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Abstract This paper is conceived as a tutorial on rota-
tion averaging, summarizing the research that has been car-
ried out in this area; it discusses methods for single-view
and multiple-view rotation averaging, as well as providing
proofs of convergence and convexity in many cases. How-
ever, at the same time it contains many new results, which
were developed to fill gaps in knowledge, answering funda-
mental questions such as radius of convergence of the al-
gorithms, and existence of local minima. These matters, or
even proofs of correctness have in many cases not been con-
sidered in the Computer Vision literature.

We consider three main problems: single rotation av-
eraging, in which a single rotation is computed starting
from several measurements; multiple-rotation averaging, in
which absolute orientations are computed from several rel-
ative orientation measurements; and conjugate rotation av-
eraging, which relates a pair of coordinate frames. This
last is related to the hand-eye coordination problem and to
multiple-camera calibration.

Keywords geodesic distance · angular distance · chordal
distance · quaternion distance · L1 mean · L2 mean ·
conjugate rotation

1 Introduction

In this paper, we will be interested in three different rotation
averaging problems. In the following description, d(R, S) de-
notes the distance between two rotations R and S. Various
different possible distance functions will be described later
in the paper; for now, d(·, ·) is thought of as being any arbi-
trary metric on the space of rotations SO(3).

Address(es) of author(s) should be given

Single rotation averaging. In the single rotation averaging
problem, several estimates are obtained of a single rotation,
which are then averaged to give the best estimate. This may
be thought of as finding a mean of several points Ri in the
rotation space SO(3) (the group of all 3-dimensional rota-
tions) and is an instance of finding a mean in a manifold.

Given an exponent p ≥ 1 and a set of n ≥ 1 rotations
{R1, . . . , Rn} ⊂ SO(3) we wish to find the Lp-mean rota-
tion with respect to d which is defined as

dp-mean({R1, . . . , Rn}) = argmin
R∈SO(3)

n∑
i=1

d(Ri, R)p .

Since SO(3) is compact, a minimum will exist as long as the
distance function is continuous (which any sensible distance
function is). This problem has been much studied in the lit-
erature, but there are still open problems, some of which are
resolved here.

Conjugate rotation averaging. In the conjugate rotation
averaging problem, n ≥ 1 rotation pairs (Li, Ri) (the left
and right rotations) are given, and we need to find a rota-
tion S such that Ri = S−1LiS for all i. This problem arises
when the rotations Ri and Li are measured in different coor-
dinate frames, and the coordinate transformation S that re-
lates these two frames is to be determined.

In the presence of noise, the appropriate minimization
problem is then to find

argmin
S

n∑
i=1

d(Ri, S
−1LiS)p .

This problem is sometimes referred to as the hand-eye coor-
dination problem, see e.g. [13,64,84].

In the case where the individual rotations Ri and Li
are themselves estimated from relative orientation measure-
ments Rij and Lij , the two problems can be solved simulta-
neously to find S at the same time as the rotations (Ri, Li).
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Multiple rotation averaging. In the multiple rotation av-
eraging problem, several relative rotations Rij are given, per-
haps relating different coordinate frames, and n absolute
rotations Ri are computed to satisfy the compatibility con-
straint RijRi = Rj . Only some Rij are given, represented by
index pairs (i, j) in a set N . In the presence of noise, the
appropriate minimization problem is expressed as seeking

argmin
R1,...,Rn

∑
(i,j)∈N

d(Rij , RjR
−1
i )p .

For all these problems, we are interested in finding prov-
ably optimal and convergent solutions, mainly for the cases
p = 1 and p = 2. This includes most particularly identi-
fying the conditions under which the problems will allow a
solution.

Our task in this paper is to report the known results about
these problems, while at the same time filling in gaps of
knowledge, particularly related to convergence, convexity or
uniqueness of solutions to these problems.

Applications. The single-rotation averaging problem can
be used in the case where several measurements of a single
rotation R are given. These may be for instance measure-
ments of the orientation of an object, derived from measure-
ments taken with different cameras in a calibrated network.
If the measurements are noisy, they can be averaged to find
a mean. In another example, given a pair of images, several
minimal sets of points (5 points for calibrated cameras) may
be chosen and used to compute the relative rotation between
the cameras. By a process of averaging, one may obtain the
mean of these measurements, which provides an estimate of
the true rotation relating the two cameras.

The multiple-rotation averaging problem has wide appli-
cation to the problem of structure-from-motion (SfM), and
several papers [55,73,29,37,71,41,38] have explored this
method, often starting with an assumption that the rotations
of the cameras are known. These rotations may be estimated
separately by rotation averaging. This idea has been devel-
oped into a unified approach to SfM by Govindu [23,22,24],
who also developed various rotation-averaging algorithms.

Conjugate rotation averaging is related to the hand-eye
coordination problem, common in robotics [13,64,84]. In
one formulation of this problem, consider a robot manipulat-
ing some object, which is also observed by a stationary cam-
era. The orientation of the object can be computed at each
moment through knowledge of the geometry of the robot
(for instance, joint-angles). At the same time, the orienta-
tion of the object can be computed from the images taken
from the camera. This gives two separate estimates of the
orientation of the object (expressed as a rotation), but these
are in different coordinate frames. By solving the conjugate
rotation problem, one can compute the relationship between
the robot and camera frames.

In another application, camera rigs used in robotic or
mapping applications can consist of fixed cameras often
with small or no overlap of fields of view. From SfM tech-
niques, the trajectory of each camera may be computed in-
dependently. In the two-camera case this leads to pairs of
rotations (Li, Ri). By solving the conjugate averaging prob-
lem, one may compute the relative orientation of the two
cameras. This technique generalizes easily to several cam-
eras. For best results, the conjugate averaging problem is
solved simultaneously with the multiple-rotation averaging
problem of determining the Ri and Li [12].

Different metrics. Although the rotation averaging prob-
lem has been discussed frequently in the literature of Com-
puter Vision, there has rarely been any discussion of what
cost-function is actually being minimized by the algorithms
in question. Discussion of this question in papers about opti-
mization on manifolds has usually been more specific in this
regard. The most common approach to the single-averaging
problem is to find the Karcher mean [26,40] which is de-
fined as

y∗ = argmin
y

n∑
i=1

dgeod(xi,y)2 (1)

where xi; i = 1, . . . , n are several points on a Riemannian
manifold, and dgeod(·, ·) represents the minimal geodesic
distance between two points. The choice of the squared-
distance in this expression means that we are minimizing
a least-squares (L2) cost function. This definition is eas-
ily generalized to include other than sum of squares costs.
The most immediate generalization is to minimize the L1

cost, namely the sum of (unsquared) distances dgeod(xi,y).
We will refer to this as the geodesic L1-mean of the points.
Other exponents, such as dgeod(xi,y)q are possible, but will
not be considered in any detail in this paper. Thus, by refer-
ring to a geodesic mean, we imply the minimization of a cost
based on geodesic distance in the manifold itself. The liter-
ature on the Karcher mean is very large, see e.g. [26,40,11,
47,2] and the references therein. Papers relating to compu-
tation of the Karcher mean for rotations include [57], [48],
[53] and [45], with Manton [53] giving a simple iterative
solution.

Computation of the geodesic L1-mean in a manifold has
received much less attention. Recent work includes L1 min-
imization on SO(3) [12], which suggests a gradient-descent
algorithm. This problem has been solved in the more general
context of a Riemannian manifold with positive sectional
curvature in [20] and extended in [83]. The solution of [20]
involves iterative steps of the Weiszfeld algorithm [81] in
tangent spaces of the manifold. This literature will be sur-
veyed in more detail later.

In the context of rotations in SO(3), the (natural)
geodesic metric dgeod(·, ·) is equal to the angle between two
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rotations. Specifically, given rotations R and S, the product
RS−1 is also a rotation, about some axis by an angle θ in the
range 0 ≤ θ ≤ π. We define d∠(R, S) = θ, and refer to it as
the angle metric. It will turn out that this is identical with the
geodesic metric on SO(3), so we will sometimes also refer
to it as the geodesic metric.

Other metrics exist, other than the geodesic metric. The
so-called “chordal” metrics relate to a specific embedding
of a manifold in a Euclidean space RN . The distance be-
tween two points in the manifold is then defined to be the
Euclidean distance in RN between the embedded points. A
rotation R ∈ SO(3) is commonly represented by a 3× 3 or-
thogonal matrix (with unit determinant). There is therefore a
natural embedding of a rotation R in R9. Given two rotations
R and S, their chordal distance is then the distance between
their embeddings in R9. This is equal to dchord(R, S) =

‖R− S‖F, where ‖ · ‖F is the Frobenius norm of the matrix.
It will be shown later that dchord(R, S) = 2

√
2 sin(θ/2),

where θ = d∠(R, S).
A further representation of rotations as points in a Eu-

clidean space is through quaternions, in which rotations are
represented as unit 4-vectors. This allows us to define an-
other “chordal” distance between rotations equal to the dis-
tance between their quaternion representations. However,
since a given quaternion and its negative both represent the
same rotation, we define the minimum of the two possible
distances between ±r and ±s to be the quaternion distance
dquat(R, S) between the corresponding rotations. It will be
shown later that dquat(R, S) = 2 sin(θ/4).

The reason for considering different metrics on SO(3)

as a basis for averaging is that certain known simple algo-
rithms naturally minimize cost functions involving chordal
or quaternion distance. From the point of view of under-
standing the algorithms, it is essential to understand what
metric is being minimized.

Approach and Prerequisites. Rotation space SO(3) natu-
rally forms a Lie Group, an algebraic group with a manifold
structure. It consequently also has the structure of a Rie-
mannian manifold. It is natural to use the language of Lie
groups, Lie algebras, Riemannian metrics, geodesics, tan-
gent spaces, exponential maps, and all the machinery of Rie-
mannian and differential manifolds when discussing SO(3).
In this paper, although these terms will be used at times as a
convenient descriptive language, there will be no appeal to
any advanced concepts related to Riemannian manifolds or
Lie Groups. An effort has been made to present the mate-
rial in a way that requires only relatively elementary math-
ematical concepts, and when more advanced concepts are
used (for example concepts from manifold topology such as
fundamental groups or covering spaces), they are motivated
by intuitive descriptions. For instance, geodesics are defined

simply to be locally shortest paths on a manifold; all the re-
quired properties are derived using elementary concepts.

Since the word “manifold” itself is often used in Com-
puter Vision in a somewhat loose sense, it bears stating that
the word is used in this paper in its strict mathematical sense
of a locally Euclidean Hausdorff space whose topology has
a countable base.1 ’Locally Euclidean’ just means that each
point has some neighbourhood that is homeomorphic to an
open ball in RN for some N . In the case of SO(3), the di-
mension N = 3, so SO(3) is a 3-manifold.

New Results. Although this paper aims at summarizing
the state of knowledge in rotation averaging, it does contain
several results that were previously unknown, or unproven.
Here, we enumerate the major new results of this paper. Note
that some of these results were previously announced in our
recent conference papers [12,31,27].

1. The recognition of the role of weakly convex sets (defi-
nition 1) in the analysis of convexity of distance metrics
on SO(3) is new. Their characterization (theorem 10)
has not been previously known; most importantly, the
systematic study of the region of convexity of the given
distance metrics on SO(3) (theorem 3) significantly ex-
tends previously known results since it is based on the
notion of weak convexity where previous results were
based on the much stronger notion of (geodesic) con-
vexity. See also [31].

2. The proof that any global minimum of the single rota-
tion averaging cost function for points in a convex set
must also lie in the convex set (theorem 5) is stated for
the first time explicitly for SO(3). A similar result has
been shown in the more general context of Riemannian
manifolds, but under more restrictive conditions on the
size of the convex set in [2]. See also [31].

3. The analysis of the multiple rotation quaternion averag-
ing algorithm [22] is new (section 7.1).

4. The proof of existence of local minima of the multiple
rotation averaging cost function with cost close to the
global minimum (section 7.3) is new.

Structure of the paper. Following this introduction, the
next section summarises previous work on rotation averag-
ing in computer vision, robotics, structural chemistry and
other related areas. Section 3 contains a detailed discussion
of representations for rotations and their mutual relation-
ships, including orthogonal matrix representations, angle-
axis representations, unit quaternions and several others.
Section 4 introduces the distance measures we consider in
this paper and discusses geodesics (locally shortest paths)

1 “La notion générale de variété est assez dificile à définir avec
précision. [The general notion of a manifold is rather difficult to de-
fine with precision.]“ [9, page 56]
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with respect to these metrics. We also state and prove a
general cosine rule for SO(3). Sections 5, 6 and 7 contain
the main results on the single, conjugate and multiple rota-
tion averaging problems, respectively. The paper concludes
with two appendices. The first appendix contains a detailed
discussion of convexity in SO(3). We introduce the notion
of weak convexity and discuss the convexity properties of
the various distance metrics in SO(3). The second appendix
provides formulas for gradients and Hessians of the averag-
ing cost functions on SO(3).

2 Previous Work on Rotation Averaging

The rotation averaging problem arises frequently in many
research areas ranging from pure fundamental mathematical
exploration to practical engineering and scientific applica-
tions, such as computer vision, robotics and structural chem-
istry.

2.1 Rotation averaging in robotics

Most applications in robotics involve the full special eu-
clidean group SE(3), a semidirect product of the rotation
group SO(3) with the (additive) group IR3 of translations.
Elements of SE(3) are used to encode the “pose” of a robot
in its 3D environment where pose comprises both “orienta-
tion” or “attitude” (the rotation part) as well as “position”
or “location” (the translational part) with respect to a fixed
reference frame.

A Consistent Pose Registration (CPR) framework was
proposed by Lu and Milios [52] for the task of mobile robot
Simultaneous Localization and Mapping (SLAM), in which
a globally consistent configuration of the robot’s poses at
different times is built by fusing (averaging) all local rela-
tive poses. However, Lu and Milios’ work is confined to the
case of 3 degrees of freedom planar motion which is sub-
stantially simpler than the 6 degrees of freedom case where
our work could be applied, because in the planar motion case
two rotations about the same point always commute. This is
not the case for 3D rotations. Agrawal [3] presented a Lie al-
gebraic approach for consistent pose registration for general
Euclidean motion.

The hand-eye coordination problem is the same as our
conjugate rotation averaging problem and has been dis-
cussed extensively [13,64,84]. In these papers, no optimal-
ity is shown nor is it shown what objective function, in terms
of what metric, is being minimzed. Strobl and Hirzinger [75]
approached the problem by defining a metric on the group
SE(3) and a corresponding error model for nonlinear opti-
mization. The metric for rotation error is given as a weighted
version of the rotation angle.

