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Abstract

We consider the problem of rotation averaging under the
L1 norm. This problem is related to the classic Fermat-
Weber problem for finding the geometric median of a set of
points in IRn. We apply the classical Weiszfeld algorithm
to this problem, adapting it iteratively in tangent spaces of
SO(3) to obtain a provably convergent algorithm for finding
the L1 mean. This results in an extremely simple and rapid
averaging algorithm, without the need for line search. The
choice of L1 mean (also called geometric median) is moti-
vated by its greater robustness compared with rotation av-
eraging under the L2 norm (the usual averaging process).

We apply this problem to both single-rotation averag-
ing (under which the algorithm provably finds the global
L1 optimum) and multiple rotation averaging (for which no
such proof exists). The algorithm is demonstrated to give
markedly improved results, compared with L2 averaging.
We achieve a median rotation error of 0.82 degrees on the
595 images of the Notre Dame image set.

1. Introduction
We consider the problem of rotation averaging. The

problem takes two forms: single rotation averaging in
which several estimates are obtained of a single rotation,
which are then averaged to give the best estimate; and mul-
tiple rotation averaging, in which relative rotations Rij are
given, and absolute rotations Ri are computed to satisfy the
compatibility constraint RijRi = Rj .

The problem has significant applications to structure and
motion [18, 24, 10, 13, 22, 14] and to non-overlapping cam-
era calibration [4]. It has been studied quite extensively in
the past, both in computer vision and in other fields. Signif-
icant work in this area includes the work of Govindu [8, 7]
and Pajdla [18].
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We are not aware of any work from outside the vision
field in the problem of multiple rotation averaging. How-
ever, significant contributions to the single rotation averag-
ing problem have been made by [19, 17, 23] and others.
This work belongs to the research field of optimization on
manifolds [1].

Most significant from our point of view is the work
reported in [6, 30, 2] which considers a version of the
Weiszfeld algorithm on classes of Riemannian manifolds,
proving convergence theorems in a broad context, which
relate directly to our algorithm, and suffice to prove its con-
vergence.

The Weiszfeld algorithm is a well-known algorithm for
finding the L1 mean of a set of points in IRn. Given points
xi ∈ IRn, their L1 mean (more commonly called their ge-
ometric median) is the point y that minimizes

∑n
i=1 ‖y −

xi‖, where ‖ · ‖ is the Euclidean norm. This problem has
been much studied. The simplest, provably convergent al-
gorithm is due to Weiszfeld [28].

Other refinements to the basic algorithm include geomet-
ric speed-up methods [21] and Newton methods [16]. How-
ever, the simplicity of the basic Weiszfeld algorithm and
the rapidity with which its iterative update may be com-
puted make it attractive, and we have used it as our preferred
method. The Weiszfeld algorithm may also be generalized
to Banach spaces [5] and to Riemannian manifolds [6, 30].
This last case is of relevance to the problem of computing
the L1 geodesic mean on SO(3).

2. Problem formulation and notation
There are three metrics commonly used for distance

measurement in the rotation group SO(3). These are

1. The geodesic or angle metric θ = d∠(R, S), which is
the angle of the rotation RS−1.

2. The chordal metric

dchord(R, S) = ‖R− S‖F = 2
√

2 sin(θ/2)

where ‖ · ‖F represents the Frobenius norm.
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3. The quaternion metric

dquat(R, S) = min(‖r− s‖, ‖r + s‖) = 2 sin(θ/4)

where r and s are quaternion representations of the ma-
trices R and S respectively, and the norm ‖ · ‖ is the
Euclidean norm in IR4.

All these metrics are bi-invariant, in that they satisfy the
condition d(R, S) = d(TR, TS) = d(RT, ST) for any rotation
T. For small values of θ = d∠(R, S) the metrics are the
same, to first order, except for a scale factor.

The (single rotation) averaging problem is as follows.
Given rotations Ri ∈ SO(3), the Lp mean is equal to

S∗ = argmin
S∈SO(3)

n∑
i=1

d(Ri, S)p .

