence between the left cosets gH and the elements
of S, whereby a point x ∈ S is associated with the coset {g ∈ G | gx0 = x}. The set
of all left cosets is denoted by G/H, which we identify with the set S under this
identification.

The (real, unoriented) Grassmannian G (p, d), where 0 < p ≤ d, is the set of all
p-dimensional linear subspaces (we shall usually call them p-planes, or simply
planes) of the real vector space Rd . A geometric visualization of a point in the
Grassmannian is a p-plane through the origin of d-dimensional Euclidean space.
From this geometric picture, it is obvious that the orthogonal group O(d) of all
real orthogonal transforms of Rd acts on G (p, d), as any element of O(d) trans-
forms a p-plane through the origin to a p-plane through the origin. The action is
transitive, since any plane can be reached in this way from any given one. The
set of elements of O(d) that transforms a given p-plane X to itself, the stabilizer
Stab(X ) = {U ∈ O(d) |UX = X }, is a subgroup of O(d) and isomorphic to the
product O(p) × O(d − p), where the factor O(p) corresponds to in-plane transfor-
mations and the factor O(d − p) corresponds to transformations that leave all points
of the plane fixed. The Grassmannian can hence be identified with the coset space
O(d)/(O(p) × O(d − p)).

To make the above discussion more concrete, in terms of matrices, identify O(d)

as the group of orthogonal d × d matrices, a Lie group of dimension d × (d + 1)/2.
In addition, think of p-planes inRd as represented by orthogonal Stiefel matrices, that
is, by rectangular d × p-matricesX with orthonormal columns that form a basis of the
plane. Since a given plane has many different orthogonal bases, two such matrices
X and X ′ represent the same plane if and only if there exists a matrix V ∈ O(p)
such that X ′ = XV . This defines an equivalence relation between matrices X and
X ′, and the planes may be identified with the equivalence classes of d × p matrices
under this equivalence relation. The set of all such equivalence classes constitute the
Grassmannian G (p, d).

A matrix U in O(d) acts on a plane with representative Stiefel matrix X by left
multiplication: X → UX. One immediately verifies that if X and X ′ represent the
same plane, then so do UX and UX ′, so this defines a transitive left group action of
O(d) on G (p, d). Of particular interest is the element of the Grassmannian,

X0 = Span(X0) = Span

[
Ip
0

]
,

where Ip is the p × p identity matrix. A transformation U ∈ O(d) acts by left matrix
multiplication and it is immediate that

Stab(X0) =
{[

U1 0
0 U2

]
∈ O(d)

∣∣∣ U1 ∈ O(p), U2 ∈ O(d − p)

}
, (6.10)

showing again that Stab(X0) � O(p) × O(d − p).
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Since the action of O(d) is transitive on G (p, d), the elements of G (p, d) (planes)
are in one-to-one correspondence with the set of left cosets of Stab(X0) in O(d).
We think of the Grassmannian as the coset space O(d)/(O(d − p) × O(p)), where
O(d − p) × O(p) is identified with the block-diagonal subgroup in Eq. (6.10).

In this way, it is seen that the Grassmann manifolds form a special case of coset
spaces G/H, in which G = O(d) and H is the subgroup O(d − p) × O(p). In the
Grassmann case, the group G = O(d) is a matrix Lie group, and hence has the topo-
logical structure of a compact manifold. In this situation, G/H inherits a topology, a
smooth manifold structure, and indeed a Riemannian metric from G = O(d).

We continue the discussion denoting by G the matrix Lie group O(d) and H =
StabX0, shown in Eq. (6.10), but the reader may bear in mind that the discussion
holds equally well in the case of a general compact (sometimes also non-compact)
Lie group G with Lie subgroup H.3 This topic is treated in Chap. 21 of [29], which
the reader may consult to fill in details.

The natural projection π : G → G/H � G (p, d) can now be used to equip the
Grassmannian with quotient structures. For example, using the standard Lie group
topology onG, the quotient as a quotient topology (the strongest topology such that π
is continuous). Using the differential structure of the Lie groupG, the quotient inherits
a differential structure (the unique one that makes π a smooth submersion). With this
differential structure, the action of G on G/H is smooth. With this smooth structure,
the quotient spaceG/H is a manifold, according to the quotient manifold theorem (see
Theorem 21.10 in [29]). Thus, the Grassmannian (or Grassmann manifold) is thus
a homogeneous space of G. Its dimension is p(d − p) = dim(O(d)) − (dim(O(d −
p)) + dim(O(p))).4

Tangent Space and Riemannian Metric

The homogeneous space structure of the Grassmannian can be used to equip it with
a Riemannian metric, starting from a bi-invariant Riemannian metric on G = O(d).

To this end, think of G as embedded in Rd×d and equip the tangent space TIG at
the identity with the Euclidean inner product inherited from that embedding. This
defines a biinvariant Riemannian metric on G through right (or left) translation. For
subgroup H of G define the Riemannian metric on the quotient G/H by

〈X,Y〉UH = 〈X̃, Ỹ〉U
where U ∈ G and X,Y ∈ TUHG/H. Further, X̃ and Ỹ in TU(G) are the horizontal
lifts of X and Y with respect to π and the Riemannian metric on the group, that is,
π∗
U(X̃) = X and π∗

U(Ỹ) = Y , and both X̃ and Ỹ are orthogonal to the kernel of π∗
U with

respect to the inner product 〈., .〉U . It is easily verified that the above construction
for (left) homogeneous spaces is well defined as long as the Riemannian metric on

3Another situation where this applies in Computer Vision is the study of the essential manifold,
which may be envisaged as the coset space of SO(3) × SO(3) modulo a subgroup isomorphic to
SO(2). For details see [25].
4O(d) has dimension d(d − 1)/2, since its Lie algebra is the set of n × n skew-symmetric matrices.
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the Lie group is right invariant under the action of the stabilizer. This is trivially the
case for a biinvariant metric.