2.2 Rotation averaging in computer vision

Structure from Motion. In computer vision and multi-
view geometry, Govindu seems to be the first who in-
troduced the idea of motion averaging for structure-from-
motion computation. He published a series of papers ad-
dressing this problem [22–24]. In [22] a simple linear least
squares method is proposed where rotations in SO(3) are
parametrized by quaternions and a closed-form linear least
squares solution is derived, using the Singular Value De-
composition (SVD). The paper [23] follows a nonlinear op-
timization on manifold approach which is similar in spirit to
the algorithms we discuss here. Another paper by Govindu
[24] tackles robustness problems by adopting a RANSAC-
type approach for outlier-removal.

Martinec and Pajdla [55] discussed rotation averag-
ing using the chordal metric in IR3×3 and compared their
method with the linear quaternion method. This approach
to averaging using the chordal metric has similar problems
as linear quaternion averaging. The obtained result is not
necessarily a proper rotation before manifold projection is
performed.

Gramkow [25] compared three different methods for sin-
gle rotation averaging, that is, from orthogonal rotation ma-
trices, from unit quaternion representations and from angle-
axis representations, and showed that the results are quite
similar if the individual rotations are close enough. In our
present paper, we also consider the three cases (we call them
the chordal metric, the quaternion metric, and the angle met-
ric respectively), and provide rigorous theoretic analysis and
detailed algorithm implementations.

When covariance uncertainty information is available
for each local measurement, Agrawal shows how to incor-
porate such information in the Lie-group averaging compu-
tation [3]. Alternatively, one could apply the belief propaga-
tion framework to take the covariance information into ac-
count [14].

Calibration. Often several cameras are attached rigidly to
a platform, such as a moving vehicle, and used to capture
large amounts of video. In analyzing such imagery, it is pos-
sible to consider several cameras as a single “generalized”
camera [66,6]. To be able to do this, however, it is neces-
sary to calibrate the set of cameras. In particular, this means
that the relative placement of all the cameras must be deter-
mined.

Non-overlapping multi-camera rigs are of particular in-
terest in practice. As the component cameras have little or
no overlap in their fields of views, the effective overall field
of view is wider, leading to efficient data acquisition. How-
ever, because of the non-overlap, calibration is a potential
problem, which has been considered in several papers.
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Calibration using mirrors has been frequently suggested
[76,46,70]. Methods that simply use the image-tracks from
each camera separately have also been proposed [17,42,10,
43,50,44,12,49]. This is an instance of the conjugate ro-
tation averaging problem discussed in this paper. The se-
quence of orientations of each camera in its own frame,
may be computed from the sequence of images taken by
that camera. Subsequently, the conjugate rotation problem
is used to determine the relative orientations of all the cam-
eras.

Consensus rotation averaging in distributed camera net-
works. Recent developments in wireless sensor network
technology have led to the deployment of distributed camera
networks where camera and processing nodes may be spread
over a geographical area, with no centralized processing unit
and limited ability to communicate large amounts of infor-
mation over long distances. These networks require new
techniques for calibrating camera networks and structure
from motion.

Most computer vision algorithms assume that all the
data (the images) are available on a single computer where
centralized processing is possible. However, this paradigm
is inherently incompatible with sensor networks for two rea-
sons. Firstly, it requires the transmission of large volumes
of raw data. Secondly, it demands processing resources not
available in mote-class devices. A multiple rotation aver-
aging algorithm can be applied naturally to a distributed
camera network as it is a local averaging algorithm involv-
ing only the neighbouring camera nodes. Through iteration,
each camera will obtain its pose (both rotation and transla-
tion) in the global coordinate system.

To process video data on distributed nodes, the cam-
era network must be accurately calibrated in both space and
time [68]. In distributed camera network applications, Lie-
averaging techniques have been applied to the distributed
calibration of a camera network [79]. Antone and Teller [78]
considered calibration of a number of unordered views by
fusing rotations via a visibility graph.

2.3 Rotation averaging in structural chemistry

In structural chemistry (e.g. the computation of crystal struc-
tures), it is often of interest to analyze grain orientations in
polycrystalline material, which sometimes requires the com-
putation of the mean orientation. Humbert et al [34,35] pro-
posed two methods (quaternion and rotation matrix averag-
ing) for such a task. A variant of the quaternion algorithm
using 4 × 4 eigendecomposition was given by Morawiec
[59]. Morawiec [58] also pointed out some theoretical in-
accuracies in Humbert’s two original algorithms, including
the sign ambiguity associated with the quaternion represen-
tation. For a complete treatment of this topic in the crystal-

lography field, the reader is referred to a recent monograph
by Morawiec [60].

2.4 Other related research

A general mathematical exposition of the single rotation av-
eraging problem can be found in [57], where several dif-
ferent definitions of mean rotation are given under differ-
ent metrics. Pennec [65] provided a thorough discussion
of stochastic “mean objects” on homogeneous Riemannian
manifolds. The obtained geometric mean depends only on
intrinsic characteristics of the manifold in question. This
work ties in with the previously mentioned large body of
work on the Karcher mean, see [26,40,11,47,2] and the ref-
erences therein (cf. section 1). Pennec suggested a gradient
descent algorithm to compute mean rotations, see also [57,
48,53,45]. Besides the simple least squares mean, Pennec
also studied weighted least squares means and the Rieman-
nian Mahalanobis mean based on predicted uncertainty co-
variance at the estimated mean object.

Quaternion averaging was studied in some detail by
Markley et al. [54], who were motivated by a problem in
aerospace engineering, namely spacecraft attitude estima-
tion from multiple star trackers.

Buchholz and Sommer [8] describe how to compute
means on Clifford groups, a problem that can be viewed as
a generalization of quaternion averaging, allowing a general
treatment of approximated averaging for all classical groups.
Fiori and Tanaka [18] introduced a novel procedure for de-
signing an averaging algorithm for a committee of learning
machines under the assumption that the machines share a
common parameter space, namely the group SO(p) of spe-
cial orthogonal matrices. Sarlette and Sepulchre [72] formu-
lated consensus as an optimization problem and designed
distributed consensus algorithms for N agents moving on a
connected compact homogeneous manifold.

The problem of finding the L1-mean of a set of points
in RN for N > 1 is a classical problem, going back at
least to Fermat. The special case of this problem for three
points forming a triangle in R2 was solved by Torricelli.
The solution is the so-called Fermat point of the triangle,
provided no angle exceeds 120◦. The problem subsequently
was studied in some detail by Weber [80]. For this reason,
it is sometimes referred to as the Fermat-Weber problem or
simply the Weber problem. It is also called the “location”
problem. This latter name is related to its interpretation in
terms of optimal placement of a factory to minimize the
sum of its distances to a set of resources. The solution is
commonly referred to as the geometric median of the points.
The Weiszfeld algorithm [81] is a well-known algorithm for
finding the L1 mean of a set of points in Rn. Refinements
to the basic algorithm include geometric speed-up methods
[63] and Newton methods [51]. However, the simplicity of
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the basic Weiszfeld algorithm and the rapidity with which
the upgrade may be computed make it a very attractive al-
gorithm even when compared to its more sophisticated ver-
sions. The Weiszfeld algorithm may also be generalized to
Banach spaces [15] and to Riemannian manifolds [20,83].
This last case is of relevance to the problem of computing
the L1 geodesic mean on SO(3) [27].

Other problems that are closely related to the single
rotation-averaging problem are also investigated by com-
puter vision researchers. These include:

1. Principal Component Analysis on manifolds [19];
2. Nonlinear mean-shift on Riemannian manifolds [77];
3. Geodesic k-means clustering [5].

3 Alternative Pictures of Rotation Space

We begin by discussing several different representations of
the set SO(3) of all rotations of 3-dimensional Euclidean
space. While each of these representations is well discussed
and often used in the literature, we find that none of them
is universally suitable for the discussion of all aspects of all
the problems we cover in this paper. We briefly review these
different geometric pictures.

Throughout this paper we will use the language of Lie
groups and (occasionally) Lie algebras, but our development
will be self-contained, and will not rely on anything other
than elementary knowledge of the theory of Lie groups. A
Lie group is a group G which is at the same time a differen-
tiable manifold having the property that a mapping G → G

induced by left or right multiplication by a fixed element
g ∈ G is smooth, and the mapping g 7→ g−1 is smooth.

For a more in-depth discussion of the use of group theory
in computer vision see the book by Kanatani [39].

3.1 The Matrix Lie Group SO(3)

The set of rotations

SO(3) = {R ∈ R3×3 | R>R = I3×3, det(R) = 1}

forms a matrix Lie group, a subgroup of the general linear
group GL(3) of invertible 3 × 3-matrices, namely the or-
thogonal matrices R with det R = 1.

Associated with the Lie group SO(3) is the Lie alge-
bra so(3) consisting of the set of all skew-symmetric 3× 3-
matrices. The connection between these two entities is the
exponential map taking an element Ω ∈ so(3) to its matrix
exponential exp(Ω) which is an element in SO(3). In fact,
any rotation R ∈ SO(3) may be expressed in the form

R = exp(Ω) = I + Ω + Ω2/2! + Ω3/3! + . . .

where Ω is a 3 × 3 skew-symmetric matrix; the exponential
map is surjective, onto SO(3). It is also locally one-to-one.

A matrix Ω may be represented in terms of the entries of
a 3-vector v = (v1, v2, v3)> by

Ω = [v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (2)

so the skew-symmetric 3 × 3 matrices form a vector space
isomorphic to R3. It follows from these remarks that the Lie
group SO(3) is a manifold of dimension 3, embedded in
R3×3.

By referring to so(3) as a Lie algebra, we imply the ex-
istence of a Lie-bracket operation. This is the matrix com-
mutator [Ω, Γ] = ΩΓ− ΓΩ, but we will make little use of this
concept.

3.2 The Angle-Axis Representation

Every rotation in SO(3) can also be represented as a rota-
tion through an angle θ about an axis represented by a unit
3-vector v̂. The vector v = θv̂ is known as the angle-axis
representation of the rotation. Note that by this definition,
the angle-axis representation is not unique, since an alterna-
tive representation is (2π−θ)(−v̂). The connection between
the angle-axis representation of a rotation and its 3× 3 ma-
trix representation is as follows. Given a 3-vector v = θv̂,
it is shown (for instance) in [32] that the matrix exp[v]× is
precisely the rotation through angle θ about the axis repre-
sented by the unit vector v̂. Thus, the mapping exp[·]× from
R3 to SO(3) connects the two representations of a rotation.

Every rotation can be represented as a rotation through
some angle by at most π radians. In fact, if the rotation is by
less than π radians, the representation is unique. A rotation
through angle π about an axis v̂ may equally well be repre-
sented as a rotation through π about the oppositely-oriented
axis−v̂. Thus, the mapping exp[·]× is surjective, and is one-
to-one on the open ball in R3 of radius π. The mapping is
two-to-one on the boundary of this ball. In this way, we may
think of rotation space as being represented by the closed
ball Bπ ⊂ R3 with opposite points on its boundary iden-
tified. By identifying opposite points on the boundary of a
closed ball in R3, we obtain [56] the projective space P3.
Hence, topologically SO(3) is homeomorphic to P3.

Since we will frequently be concerned with this cor-
respondence between the angle-axis representation and the
matrix representation of rotations, we adopt a minor abuse
of terminology by referring to the mapping exp[·]× : R3 →
SO(3) as the exponential map and its inverse as the loga-
rithm map, log(·) : SO(3) → R3. This terminology is jus-
tified if we look upon R3 as the tangent space to SO(3) at
the identity. Since the exponential map is not one-to-one, its
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inverse is not strictly defined. We resolve this by defining
log(R) to be the angle-axis vector of length no more than π,
which is uniquely defined unless R is a rotation through π
radians, in which case we let log(R) be one of the two possi-
ble vectors of length π representing this rotation. The angle
of rotation of R is hence equal to ‖log R‖2 where the norm is
the Euclidean norm in R3.

Considering now the Lie-algebra, we observe that the
mapping [·]× : R3 → so(3) is a vector space isomorphism
(it preserves addition). Moreover, if we define a Lie-bracket
operation R3 by the vector product [v,w] = v×w, then this
map is a Lie-algebra isomorphism between R3 and so(3),
where the Lie-bracket operation on so(3) was defined above
by the commutator.

The exponential map on exp[·]× : R3 → SO(3) can be
computed using Rodrigues’ formula (see for instance [32]):

exp(θv̂) = I + sin(θ)[v̂]× + (1− cos(θ))([v̂]×)2 . (3)

The logarithm can be computed using the formula

log(R) =

{
arcsin(‖y‖2)

y

‖y‖2
, y 6= 0

0, y = 0

where y = (y1, y2, y3) is computed from

1

2
(R− R>) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 .

3.3 The Quaternion Sphere

“Anyone who has ever used any other parametrization of the
rotation group will, within hours of taking up the quaternion
parametrization, lament his or her misspent youth.” [4]

The group of quaternions is of fundamental importance
in the study of rotations. This group consists of the set of
non-zero real 4-vectors R4, equipped with a multiplication
defined as follows. Let r1 = (c1,v1) and r2 = (c2,v2)

be two quaternions, where vi is the vector made up of the
last three components of the quaternion. Multiplication is
defined by

r1 · r2 = (c1c2 − 〈v1, v2〉 , c1v2 + c2v1 + v1 × v2) .

Here, 〈v1, v2〉 is the standard inner product and × rep-
resents the vector or “cross” product of the 3-vectors in-
volved. Another way to formulate the multiplication opera-
tion is to represent a quaternion r = (r0, r1, r2, r3) by writ-
ing r = r0 + r1i + r2j + r3k, where r0 is thought of as
the real part of the quaternion, and i, j and k are purely
imaginary components. Multiplication of two quaternions
(r0 + r1i+ r2j+ r3k) · (s0 + s1i+ s2j+ s3k) is carried out

by applying the distributive law to multiply out the product,
and using the identities

i · i = j · j = k · k = i · j · k = −1 .

An important property of quaternion multiplication is
that ‖q1 · q2‖ = ‖q1‖ ‖q2‖, where ‖r‖ represents the
norm of the quaternion, equal to its Euclidean norm as a
4-vector. The non-zero quaternions form a group under this
multiplication operation. The group identity is the quater-
nion (1, 0, 0, 0), and the inverse of r = (c,v) is r−1 =

(c,−v)/‖r‖2. The unit length quaternions form a subgroup
of the quaternion group.

With this defined multiplication, the unit quaternions ev-
idently form a Lie group, being at the same time a group, and
a smooth manifold of dimension 3. One of the properties of
a Lie group is that the multiplication operation must be con-
tinuous. It is instructive to understand the global action of
the multiplication operation. For a fixed unit quaternion r,
consider the map q 7→ r ·q. Since quaternion multiplication
is verifiably bilinear in the entries of the quaternions, this
mapping can be written in terms of a matrix-vector product
as q 7→ Prq, where Pr is a 4 × 4 matrix with entries deter-
mined by r. In addition, since for all vectors q, we have

‖q‖ = ‖r · q‖ = ‖Prq‖,

it follows that Pr is an orthogonal matrix. Therefore, multi-
plication by r has the effect of applying an orthogonal trans-
formation, or rotation, to the unit quaternion sphere.