The L1 and L2 means are the two most useful or common
cases. Although L2 averaging has been considered exten-
sively, the L1 averaging problem has been relatively unex-
plored. A gradient-descent algorithm using line-search in
the tangent space was given in [4]. However, line-search is
costly and cumbersome to implement. In addition, no proof
of convergence was given in that paper. In this paper, we
present an extremely simple geodesic L1 averaging algo-
rithm for SO(3), based on the Weiszfeld algorithm for the
classic Fermat-Weber problem in IRn. The Weiszfeld algo-
rithm is provably convergent to the global minimum in IRn,
and this result carries over to our averaging algorithm in
SO(3), and indeed more generally, as follows from results
in [6, 30, 2]. Thus, we have an extremly simple algorithm
with guaranteed convergence under simple conditions.

Each of the three bi-invariant metrics presented above
has its place in rotation averaging, and different algorithms
naturally minimize different distances.

3. L2 averaging

The rotation averaging problem on SO(3) under the
L2 norm may be solved in closed form for the chordal
and quaternion metrics, under appropriate favourable con-
ditions. There is no closed-form algorithm for L2 rotation
averaging under the geodesic metric, but convergent algo-
rithms have been proposed [17, 4]. We give a brief descrip-
tion of some of these L2 averaging algorithms, since they
may be used for initialization of the L1 averaging method
that is the main topic of this paper.

3.1. Minimization under the chordal metric

Given a set of rotations Ri, the L2 chordal mean is the
rotation S that minimizes

n∑
i=1

dchord(Ri, S)2 =

n∑
i=1

‖Ri − S‖2F (1)

=

n∑
i=1

8 sin2(θi/2)

where θi = d∠(Ri, S).
It turns out that there are two different, but equivalent

closed form algorithms for finding this minimum. Let Ŝ =∑n
i=1 Ri. The matrix Ŝ is not a rotation matrix, however if

we set

S∗ = argmin
S∈SO(3)

‖S− Ŝ‖ = argmin
S∈SO(3)

‖S−
n∑

i=1

Ri‖

then S∗ is the chordal L2 mean, minimizing the cost (1).
The closest rotation matrix to Ŝ may be computed from
its singular Value Decomposition (SVD). Let Ŝ = U D V>

where the diagonal elements of D are arranged in descend-
ing order. If det(UV>) ≥ 0, then set S = UV>. Otherwise
set S = U diag(1, 1,−1)V>. The matrix S so obtained is the
closest rotation to Ŝ and hence the required rotation mini-
mizing (1). This algorithm was proposed in [19, 23].

A second algorithm surprisingly uses quaternions to
minimize this same metric. Let ri be the quaternion rep-
resentation of the rotation Ri. Both ri and−ri represent the
same rotation, but we may choose either one. We form the
4 × 4 matrix A =

∑n
i=1 riri

>, and observe that this does
not depend on which of ri or −ri is chosen. Let s be the
unit eigenvector corresponding to the maximum eigenvalue
of A, and let S be the corresponding rotation matrix. Then it
may be verified without great difficulty that S minimizes the
cost (1), and hence is the L2 chordal mean of the Ri. This is
a curious result, in that using quaternions, we nevertheless
minimize the chordal mean.

Thus, it is possible to find the global minimizer of (1)
under all circumstances.

3.2. Minimization under the quaternion metric

Consider a set of rotations Ri and a chosen quaternion
representation ri for each rotation. As a first cut at an al-
gorithm for finding the quaternion mean, we might propose
forming the sum ŝ =

∑n
i=1 ri and then normalizing ŝ by

setting s = ŝ/‖ŝ‖. The problem with this algorithm is that
the choice of which quaternion ri or −ri to use is not clear,
and does affect the result. Nevertheless, a well-specified
choice is possible, and leads to the correct result, if the ro-
tations are not too far spread, as stated in the following the-
orem of Dai et al. [4].
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Theorem 3.1. Let Ri be rotations satisfying d∠(Ri, S) <
π/2 for some rotation S and for all i. Let s be a quaternion
representation of S and let ri be the quaternion representa-
tion of Ri chosen with sign such that ‖ri− s‖2 ≤ ‖ri + s‖2.
Then the quaternion L2 mean of the rotations Ri is repre-
sented by the quaternion r̄/‖r̄‖, where r̄ =

∑n
i=1 ri.

Thus, the quaternion L2 mean is easily found, as long as
the rotations all lie within a given ball of radius π/2 in
SO(3). This restriction is quite mild, but it makes the al-
gorithm somewhat less attractive than the algorithm to find
the chordal mean, unless finding the quaternion mean is es-
sential.