The tangent space to G at U ∈ G is TUG = {UΩ ∈ Rd×d | Ω ∈ so(d)}, where
so(d) = {Ω ∈ Rd×d | Ω = −Ω�}, the set of real skew-symmetric d × d-matrices.
The bi-invariant Riemannian metric on G inherited from the embedding of TIG in
Euclidean d-space is given by

〈UΩ1,UΩ2〉U = − Tr Ω1Ω2,

that is, by (left translations of) the Frobenius inner product. The tangent space to the
Grassmannian G (p, d) � G/H at UH is then the quotient

TUG/UTIH =
{
U

([
0 −Ω�

21
Ω21 0

]
+ TIH

)
| Ω21 ∈ R(d−p)×p

}

where

TIH =
{[

Ω1 0
0 Ω2

]
∈ Rd×d | Ω1 ∈ so(p),Ω2 ∈ so(d − p)

}
.

The horizontal subspace of TUG formed by all horizontal lifts of tangent vectors
to the Grassmannian G (p, d) � G/H at UH is

V⊥
U (G) =

{
U

[
0 −Ω�

21
Ω21 0

]
∈ Rd×d | Ω21 ∈ R(d−p)×p

}
.

This is most easily seen atU = I where the elements ofV⊥
I (G) are obviously perpen-

dicular to the vertical subspace VI (G) = Ker π∗
I = TIH with respect to the Frobenius

inner product. The normal Riemannian metric on the Grassmannian is then given by

〈
U

([
0 −Ω�

1
Ω1 0

]
+ TIH

)
,U

([
0 −Ω�

2
Ω2 0

]
+ TIH

)〉
UH

= Tr Ω�
1 Ω2 + Tr Ω1Ω

�
2

= 2 Tr Ω1Ω
�
2

in terms of the horizontal lifts.

Projective Representation of Grassmann

An alternative representation of the Grassmannian G (p, d) is not as a quotient space
ofG, but as a subset of Sym(d), the vector space of all real symmetric d × d-matrices.
In this representation, a p-plane X is represented by the symmetric projection oper-
ator P : Rd → Rd with image Im(P) = X . In terms of matrix representations, P
is a rank p real symmetric d × d matrix with P2 = P and colspan(P) = X . For
example,

X0 = colspan(P0) = colspan

[
Ip 0
0 0

]
.
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In general, ifX is represented by the orthogonal Stiefel matrixV then it is also repre-
sented by the symmetric matrixP = VV�. We denote the set of rank p real symmetric
d × d matrix withP2 = P byPG (d, p) and obtain a bijectionPG (d, p) → G (p, d)

via P → colspan(P).
The natural inclusion map

i : G (p, d) � PG (d, p) ↪→ Sym(d)

can now be used to equip the Grassmannian with subspace structures. For example,
the Grassmannian inherits a subspace topology (the coarsest topology such that
i is continuous) and a differential structure (the unique one that makes i a smooth
embedding) from the standard topology resp. differential structure on Sym(d). It turns
out that both of these coincide with the respective quotient structures constructed
above. The GrassmannianG (p, d) can hence equally be thought of as a homogeneous
space of G or as an embedded submanifold of Sym(d).

Since Sym(d), as a linear subspace of Rd×d , carries a natural inner product,
namely the restriction of the Frobenius inner product on Rd×d to Sym(d), each tan-
gent space TPPG (d, p) at a pointP ∈ PG (d, p) ⊂ Sym(d) inherits this inner prod-
uct via the inclusion TPPG (d, p) ⊂ TPSym(d) � Sym(d). This provides another
construction for a Riemannian metric on G (p, d) � PG (d, p).

To make this construction more concrete, note that the tangent space

TPPG (d, p) = {[P,Ω] | Ω ∈ so(d)},

where [P,Ω] = PΩ − ΩP is the matrix commutator [24, Theorem 2.1]. In partic-
ular,

TP0PG (d, p) =
{[

0 Ω12

Ω�
12 0

]
∈ Sym(d)

∣∣∣Ω12 ∈ Rp×(d−p)

}
.

Now observe that O(d) acts transitively on PG (d, p) by conjugation since UPU� ∈
PG (d, p) for everyU ∈O(d) and everyP ∈ PG (d, p), and every point inPG (d, p)
can be reached thus from a given one. Note that this action of O(d) is different to
the action by left multiplication that has been used to define the above homogeneous
space structure of G (p, d). Nevertheless, it can be used to more explicitly describe
the tangent space

TUP0U�PG (d, p) =
{
U

[
0 Ω12

Ω�
12 0

]
U� ∈ Sym(d)

∣∣∣Ω12 ∈ Rp×(d−p)

}

at an arbitrary point P = UP0U� ∈ PG (d, p). Note further that the first p columns
of UP0 form an orthogonal Stiefel matrix V (equal to the first p columns of U), and
that P = UP0U� = VV� as observed before. The embedded Riemannian metric on
G (p, d) � PG (d, p) is then given by
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〈U
[

0 Ω1

Ω�
1 0

]
U�,U

[
0 Ω2

Ω�
2 0

]
U�〉UP0U� = Tr Ω1Ω

�
2 + Tr Ω�

1 Ω2

in terms of this representation. It is not difficult to see that this Riemannian
metric, in fact, is the same as the normal Riemannian metric constructed above
[24, Proposition 2.3].