Quaternions as rotations. A rotation R may be repre-
sented by a unit quaternion r as follows. If v̂ is the unit
vector representing the axis of the rotation and θ is the angle
of the rotation about that axis, then r is defined as

r = (cos(θ/2), v̂ sin(θ/2)). (4)

We write r 7→ R to indicate the mapping from the unit
quaternions to SO(3) indicated by the inverse correspon-
dence. This may be expressed formally as

r = (cos(θ/2), v̂ sin(θ/2)) 7→ exp[θv̂]× = R .

This mapping preserves multiplication, in that if r→ R and
s → S, then r · s → RS. Thus, this mapping is a Lie group
homomorphism in which quaternion multiplication corre-
sponds to ordinary matrix multiplication of rotations.

Both r and −r represent the same rotation, that is, the
homomorphism from the unit quaternions to SO(3) is a 2-to-
1 mapping. Topologically, the unit quaternions form a unit
sphere S3 in R4, and there is a 2-to-1 mapping from S3 onto
SO(3) in which opposite points of the sphere are identified.
This mapping is evidently continuous. In the language of
topology, S3 is a two-fold covering space (or double cover)
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of SO(3). If we restrict ourselves to rotations through an-
gles less than π then these are in 1-to-1 correspondence to
points of the upper quaternion hemisphere with the “north
pole” (1, 0, 0, 0) corresponding to the identity rotation (ro-
tation through an angle of 0). In this picture, the “equator”
of the quaternion sphere corresponds exactly to the rotations
through an angle of π with opposite points on the equa-
tor representing the same rotation. This picture of SO(3) in
which we picture rotations as points on the unit 3-sphere
(with opposite points representing the same rotation) will be
one of our most common ways of visualizing SO(3). Once
more, this picture indicates that SO(3) is homeomorphic to
projective 3-space P3.

Relation to the angle-axis formulation. The quaternion
q = (cos(θ/2), sin(θ/2)v̂) = (c,v) represents a rotation
about the unit axis v̂ = v/‖v‖ through an angle θ =

2 arccos(c). Hence, we deduce that the angle-axis represen-
tation of the quaternion q = (c,v) is 2 arccos(c)v/‖v‖, or
alternatively 2 arccos(−c) (−v/‖v‖).

3.4 The Gnomonic Projection

Starting from the representation of SO(3) as the quaternion
sphere, S3 visualized as the unit sphere embedded in R4,
the gnomonic projection of S3 to R3 is the projection from
the centre of the sphere, (0, 0, 0, 0), onto a tangent (3-di-
mensional) hyper-plane. For simplicity, we may consider
this to be the tangent hyper-plane passing through the point
(−1, 0, 0, 0) on S3, that is, the “south pole”, representing
the identity rotation. Clearly, this is a 2-to-1 projection of
S3, since opposite points on the sphere project to the same
point.

Since a great circle on S3 is the intersection of S3 with
a (2-dimensional) plane passing through the centre point
(0, 0, 0, 0), namely the plane spanned by the radius vector of
any point on the great circle and a tangent vector along the
great circle at that point, we easily see that the projection of
a great circle is the intersection between this plane and the
projection hyper-plane. This shows that the projection of a
great circle on S3 is a straight line in the projection hyper-
plane. This type of map is sometimes also called a Beltrami
map [7] in the literature.

In S3, the “equator” is the intersection of the “equato-
rial hyper-plane” consisting of points (0, x, y, z), with the
sphere. Projecting from the origin, we see that the equator
maps to the “plane at infinity” in R3. More exactly, we see
that the gnomonic projection maps S3 to R3∪Π∞, which is
a 3-dimensional projective space, topologically homeomor-
phic to SO(3). Geodesics in SO(3) correspond to straight-
lines in R3 along with straight lines in the plane at infinity.
We will see later that this representation of SO(3) is partic-

Fig. 1 Gnomonic projection of a sphere.

ularly useful when it comes to concepts like geodesics and
convexity.

The above paragraphs described the gnomonic projec-
tion localized at the identity rotation, since the tangent
hyper-plane was chosen to pass through a point in the quater-
nion sphere representing the identity rotation. One may
equally well construct a gnomonic projection, with similar
properties, localized about any other rotation (point on the
quaternion sphere).

The parametrization of rotations through angles less than
π given by the cartesian coordinates of the gnomonic pro-
jection of the upper quaternion hemisphere is usually called
the Rodrigues parametrization, not to be confused with Ro-
drigues’ formula (3). Assembling these Rodrigues param-
eters into a vector yields the so-called Gibbs vector asso-
ciated with the rotation. The rotation axis v̂ is related to
the Gibbs vector through a factor of tan(θ/2), where θ is
the rotation angle [60]. In other words, the Gibbs vector is
equal to tan(θ/2) v̂. Table 3.4 shows three different vecto-
rial parametrizations of a rotation.

Quaternion (cos(θ/2), sin(θ/2)v̂)

Angle-axis θ v̂

Gibbs/Rodrigues tan(θ/2) v̂

Table 1 Three different vectorial parametrizations for the rotation
through angle θ about the unit axis v̂.

The Cayley Transform. The Cayley transform on matri-
ces is the mapping A 7→ Ac = (I − A) (I + A)−1, which is
defined for any square matrix, provided that (I+A) is invert-
ible. The Cayley transform is its own inverse, so (Ac)c = A.

The relevance of the Cayley transform to rotations is as
follows [82].

Proposition 1 The Cayley transform of a rotation matrix
R ∈ SO(3) is a skew-symmetric matrix, and vice versa.
Thus the correspondence R

c↔ [v]× is a one-to-one corre-
spondence between skew-symmetric matrices and rotations
R, excluding rotations through an angle of π.

The Cayley transform is closely related to the gnomonic
projection, as follows. Applying the Cayley transform to
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a rotation, we obtain a skew-symmetric matrix [v]×. This
defines a correspondence R ↔ v between rotations and
3-vectors. A simple calculation shows that applying the
gnomonic projection to the quaternion r corresponding to
R leads to the same vector v. Thus, the Cayley transform
and the gnomonic projection are essentially the same map,
applied to the matrix and quaternion representations of a
rotation. The Cayley transform is not defined for rotations
through an angle of π (since (I + R) is then not invertible).
Such rotations correspond to quaternions on the “equatorial
plane”, and hence to points at infinity under the gnomonic
projection.

3.5 Projective Geometric Model

As we have discussed above, SO(3) is topologically equiv-
alent to the 3-dimensional projective space, P3. In fact, the
gnomonic projection maps the quaternion sphere (and hence
SO(3)) to P3 = R3 ∪Π∞, a standard model for the projec-
tive space. Note that the mapping from SO(3) to the quater-
nion sphere is a 1-to-2 mapping, since both a quaternion and
its negative represent the same rotation. The gnomonic pro-
jection on the other hand maps opposite points on the sphere
to the same point in R3 ∪Π∞, so the composite mapping is
a one-to-one mapping from SO(3) onto P3.

In this mapping, as noted, great circles in the quater-
nion sphere map to the lines in P3. In addition, planes in P3

arise as the projection of “great” 2-spheres in the quaternion
sphere. Choosing different tangent planes to the quaternion
sphere on which to localize the gnomonic map is equivalent
to choosing different planes in P3 to be the “plane at infin-
ity.”

The usual geometric model for the projective plane is
the Euclidean space R3 along with the plane at infinity Π∞.
The usual Euclidean points, lines and planes in R3 along
with the plane at infinity (and its points and lines) provide
the geometric structure of R3 ∪ Π∞ as a projective plane.
This model is familiar to the Vision community through its
central role in multiview geometry [32].

Via its correspondence with P3, rotation space SO(3) in-
herits the geometry of a projective space, wherein a “line”
is the set of rotations corresponding 1-to-2 to a great circle
in the quaternion sphere and a “plane” is the set of rota-
tions corresponding 1-to-2 to a “great” 2-sphere in the (3-
dimensional) quaternion sphere.

Many useful properties of SO(3) may be deduced us-
ing only the geometric properties of P3, and ignoring any
of the algebraic properties (such as rotation multiplication),
or the metric structure of SO(3), discussed in the next sec-
tion. When considering the geometric properties of SO(3)

in its embodiment as a projective space P3 we shall of-
ten find it convenient to refer to geometric concepts such

as lines and planes, rather than circles and spheres in the
quaternion sphere, or the corresponding curves and surfaces
in SO(3). It will become apparent in the next section that
these lines and planes in P3 in fact correspond to geodesics
and geodesic surfaces in SO(3).

4 Distance Measures on SO(3)

We will be interested in distance measures (we use this
term interchangeably for ‘metric’) on the group of rotations,
which will give the rotations the structure of a metric space.

Bi-invariant distance. A distance measure d : SO(3) ×
SO(3)→ R+ is called bi-invariant if

d(SR1, SR2) = d(R1, R2) = d(R1S, R2S)

for all S and Ri. Because of the homogeneous manifold
structure of the rotation group (evidenced by the quaternion
sphere), it is natural to be mostly interested in bi-invariant
metrics. On SO(3), the following are the most common
choices for the distance d.

Angular distance. Any rotation in SO(3) can be expressed
as a rotation through a given angle θ about some axis. The
angle can always be chosen such that 0 ≤ θ ≤ π, if nec-
essary by reversing the direction of the axis. We define the
angular distance between two rotations R and S to be the an-
gle of the rotation SR>, so chosen to lie in this range [0, π].
Thus,

d∠(S, R) = d∠(SR>, I) = ‖ log(SR>)‖2

where the norm is the usual Euclidean norm in R3. Note
that by this definition, the angular distance between two ro-
tations is at most π. The angular distance function d∠(S, R)

is equal to the rotation angle ∠(SR>). Note that we could
equally well write R>S, RS> or S>R, since in all cases these
represent a rotation through the same angle.

The angular distance between two rotations is easily
computed from their quaternion representations. Thus, if r
and s are quaternion representations of R and S respectively,
and θ = d∠(S, R), then

θ = 2 arccos(|c|) where (c,v) = s−1 · r . (5)

The absolute value sign in |c| is required to account for the
sign ambiguity in the quaternion representation of the rota-
tion S>R. The positive sign is chosen so that the angle θ lies
in the range 0 ≤ θ ≤ π, as required.

Once we have introduced the concept of geodesics in
SO(3), we will also refer to angular distance as “geodesic
distance,” using these terms interchangeably.
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Chordal distance. The chordal distance between two rota-
tions R, S in SO(3) is the Euclidean distance between them
in the embedding space R3×3 = R9. Thus,

dchord(S, R) = ‖S− R‖F

where ‖ · ‖F represents the Frobenius norm of the ma-
trix. This distance is easily related to the angular distance
θ = d∠(S, R) using Rodrigues’ formula (3). Specifically, let
SR> = exp(θv̂). Since [v̂]× and [v̂]2× are orthogonal to each
other with respect to the Frobenius inner product, and since
‖[v̂]×‖2F = ‖[v̂]2×‖2F = 2, formula (3) gives

dchord(S, R)2 = ‖S− R‖2F = ‖SR> − I‖2F
= 2(sin2(θ) + (1− cos(θ))2)

= 8 sin2(θ/2)

from which we obtain the required relation

dchord(S, R) = 2
√

2 sin(θ/2) .

Quaternion distance. Another distance measure derives
from the Euclidean distance between two quaternions in
the embedding space R4. We may think to define a dis-
tance dquat(S, R) between two rotations to be dquat(S, R) =

‖s− r‖2, where s and r are quaternion representations of S
and R, respectively. Unfortunately, this simple equation will
not do, since both r and −r represent the same rotation, and
it is not clear which one to choose (and analogous for s and
−s, of course). However, this is resolved by defining

dquat(S, R) = min{‖s− r‖2, ‖s + r‖2}

where the norm is the usual Euclidean norm in R4. Since
quaternions satisfy the condition ‖s·t‖2 = ‖s‖2‖t‖2, where
s·t represents the quaternion product, it is easily verified that
the quaternion distance is bi-invariant.

The relationship of this to the angular distance is as
follows. Let θ = d∠(S, R) = d∠(SR>, I) be the angle
of the rotation SR>. Represent the identity rotation I by
the quaternion e = (1, 0, 0, 0) and SR> by the quaternion
s · r−1 = (cos(θ/2), v̂ sin(θ/2)). Then the inner product
of these two quaternions, considered simply as 4-vectors,
is equal to cos(θ/2). On the other hand, as an inner prod-
uct of two unit vectors, it is equal to cos(α), where α is
the angle between the two vectors in R4. Thus, the angle
between the two quaternions is α = θ/2. The distance
‖s · r−1 − e‖2 = ‖s− r‖2 is then equal to

dquat(S, R) = 2 sin(α/2) = 2 sin(θ/4),

which is the distance between two unit vectors separated by
an angle θ/2. Notation: We will occasionally apply the an-
gle metric d∠(·, ·) to quaternions, defining d∠(s, r) = 2α

to be twice the angle between the two quaternions, consid-
ered as vectors in R4. Then for the corresponding rotations,
d∠(R, S) = min (d∠(r, s), d∠(r,−s)).
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Fig. 2 Distance metrics. On the left (top to bottom) are angular,
chordal and quaternion distances plotted as a function of rotation an-
gle. On the right the squared distances. Plots are shown for rotation
angles from 0 to π. The plots of the quaternion metric are scaled to be
comparable with the other metrics.

Plots of the three different distance functions discussed
so far, plotted as functions of the angular distance are shown
in fig 2.

Distance in angle-axis space. Yet another distance on
SO(3) may be defined as the Euclidean distance between
corresponding vectors log(S) and log(R) in angle-axis
space. However, if log(R) is taken to be the smallest length
vector representing R, then this metric is not continuous, in
the sense that rotations through angles near π about opposite
axes are not close to each other in this metric (but they are
in the angle metric).

This problem can be resolved by choosing between alter-
native “branches” of the logarithm function. The definition
then becomes

dlog(S, R) = min ‖vr − vs‖2

where the minimum is taken over all choices of vectors vr
and vs such that exp[vr]× = R and exp[vs]× = S.

With this definition, it can be shown [28] that

d∠(R, S) ≤ dlog(R, S) ≤ (π/2)d∠(R, S) ,

so both d∠ and dlog induce the same topology. However, the
problem with this distance is that it is not bi-invariant, since
dlog(TS, TR) 6= dlog(S, R) in general. We will have little oc-
casion to use this metric.

4.1 Curve Length and Geodesics

We now, consider the meaning of curve length in a metric
space, (M,d), where M is a set and d is the metric. We
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wish to do this for arbitrary curves, without any assumption
of differentiability. A curve in M is a continuous function
γ : [0, 1] → M ; it joins the starting point γ(0) to the end
point γ(1). The length of such a curve is defined as follows.