3.3. Minimization under the geodesic metric

The L2 geodesic mean of a set of rotations Ri can only
be computed iteratively. The mean is unique provided the
given rotations R1, . . . , Rn do not lie too far apart, more pre-
cisely if they lie in a closed ball of geodesic radius δ < π/2
about some rotation S, cf. Theorem 3.7 in [9]. For this case
Manton [17] has provided the following convergent algo-
rithm where the inner loop of the algorithm is computing
the average in the tangent space and then projecting back
onto the manifold SO(3) via the exponential map.

1: Set R := R1. Choose a tolerance ε > 0.
2: loop
3: Compute r := 1

n

∑n
i=1 log

(
R>Ri

)
.

4: if ‖r‖ < ε then
5: return R

6: end if
7: Update R := R exp(r).
8: end loop

Algorithm 1: computing the L2 geodesic mean on SO(3)

In fact, this algorithm is shown to be an instance of sim-
ple Riemannian gradient descent. For a Newton-type algo-
rithm to compute this mean see [15].

4. L1 averaging
The L1 mean of a set of points xi in some metric space

is the point x̄ that minimizes the sum of distances to the
points. Thus,

x̄ = argmin
x

n∑
i=1

d(x,xi) .

It is well understood that the L1 mean of the points is gen-
erally more robust than the L2 mean. For instance, if the
points xi are points on a line (points in IR) then the L2 mean
is the usual mean of the points, whereas the L1 mean is the
median. The median is less affected by the presence of dis-
tant (outlier) values. For points in IR, the median (L1 mean)

of a set of points may be found in linear time [3], but this is
not true in higher dimensions.

The problem of finding the L1 mean of a set of points
in IRN for N > 1 is a classical problem, going back at
least to Fermat. The special case of this problem for three
points forming a triangle in IR2 was solved by Torricelli.
The solution is the so-called Fermat point of the triangle,
provided no angle exceeds 120◦. The problem subsequently
was studied in some detail by Weber [27]. For this reason,
it is sometimes referred to as the Fermat-Weber problem
or simply the Weber problem. It is also called the “loca-
tion” problem. This latter name is related to its interpreta-
tion in terms of optimal placement of a factory to minimize
the sum of its distances to a set of resources. The solu-
tion is commonly referred to as the geometric median of the
points, which terminology we will use interchangeably with
L1 mean. A good description of the problem is given in the
Wikipedia page on the geometric median [29].

Our interest in this problem relates to its robustness to
outliers: “The geometric median has a breakdown point of
0.5. That is, up to half of the sample data may be arbitrar-
ily corrupted, and the median of the samples will still pro-
vide a robust estimator for the location of the uncorrupted
data.” [29]

Unfortunately, there is generally no closed form solu-
tion for this problem. Nevertheless, a popular algorithm for
solving the problem in IRN is the Weiszfeld algorithm [28],
which will be described next for points xi in IRN .

The Weiszfeld algorithm may be considered as a gradi-
ent descent algorithm. The L1 mean of a set of points in
IRN may be written as the point x̄ that minimizes the cost
function

C(y) =

n∑
i=1

‖y − xi‖. (2)

Since each of the individual summands is a convex function,
this cost is a convex function of y. This being so, one is
led to consider a gradient descent algorithm. This can be
guaranteed to converge given a correct choice of step size,
or by using line-search for the minimum along the downhill
gradient direction.

It is easily computed that the gradient of the cost function
(2) is equal to

∇C = −
n∑

i=1

xi − y

‖xi − y‖
. (3)

Thus, the downhill gradient of the cost at a given point y is
the sum of the unit vectors directed from y to each of the
points xi. Given a current estimate yt, the next estimate of
the minimum in a gradient descent algorithm is given by

yt+1 = yt + λ

n∑
i=1

xi − yt

‖xi − yt‖
,
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where λ > 0 is some value controlling the step-size along
the gradient direction. The choice of step size in the
Weiszfeld algorithm is set to be λ =

∑n
i=1 ‖xi − yt‖−1.