The unique geodesic starting at a point U0P0U�
0 ∈ PG (d, p) in direction

U0

[
0 Ω

Ω� 0

]
U�

0

is given by

P(t) = U0 expm

(
t

[
0 −Ω

Ω� 0

])[
Ip 0
0 0

]
expm

(
−t

[
0 −Ω

Ω� 0

])
U�

0 ,

where expm denotes the matrix exponential [24, Theorem 2.2]. Alternatively, it is
given by

U(t)H = U0 expm

(
t

[
0 −Ω

Ω� 0

])
H

in the quotient representation. In particular, the Riemannian exponential map on the
Grassmannian is given by

expU0P0U�
0

(
U0

[
0 Ω

Ω� 0

]
U�

0

)
= U0 expm

[
0 −Ω

Ω� 0

] [
Ip 0
0 0

]
expm

[
0 Ω

−Ω� 0

]
U�

0

in the embedded representation and by

expU0H

(
U0

([
0 −Ω

Ω� 0

]
+ TIH

))
= U0 expm

[
0 −Ω

Ω� 0

]
H

in the quotient representation.

Geodesics

The Grassmannian with the above Riemannian metric is a complete Riemannian man-
ifold, hence any pair of points X1 and X2 on the Grassmannian can be connected by
a length-minimizing geodesic. The geodesic distance dgeod (X1,X2) is then defined
as the length of this minimizing geodesic. Since points on the Grassmannian can be
moved around arbitrarily by application of an orthogonal transformation U ∈ O(d),
and since the above Riemannian metric is invariant under such transformations, it
is sufficient to compute the length of a minimizing geodesic connecting the special
point X0 = colspan(P0) to any other point X = colspan(P). By the above formula
for the exponential map
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P = expm

[
0 −Ω

Ω� 0

] [
Ip 0
0 0

]
expm

[
0 Ω

−Ω� 0

]

=
⎡
⎣ cos2

√
ΩΩ� sinc

(
2
√

ΩΩ�
)

Ω

Ω� sinc
(

2
√

ΩΩ�
)

sin2
√

Ω�Ω

⎤
⎦

for some Ω ∈ Rp×(d−p), where we have used [24, Eq. (2.68)] in the second line. The
geodesic distance from X0 to X is then dgeod (X0,X ) = √

2 Tr ΩΩ�, that is the
length of the tangent vector

[
0 Ω

Ω� 0

]
∈ TP0PG (d, p)

under the Riemannian metric at P0. In more explicit terms, starting with a block
representation

P =
[
P1 P2

P�
2 P3

]
,

where P1 ∈ Sym(p), compute the eigenvalue decomposition P1 = U1diag
(λ1, . . . , λp)U�

1 with U1 ∈ O(p), then U1diag(λ1, . . . , λp)U�
1 = P1 = cos2

√
ΩΩ�

is equivalent to ΩΩ� = U1diag(arccos2(
√

λ1), . . . , arccos2(
√

λp))U�
1 and hence

dgeod (X0,X ) =
√

2 Tr ΩΩ� =
√√√√2

p∑
i=1

arccos2(
√

λi),

cf. [24, Corollary 2.1].
A geometric interpretation of the above distance formula can be obtained as

follows. Swapping back to the quotient representation and using [24, Eq. (2.66)],
it follows that

X = colspan

[
cos

√
ΩΩ�

sin
√

Ω�Ω√
Ω�Ω

Ω�

]
,

where the columns of this matrix have unit length in the 2-norm since they are the
first p columns of an orthogonal matrix. The first principal angle θ1 between the
subspaces X0 and X is given by
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cos θ1 = max
u∈X0,v∈X

u�v
‖u‖2‖v‖2

= max‖x‖2=1,‖y‖2=1

[
x� 0

] [cos
√

ΩΩ�
sin

√
Ω�Ω√

Ω�Ω
Ω�

]
y

= max‖x‖2=1,‖y‖2=1
x�U1diag(

√
λ1, . . . ,

√
λp)U

�
1 y

= √
λ1,

assuming that the eigenvalues λi are ordered in nonincreasing order. Similarly, it can
be shown that the ith principal angle θi = √

λi for i = 2, . . . , p. It follows that, in
general,

dgeod (X1,X2) = √
2‖�‖2,

where � = [
θ1 . . . θp

]�
is the vector of principal angles between X1 and X2. Note

that some authors use a different scaling of the Frobenius inner product (usually an
additional factor of 1

2 ) to arrive at a formula for the geodesic distance without the
factor of

√
2. Obviously, this does not change the geometry.

Principal angles. The geodesic distance has an interpretation as the magnitude of
the smallest rotation that takes one subspace to the other. If � = [θ1, θ2, . . . , θp] is
the sequence of principal angles between two subspaces X1 ∈ G (p, d) and X2 ∈
G (p, d), then dgeod (X1,X2) = ‖�‖2.

Definition 1 (Principal Angles) Let X1 and X2 be two matrices of size d × p with
orthonormal columns. The principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤ π/2 between
two subspaces Span(X1) and Span(X2), are defined recursively by

cos(θi) = max
ui∈Span(X1)

max
vi∈Span(X2)

uTi vi (6.11)

s.t.: ‖ui‖2 = ‖vi‖2 = 1

uTi uj = 0; j = 1, 2, . . . , i − 1

vTi vj = 0; j = 1, 2, . . . , i − 1

In other words, the first principal angle θ1 is the smallest angle between all pairs of
unit vectors in the first and the second subspaces. The rest of the principal angles are
defined similarly.