A partition of the interval [0, 1] is a sequence of points
0 = t0 < t1 < . . . < tn−1 < tn = 1 in the interval [0, 1].
We define

L(γ; {ti}) =

n∑
i=1

d(γ(ti), γ(ti−1)) .

It follows from the triangle inequality that if we refine the
sequence t0, . . . , tn by adding extra points, then the value
of L(γ; {ti}) can not decrease.

Now, we define the length of the curve to be the supre-
mum of L(γ; {ti}) over all partitions. A curve for which this
supremum is finite is called a rectifiable curve. Otherwise,
the curve is considered to have infinite length.

Given two points x, y ∈ M , a path γ from x to y is
a curve with γ(0) = x and γ(1) = y. We may define a
new metric on the space, called the intrinsic metric in which
d̂(x, y) is defined to be the infimum of the lengths of all
paths from x to y. It is easily verified that this defines a met-
ric on the space, and d̂(x, y) ≥ d(x, y).

We wish to find the relationship between the intrinsic
metrics induced by two different metrics on the same space.
The following result gives an answer.

Theorem 1 If d1(x, y) and d2(x, y) are two metrics defined
on a space M such that

lim
d1(x,y)→0

d2(x, y)

d1(x, y)
= 1 (6)

uniformly (with respect to x and y), then the length of any
given curve is the same under both metrics. Consequently,
the intrinsic metrics induced by d1 and d2 are identical.

The condition (6) is to be interpreted to mean that for any
ε > 0, there exists δ > 0 such that

1− ε < d2(x, y)

d1(x, y)
< 1 + ε (7)

whenever x and y are chosen so that d1(x, y) < δ.
Now, consider a curve γ with length L1 under the metric

d1, and L2 under metric d2; suppose both L1 and L2 are
finite. Choose a value η > 0 and define ε = η/L1. Let δ be
chosen such that condition (7) is true. In this case

(1− ε)d1(x, y) ≤ d2(x, y) ≤ (1 + ε)d1(x, y)

provided d1(x, y) < δ.
Choose a partition t0, . . . , tn to satisfy

L1 − η ≤
n∑
i=1

d1(γ(ti−1), γ(ti)) ≤ L1 , (8)

and

L2 − η ≤
n∑
i=1

d2(γ(ti−1), γ(ti)) ≤ L2 , (9)

This can be achieved while at the same time making the par-
tition sufficiently fine such that d1(γ(ti−1), γ(ti)) < δ for
all i. Then we have

L2 ≥
n∑
i=1

d2(γ(ti−1), γ(ti))

≥ (1− ε)
n∑
i=1

d1(γ(ti−1), γ(ti))

≥ (1− ε)(L1 − η) ≥ L1 − 2η (10)

and

L2 − η ≤
n∑
i=1

d2(γ(ti−1), γ(ti))

≤ (1 + ε)

n∑
i=1

d1(γ(ti−1), γ(ti))

≤ (1 + ε)L1 = L1 + η . (11)

From (9), (10) and (11) it follows that L1−2η ≤ L2 ≤ L1+

2η. Since η was chosen arbitrarily, it follows that L1 = L2.
A slightly modified proof will be sufficient to show that

if either L1 or L2 is infinite, then so is the other.

Equality of curve lengths. In the following exposition, we
will use a convention that r and s represent unit quaternions,
and that R and S are the corresponding rotation matrices.

The three metrics d∠, dquat and dchord defined on SO(3)

are distinct, as we have shown. However, we wish to show
that their induced intrinsic metrics are identical, up to scale.
Let d̂ represent the intrinsic metric induced by a metric d.
Letting d∠(R, S) = θ, it was shown that dchord(R, S) =

2
√

2 sin(θ/2). Therefore, it follows that

lim
d∠(R,S)→0

dchord(R, S)√
2 d∠(R, S)

= 1 .

From this, theorem 1 implies that for a given curve in SO(3),
the curve lengths measured with respect to the angle and
chordal metrics differ by a constant factor

√
2. Since the in-

duced intrinsic metrics are defined as the infimum of path
lengths, it follows that d̂chord(R, S) =

√
2 d̂∠(R, S).

Similarly, we know that dquat(R, S) = 2 sin(θ/4),
and so by the same argument, we see that d̂quat(R, S) =

(1/2)d̂∠(R, S). We have shown the following result.

Theorem 2 Let γ(t) be a curve in SO(3) and define
Lquat(γ), Lchord(γ) and L∠(γ) to be the curve lengths with
respect to the three different metrics. Then

Lchord(γ) = 2
√

2Lquat(γ) =
√

2L∠(γ) .

For the induced intrinsic metrics,

d̂chord(R, S) = 2
√

2 d̂quat(R, S) =
√

2 d̂∠(R, S) .
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The quaternion metric on SO(3) is derived from the Eu-
clidean distance metric on the quaternion sphere. In fact, the
two metrics are locally equal. It follows that the length of a
curve on S3 under the Euclidean metric is the same as the
length Lquat of the corresponding curve on SO(3).

Note that the angle metric d∠ is identical with its in-
duced intrinsic metric d̂∠. In standard terminology, this is
expressed by saying that (SO(3), d∠) is a length metric
space. This is not true for the other metrics dchord and dquat.

Geodesics. A geodesic is defined to be a locally length-
minimizing path. To be more specific, let I be an interval
in R; a path is a continuous function γ : I → M for any
metric space (M,d). We allow I to be infinite at either end,
to allow infinite paths. The path γ is a geodesic if there exist
open intervals Ii covering I such that for any two points x
and y in Ii, the path γ restricted to the interval [x, y] is a
shortest path from γ(x) to γ(y).

It is well known that the shortest path between two
points on the 3-sphere S3 lies on a great circle. Moreover,
two points on S3 may be joined by a path that achieves the
shortest length. Since path lengths in SO(3) are equal (up to
a scale factor depending on the metric being used) to path
lengths on the quaternion sphere, it follows that any two
points in SO(3) may also be joined by a minimum length
geodesic. This result, obvious enough in SO(3), is true un-
der very general conditions, as expressed in the Hopf-Rinow
theorem (see Theorem 7.1 in [61] for a very general ver-
sion), which states that if a length-metric space (M,d) is
complete and locally compact then any two points in M can
be connected by a minimizing geodesic.

We now consider more explicitly the shape of SO(3)-
geodesics as they appear in our main representations of
SO(3) as a group of rotation matrices, the quaternion sphere
and angle-axis space.

4.1.1 Geodesics in the quaternion sphere.

As we observed above, the great circles on S3 are
the geodesics. For varying t, the curve γ(t) =

(cos(tθ/2), sin(tθ/2)v̂) is the great circle in the quater-
nion sphere S3 passing through the points (1,0) and s =

(cos(θ/2), sin(θ/2)v̂). Multiplication by a quaternion r rep-
resents a rigid transformation of the quaternion sphere. Con-
sequently the curve r ·γ(t) is also a great circle on S3, pass-
ing through r and r · s. This is the general form of a quater-
nion great circle; any geodesic in S3 is of the form

γ(t) = r · (cos(tθ/2), sin(tθ/2)v̂).
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Fig. 3 Geodesics in angle axis space: (a) geodesics lying in the ball
Bπ; (b) Geodesics extended in angle-axis space form closed curves.
These curves correspond via a one-to-one mapping with the great cir-
cles on the quaternion sphere.

4.1.2 Geodesics in angle-axis space.

The curve in angle-axis space corresponding to the geodesic
γ(t) = (cos(t/2), sin(t/2)v̂) in the quaternion sphere is the
curve given by tv̂, namely a straight line through the origin.

It is useful to understand what arbitrary geodesics in
angle-axis space look like. (It should be understood that
when we talk of geodesics in angle-axis space or another
representation of rotations, we mean curves that correspond
to geodesics in SO(3)).

The shape of geodesics in angle-axis space is shown in
fig 3 which shows sample geodesics lying in some plane
in angle-axis space. Geodesics through the origin (iden-
tity rotation) will be radial lines in angle-axis space. Other
geodesics will be curves (neither circles nor ellipses) pass-
ing through any pair of opposite points on the boundary of
Bπ , both these points representing the same rotation.

It is interesting to see (fig 3) that geodesics can be ex-
tended beyond the ball Bπ , representing rotations through
angles greater than π. As the figure shows the geodesics will
close to form closed curves in angle-axis space.

4.1.3 Geodesics in SO(3) ⊂ GL(3)

Mapping the geodesic r · (cos(t/2), sin(t/2)v̂) we obtain
the geodesic in SO(3), namely R exp[tv̂]×.

The shortest path in SO(3) from rotation R to S is given
by

γ(t) = R exp(t log(R>S)), (12)

which is a one-parameter family of rotations about a single
axis.

4.1.4 Geodesics and the Gnomonic Projection

The gnomomic projection, described in section 3.4 has
the particularly pleasing property that it maps geodesics
in SO(3) to geodesics (straight lines) in R3. As noted, an
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d∠(S, R) = θ

dchord(S, R) = 2
√
2 sin(θ/2)

dquat(S, R) = 2 sin(θ/4)

d2∠(S, R) = θ2

d2chord(S, R) = 8 sin2(θ/2) = 4(1− cos(θ))

d2quat(S, R) = 4 sin2(θ/4) = 2(1− cos(θ/2))

d̂∠(S, R) = θ

d̂chord(S, R) =
√
2 θ

d̂quat(S, R) = θ/2

Table 2 Relationship between the different metrics on SO(3).

SO(3)-geodesic, when represented in the quaternion sphere
is just a great circle. Such a great circle is formed by the in-
tersection of a 2-dimensional plane (linear space) in R4 with
the unit sphere. Therefore, the projection of a great circle
from the centre of the sphere is just a 2-dimensional plane.
When intersected with the tangent plane at some point on
the sphere (the centre of the gnomonic projection), it forms
a straight line.

This correspondence of geodesics with straight lines in
R3 allows us to reason about geodesics in SO(3), and also
gives us a simple intuitive understanding of these geodesics.

4.1.5 Summary

We will chiefly be interested in three distance functions and
their squares. These are as follows.

1. Angular distance d∠(S, R), equal to the angle θ belong-
ing to the rotation SR>. When equipped with this met-
ric, SO(3) is a length metric space. This seems to be the
most natural metric for SO(3).

2. Chordal distance dchord(S, R), the distance inherited
from the embedding of the rotations in R3×3 = R9,
equipped with the usual Euclidean metric.

3. Quaternion distance dquat(S, R) induced by the identi-
fication of rotations with points on the unit quaternion
sphere, with metric inherited from R4.

The intrinsic metrics induced by these three metrics are,
apart from constant scale factors, all the same and equal to
the angle metric. The scale differences between the three
intrinsic metrics are a source of potential confusion and ir-
ritation. Table 2 gives the values of the different metrics in
terms of the angular distance.

The different induced intrinsic metrics d̂ determine the
length of paths in rotation space, including the length of
geodesics. Because of the differences in scale the length of
paths is ambiguous. To settle this, we choose the angle met-
ric as being the standard and most natural metric

– When we talk of length of paths or distances in rotation
space, we mean path length or distance under the angle
metric.

In addition, we will frequently refer to angular distance be-
tween two rotations as the geodesic distance, the length
along the shortest geodesic path from one to the other.

4.2 The Cosine Rule in SO(3).

In planar geometry, the cosine rule states that c2 = a2+b2−
2ab cos(C), where a, b, and c are the sides of a triangle and
C is the angle opposite c. We wish to have a similar formula
for geodesic triangles in SO(3).

Proposition 2 Let a, b and c be the lengths of three geodesic
line segments in SO(3), forming a triangle with vertices A, B
and C. If c is the length of the smaller geodesic arc between
A and B, then

cos(
c

2
) =

∣∣∣∣cos(
a

2
) cos(

b

2
) + sin(

a

2
) sin(

b

2
) cos(Ĉ)

∣∣∣∣ , (13)

where Ĉ is the angle at vertex C.

Notes. This rule is true whether a and b are the shorter
geodesic lengths or not, as long as the angle Ĉ is measured
between the two corresponding geodesic arcs meeting at C.
Note also that the length of the longer geodesic arc c′ be-
tween A and B satisfies cos(c′/2) = − cos(c/2).

We assume without loss of generality that C is the iden-
tity rotation and consider the representation of the rotations
in angle-axis space, with a v̂ and b ŵ being the representa-
tions of A and B respectively. Here v̂ and ŵ are unit vectors.
The geodesic arcs from C to A and B correspond to the radial
line segments from the origin to a v̂ and b ŵ respectively,
and Ĉ is simply the angle between these line segments at the
origin, so cos(Ĉ) = 〈v̂, ŵ〉.

The required value c is simply the angular distance
between rotations A and B. This may be computed using
quaternion multiplication. Let a = (cos(a/2), v̂ sin(a/2)),
and b = (cos(b/2), ŵ sin(b/2)) be the quaternion represen-
tations of A and B. Calculating in quaternions

a·b−1 = (cos(a/2) cos(b/2)+sin(a/2) sin(b/2) 〈v̂, ŵ〉 , . . .)

where we do not need to compute the second part of the
quaternion. The required formula for cos(c/2) now follows
directly from (5).

5 Single Rotation Averaging

We now have the machinery to be able to consider each of
the rotation averaging problems described in section 1. First,
we consider (single) rotation averaging in SO(3) under the
various different metrics of interest. Given n rotations Ri,



14

the problem is to find the rotation R that minimizes the cost
function

C(R) =

n∑
i=1

d(Ri, R)p , (14)

where d is one of our metrics, and p = 1 or 2.
In this section, we will analyze the convexity of C(R) on

SO(3) and give convergent algorithms for the various met-
rics. The reader unfamiliar with the concept of (geodesic)
convexity on Riemannian manifolds is referred to the ap-
pendix. It also contains a detailed discussion of weak con-
vexity, an essential generalization of convexity that allows
for larger domains of convexity.

5.1 The Geodesic and Quaternion Means

For the geodesic (angle) metric, the associated L2-mean
is usually called the Karcher mean [26] or the geometric
mean [57]. A necessary condition [57, (3.12)] for R to be
a d2∠-mean of {R1, . . . , Rn} is given by

1

n

n∑
i=1

log(R>Ri) = 0. (15)

For the L2 geodesic or quaternion metrics, an individual
term d2(R, Ri) in (14) is strictly convex as a function of R on
an open ball B̊(Ri, π), and hence the cost function C(R) is
strictly convex on any connected component of the intersec-
tion of the open balls B̊(Ri, π). In general, the intersection
of open balls consists of several components, as shown in
proposition 11 in the appendix. A given open ball B̊(Ri, π)

consists of the whole of SO(3), except for the plane consist-
ing of rotations at angular distance π from Ri. It follows that
the total cost function (14) is strictly convex except on the
union of these planes. This, and a little more is stated in the
following theorem.