Writing sti = ‖xi − yt‖, we then find that

yt+1 = yt +

∑n
i=1(xi − yt)/sti∑n

i=1 1/sti
(4)

=

∑n
i=1 xi/s

t
i∑n

i=1 1/sti
. (5)

As long as the intermediate iterates yt
i do not concide with

any of the points xi, this algorithm will provably converge
to the geometric median of the points [28]. Convergence
may not be fast. If in fact yt coincides with some point
xi, then the algorithm will get stuck at this point. A simple
strategy in this case is to displace the iterate yt slightly and
continue. It may easily be shown that successive iterates
will “escape” from some point xi, not the minimum, by
approximately doubling the distance at each iteration.

5. Geodesic median in SO(3)

We now consider the problem of computing the L1

geodesic mean in the group of rotations. We will refer
to this as the geodesic median. To be able to apply the
Weiszfeld algorithm, we transition back and forth between
the rotation manifold, and its tangent space centred at the
current estimate. Consider a rotation R in its angle-axis rep-
resentation v = θv̂ where v̂ is a unit vector, and R is a rota-
tion through angle θ about the unit axis v̂. The correspon-
dence R ↔ v is the correspondence between the Rieman-
nian rotation manifold and its 3-dimensional tangent space.
Writing [v]× to be the 3 × 3 skew-symmetric matrix cor-
responding to v, we have R = exp([v]×), and R may be
computed from v using the Rodrigues formula [12]. We
extend this notation by writing exp : IR3 → SO(3) taking
v to R. The inverse map is log : SO(3)→ IR3 taking R to v
and where v is chosen such that ‖v‖ ≤ π.

Given a rotation S, we may write logS(R) = log(RS−1)
which gives a mapping from SO(3) to IR3 centred at S. An
important property of this is that ‖ logS(R)‖ = d∠(S, R),
the geodesic distance from S to R. This expresses the fact
that although the logarithm map is not distance-preserving,
it does preserve distances from the identity; alternatively
speaking, logS, the logarithm centred at S, preserves dis-
tances from S.

The following lemma shows that we can use the geomet-
ric median in the tangent space to find the geodesic median
in rotation space SO(3).

Lemma 5.2. If S is the geodesic median of rotations Ri,
then the origin 0 ∈ IR3 is the geometric median of points
logS(Ri). Conversely, if d∠(S, Ri) < π/2 for all i, and 0 is
the geometric median of the points logS(Ri), then S is the
geodesic median of the Ri.

We give a brief proof of this lemma. A complete proof
will be published separately. The converse statement can
be extended slightly to the case where all Ri and S lie in
a convex set (appropriately defined) in SO(3), but this is
much more difficult to prove and lies well beyond the scope
of this paper.

Proof. If S is the geodesic median of the Ri, then the gradi-
ent of the cost function, C(S) =

∑n
i=1 d∠(Ri, S) is zero at

S. The gradient is defined as a vector in the tangent space at
S, which may be computed to be

∇C = −
n∑

i=1

logS(Ri)

‖ logS(Ri)‖
.

Writing ri = logS(Ri), we see that this gradient vector is
also the gradient of the cost C ′(s) =

∑n
i=1 ‖ri − s‖ at

s = 0 ∈ IR3. In other words, s = 0 is a critical point of
C ′. However, since this cost function is convex in IR3, it
follows that s = 0 is a minimum of the cost function, and
so s = 0 is the geometric median of the ri in IR3.

On the other hand, if s = 0 is the minimum of C ′(s),
then by the same argument the gradient of C is zero at S,
so S is at least a critical point of the cost. However, it is
not true that the cost function C(S) is convex1, or has a
single minimum on the whole of SO(3). For this reason,
we need the condition that all Ri lie in a ball of radius π/2
about S. In this case, it may be shown that the cost C(S)
is convex on the ball and in fact the global minimum of
C(·) lies within the ball, and hence at S. The proof of this
last statement is not entirely trivial, though it is intuitively
plausible. A complete proof (in more generality) will be
published separately.2

Given this lemma, we are led to propose an algorithm
for finding the geodesic median in SO(3), based on the
Weiszfeld algorithm on the tangent space. Given rotations
Ri ∈ SO(3), we proceed as follows.

1. Find an initial estimate S0 for the median. Such an
estimate may already be know, or else we may take the
L2 mean of the rotations Ri as a starting point.

2. At any time t = 0, 1, . . . apply the logarithm map cen-
tred at St to compute vi = logSt(Ri).

3. (Weiszfeld step): Set

δ =

∑n
i=1 vi/‖vi‖∑n
i=1 1/‖vi‖

1A function is convex on a set in SO(3) if its restriction to a geodesic
lying in the set is a convex function of arc length.