Two operators, namely the logarithm map logx(·) : M → Tx(M ) and its inverse,
the exponential map expx(·) : Tx(M ) → M are defined over Riemannian manifolds
to switch between the manifold and the tangent space at x. A key point here is the
fact that both the logarithm map and its inverse do not have closed-form solutions
for Grassmann manifolds. Efficient numerical approaches for computing both maps
were proposed by [5, 15]. In this paper, however, the exponential and logarithm maps
will only be used when describing previous work of other authors.
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6.4 Dictionary Learning on Grassmannian

In this part, we propose to make use of the projective representation of
Grassmannian to perform coding and dictionary learning on Grassmannian. We recall
that working with PG (p, d) instead of G (p, d) has the advantage that each ele-
ment of PG (p, d) is a single matrix, whereas elements of G (p, d) are equivalence
classes of matrices. Hereinafter, we shall denote XXT by X̂, the hat representing
the action of the projection embedding. Furthermore, 〈 ·, · 〉 represents the Frobenius
inner product: thus 〈 X̂, Ŷ 〉 = Tr(X̂Ŷ). Note that in computing 〈 X̂, Ŷ 〉 it is not nec-
essary to compute X̂ and Ŷ explicitly (they may be large matrices). Instead, note
that 〈 X̂, Ŷ 〉 = Tr(X̂Ŷ) = Tr(XXTYYT ) = Tr(YTXXTY) = ‖YTX‖2

F . This is advan-
tageous, since YTX may be a substantially smaller matrix.

Apart from the geodesic distance metric, an important metric used in this paper
is the chordal metric, defined by

dchord(X̂, Ŷ) = ‖X̂ − Ŷ‖F , (6.12)

This metric will be used in the context of (6.4) to recast the coding and consequently
dictionary-learning problem in terms of chordal distance. Before presenting our pro-
posed methods, we establish an interesting link between coding and the notion of
weighted mean in a metric space.

6.4.1 Weighted Karcher Mean

The underlying concept of coding using a dictionary is to represent in some way
a point in a space of interest as a combination of other elements in that space. In
the usual method of coding in Rd given by (6.1), each x is represented by a linear
combination of dictionary elements dj, where the first term represents the coding
error. For coding in a manifold, the problem to address is that linear combinations
do not make sense. We wish to find some way in which an element X may be
represented in terms of other dictionary elements Dj as suggested in (6.4). For a
proposed method to generalize the Rd case, one may prefer a method that is a direct
generalization of the Euclidean case in some way.

InRd , a different way to consider the expression
∑N

j=1 yjdj in (6.1) is as a weighted
mean of the points dj This observation relies on the following fact, which is verified
using a Lagrange multiplier method.

Lemma 1 Given coefficients y with
∑N

i=1 yi = 1, and dictionary elements {d1, . . . ,

dN } in Rd, the point x∗ ∈ Rd that minimizes
∑N

i=1 yi ‖x − di‖2
F is given by x∗ =∑N

i=1 yi di.
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In other words, the affine combination of dictionary elements is equal to their
weighted mean. Although linear combinations are not defined for points on man-
ifolds or metric spaces, a weighted mean is.

Definition 2 Given points Di on a Riemannian manifold M , and weights yi, the
point X ∗ that minimizes

∑N
i=1 yi dg(X ,Di)

2, is called the weighted Karcher mean
of the points Di with weights yi. Here, dg(·, ·) is the geodesic distance on M .

Generally, finding the Karcher mean [28] on a manifold involves an iterative
procedure, which may converge to a local minimum, even on a simple manifold, such
as SO(3) [23, 32]. However, one may replace the geodesic metric with a different
metric in order to simplify the calculation. To this end, we propose the chordal metric
on a Grassman manifold, defined for matrices X̂ and Ŷ in PG (p, d) in Eq. (6.12).
The corresponding mean, as in Definition 2 (but using the chordal metric) is called the
weighted chordal mean of the points. In contrast to the Karcher mean, the weighted
chordal mean on a Grassman manifold has a simple closed form.

Theorem 1 The weighted chordal mean of a set of points D̂i ∈ PG (p, d) with
weights yi is equal to Proj(

∑m
i=1 yiD̂i), where Proj(·) represents the closest point on

PG (p, d) [20].

The function Proj(·) has a closed-form solution in terms of the singular value
decomposition. More specifically,

Lemma 2 Let X be an d × d symmetric matrix with eigenvalue decomposition X =
UDUT , where D contains the eigenvalues λi of X in descending order. Let Up be the
d × p matrix consisting of the first p columns of U. Then Ûp = UpUT

p is the closest
matrix inPG (p, d) to X (under the Frobenius norm) [20].

The chordal metric on a Grassman manifold is not a geodesic metric (that is it is
not equal to the length of a shortest geodesic under the Riemannian metric). However,
it is closely related. In fact, one may easily show that for G (p, d) � X = span(X)

and G (p, d) � Y = span(Y)

2

π
dgeod(X ,Y ) ≤ dchord(X̂, Ŷ) ≤ dgeod(X ,Y ) .

Furthermore, the path-metric [23] induced by dchord(·, ·) is equal to the geodesic
distance.

Sparse Coding

Given a dictionary D with atoms D̂j ∈ PG (p, d) and a query sample X̂ the problem
of sparse coding can be recast extrinsically as:

�(X ,D) � min
y

∥∥∥X̂ −
N∑
j=1

yjD̂j

∥∥∥2

F
+ λ‖y‖1. (6.13)
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The formulation here varies slightly from the general form given in (6.4), in that
the point

∑N
j=1 yjD̂j does not lie exactly on the manifold PG (p, d), since it is not

idempotent nor its rank is necessarily p. We call this solution an extrinsic solution;
the point coded by the dictionary is allowed to step out of the manifold.