Theorem 3 Let d(·, ·) be the geodesic or quaternion metric
on SO(3). Given rotations Ri, i = 1, . . . , n, the cost func-
tion C(R) =

∑n
i=1 d(Ri, R)2 is strictly convex, except on the

union of planes

Πi = {S ∈ SO(3) | d∠(Ri, S) = π}

in the following sense. These sets Πi divide SO(3) into at
most

(
n
3

)
+n regions whose interior is weakly convex. C(R)

is strictly convex on the interior of each of these regions and
is non-differentiable on the boundary, that is, on the union
of the sets Πi. The cost function C(R) has at most one min-
imum on each of the regions and hence there are at most(
n
3

)
+ n minima.

Proof. Each individual cost function d(Ri, R)2 is strictly
convex on the open ball B̊(Ri, π). Since each B̊i(Ri, π)

is weakly convex, their intersection consists of at most(
n
3

)
+n weakly convex components by proposition 11. Each

d(Ri, R)2 is strictly convex on each such component. Hence
their sum is strictly convex, and has a unique minimum on
each component (by proposition 20). The proof will be com-
pleted by showing that C(R) cannot have a minimum on the
set SO(3) \

⋂n
i=1 B̊(Ri, π) =

⋃n
i=1Πi.

Consider a point S in
⋃n
i=1Πi and choose a geodesic

through S that does not lie on any of the planesΠi. For those
i such that S ∈ Πi, the function d(Ri, S)2 restricted to the
geodesic has an upward cusp at S, whereas for those i such
that S 6∈ Πi the same function is smooth. The sum of two
such functions cannot be a minimum, so S is not a minimum
of C(R). This completes the proof. ut

Theorem 3 indicates that SO(3) may be divided into
a large number of individual weakly convex regions, each
with its own local minimum. It may seem, therefore, that the
problem of finding the global minimum is quite challeng-
ing. The following observation shows that if the rotations
Ri are not too widely separated, one of the weakly convex
regions may be quite large. The following result follows di-
rectly from theorem 3 and proposition 19 in the appendix.
See there for the notion of convex basin B\.

Theorem 4 Let d(·, ·) be the geodesic or quaternion met-
ric on SO(3). Given rotations Ri, i = 1, . . . , n, all ly-
ing in a weakly convex set B, the cost function C(R) =∑n
i=1 d(Ri, R)2 is strictly convex on the convex basin B\,

and hence has at most a single isolated minimum on B\.

The most important case is when B is convex, in which
case B\ is a weakly convex set containing B (proposi-
tion 19). If B is an open ball B̊(S, r) with r ≤ π, then
B\ = B(S, π − r), so if r is small, then the cost function
is strictly convex on a large ball. The special case of the
geodesic metric and r = π/2 is classical, see Theorem 3.7
in [26], and we restate it in the following corollary.

Corollary 1 Let Ri be rotations satisfying d∠(Ri, S) < π/2

for some rotation S and for all i, then

C(R) =

n∑
i=1

d∠(Ri, R)2

is strictly convex on B(S, π/2), and hence has a single iso-
lated minimum on that set.

Note that in general we do not claim that the cost func-
tion does in fact have even a local minimum on B\. In fact
it is not difficult to find an example where there is no such
minimum, in the case where B is weakly convex, but not
convex. It will be shown in the next section however, that if
B is convex, then a unique local minimum, in fact the global
minimum of the cost function lies in B.
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5.2 The Global Minimum

In the previous section, we identified the regions on which
the geodesic or quaternionL2 cost functions are strictly con-
vex, and indicated the existence of multiple possible local
minima. According to theorem 4, if the rotations all lie in
a convex set B, then the cost function is strictly convex on
B\, which is a weakly convex set containingB (according to
proposition 19). In the next theorem we give a much stronger
result, showing that in fact the global minimum of the cost
function lies in B. In fact this will be shown in a more gen-
eral framework that applies to all the metrics that we are
considering in this paper, and more.

Theorem 5 Let B be a convex subset of SO(3) and let the
rotations Ri, i = 1, . . . , n be contained in B. Let di(R)

be any strictly monotonic function of (geodesic) distance
d∠(Ri, R). Then any global minimum in SO(3) of the func-
tion

Cf (R) =

n∑
i=1

di(R)

lies in B.

By strictly monotonic here, we mean that di(R) < di(R
′)

if and only if d∠(Ri, R) < d∠(Ri, R
′). Examples include any

of the Lp distance metrics we consider in this paper (in-
cluding those listed in theorem 11), also weighted distances
di(R) = wi d

p
∠(Ri, R) for weights wi > 0, as well as robust

functions such as Huber distance and others ([32]). In all
these cases, the theorem shows that if rotations Ri all lie in
a convex set, then their “mean” under any of these “general-
ized distance” functions also lies in the convex set.

Furthermore, it was shown in theorem 4 that if di(R) is
the L2 geodesic or quaternion metric there exists a single
local, and hence by this theorem a unique global minimum
in B. For the other metrics listed in theorem 11, the present
theorem holds, but as will be seen later, there is not neces-
sarily a unique global minimum in B.

If our intention were to prove this theorem in Rn, then
the result would be intuitively obvious and the proof simple.
One could argue as follows. If X is a point not lying in a
closed convex set B′, then there exists a plane Π separating
X from B′. Let N be a normal vector to the plane, pointing
from X perpendicular and towards the plane Π . Then the
distance from X to any point Yi inB′ decreases in the direc-
tion N. Therefore, X can not be a minimum of

∑n
i=1 di(X),

for any increasing function di(X) of the distance from X to
Yi. Since the convex hull of the rotations Ri is a closed con-
vex set, this argument shows that the minimum must lie in
this convex hull, and hence in any convex set B containing
all the Ri. This proof does not work in SO(3), since the dis-
tance of X to points in B′ does not necessarily decrease in
the direction N.

Neither is the theorem true for rotations in a weakly con-
vex set. It is easy to find counterexamples. For instance, con-
sider the closed ball of radius 5π/6 about the identity rota-
tion and let R1 and R2 be rotations through 5π/6 and−5π/6

about some axis, both lying in this ball. However, the ro-
tation R, through angle π about this axis is the L2-mean,
minimizing the sum of squared distances to R1 and R2, since
d∠(Ri, R) = π/6 for i = 1, 2.

It is remarkable that there are counterexamples to this
theorem for manifolds other than SO(3), see [11], although
it has been shown to hold for the special case of a set of
points that are contained within a small ball. More specifi-
cally, Le [47] studied geodesic L2 averaging on general Rie-
mannian manifolds and showed the existence of a unique
global L2-mean of a set of points contained in an open ball
of radius at most π/4 (this is the numerical value on SO(3)

of the general bound given in Le’s paper). This result was
improved by Afsari [2] who achieved a radius bound of π/2
(on SO(3)) and derived analogous results for general Lp-
means. Afsari also studied convex sets but only those con-
tained in a small ball. Nevertheless, the theorem is true for
all convex sets in SO(3).

Theorem 5 will be proved as an easy consequence of the
following two lemmas. Proofs are provided in the appendix.

Lemma 1 Theorem 5 is true in the special case where B is
a closed convex set and the rotations Ri lie in the interior of
B.

Lemma 2 (Pumping lemma.) Let B be a closed convex
subset of SO(3) then there exists a larger closed convex sub-
set B̂ of SO(3) such that all points of B lie in the interior of
B̂. Furthermore, the intersection of all such sets B̂ is equal
to B.

In a sense, we may pump up B, like a balloon to form a
larger closed convex set. (We recognize that the term “pump-
ing lemma” is used in the literature for an entirely different
result, but there should be no confusion.)

The theorem follows directly from these two results. In-
deed, if rotations Ri; i = 1, . . . , n lie in a convex set B, then
their convex hull H ⊂ B exists and is closed. In this case,
the pumping lemma shows that there exists a closed convex
set B̂ containing the points Ri in its interior. Then lemma 1
will hold for B̂, guaranteeing that the mean of the Ri lies in
B̂ for all such B̂ containing H . However, by the second part
of the pumping lemma, the mean must lie in H , and hence
in B.

5.3 The Geodesic L2-mean

The rotation minimizing C(R) =
∑n
i=1 d∠(R, Ri)

2 is also
known at the Karcher mean of the rotations. Manton [53] has
provided a convergent algorithm to find this mean, where the
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inner loop of the algorithm is computing the average in the
tangent space, and then projecting back onto the manifold
SO(3) via the exponential map. Note that Condition (15) is
a necessary condition for R to minimize this cost function.
The algorithm is as follows.

1: Set R := R1. Choose a tolerance ε > 0.
2: loop
3: Compute r := 1

n

∑n
i=1 log

(
R>Ri

)
.

4: if ‖r‖ < ε then
5: return R

6: end if
7: Update R := R exp(r).
8: end loop

Algorithm 1: Computing the geodesic L2-mean on SO(3)

In fact, this algorithm is shown to be an instance of sim-
ple Riemannian gradient descent (with constant step-size 1)
and it is shown that if all the rotations lie in a closed ball of
radius δ < π/2, then an implementation with arbitrary nu-
merical accuracy would terminate within a d∠-distance of
ε tan(δ)/δ of the mean [53, Theorem 5]. See also [48] for
similar results.

Our convexity results imply that if the rotations lie in
an arbitrary convex set B, then a gradient descent algorithm
with properly chosen step-size will converge to the global
minimum [62].

Higher order algorithms. Second and other higher or-
der algorithms for means on manifolds appear to be much
less studied than first order algorithms like gradient descent.
For a Newton-type algorithm to compute the Karcher mean
see [45]. While a Riemannian generalization of the popular
BFGS method is well known and has been stated specifi-
cally for compact Stiefel manifolds in [67], it appears not to
have been applied to the special case of rotation averaging.
The same holds for conjugate gradient [16].

There does not appear to be any non-iterative algorithm
to solve the geodesic L2 single rotation averaging problem.

5.4 The Geodesic L1-mean

Another interesting mean with respect to the angular dis-
tance d∠ is the associated L1-mean, that is, the global mini-
mum of the function

C(R) =

n∑
i=1

d∠(Ri, R). (16)

We might assume the L1-mean to be more robust to errors
than the corresponding L2-mean. See [12] for some evi-
dence for this assertion.

However, this minimizer is not always unique. Take for
example any geodesic γ : I → SO(3) of length less than
π/2 and take R1 = γ(t1) and R2 = γ(t2), where t1, t2 ∈ I .
Then any point γ(t), t ∈ [t1, t2] on the geodesic yields the

same minimal cost C(γ(t)) = C(γ(t1)). Note further that
C(R) is not differentiable at the points R = Ri, i = 1, . . . , n.
Hence not all of the minimizers are critical points of C(R)

in this example.
While theorem 11 merely states that the angular distance

is convex on open balls of radius π, a more careful evalua-
tion of the Hessian (see Table 3) and its eigendirections re-
veals that in fact the angular distance is strictly convex along
any geodesic, except for the geodesics that pass through the
reference point Ri. Thus, unless all the rotations Ri lie on
a single geodesic, the cost function will be strictly convex
along any geodesic. This means that all the theorems from
the previous section apply under this additional condition,
and we get the following strong result.

Theorem 6 Let Ri be rotations not all lying on a single
geodesic. Let S = {R1, . . . , Rn}. Then, the cost function
C(R) =

∑n
i=1 d∠(Ri, R) is differentiable everywhere in S\

except at the points Ri. It is strictly convex everywhere on S\

and has at most one local minimum in the closure of each of
the
(
n
3

)
+ n connected components of S\.

If all Ri lie in a convex set B then C(R) is strictly convex
on the weakly convex set B\ containing B, and the unique
global geodesic L1-mean lies in B.

A practical algorithm. We propose a Riemannian gradient
descent algorithm with geodesic line search to compute the
L1-mean. A detailed derivation of the gradient

∇C(R) = −R
n∑
i=1

log(R>Ri)

‖ log(R>Ri)‖
(17)

is given in the appendix.
The algorithm starts at some initial point R; how this is

chosen is discussed below. It then iteratively makes steps in
the direction of the downhill gradient, using line search to
find the minimum in the gradient direction, and continuing
until convergence.

The search direction is computed using (17). Note that
this formula is invalid if R is equal to one of the Ri – the
cost function is not differentiable at this point. The follow-
ing observation allows us to compute the downhill gradient
direction in this case.

Let R = Ri, equal to one of the rotations being averaged,
and define

r =
∑
Ri 6=R

log(R>Ri)/‖ log(R>Ri)‖, (18)

namely the gradient formula (17), omitting the term involv-
ing Ri. If ‖r‖ ≤ 1, then R is a local minimum of the cost
function (hence the global minimum if all Ri lie in a con-
vex set and not all on a single geodesic, according to theo-
rem 6). Otherwise, r is a vector in the direction of most rapid
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decrease of (17), so we may use r so defined as the search
direction.

This observation is easily verified, since the term involv-
ing Ri missing from (18) corresponds to the gradient of the
function d∠(R, Ri). The gradient of this function points ev-
erywhere radially away from Ri, with magnitude 1.

If all the rotations Ri lie in a convex set B, we define
an initial rotation R(0) = argmin{Ri} C(Ri) and set α(0) =

C(R(0)). Then the sublevel set

S(α(0), B) = {R ∈ B |C(R) < α(0)}

is a convex set on which the cost function is differentiable
(since it does not contain any Ri) and convex, and achieves
its global minimum. If we start the iteration by setting R

equal to R(0) then either this is the required minimum or
else the first step in the direction (18) will place us inside
the sublevel set, and no future step will take us to (or pass
through) any of the rotations. This will allow us to compute
gradients without fear, and use gradient-based line search
algorithms if desired. Convergence follows directly from [1,
Corollary 4.3.2].

The complete algorithm is as follows.

1: Choose a tolerance ε > 0.
2: Set R := argmin{Ri} C(Ri).
3: Compute r :=

∑
Ri 6=R log(R>Ri)/‖ log(R>Ri)‖.

4: if ‖r‖ ≤ 1 then
5: return R

6: else
7: loop
8: Compute s∗ := argmins≥0 C(R exp(sr)).
9: if ‖s∗r‖ < ε then

10: return R

11: end if
12: Update R := R exp(s∗r).
13: Compute r :=

∑n
i=1 log(R>Ri)/‖ log(R>Ri)‖.

14: end loop
15: end if

Algorithm 2: Computing the geodesic L1-mean of a set of
rotations Ri. If all rotations lie inside a convex set B, then
this algorithm is guaranteed to converge.