2For the case where all the Ri lie in a smaller ball of radius π/4 about
S, convexity of the cost C(S) has been shown in [6], and in this case the
global mean has been shown to lie within the ball in [2].
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4. Set St+1 = exp(δ)St.

5. Repeat steps 1 to 3 until convergence.

Thus, this algorithm may be thought of as carrying out
successive iterative steps of the Weisfeld algorithm, each
step taking place in the tangent space centred at the current
estimate.

For computational efficiency, it is simpler to work with
the quaternion representations ri of the rotations Ri, since
mapping between quaternions and angle-axis representation
is simpler than computing the exponential and logarithm
maps. In addition quaternion multiplication is faster than
matrix multiplication. Let Q be the unit quaternions. The
mapping q : IR3 → Q given by

q : θv̂ 7→ (cos(θ/2), sin(θ/2)v̂)

maps between angle-axis and quaternion representation of
a rotation. Then steps 2 to 4 of the above algorithm are
replaced by

θiv̂i = q−1(ri · s̄t)

δ =

n∑
i=1

v̂i /

n∑
i=1

1/θi

st+1 = q(δ) · st

where s̄t represents the conjugate (inverse) of the quater-
nion st. A further alternative is to use the Campbell-Baker-
Hausdorff formula [8] to work entirely in angle-axis space,
but this is essentially equivalent to the use of quaternions.

As is shown in lemma 5.2, a stationary point of this algo-
rithm (for which St = St+1) must be the geodesic median
of the rotations Ri, provided that d∠(Rt, Si) < π/2 for all i.

The Euclidean metric in a tangent space is related within
constant bounds to the angular metric in SO(3), so it is plau-
sible that this algorithm will converge. However, conver-
gence of this algorithm follows in a more general context
from the results of [6, 30, 2]. More precisely, it was shown
in [6] that if all the Ri lie within a ball of radius π/4, the
above algorithm converges to the so-called solipsistic mean
(the minimum of the cost function within the given ball)
provided that (1) not all the Ri lie on a single geodesic, and
(2) the algorithm does not step outside that ball. Restriction
(2) can be overcome using step size control and projection
techniques [30]. Finally, it was shown in [2] that the solip-
sistic mean is in fact the global mean if all the Ri lie within
a ball of radius π/4.

6. L1 averaging multiple rotations
We now consider the problem of rotation averaging of

a set of relative rotations. More specifically, let Ri; i =

1, . . . ,M be a set of rotations denoting the orientation of
different coordinate frames in IR3. The rotations are as-
sumed unknown, but a set of relative rotations Rij are given,
for pairs (i, j) ∈ N , where N is a subset of all index pairs.
If (i, j) ∈ N , then also (j, i) ∈ N , and Rji = R−1ij . These
relative rotation matrices Rij are provided by some mea-
surement process and are assumed to be corrupted by some
degree of noise. The required task is to find the absolute ro-
tations Ri, Rj such that Rij = RjR

−1
i for all pairs (i, j) ∈ N .

Of course, since this condition can not be fulfilled exactly,
given noisy measurements Rij , so the task is to minimize
the cost

C(R1, . . . , RM ) =
∑

(i,j)∈N

d(RijRi, Rj)
p

where p = 1 or 2. We consider the geodesic distance func-
tion d(·, ·) = d∠(·, ·). We may eliminate the obvious gauge
freedom (ambiguity of solution) by setting any one of the
rotations Ri to the identity. Generally, minimizing this cost
is a difficult problem because of the existence of local min-
ima, but in practice it may be solved in many circumstances
with more-or-less acceptable results. In this paper we will
consider the L1 averaging problem, and demonstrate an al-
gorithm that gives excellent results on large data sets.

Our approach is by successive L1 averaging to estimate
each Ri in turn, given its neighbours. At any given point
during the computation, a rotation Ri will have an estimated
value, and so will its neighbors Rj , for (i, j) ∈ N . There-
fore, we may compute estimates R

(j)
i = RjiRj , where the

superscript (j) indicates that this is the estimate of Ri de-
rived from its neighbour Rj . We then use our Weiszfeld L1

averaging method on SO(3) to compute a new estimate for
Ri by averaging the estimates R(j)i . In one pass of the algo-
rithm, each Ri is re-estimated in turn, in some order. Multi-
ple passes of the algorithm are required for convergence.