Expanding the Frobenius norm term in (6.13) results in a convex function in y:

∥∥∥X̂ −
N∑
j=1

yjD̂j

∥∥∥2

F
= ‖X̂‖2

F +
∥∥∥

N∑
j=1

yjD̂j

∥∥∥2

F
− 2 〈

N∑
j=1

yjD̂j, X̂ 〉 .

The sparse codes can be obtained without explicitly embedding the manifold in
PG (p, d) using �(X ). This can be seen by defining [K (X,D)]i = 〈 X̂, D̂i 〉 as an
N dimensional vector storing the similarity between signal X and dictionary atoms
in the induced space and [K(D)]i,j = 〈 D̂i, D̂j 〉 as an N × N symmetric matrix
encoding the similarities between dictionary atoms (which can be computed offline).
Then, the sparse coding in (6.13) can be written as:

�(X ,D) = min
y

yTK(D)y − 2yTK (X,D) + λ‖y‖1 . (6.14)

The symmetric matrix K(D) is positive semidefinite since for all v ∈ RN :

vTK(D)v =
N∑
i=1

N∑
j=1

vivj 〈 D̂i, D̂j 〉 =
〈

N∑
i=1

viD̂i,

N∑
j=1

vjD̂j

〉

=
∥∥∥

N∑
i=1

viD̂i

∥∥∥2

F
≥ 0.

Therefore, the problem is convex and can be efficiently solved. The problem in (6.14)
can be transposed into a vectorized sparse coding problem. More specifically, let
UUT be the SVD of K(D). Then (6.14) is equivalent to

�(X ,D) = min
y

‖x∗ − Ay‖2 + λ‖y‖1, (6.15)

where A = 1/2UT and x∗ = −1/2UTK (X,D). This can be easily verified by
plugging A and x∗ into (6.15). Algorithm 2 provides the pseudo-code for performing
Grassmann Sparse Coding (gSC).

A special case is sparse coding on the Grassmann manifold G (1, d), which can be
seen as a problem on d − 1 dimensional unit sphere, albeit with a subtle difference.
More specifically, unlike conventional sparse coding in vector spaces, x ∼ −x,∀x ∈
G (1, d), which results in having antipodals points being equivalent. For this special
case, the solution proposed in (6.13) can be understood as sparse coding in the higher
dimensional quadratic space, i.e, f : Rd → Rd2

, f (x) = [x2
1, x1x2, . . . , x2

d]T . We note
that in the quadratic space, ‖f (x)‖ = 1 and f (x) = f (−x).
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Algorithm 2: Sparse coding on Grassmann manifolds (gSC).

Input: Grassmann dictionary {Di}Ni=1, Di ∈ G (p, d) with Di = span(Di); the query
G (p, d) � X = span(X)

Output: The sparse code y∗

Initialization.
for i, j ← 1 to N do

[K(D)]i,j ← ∥∥DT
i Dj

∥∥2
F

end
K(D) = UUT /* compute SVD of K(D) */

A ← 1/2UT

Processing.
for i ← 1 to N do

[K (X,D)]i ← ∥∥XTDi
∥∥2
F

end
x∗ ← −1/2UTK (X,D)

y∗ ← arg min
y

‖x∗ − Ay‖2 + λ‖y‖1

Classification Based on Coding

If the atoms in the dictionary are not labeled (e.g, if D is a generic dictionary not tied
to any particular class), the generated sparse codes (vectors) for both training and
query data can be fed to Euclidean-based classifiers like support vector machines [36]
for classification. Inspired by the Sparse Representation Classifier (SRC) [46], when
the atoms in sparse dictionary D are labeled, the generated codes of the query sample
can be directly used for classification. In doing so, let

yc =

⎛
⎜⎜⎜⎝

y0δ
(
l0 − c

)
y1δ

(
l1 − c

)
...

yNδ
(
lN − c

)

⎞
⎟⎟⎟⎠

be the class-specific sparse codes, where lj is the class label of atom G (p, d) � Dj =
span(Dj) and δ(x) is the discrete Dirac function. An efficient way of utilizing class-
specific sparse codes is through computing residual errors. In this case, the residual
error of query sample G (p, d) � X = span(X) for class c is defined as:

εc(X ) =
∥∥∥X̂ −

N∑
j=1

yjD̂jδ
(
lj − c

)∥∥∥2

F
. (6.16)

Alternatively, the similarity between query sample X to class c can be defined as
s(X , c) = h(yc). The function h(·) could be a linear function like

∑N
j=1 (·) or even a
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nonlinear one like max (·). Preliminary experiments suggest that Eq. (6.16) leads to
higher classification accuracies when compared to the aforementioned alternatives.

6.4.2 Dictionary Learning

Given a finite set of observationsX = {Xi}mi=1 , G (p, d) � Xi = span(Xi), the prob-
lem of dictionary learning on Grassmann manifolds is defined as minimizing the
following cost function:

h(D) �
m∑
i=1

�G (Xi,D), (6.17)

with D = {
Dj
}N
j=1 , G (p, d) � Dj = span(Dj) being a dictionary of size N . Here,

�G (X ,D) is a loss function and should be small if D is “good” at representing X .
In the following text, we elaborate on how a Grassmann dictionary can be learned.