Possibly, the easiest way to implement the line search
in Step 8 is a Fibonacci search on a large enough interval,
though gradient-based search is also a possibility. We sug-
gested initializing at the best rotation Ri, but this may be
expensive with many rotations, and is probably not neces-
sary, as long as (18) is used to compute the search direction
in the case where R is equal to one of the Ri. An attractive
alternative is to initialize the algorithm with the geodesic
L2-mean, which is within the convex basin containing the
global minimum, if all rotations Ri lie in a convex set B.

5.4.1 Weiszfeld Algorithm

The algorithm 2 requires a line search to determine the step
length in the descending gradient direction. It is possible to
give a closed-form step length that still guarantees conver-
gence. The algorithm is derived from the classical Weiszfeld
algorithm [81] that finds the geometric median (L1-mean) of
points in Rn. The application of the Weiszfeld algorithm to
the geodesic L1 averaging problem was shown in [27]. It
differs from algorithm 2 only in the method of determining
the step length, s.

The Weiszfeld algorithm in Rn is a gradient descent al-
gorithm. Given points xi ∈ Rn, the downhill gradient of the
cost at a given point y is the sum of the unit vectors directed
from y to each of the points xi. Given a current estimate
yt, the next estimate of the minimum in a gradient descent
algorithm is given by

yt+1 = yt + λ

n∑
i=1

xi − yt

‖xi − yt‖
,

where λ > 0 is some value controlling the step-size
along the gradient direction. The choice of step size in the
Weiszfeld algorithm is set to be λ =

∑n
i=1 ‖xi − yt‖−1.

Writing sti = ‖xi − yt‖, we then find that

yt+1 = yt +

∑n
i=1(xi − yt)/sti∑n

i=1 1/sti
(19)

=

∑n
i=1 xi/s

t
i∑n

i=1 1/sti
. (20)

As long as the intermediate iterates yti do not concide with
any of the points xi, this algorithm will provably converge to
the geometric median of the points [81]. Convergence may
not be fast. If in fact yt coincides with some point xi, then
the algorithm will get stuck at this point. A simple strategy
in this case is to displace the iterate yt slightly and continue.
It may easily be shown that successive iterates will “escape”
from some point xi, not the minimum, by approximately
doubling the distance at each iteration.

Geodesic median in SO(3). We now consider the problem
of computing the L1 geodesic mean in SO(3). To be able to
apply the Weiszfeld algorithm, we transition back and forth
between SO(3), and its tangent space centred at the current
estimate. The following lemma shows that we can use the
geometric median in the tangent space to find the geodesic
median in rotation space SO(3).

Lemma 3 If S is the geodesic median of rotations Ri, then
the origin 0 ∈ R3 is the geometric median of the points
logS(Ri). Conversely, if S and all Ri lie in a convex set in
SO(3), and 0 is the geometric median of the points logS(Ri),
then S is the geodesic median of the Ri.
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Proof. If S is the geodesic median of the Ri, then the gradi-
ent of the cost function, C(S) =

∑n
i=1 d∠(Ri, S) is zero at

S. The gradient is defined as a vector in the tangent space at
S, which may be computed to be the vector

∇C = −
n∑
i=1

logS(Ri)

‖ logS(Ri)‖
.

Writing ri = logS(Ri), we see that this gradient vector is
also the gradient of the cost C ′(s) =

∑n
i=1 ‖ri − s‖ at s =

0 ∈ R3. In other words, s = 0 is a critical point of C ′.
However, since this cost function is convex in R3, it follows
that s = 0 is a minimum of the cost function, and so s = 0

is the geometric median of the ri in R3.
On the other hand, if s = 0 is the minimum of C ′(s),

then by the same argument the gradient of C is zero at S, so
S is at least a critical point of the cost. However, it is not true
that the cost function C is convex, or has a single minimum
on the whole of SO(3). For this reason, we need the condi-
tion that all Ri lie in a convex set (theorem 5). In this case,
the cost C is convex in the set and the global minimum of C
lies within the ball, and hence at S. ut

Given this lemma, we are led to propose an algorithm
for finding the geodesic median in SO(3), based on the
Weiszfeld algorithm on the tangent space. Given rotations
Ri ∈ SO(3), we proceed as follows.

1. Find an initial estimate S0 for the median. Such an es-
timate may already be know, or else we may take the
L2-mean of the rotations Ri as a starting point.

2. At any time t = 0, 1, . . . apply the logarithm map cen-
tred at St, to compute vi = logSt(Ri).

3. (Weiszfeld step): Set

δ =

∑n
i=1 vi/‖vi‖∑n
i=1 1/‖vi‖

4. Set St+1 = exp(δ)St.
5. Repeat steps 2 to 4 until convergence.

Thus, this algorithm may be thought of as carrying out
successive iterative steps of the Weiszfeld algorithm, each
step taking place in the tangent space centred at the current
estimate.

For computational efficiency, it is simpler to work with
the quaternion representations ri of the rotations Ri, since
mapping between quaternions and angle-axis representation
is simpler than computing the exponential and logarithm
maps. In addition quaternion multiplication is faster than
matrix multiplication. Let Q be the unit quaternions. The
mapping q : R3 → Q given by

q : θv̂ 7→ (cos(θ/2), sin(θ/2)v̂)

maps between angle-axis and quaternion representation of
a rotation. Then steps 2 to 4 of the above algorithm are re-
placed by

θiv̂i = q−1(ri · s̄t)

δ =

∑n
i=1 v̂i∑n
i=1 1/θi

st+1 = q(δ) · st

where s̄t represents the conjugate (inverse) of the quater-
nion st. A further alternative is to use the Baker-Campbell-
Hausdorff formula (see e.g. [23]) to work entirely in angle-
axis space, but this is essentially equivalent to this use of
quaternions.

As is shown in lemma 3, a stationary point of this algo-
rithm (for which St = St+1) must be the geodesic median
of the rotations Ri, provided that d∠(St, Ri) < π/2 for all i.

The Euclidean metric in a tangent space is related within
constant bounds to the angular metric in SO(3), so it is
plausible that this algorithm will converge. However, con-
vergence of this algorithm follows from the results of [20,
2]. More precisely, it was shown in [20] that if all the Ri lie
within a ball of radius π/4, the above algorithm converges
to the so-called solipsistic mean (the minimum of the cost
function within the given ball) provided that (1) not all the Ri
lie on a single geodesic, and (2) the algorithm does not step
outside that ball. Condition (2) can be shown to hold in this
setting. Alternatively, restriction (2) can be overcome using
step size control and projection techniques [83], although
this negates the conceptual simplicity of the Weiszfeld algo-
rithm. Finally, it was shown in [2] that the solipsistic mean is
in fact the global mean if all the Ri lie within a ball of radius
π/4.

5.5 The Chordal L2-mean

The cost function for rotation averaging under the L2

chordal metric is

C(R) =

n∑
i=1

dchord(Ri, R)2 , (21)

and the chordal L2-mean of a set of rotations Ri is defined
as the rotation that minimizes this cost. It is usually called
the projected or induced arithmetic mean [57,72]. As shown
in fig 2, the chordal distance metric is not convex beyond a
ball of radius π/2. Thus the squared chordal distance has
substantially different convexity properties compared to the
squared geodesic distance (theorem 11). Making the appro-
priate changes we get the following analogue to corollary 1.
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Theorem 7 Let Ri be rotations satisfying d∠(Ri, S) < π/4

for some rotation S and for all i, then

C(R) =

n∑
i=1

dchord(Ri, R)2

is strictly convex on B(S, π/4), and hence has a single iso-
lated minimum on that set.

Theorem 5, specifying possible locations of global min-
ima, applies unchanged and hence we have the following
global result.

Corollary 2 Let Ri be rotations lying in a convex set
B of radius less than π/4, then the unique global
chordal L2-mean lies in B and moreover the cost function
C(R) =

∑n
i=1 dchord(Ri, R)2 is strictly convex on some ball

B(S, π/4) ⊃ B.

There is no direct analogue of theorem 3 for the chordal
L2-mean.

A closed-form algorithm. Given this seemingly less
favourable convexity situation, compared with the geodesic
and quaternion means, it is perhaps surprising that there is
a closed-form algorithm for finding the global minimum of
(21). The solution given in [54] involves the quaternion rep-
resentation of the rotations. Let rotations Ri be given, and
let ri be chosen quaternion representations. Form the ma-
trix A =

∑n
i=1 riri

>, which is a 4 × 4 symmetric matrix.
Note that it does not depend on the choice between r and
−r. Now, let s∗ be the eigenvector of A corresponding to
the maximum eigenvalue. We claim that s∗ is the quaternion
representation for the minimum of the cost (21).

Let s be a quaternion, and cos(αi) = 〈ri, s〉. Then

s>As =

n∑
i=1

cos2(αi) =

n∑
i=1

cos2(θi/2),

where θi = d∠(Ri, S), cf. section 4. Then s∗ is the vector
that maximizes the left-hand side of this equation. Thus,

s∗ = argmax
s

n∑
i=1

cos2(θi/2)

= argmin
s

n∑
i=1

sin2(θi/2)

= argmin
s

n∑
i=1

dchord(Ri, S)2 .

Note that by using quaternions, we obtain the chordal mean,
not the quaternion mean. This algorithm will fail to give a
unique solution only when the matrix A has repeated maxi-
mum eigenvalues.

Closed form using rotations. A full characterization of
all the minima of the cost function (21) can also be given in
terms of the matrix representations of the rotations [72]. Let

Ce =

n∑
i=1

Ri ∈ R3×3

Let 〈·, ·〉 represent the Frobenius inner product (sum of the
elementwise products of two matrices). Then, if Ri and S are
rotations,
n∑
i=1

dchord(Ri, S)2 =

n∑
i=1

‖Ri − S‖2F

=

n∑
i=1

〈Ri − S, Ri − S〉

=

n∑
i=1

(〈Ri, Ri〉 − 2 〈Ri, S〉+ 〈S, S〉)

= K − 2 〈Ce, S〉 ,

where K is a constant (independent of S). Therefore,

argmin
S∈SO(3)

n∑
i=1

dchord(Ri, S)2 = argmax
S∈SO(3)

〈Ce, S〉

= argmin
S∈SO(3)

‖Ce − S‖F

Thus minimizing the L2 chordal cost function is equivalent
to finding the closest matrix S to Ce under the Frobenius
norm.

The matrix S that we seek is obtained using the Singu-
lar Value Decomposition. Let Ce = U D V> where the di-
agonal elements of D are arranged in descending order. If
det(UV>) ≥ 0, then set S = UV>. Otherwise set S =

U diag(1, 1,−1)V>. The matrix S so obtained is the closest
rotation to Ce, and hence the required rotation minimizing
(21).

5.6 The Chordal L1-mean

The chordal L1 mean of a set of rotations Ri is defined as
the minimum of

C(R) =

n∑
i=1

dchord(Ri, R) =

n∑
i=1

2
√

2 sin(θi/2)

where θi = d∠(Ri, R) denotes the angle of the rotation RiR>.
Although the chordal distance is not convex (theo-

rem 11), theorem 5 still applies, constraining the possible
global minima in case the Ri lie in a convex set. How-
ever, because of non-convexity, we can not assert that mul-
tiple global minima do not exist in this case. In fact, when
n = 2, or when the rotations all lie on or even near a sin-
gle geodesic, it is easy to find cases where multiple local
minima exist, centred on the individual rotations.
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Since the L1 metric is not differentiable for R = Ri, the
shape of the cost function C(R) is a little complex. Never-
theless, we can easily compute the gradient

∇C(R) = −
√

2 · R
n∑
i=1

log
(
R>Ri

) cos(θi/2)

θi
,

see the appendix for the details. This formula can be viewed
as a weighted version of the gradient for the geodesic L1-
mean where the weights are

√
2 cos(θi/2).

We propose a Riemannian gradient descent algorithm
with geodesic line search to compute the chordal L1-mean,
or at least a critical point of the cost function C(R).

1: Choose a tolerance ε > 0.
2: Set R := d2

chord-mean({R1, . . . , Rn}).
3: loop
4: Compute r :=

√
2
∑n
i=1 log(R>Ri) cos(θi/2)/θi.

5: Compute s∗ := argmins≥0 C(R exp(sr)).
6: if ‖s∗r‖ < ε then
7: return R

8: end if
9: Update R := R exp(s∗r).

10: end loop
Algorithm 3: Computing the chordal L1-mean on SO(3)

As long as we avoid the points of non-differentiability,
this algorithm should converge, at least to a local minimum.

5.7 The Quaternion L2-mean

The quaternion L2-mean of a set of rotations Ri is defined
as argminR∈SO(3)

∑n
i=1 dquat(Ri, R)2. Since the squared

quaternion distance enjoys the same convexity properties as
the squared angular distance (theorem 11), applying the pre-
vious theorems we get the following strong global existence
and uniqueness result.

Theorem 8 Let Ri be rotations lying in a convex set B
of radius less than π/2, then the unique global quater-
nion L2-mean lies in B and moreover the cost function
C(R) =

∑n
i=1 dquat(Ri, R)2 is strictly convex on some ball

B(S, π/2) ⊃ B. In the general case, C(R) is strictly convex,
except on the union of sets

Πi = {S ∈ SO(3) | d∠(Ri, S) = π}.

It is non-differentiable on the union of the sets Πi, and has
at most one minimum on each of the

(
n
3

)
+ n closed regions

bounded by the Πi.

The following theorem shows how the quaternion L2-
mean may be computed.

Theorem 9 Let Ri be rotations satisfying d∠(Ri, S) < π/2

for some rotation S and for all i. Let s be a quaternion rep-
resentation of S and let ri be the quaternion representation
of Ri chosen with sign such that ‖ri − s‖2 is the smaller of

the two choices. Then the quaternion L2-mean of the ro-
tations Ri is represented by the quaternion r̄/‖r̄‖, where
r̄ =

∑n
i=1 ri.

Proof. Let T be a rotation and t be a quaternion represen-
tation. The quaternion distance to a rotation Ri is given by
‖t−ri‖2 or ‖t+ri‖2, whichever is smaller. Thus, the mean
of the rotations Ri is given by the quaternion t that mini-
mizes
n∑
i=1

‖t− εiri‖22

over t and all choices of εi = ±1. First, let us assume that
this minimum is achieved when all εi = 1. Let αi equal the
angle between t and ri as vectors in R4. Then, the quater-
nion mean is found by minimizing

n∑
i=1

‖t− ri‖22 =

n∑
i=1

4 sin2(αi/2) =

n∑
i=1

2(1− cos(αi)) .

This is equivalent to maximizing

n∑
i=1

cos(αi) =

n∑
i=1

〈t, ri〉 =

〈
t,

n∑
i=1

ri

〉
,

where 〈t, ri〉 represents the inner product of t and ri as
vectors in R4. However, since t must be a unit vector, this
quantity is clearly maximized by setting t̂ =

∑n
i=1 ri and

t = t̂/‖t̂‖2. Thus, we have proved the required result, under
the assumption that all the signs εi were positive. Denote the
vector t̂ defined in this way as t̂0 and note that ‖t̂0‖22 equals
the associated sum of angle cosines cos(αi).