Since the Weiszfeld algorithm on SO(3) is itself an itera-
tive algorithm, we have the choice of running the Weiszfeld
algorithm to convergence, each time we re-estimate Ri, or
else running it for a limited number of iterations leaving the
convergence incomplete, and passing on to the next rota-
tion. To avoid nested interation, we choose to run a single
iteration of the Weiszfeld algorithm at each step. The com-
plete algorithm is as follows.

1. Initialization: Set some node Ri0 with the maxi-
mum number of neighbours to the identity rotation,
and construct a spanning tree in the neighbourhood
graph rooted at Ri0 . Estimate the rotations Rj at each
other node in the tree by propagating away from the
root using the relation Rj = RijRi.

2. Sweep: For each i in turn, re-estimate the rotation
Ri using one iteration of the Weiszfeld algorithm. (As
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each new Ri is computed, it is used in the computations
of the other Ri during the same sweep.)

3. Iterate: Repeat this last step a fixed number of times,
or until convergence.

The whole computation is most conveniently carried out us-
ing quaternions.

Unlike the single rotation averaging problem considered
in section 5 we can not guarantee convergence of this al-
gorithm to a global minimum, but results will demonstrate
good performance.

7. Experiments and Applications
We demonstrate the utility and accuracy of the L1 rota-

tion averaging methods by applying them to a large-scale
reconstruction problem, based on the Notre Dame data set
[25]. This set has been reconstructed and bundle-adjusted,
resulting in estimates of all the camera matrices, which we
take to represent ground truth. The set consists of 595 im-
ages of 277, 887 points. There exist 42, 621 pairs of images
with more than 30 corresponding point pairs, and these were
the pairs of images that we used in our tests.

7.1. Single rotation averaging

To test the algorithm for estimating a single rotation from
several estimates, we carried out the following procedure.

1. Subsets of five point pairs were chosen and a fast five-
point algorithm [20] was used to estimate the essen-
tial matrix from the pair of images, and from this the
relative rotation and translation were computed. Only
those solutions were retained that satisfied the cheiral-
ity constraint that all 5 points lie in front of both esti-
mated cameras. This can be done extremely quickly –
in our implementation about 35µs per 5-point sample.

2. The solutions were tested against 3 further points and
only solutions which fitted well against these points
were retained.

3. From several subsets of 5 points we obtained several
estimates of the relative rotation (a subset can lead to
more than one rotation estimate).

4. The rotation estimates were then averaged to find their
L1 mean. L2 rotation averaging was used to find an
initial estimate, followed by application of some steps
of the Weiszfeld algorithm.

This method was compared with straight L2 rotation av-
eraging; the L1 averaging technique gave significantly bet-
ter results. In addition, the results were compared with
those obtained by using non-minimal methods based on the

Figure 1. The graph shows the result of L2 (top curve) and L1

(bottom curve) rotation averaging, used in computing the relative
orientation of two cameras from repeatedly applying the 5-point
algorithm to estimate relative rotation. The plots show the error
with respect to ground truth as a function of the number of samples
taken. As can be seen, the L1 algorithm converges in this case to
close to ground truth with about 10 samples.

8-point algorithm, followed by algebraic error or Sampson
error minimization, and calibrated bundle adjustment [12].

It is possible that this averaging technique can be used as
an alternative to RANSAC in the case of noisy point corre-
spondences, but we emphasize that this was not the purpose
of this experiment. Rather, the point was to demonstrate the
advantage of L1 rotation averaging, and investigate it as a
means for computing two-view relative pose.

Results We carried out experiments in which the relative
rotation of two cameras was computed using the 5-point
algorithm, followed by averaging the rotation results from
many rotation samples computed in this way. In all cases,
the L1 averaging algorithm worked significantly better. In
Fig 1 is shown a typical result of this estimation procedure,
comparing L1 with L2 averaging algorithms, for increasing
numbers of rotations.

7.2. Multiple rotation averaging

The results of pairwise rotation estimates obtained in the
previous section were then used as input to the multiple ro-
tation averaging algorithm described in section 6.