Aiming for sparsity, the �1-norm regularization is usually employed to obtain the
most common form of lG (X ,D) as depicted in Eq. (6.13). With this choice, the
problem of dictionary learning on Grassmann manifolds can be written as:

min
{yi}mi=1,D

m∑
i=1

∥∥∥X̂i −
N∑
j=1

yijD̂j

∥∥∥2

F
+ λ

m∑
i=1

‖yi‖1. (6.18)

Due to the non-convexity of (6.18) and inspired by the solutions in Euclidean spaces,
we propose to solve (6.18) by alternating between the two sets of variables, D and
{yi}mi=1. More specifically, minimizing (6.18) over sparse codes y while dictionary D

is fixed is a convex problem. Similarly, minimizing the overall problem over D with
fixed {yi}mi=1 is convex as well.

Therefore, to update dictionary atoms we break the minimization problem into N
sub-minimization problems by independently updating each atom, D̂r , in line with
general practice in dictionary learning [12]. To update D̂r , we write

m∑
i=1

∥∥∥X̂i −
N∑
j=1

yijD̂j

∥∥∥2

F
=

m∑
i=1

∥∥∥
(
X̂i −

∑
j �=r

yijD̂j

)
− yirD̂r

∥∥∥2

F
. (6.19)

All other terms in (6.18) being independent of D̂r , and since ‖D̂r‖2
F = p is fixed,

minimizing this with respect to D̂r is equivalent to minimizing Jr = −2 〈Sr, D̂r 〉
where

Sr =
m∑
i=1

yir
(
X̂i −

∑
j �=r

yijD̂j

)
. (6.20)
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(a)

(b)

Fig. 6.2 a Examples of actions performed by a ballerina. b The dominant eigenvectors for four
atoms learned by the proposed Grassmann Dictionary Learning (gDL) method (grayscale images
were used in gDL)

Finally, minimizing Jr = −2 〈Sr, D̂r 〉 is the same as minimizing ‖Sr − D̂r‖ over
D̂r in PG (n, p). The solution to this problem is given by the p-leading eigenvectors
of Sr according to the Lemma 2. Algorithm 3 details the pseudocode for learning a
dictionary on Grassmann manifolds. Figure 6.2 shows examples of a ballet dance.

To perform coding, we have relaxed the idempotent and rank constraints of the
mapping �(·) since matrix addition and subtraction do not preserve these constraints.
However, for dictionary learning, the orthogonality constraint ensures the dictionary
atoms have the required structure.

6.5 Kernel Coding

In this section, we propose to perform coding and dictionary learning in a repro-
ducing Kernel Hilbert space (RKHS). This has the twofold advantage of yielding
simple solutions to several popular coding techniques and of resulting in a poten-
tially better representation than standard coding techniques due to the nonlinearity
of the approach. Before formulating our kernel solutions, we need to make sure that
positive definite kernels on Grassmann manifolds are at our disposal. Formally,

Definition 3 (Real-valued Positive Definite Kernels) Let X be a nonempty set. A
symmetric function k : X × X → R is a positive definite (pd) kernel on X if and
only if

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for any n ∈ N, xi ∈ X and ci ∈ R.

Definition 4 (Grassmannian Kernel) A function k : G (p, d) × G (p, d) → R is a
Grassmannian kernel, if it is well defined and pd. In our context, a function is well
defined if it is invariant to the choice of basis, i.e, k(XR1,YR2) = k(X,Y), for all
X,Y ∈ G (p, d) and R1,R2 ∈ SO(p), where SO(p) denotes the special orthogonal
group.
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Algorithm 3: Grassmann Dictionary Learning (gDL)
Input: training set X= {Xi}mi=1, where each G (p, d) � Xi = span(Xi); nIter: number of

iterations
Output: Grassmann dictionary D = {Di}Ni=1, where G (p, d) � Di = span(Di)

Initialization.
Initialize the dictionary D by selecting N samples from X randomly

Processing.
for t = 1 to nIter do

// Sparse Coding Step using Algorithm 2
for i = 1 to m do

yi ← min
y

∥∥∥X̂i −
N∑
j=1

[y]jD̂j

∥∥∥2

F
+ λ‖y‖1

end
// Dictionary update step
for r = 1 to N do

Compute Sr according to Eq. (6.20).
{λk, vk} ← eigenvalues and eigenvectors of Sr
Srv = λv; λ1 ≥ λ2 ≥ · · · ≥ λd
D∗
r ← [v1|v2| · · · |vp]

end
end

The most widely used kernel is arguably the Gaussian or radial basis function
(RBF) kernel. It is therefore tempting to define a Radial Basis Grassmannian ker-
nel by replacing the Euclidean distance with the geodesic distance. Unfortunately,
although symmetric and well defined, the function exp(−βd2

geod(·, ·)) is not pd [21].
Nevertheless, two Grassmannian kernels, i.e, the Binet–Cauchy kernel [45] and the
projection kernel [18], have been proposed to embed Grassmann manifolds into
RKHS. In this work, we are only interested in the projection kernels5

kp(X,Y) = ∥∥XTY
∥∥2
F . (6.21)

From the previous discussions, kp, defined in Eq. (6.21) can be seen as a linear
kernel in the space induced by the projection embedding. However, the inner products
defined by the projection embedding can actually be exploited to derive many new
Grassmannian kernels, including universal kernels.