Now, assume that some εi are negative, and so

n∑
i=1

dquat(T, Ri)
2 =

∑
i∈S+

‖t− ri‖2 +
∑
i∈S−

‖t + ri‖2

where S+ and S− are the corresponding division of
{1, . . . , n} into two parts. By the same argument as before,
this quantity is maximized with respect to t by setting

t̂1 =
∑
i∈S+

ri −
∑
i∈S−

ri = r+ − r− and t = t̂1/‖t̂1‖2 ,

where r+ and −r− are the resultants of the two sets of vec-
tors. On the other hand, the original t̂0 = r+ + r−. The
proof will be completed by showing that ‖r+ + r−‖2 >

‖r+ − r−‖2, for then ‖t̂0‖22 > ‖t̂1‖22 and the sum of angle
cosines is maximized when all the εi = 1.

Now, since each ri lies within an angle π/4 of s (remem-
ber s) by hypothesis, so must both r+ and r−. This means
that r+ and r− lie within an angle of π/2 of each other. On
the other hand, r+ and −r− differ in direction by more than
π/2. It follows that ‖r+ + r−‖2 > ‖r+ − r−‖2, and the
proof is complete. ut
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5.8 The Quaternion L1-mean

The quaternion L1-mean is defined as the minimum of the
cost function

C(R) =

n∑
i=1

dquat(Ri, R) = 2

n∑
i=1

sin(θi/4)

where θi = d∠(Ri, R) denotes the angle of the rotation RiR>.
We have

∇C(R) = −1

2
R

n∑
i=1

log
(
R>Ri

) cos(θi/4)

θi
.

As with the chordal L1-mean, we do not have any
uniqueness result due to a lack of convexity. The best we
can offer is again a Riemannian gradient descent algorithm
with geodesic line search to compute critical points of C(R).
We leave it to the reader to make the obvious modifications
to algorithm 3.

6 The Conjugate Rotation Averaging Problem

The general form of the conjugate averaging problem is as
follows. Let (Ri, Li); i = 1, . . . , n be pairs of rotations. The
conjugate averaging problem is to find the rotation S that
minimizes

C(S) =

n∑
i=1

dp(S−1RiS, Li) . (22)

The motivation for this problem is that we may have esti-
mates Li and Ri of the motion of left and right cameras ex-
pressed in different coordinate frames, local to the two cam-
eras. We wish to find the rotation of one coordinate frame
to the other. Under noise-free conditions, the relationship is
Li = S−1RiS, where S expresses the rotation of the right
coordinate frame with respect to the left one.

Under different distance metrics, this problem has dif-
ferent solutions. In this section we will give algorithms for
some of the various metrics discussed before.

Minimal configurations for conjugate averaging. The
first question is, how many pairs (Ri, Li) are needed in or-
der to estimate S.

If only one rotation pair (R, L) is given, then there
is not a unique solution. Let S∗ be a rotation that mini-
mizes dp(S−1RS, L) and define S(t) = exp[tr]×, where r

is the axis of rotation of R. Then S(t) commutes with R,
so dp(S∗−1S(t)

−1
RS(t)S∗, L) = dp(S∗−1RS∗, L) for all t.

Consequently S(t)S∗ is also a minimizer of the cost func-
tion for all t. The rotations that minimize the cost lie along
the geodesic exp[tr]×S

∗.

If there are two rotation pairs, then the optimum must lie
on the intersection of two geodesics in general, and these in-
tersect at a single point. Hence, in general, two rotation pairs
are sufficient to give a unique solution, unless the rotations
Ri are about the same axis.

Alignment of rotation axes. As we shall see, the solution
to the conjugate rotation averaging problem is closely re-
lated to alignment of the axes of the rotations. Thus, let r̂i
and l̂i be the rotation axes of the rotations, then we may con-
sider the problem of finding a rotation S such that Ŝli = r̂i.
An optimal rotation to solve this problem is given in [33].

There is, however, a difficulty with this approach,
namely the ambiguity between a rotation axis and the op-
positely directed axis, between r̂i and −r̂i. A rotation may
be represented by a rotation through an angle θ about an axis
r̂ or as a rotation through an angle 2π−θ about the opposite
axis−r̂. One may resolve this issue by choosing the rotation
angle to not exceed π. However, there are still two choices
of the axis in the case when the rotation is through an angle
π. In addition, in the case of error in the measurement of ro-
tations through an angle close to π, the wrong axis may be
chosen. In this case no rotation will closely align the rotation
axes r̂i and l̂i.

This ambiguity may be resolved under certain reason-
able conditions.

1. There exists a value θmax < π such that ∠(Ri) ≤ θmax

and ∠(Li) ≤ θmax for all i.
2. For the “true” solution S being sought, the maxi-

mum error for any of the rotations Ri is δmax. Thus,
d∠(S−1RiS, Li) ≤ δmax when S is the required solution.
This condition is reasonable if we assume that the rota-
tions Ri and Li are all measured with a maximum angle
error of δmax/2.

3. θmax + δmax/2 ≤ π.

Thus, we are assuming that the errors plus angles are not too
large. In particular, since δmax ≤ π we see that the last two
conditions always hold if θmax ≤ π/2.

For the application we are interested in, where Ri and
Li are relative rotations between two positions of a camera,
the rotation angle of Ri can not be very large. If for instance
the rotation R between two positions of a camera approaches
π, then at least for normal cameras, there will be no points
visible in both images, and hence no way to estimate the
rotation R. Normally, the rotation R between two positions of
the camera will not exceed the field of view of the camera,
otherwise there will not be any matched points for the two
camera views (except possibly for points lying between the
two camera positions).

We make the observation that if Ri and Li are exactly
conjugate, that is, S−1RiS = Li for some rotation S, then
they have the same rotation angle. Under the conditions just
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given, the angles ∠(Ri) and ∠(Li) can not differ by more
than 2δmax.

Lemma 4 Let r = (cos(θ1/2), r̂ sin(θ1/2)) and l =

(cos(θ2/2), l̂ sin(θ2/2)) be quaternions representing rota-
tions R and L, with θi ≤ θmax < π, for i = 1, 2 (meaning
that r and l lie in the upper unit half sphere). If S is a rota-
tion satisfying the constraint

d∠(S−1RS, L) ≤ 2 sin((π − θmax)/2)

and s is either of its two quaternion representations, then
‖r · s− s · l‖2 ≤ ‖r · s + s · l‖2, and so dquat(S−1RS, L) =

‖r · s− s · l‖2.

Proof. Observe that if r = (r0, r
′), where r′ is a 3-vector

in the direction of the rotation axis, then s−1 · r · s =

(r0, S
−1r′). Thus, conjugating by s−1 does not change the

first component of the quaternion, and rotates the axis by
S−1. However, if θ is the rotation angle of R, then by hy-
pothesis, r0 = cos(θ/2) ≥ cos(θmax/2). Similarly for l, we
have l0 ≥ cos(θmax/2). Therefore,

‖s−1 · r · s + l‖2 ≥ 2 cos(θmax/2)

= 2 sin((π − θmax)/2) .

On the other hand, by hypothesis, dquat(S−1RS, L) ≤
2 sin((π − θmax)/2). It follows that ‖r · s − s · l‖2 ≤
‖r · s + s · l‖2, and dquat(S

−1RS, L) = ‖r · s − s · l‖2,
as we wished to prove. ut

6.1 The Quaternion L2-mean for Conjugate Averaging

The squared quaternion distance seems to be best suited to
this particular averaging problem. We give here an optimal
solution for the squared quaternion distance under the con-
ditions 1 – 3.

Under these conditions, we can modify the optimization
problem slightly to restrict the solution S so that the errors
are bounded in this way. Thus, our modified problem is

Minimize C(S) =

n∑
i=1

dquat(S
−1RiS, Li)

2

Subject to d∠(S−1RiS, Li) ≤ δmax for all i . (23)

where δmax ≤ 2(π − θmax).
Note that this condition may be written in terms of the

quaternion metric as

dquat(S
−1RiS, Li) ≤ 2 sin((π − θmax)/2) .

The purpose of this condition is to allow us to remove
the sign ambiguity about the quaternion representation of a
rotation and the quaternion metric.

A linear solution. We now outline a linear algorithm
for estimating the matrix S, under the squared quater-
nion distance. Let ri and li be quaternion representa-
tions of the rotations Ri and Li, chosen such that ri =

(cos(θi/2), r̂ sin(θi/2)) with θi < π. This means that the
first component cos(θi/2) of the quaternion is positive. This
fixes the choice between ri and −ri. We define li similarly.

Now, consider the equation RiS = SLi, and write it in
terms of quaternions as ri · s− s · li = 0. As before, · repre-
sents quaternion multiplication. Since quaternion multipli-
cation is bilinear in terms of the entries of the two quater-
nions involved, this gives a homogeneous linear equation
in terms of the entries of s. Stacking all these equations
into one and finding the least squares solution such that
‖s‖2 = 1, we may solve for s. This gives a simple linear way
to solve this problem. Under the conditions stated above, we
can prove that this algorithm finds the global minimum with
respect to the squared quaternion distance as follows.

The question is, what does this linear solution represent
when the equations ri ·s−s · li = 0 are not exactly satisfied.
The least-squares solution to a set of such equations will find
s that minimizes

∑n
i=1 ‖δi‖22, where δi = ri ·s−s · li. Thus,

the linear solution will minimize
n∑
i=1

‖ri · s− s · li‖22 =

n∑
i=1

d2quat(S
−1RiS, Li) .

We have used lemma 4 in this last step.

Aligning the axes. Solving this problem under the L2

quaternion metric is equivalent to simply aligning the rota-
tion axes, appropriately weighted. This gives a slightly dif-
ferent algorithm, as follows.

Let the rotations Ri and Li be represented by the quater-
nions

ri = (cos(θi/2), r̂i sin(θi/2))

and

li = (cos(φi/2), l̂i sin(φi/2)),

respectively. These quaternions are chosen such that the ro-
tation angles θi and φi are less than π. As observed previ-
ously, the quaternion corresponding to S−1RiS is

s−1 · ri · s = (cos(θi/2), S−1r̂i sin(θi/2)) .

As we showed above, minimizing
∑
i dquat(S

−1RiS, Li)
2

under the constraint that dquat(S−1RiS, Li)2 ≤ 2(π− θmax)

is equivalent to minimizing
∑
i ‖ri · s − s · li‖22. Now, it is

easily observed that∑
i

‖ri · s− s · li‖22 =
∑
i

‖s−1 · ri · s− li‖22 =∑
i

‖S−1r̂i sin(θi/2)− l̂i sin(φi/2)‖22 +K
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where K =
∑
i (cos(θi/2)− cos(φi/2))

2 does not depend
on S. The cost may therefore be minimized by finding the
rotation that best aligns the weighted rotation axes, where
the axis is weighted (multiplied) by the weight sin(θi/2)

or sin(φi/2), respectively. Note that in this formulation, the
conditions 1 – 3 are still necessary in order to ensure that
consistently directed rotation axes are aligned.

Alignment of vectors can be accomplished by the al-
gorithm of Horn [33], which yields an essentially equiva-
lent algorithm to the one already given using quaternions.
An alternative method is to use the Procrustes algorithm
[21] in which the rotation S that best aligns vectors ui with
Svi is the closest rotation matrix (under Frobenius norm) to∑
i uivi

>.

Chordal L2 distance. One could think of trying a simi-
lar linear solution to solve the conjugate rotation averaging
problem under the chordal L2-distance as follows. Using the
Kronecker product and the vectorization operation, we can
rewrite
n∑
i=1

‖RiS− SLi‖2F =

n∑
i=1

‖(Ri ⊗ I− I⊗ L>i )s‖22 = ‖As‖22

where s = vec(S) ∈ R9 and all the matrices Ri⊗I−I⊗L>i
are stacked in one matrix A ∈ R9n×9. Minimizing this ex-
pression could be viewed as a least squares problem and
solved through singular value decomposition (SVD). The
solution gives a unit length vector s, but one not necessarily
corresponding to a rotation matrix. So orthogonal projection
onto the special orthogonal group SO(3) is needed which
could be realized using SVD.

This method finds the unit vector s minimizing ‖As‖2,
followed by projection onto SO(3). This is not the same
thing as minimizing ‖As‖2 directly for s representing a ro-
tation matrix. Thus the algorithm will not give an optimal
result in general.

6.2 Other Closed Form Solutions for Conjugate Averaging

In the robotics community, the following closed-form solu-
tion for the hand-eye coordination problem is well known.
Park and Martin [64] solved AX = XB on the Special Eu-
clidean group, providing a closed-form solution under cer-
tain conditions. Here we only treat the case of rotations (no
translations), that is RiS = SLi in our notation.

Let ri be the angle-axis representation of Ri that is
ri = log(Ri); correspondingly let li = log(Li). It can be
easily verified that log(S−1RiS) = S−1ri. Hence, we have
‖ log(S−1RiS) − log(Li)‖2 = ‖S−1ri − li‖2 and we obtain
the following objective function:

g(S) =

n∑
i=1

‖S−1ri − li‖22 =

n∑
i=1

‖ri − Sli‖22 .

Taking ri and li as angle-weighted rotation axes in
angle-axis space, minimizing g(S) can be explained as be-
fore as searching for the optimal rotation which relates two
sets of rotation axes.

Note, however, that the distance measure underlying this
idea is the distance dlog(S, R) = ‖ log(S)− log(R)‖2 which
is not bi-invariant as we have remarked previously. The dif-
ference between this solution and the one given above min-
imizing the L2 quaternion metric is that the axes ri and
li are weighted differently. Here, each ri or li is weighted
by the angle θi or φi of the corresponding rotation. In
the quaternion metric case, we weighted by sin(θi/2) and
sin(φi/2). The resulting solution will be slightly different,
because of the different weighting. The previous solution
seems more principled, since by adopting the sin(θi/2),
sin(φi/2) weighting we minimize some meaningful metric.
There seems to be no reason to use this solution rather than
the quaternion metric solution.

6.3 A Gradient Method for Conjugate Averaging

For the conjugate averaging problem, we can obtain the gra-
dient for the cost function C(S) =

∑n
i=1 d

p(RiS, SLi). Thus
gradient descent methods can be applied to solve this prob-
lem. To compute this gradient from the gradient for the dis-
tance measure, the chain rule needs to be applied on SO(3)

rather than in R as in the previous examples. The details of
the gradient computation are given in the appendix. We will
only cover the geodesic L1-mean here and leave the other
cases to the interested reader.

Under the angular distance, the cost function is: C(S) =∑n
i=1 d∠(RiS, SLi). The gradient for each of the summands

CLi,Ri(S) = d∠(RiS, SLi) is

∇CLi,Ri(S) = −S
log
(
S−1RiSL

>
i

)
− log

(
L>i S

−1RiS
)

d∠(Ri, SLiS−1)
.