In carrying out this test, the two-view relative rotation es-
timates were obtained using several techniques. Generally
speaking, more elaborate methods of computing relative ro-
tation led to better results, but the fast methods were shown
to give surprisingly good results very fast. The following
methods were used for finding pairwise relative rotations
Rij .

1. E-5pt(m,n): Rotations were obtained from essential
matrices computed from m minimal 5-point sets, then
averaged using the L2-chordal algorithm, followed by
n steps of L1 averaging using the Weiszfeld algorithm.

3046



2. E-algebraic: The algebraic cost
∑

i(x
′
i
>Exi)

2 was
minimized iteratively over the space of all valid essen-
tial matrices. This is an adaptation of the method of
[11] to essential matrices, and is very efficient and fast.

3. E-Sampson: The Sampson error∑
i

(x′i
>Exi)

2

(Ex)21 + (Ex)22 + (E>x′)21 + (E>x′)22

was minimized over the space of essential matrices.

4. E-bundled: Full 2-view bundle adjustment was car-
ried out, initialized by the results of E-algebraic. This
method was expected to give the best results (and it
did), but requires substantially more computational ef-
fort (cf. Tab 1).

Given the diversity of image-pair configurations, possi-
ble small overlap and general instability, no one method
gave perfectly accurate relative rotation estimates for all
42, 621 image pairs. However, in all cases the resulting ro-
tation errors for the 595 cameras were quite accurate. For
the E-bundled method, the median camera orientation error
was 0.82 degrees.

7.2.1 Detailed results

The results of rotation averaging on the Notre Dame data
set [26] are given in Fig 2 and Fig 3. Pairs of images from
this set were chosen if they shared more that 30 points in
common (42,621 such pairs). From these pairs, the essen-
tial matrix was computed using various different methods
as described above.

Method per-pair total L1 L2
time(msec) time(sec)

E-bundled 281 11932 0.82 0.93
E-algebraic 4.07 173 1.21 1.84
E-Sampson 19 839 1.05 1.85

E-5pt(30,20) 7 296 0.98 1.32
E-5pt(20,10) 4 168 0.93 1.46
L1-averaging – 36
L2-averaging – 10

Table 1. Timing (on a 2.6 GHz laptop) for the computation of
the 42, 621 essential matrices using various methods, and also the
time taken for L1 and L2 averaging over all nodes. This last op-
eration is carried out once only. Columns 2 and 3 show the time
per iteration, and total time. The last two columns give the median
(over 595 views) rotation error in degrees for L1 and L2 averag-
ing. As may be seen, the full bundle adjustment takes a lot more
time, though it does lead to slightly better results. We do not count
time taken for finding the pairs of overlapping images with suffi-
ciently many matches. Observe that E-5pt(30,20) did better than
E-5pt(20,10) for L1 averaging, but this was by chance.

L1

E-bundle E-algebraic E-Sampson E-5pt(30,20)

L2

E-bundle E-algebraic E-Sampson E-5pt(30,20)

Figure 2. Whisker plots of the absolute orientation accuracy of the
595 images of the Notre Dame data set. The top and bottom of
the boxes represent the 25% and 75% marks. The upper graph
shows the result of L1 averaging and the lower graph the L2 av-
eraging results. In each graph are shown the results arising from
different methods of computing the essential matrices, and hence
the rotations.

E-bundled E-algebraic

L1 averaging L2 averaging L1 averaging L2 averaging

E-Sampson E-5pt(30,20)

L1 averaging L2 averaging L1 averaging L2 averaging

Figure 3. Side-by-side comparison of the results of L1 and L2 av-
eraging for each of the four methods of computing relative rota-
tions.

8. Conclusion

The Weiszfeld-based L1 averaging method gives good
results, both for single-view averaging of minimal-case ro-
tation estimates, and iteratively for multiple-view recon-
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struction. It is possible to get very good rotation estimates
very quickly (3 minutes for the Notre Dame set) with a me-
dian accuracy of about one degree. This makes the method
suitable as an initialization method for translation estima-
tion and final bundle adjustment.

TheL1 algorithm given here is substantially more simple
than the gradient-descent line-search algorithm proposed in
[4]. Our experiments strongly confirm the observation of
that paper that L1 averaging gives superior and more robust
results than L2 averaging, and still at very competitive cost.
In fact, the time taken for averaging is far smaller than the
time required to generate the individual rotation estimates.
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