Universal Grassmannian Kernels

Although often used in practice, linear kernels are known not to be universal [38].
This can have a crucial impact on their representation power for a specific task.
Indeed, from the Representer Theorem [35], we have that, for a given set of training
data {xj}, j ∈ Nn, Nn = {1, 2, . . . , n} and a pd kernel k, the function learned by any

5In our experiments, we observed that the projection kernel almost always outperforms the Binet–
Cauchy kernel.
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algorithm can be expressed as

f̂ (x∗) =
∑
j∈Nn

cjk(x∗, xj) . (6.22)

Importantly, only universal kernels have the property of being able to approximate
any target function ft arbitrarily well given sufficiently many training samples. There-
fore, kp may not generalize sufficiently well for certain problems. Below, we develop
several universal Grassmannian kernels. To this end, we make use of negative definite
kernels and of their relation to pd ones. Let us first formally define negative definite
kernels.

Definition 5 (Real-valued Negative Definite Kernels) Let X be a nonempty set. A
symmetric function ψ : X × X → R is a negative definite (nd) kernel onX if and
only if

∑n
i,j=1 cicjk(xi, xj) ≤ 0 for any n ∈ N, xi ∈ X and ci ∈ R with

∑n
i=1 ci = 0.

Note that, in contrast to positive definite kernels, an additional constraint of the form∑
ci = 0 is required in the negative definite case. The most important example of

nd kernels is the distance function defined on a Hilbert space. More specifically,

Theorem 2 ([27]) Let X be a nonempty set, H be an inner product space,
and ψ : X → H be a function. Then f : (X × X ) → R defined by f (xi, xj) =
‖ψ(xi) − ψ(xj)‖2

H is negative definite.

Therefore, being distances in Hilbert spaces, d2
chord is a nd kernel. We now state

an important theorem which establishes the relation between pd and nd kernels.

Theorem 3 (Theorem 2.3 in Chap. 3 of [6]) Let μ be a probability measure on the
half line R+ and 0 <

∫∞
0 tdμ(t) < ∞. Let Lμ be the Laplace transform of μ, i.e,

Lμ(s) = ∫∞
0 e−tsdμ(t), s ∈ C+. Then, Lμ(βf ) is positive definite for all β > 0 if

and only if f : X × X → R+ is negative definite.

The problem of designing a pd kernel on the Grassmannian can now be cast as
that of finding an appropriate probability measure μ. Below, we show that this lets
us reformulate popular kernels in Euclidean space as Grassmannian kernels.

RBF Kernels.

Grassmannian RBF kernels can be obtained by choosing μ(t) = δ(t − 1) in
Theorem 3, where δ(t) is the Dirac delta function. This choice yields the Grass-
mannian RBF kernels (after discarding scalar constants)

kr,p(X,Y) = exp
(
β
∥∥XTY

∥∥2
F

)
, β > 0 . (6.23)
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Table 6.1 The proposed Grassmannian kernels and their properties

Kernel Equation Properties

Linear kp(X,Y) = ∥∥XTY
∥∥2
F pd

RBF kr,p(X,Y) = exp
(
β
∥∥XTY

∥∥2
F

)
, β > 0 pd, universal

Laplace kl,p(X,Y) = exp

(
− β

√
p − ∥∥XTY

∥∥2
F

)
, β > 0 pd, universal

Laplace Kernels.

The Laplace kernel is another widely used Euclidean kernel, defined as k(x, y) =
exp(−β‖x − y‖). To obtain heat kernels on the Grassmannian, we make use of the
following theorem for nd kernels.

Theorem 4 (Corollary 2.10 in Chap. 3 of [6]) If ψ : X × X → R is negative
definite and satisfies ψ(x, x) � 0 then so is ψα for 0 < α < 1.

As a result dchord(·, ·) is nd by choosing α = 1/2 in Theorem 4. By employing
d2

chord(·, ·) along with μ(t) = δ(t − 1) in Theorem 3, we obtain the Grassmannian
heat kernels

kl,p(X,Y) = exp

(
− β

√
p − ∥∥XTY

∥∥2
F

)
, β > 0 . (6.24)

As shown in [38], the RBF and heat kernels are universal for R
d, d > 0. The

kernels described above are summarized in Table 6.1. Note that many other kernels
can be derived by, e.g, exploiting different measures in Theorem 3. However, the
kernels derived here correspond to the most popular ones in Euclidean space, and
we therefore leave the study of additional kernels as future work.

6.5.1 Kernel-Based Riemannian Coding

Let φ : M → H be a mapping to an RKHS induced by the kernel k(x, y) =
φ(x)Tφ(y). Sparse coding in H can then be formulated by rewriting (6.1) as

�φ(x,D) �min
y

∥∥∥φ(x) −
∑N

j=1
[y]jφ

(
dj)

∥∥∥2

2
+ λ‖y‖1. (6.25)

Expanding the reconstruction term in (6.25) yields
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∥∥∥φ(x) −
∑N

j=1
[y]jφ(dj)

∥∥∥2

2
= φ(x)Tφ(x)

− 2
∑N

j=1
[y]jφ(dj)

Tφ(x) +
∑N

i,j=1
[y]i[y]jφ(di)

Tφ(dj)

= k(x, x) − 2yTk(x,D) + yTK(D,D)y, (6.26)

where k(x,D) ∈ R
N is the kernel vector evaluated between x and the dictionary

atoms, and K(D,D) ∈ R
N×N is the kernel matrix evaluated between the dictionary

atoms.
This shows that the reconstruction term in (6.25) can be kernelized. More impor-

tantly, after kernelization, this term remains quadratic, convex, and similar to its
counterpart in Euclidean space. To derive an efficient solution to kernel sparse cod-
ing, we introduce the following theorem.

Theorem 5 ([19]) Consider the least-squares problem in an RKHS H

min
y

∥∥∥φ(x) −
∑N

j=1
[y]jφ(dj)

∥∥∥2

2
⇔

min
y

yTK(D,D)y − 2yTk(x,D) + f (x) , (6.27)

where f (x) is a constant function (i.e, independent of α). Let UUT be the SVD
of the symmetric positive definite matrix K(D,D). Then (6.27) is equivalent to the
least-squares problem in R

N

min
α

∥∥x̃ − D̃y
∥∥2

2 , (6.28)

with D̃ = 1/2UT and x̃ = −1/2UTk(x,D).

This theorem lets us write kernel sparse coding as

min
y

∥∥x̃ − D̃y
∥∥2

2 + λ‖y‖1 , (6.29)

which is a standard linear sparse coding problem. Algorithm 4 provides the
pseudocode for performing kernel Sparse Coding (kSC).

6.5.2 Kernel Dictionary Learning

To obtain a dictionary inH , we follow an alternating optimization strategy to update
the codes and the dictionary. Since obtaining the codes with a given dictionary was
discussed in the previous part, here we focus on the dictionary update.
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Algorithm 4: Kernel sparse coding (kSC).

Input: Dictionary D = {di}Ni=1, di ∈ M ; the query x ∈ M , a positive definite kernel
k : M × M → R.

Output: The sparse codes y∗

Initialization.
for i, j ← 1 to N do

[K(D,D)]i,j ← k(di, dj)
end
K(D,D) = UUT /* apply SVD */

A ← 1/2UT

Processing.
for i ← 1 to N do

[k(x,D)]i ← k(x, di)
end
x∗ ← −1/2UTk(x,D)

y∗ ← arg min
y

‖x∗ − Ay‖2 + λ‖y‖1

Algorithm 5: Learning a generic dictionary.

Input: Training data {xi}Mi=1, xi ∈ M ; kernel function k(·, ·) : M × M → R; size of
dictionary N .

Output: Dictionary φ(D) in the RKHS H described as φ(X )V

Processing.
/* Initialize φ(D) either randomly or through kernel

k-means algorithm. */
for iter ← 1 to nIter do

Compute kernel codes yi, i ∈ [1, . . . ,M] using Algorithm 4.
/* fix kernel codes yi and update dictionary. */

φ(D) = φ(X )A†

K(D,D) ← (A†)TK(X ,X )A†

k(xi,D) ← (A†)T k(xi,X )
end

With fixed codes for the training data (and a fixed kernel parameter), learning the
dictionary can be expressed as solving the optimization problem

min
D

1

M

∑M

i=1
�φ(D; xi). (6.30)

Here, we make use of the Representer theorem [35] which enables us to express the
dictionary as a linear combination of the training samples in RKHS. That is

φ(dj) =
M∑
i=1

vi,jφ(xi), (6.31)
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where {vi,j} is the set of weights, now corresponding to our new unknowns. By
stacking these weights for the M samples and the N dictionary elements in a matrix
VM×N , we have

φ(D) = φ(X )V . (6.32)

The only term that depends on the dictionary is the reconstruction error (i.e, the
first term in the objective of (6.25)). Given the matrix of sparse codes AN×M =
[y1|y2| · · · |yM], this term can be expressed as

R(V) = ∥∥φ(X ) − φ(X )VA
∥∥2
F (6.33)

= Tr
(
φ(X )(IM − VA)(IM − VA)Tφ(X )T

)
= Tr

(
K(X ,X )(IM − VA − ATVT + VAATVT )

)
.

The new dictionary, fully defined by V , can then be obtained by zeroing out the
gradient of R(V) w.r.t. V . This yields

∇R(V) = 0 ⇔ V = (AAT )−1A = A† . (6.34)

6.6 Experiments

To compare and contrast the proposed techniques against state-of-the-art methods, we
used the Ballet dataset [44] to classify actions from videos. The Ballet dataset contains
44 videos collected from an instructional ballet DVD [44]. The dataset consists of
eight complex motion patterns performed by three subjects, The actions include:
‘left-to-right hand opening’, ‘right-to-left hand opening’, ‘standing hand opening’,
‘leg swinging’, ‘jumping’, ‘turning’, ‘hopping’, and ‘standing still’. Figure 6.3 shows
examples. The dataset is challenging due to the significant intra-class variations in
terms of speed, spatial and temporal scale, clothing, and movement.

We extracted 2200 image sets by grouping 6 frames that exhibited the same
action into one image set. We described each image set by a subspace of order 6 with
histogram of oriented gradients (HOG) as frame descriptor [10] using SVD. To this

Fig. 6.3 Examples from the Ballet dataset [44]
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Table 6.2 Average recognition rate on the Ballet dataset.

Method gSC kSC-RBF kSC-Laplace kSC-Poly

Accuracy 64.5 69.7 67.9 68.5

end, frame were first resized to 128 × 128 and HoG descriptor from four 64 × 64
nonoverlapping blocks were extracted. The HoG descriptors were concatenated to
form the 124 dimensional frame descriptor.

Extracted subspaces were randomly split into training and testing sets (the number
of image sets in both sets was even). The process of random splitting was repeated
ten times and the average classification accuracy is reported.

Table 6.2 reports the average accuracies along their standard deviations for the
studied methods. All the results were obtained by training a dictionary of size 128.
To classify the sparse codes, we used a linear SVM. For the kSC algorithm, we used
three different kernels, namely RBF, Laplace and a polynomial kernel of degree 2 as
described in Sect. 6.5.

The highest accuracy is obtained by the universal RBF kernel. Interestingly, the
polynomial kernel performs better than the Laplace kernel. All the kernel methods
outperform the gSC algorithm, implying that the data is highly nonlinear.
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