We propose a Riemannian gradient descent algorithm
with geodesic line search to compute the geodesic L1-mean
for the conjugate rotation averaging problem.

1: Choose a tolerance ε > 0.
2: Set S := d2

quat-mean({L1, . . . , Ln, R1, . . . , Rn}).
3: loop
4: Compute r :=

∑n
i=1

(log(S−1RiSLi
>)−log(Li

>
S−1RiS))

d∠(Ri,SLiS−1)
.

5: Compute s∗ := argmins≥0 C(S exp(sr)).
6: if ‖s∗r‖ < ε then
7: return S

8: end if
9: Update S := S exp(s∗r).

10: end loop
Algorithm 4: Computing the geodesic L1-mean on SO(3)

for the conjugate rotation averaging problem
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7 Multiple Rotation Averaging

In this problem, we are given a set of relative rotations, Rij
between coordinate frames indexed by i and j. Only some
Rij are given, represented by index pairs (i, j) in a set N .
These relative orientations will in general not be compatible,
so the task is to find n rotations Ri so that Rij ≈ RjR

−1
i . The

appropriate minimization problem is expressed as

argmin
R1,...,Rn

∑
(i,j)∈N

dp(Rij , RjR
−1
i )

where we are particularly interested in the cases p = 1 and
p = 2 and the above model is to be minimized over all
choices of Ri, i = 1, 2, . . . , n. The distance measures in-
clude geodesic, quaternion and chordal.

This problem is a complex multi-variable nonlinear op-
timization problem. There seems to be no direct method of
minimizing this cost function under any of the metrics we
consider. In the following subsections, we will first consider
two least squares algorithms for quaternion averaging and
chordal averaging. Although optimality has been claimed
for these algorithms, we show that this will not be the case.
We will then discuss the structure of the above cost function
in more detail and suggest alternative algorithms.

7.1 Quaternion Averaging for Multiple Rotations

Govindu [22] suggested a method for solving this problem,
as follows. Representing the above rotations as quaternions
ri, rj and rij , the equation RijRi = Rj can be written in
quaternion form as

rij · ri − rj = 0 . (24)

Since quaternion multiplication is bilinear in the two
operands, this equation gives rise to a set of linear equations
in the entries of all the quaternions ri. The set of all such
equations can be written as a set of linear equations of the
form Ar = 0, where r is a vector formed by concatenating
all the quaternions ri. This set of equations may be solved
in least-squares enforcing the condition ‖r‖2 =

√
n.

It has at times been claimed that this algorithm will give
a Maximum Likelihood solution under an assumption of
Gaussian noise. However, this claim is not valid on at least
two counts.

1. Because of the sign ambiguity of the quaternion rota-
tion representation the correct equations should be of the
form

rij · ri − εijrj = 0

where εij = ±1. It is easy to construct examples in
which there is no way to assign consistent signs to all
the quaternions that will make the equations (24) solv-
able. A numerical example is given below.

2. Even if the signs of the quaternions can be chosen con-
sistently, then the method does not give the correct mean
under any norm, including the quaternion distance. For
this to correspond to a true minimum of squared quater-
nion distance, it would be necessary to minimize ‖Ar‖2
subject to the condition that each of the quaternions ri
had unit length. Algebraically this can not be done in
closed form. Instead, the easy thing is to minimize ‖Ar‖2
subject to the condition that r, the concatenation of all
the quaternions, has norm

√
n. In theory, and in practice,

this is an entirely different thing from normalizing each
of the ri separately. Although it generally gives reason-
able results, it certainly does not give the optimal result
under any sensible distance.

7.1.1 Problem statement

The basic formulation of the multiple rotation averaging
problem in quaternion representation is

rijri − εijrj = 0 (25)

where εij = ±1. The quaternions rij representing the rel-
ative rotations are supposed known, and the task is to find
the quaternions ri, rj that satisfy this equation, for a set of
given pairs (i, j). We will look at ways of determining the
signs εij which will make these equations true, and hence
will allow us to find a solution.

First, we will see how these equations look, when writ-
ten in terms of matrices. We define a matrix R×ij that corre-
sponds to the quaternion multiplication. Let rij be written
as a quaternion (c,v) where c = cos(θ/2) and θ is the ro-
tation angle; v is a vector of length sin(θ/2) representating
the rotation axis. Since θ ≤ π, we may choose c ≥ 0. Then
multiplication of a quaternion ri by rij is equivalent to the
matrix product

rj = R×ij ri

=

[
c −v>
v [v]×+c I3×3

]
ri (26)

Lemma 5 The matrix appearing in (26) is orthogonal,
meaning that R×ij R

×
ij
> = I4×4. Furthermore, for any vector

ri, we have ri> R×ij ri ≥ 0. Consequently, the angle between
ri and R×ij ri is no greater than π/2.

To show this, observe that

ri
>
[
c −v>
v [v]×+cI

]
ri = ri

> cI4×4 ri = c ≥ 0,

since the skew-symmetric parts of the matrix do not con-
tribute to the product.

Using this representation of quaternion multiplication,
the set of equations (25) forms a 4m × 4n set of equations,
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where n is the number of rotations, and m is the number of
pairs (i, j). This set of equations can be written as Mr = 0,
where r is a vector made up by concatenating the compo-
nents of all the quaternions. In the presence of noise, we
find the least-squares solution using Singular Value Decom-
position (SVD). Writing M = UDV>, the required solution
for r is the last column of V. To obtain unit quaternions that
represent rotations, we need to normalize each of the ri indi-
vidually to unit length. Here ri represents the 4-vector con-
taining the block of 4 entries in r corresponding to the i-th
rotation.

Example. We illustrate the need for the signs εij with a
specific example. Consider three rotations R1, R2 and R3 and
measured relative rotations R12 = R23 = R31, each being a
rotation through 120◦ about the x axis. Obviously, this rep-
resents a coordinate frame undergoing one complete rota-
tion.

The quaternion corresponding to the relative rotation is
(1/2,

√
3/2, 0, 0) and left-multiplication by this quaternion

is represented by the 4× 4 matrix

M =


1/2 −

√
3/2 0 0√

3/2 1/2 0 0

0 0 1/2 −
√

3/2

0 0
√

3/2 1/2


The complete set of equations (24) may be written as a ma-
trix equation M −I 0

0 M −I
−I 0 M

 r1
r2
r3

 = 0. (27)

It is easily verified that this matrix has determinant 16, so
there is no exact solution to the set of equations.

7.1.2 Algorithm statement

The complete algorithm is given as follows.

1. Given relative rotations Rij , choose a quaternion repre-
sentation rij for each.

2. Find coefficients εij = ±1 such that (25) will hold for
the true solution.

3. Form a set of matrix equations Mr = 0 using (26) and
take the SVD, M = UDV>. The solution is a vector r =

(r1
>, . . . , rn

>)>, namely the last column of V.
4. Normalize each ri to ri/‖ri‖2 to give a solution for each

of the equations.

Previous versions of this algorithm have ignored the need to
select the correct signs here, and have therefore solved the
wrong equations. Without the correct signs εij , the equa-
tions (25) may not have a solution as the example above
shows. The signs εij may be chosen using the following
simple algorithm.

1. Choose all the relative rotation quaternions rij so that
the first coefficient (real part of the quaternion) is non-
negative.

2. Select a tree in the graph formed by joining nodes corre-
sponding to the ri with an edge, when rij is defined.

3. Assign an initial value ri = 0 to some node chosen as
the root of the tree, and propagate the estimate of rj
across the tree using the relations rj = rijri and set
εij = +1 for an edge in the tree.

4. For an edge rij not in the tree, set εij = +1 or −1 de-
pending on whether rijri is closest to rj or −rj .

Unless there is a large accumulated error in the rotations
as they are propagated over the tree, the decision of which
value of εij to choose should be clear.

Note that in solving these equations, we find the solu-
tion such that ‖r‖2 = 1. To be more correct, we should
minimize the cost ‖Mr‖2 subject to the constraint that each
individual ri has unit norm. However, this is not possible by
linear means, and is probably a hard problem in general. If
we could solve subject to these constraints, then the solution
would be the true least-squares solution minimizing squared
quaternion distance (the distance metric measuring distance
between quaternion representations of rotations).

7.2 Chordal Averaging for Multiple Rotations

Chordal L2-averaging for the multiple rotation averaging
problem is described as finding the rotations minimizing the
cost

∑
(i,j)∈N

‖RijRi − Rj‖2F .

Without enforcing the orthogonality constraints, we can
solve the above model as a least squares problem through
vectorization and singular value decomposition. Finally,
all the orthogonal constraints are enforced through subse-
quently finding the nearest orthogonal matrices by polar
decomposition [55]. According to the analysis in [55], the
chordal averaging algorithm performs better than the quater-
nion averaging algorithm due to the availability of 9 param-
eters for each rotation instead of only 4 in the quaternion
representation. However, the solution will in general not be
optimal.

Unlike the quaternion method, the method involving ma-
trices does not suffer from the issue of needing to select the
correct sign for the quaternion.
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7.3 The Structure of the Cost Function for Multiple
Rotations

In this section, we will take a closer look at the cost function

C(R1, . . . , Rn) =
∑

(i,j)∈N

d(Rij , RjR
−1
i )p (28)

for the multiple rotation averaging problem. The question
we will consider is the convexity of this cost function as
a function of the rotations Ri. The results we obtain will
be largely negative, particularly for the L2 cost functions
(p = 2). We will exhibit examples where the residual cost is
arbitrarily small, at a local minimum, but the global min-
imum lies in a different basin of attraction. Furthermore,
it can be shown that this cost function usually has saddle
points.

One of the results we obtained (theorem 5) for several of
the distance measures in the single rotation averaging prob-
lem (estimate R given rotation estimates Ri) was that if all
the Ri lie in a convex set (for instance, an open ball of radius
π/2), then the optimal solution lies in the convex set and the
cost function is convex on this set. Thus, once we have found
an estimate R with sufficiently small residual (less than π/2)
for each Ri, the optimum can be found by convex optimiza-
tion techniques. It will be shown that this is not the case in
the multiple rotation estimation problem.

An example. We give an example based on the intuition
that if a vehicle with an inertial rotation sensor follows a
long closed path, returning to its initial position, then it
may be difficult to determine whether the vehicle has ro-
tated through a complete turn or not during the trajectory.
Thus, consider the case where we wish to estimate rotations
Ri; i = 0, . . . , n− 1 when estimates Rij are known only for
consecutive positions (j = i + 1), as well as for the initial
and final positions Rn−1,0.

Suppose that all rotations are about a single (perhaps
vertical) axis, and that in the true solution, Ri is a rotation
through an angle 2πi/n. Suppose that the relative rotations
are measured accurately, so that ∠(Ri,i+1) = ∠(Rn−1,0) =

2π/n. Clearly in this case, Ri,i+1 = Ri+1Ri
> exactly, for

i = 0, . . . , n − 1,2 so that the true solution has zero cost.
However, there is a different solution that may have small
cost, namely Ri = I for all i. For instance in the squared
angular distance case, the cost will be

C =

n−1∑
i=0

d∠(Ri,i+1, Ri+1Ri
>)2 =

n−1∑
i=0

d∠(Ri,i+1, I)2

=

n−1∑
i=0

(2π/n)2 = 4π2/n

2 For convenience of notation, we consider the index n to mean 0,
so that Ri+1 means R0 and Ri,i+1 means Rn−1,0 when i = n− 1.

which can be arbitrarily small for large n.
For a slightly different example, if each of the measured

angles is ∠(Ri,i+1) = π/n, then the two solutions will have
equal cost

∑n
i=1(π/n)2 = π2/n which can also be made

arbitrarily small by choosing n large.

Basins of attraction. It may be thought that in the first ex-
ample given here, with Ri = I that this solution may be
continuously modified to the minimum solution given by
∠(Ri) = 2πi/n. However, it will be shown that this is not
the case. In fact, these two solutions lie in different basins of
attraction in the cost “surface”.

Most continuous optimization techniques act by modify-
ing a current solution by iteratively moving from one poten-
tial solution to another, usually in a direction of decreasing
cost. Although the sequence of iterates is finite, the process
may be approximated by the estimate traversing a continu-
ous path across the cost surface from an initial solution to a
final solution. If a continuous downhill path exists to a mini-
mum, then the likelihood of reaching this minimum is much
higher. Given a local minimum of a cost function, one may
define its basin of attraction to be the set of points that are
connected to the given local minimum by a decreasing cost
path.

It will be shown that the two solutions in the example
given above lie in different basins of attraction, and hence
one can not go from one to the other by a downhill path.

Consider an n-tuple of rotations (R0, . . . , Rn−1) ∈
SO(3)n where R0 = I; we define also Rn = R0 = I. We
think of this n-tuple as being an estimate of the solution to
an n-rotation averaging problem defined by a set of rela-
tive rotations Ri,i+1. The cost function defines a function
from SO(3)n to IR, defining a cost for such an n-tuple of
measurements. We suppose that there is a continuous fam-
ily of such n-tuples, (Rt0, . . . , R

t
n−1) for t ∈ [0, 1], trac-

ing out a path in SO(3)n, transforming an initial estimate
(R00, . . . , R

0
n−1) to a final estimate (R10, . . . , R

1
n−1). We also

set Rtn = Rt0 = I for all t.
Now, we focus on an n-tuple defined for a given fixed

value of t, and use it to define a closed path in SO(3), based
at the identity rotation Rt0. The idea is to think of these n
rotations as being sampled positions from a continuously
varying coordinate frame traversing a closed path in rota-
tion space, SO(3). The continuous path is obtained by filling
in between the rotations Rti, R

t
i+1 by interpolation along the

shortest geodesic. The resulting path in rotation space may
be intuitively thought of as the estimate (at parameter value
t) of the path of the coordinate frame through rotation space.

More formally, for a fixed t, we use the n-tuple
(Rt0, . . . , R

t
n−1) to define a closed path γt(s) in SO(3). This

path is defined as follows. Define Rtn = Rt0. Now, for each
s ∈ [0, 1] we wish to define a point (rotation) in SO(3).
For s = i/n for some i = 0, . . . , n, we define γt(s) = Rti.
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This defines the path γt at evenly spaced point s ∈ [0, 1].
We wish to interpolate this path to all values of s. This is
done by interpolating along geodesics. Thus, suppose that
i/n < s < (i + 1)/n for some i. Then, for s in the interval
[i/n, (i+1)/n], the path γt(s) moves with constant velocity
along the shortest geodesic from Ri to Ri+1. Thus, for each t,
the path γt(s) is a continuous path in SO(3). Since Rt0 = Rtn,
we see that γt(s) is a closed path based at Rt0. Note that at
time t, the path γt(s) so defined corresponds intuitively to
the current estimate (at time t) of the path of the coordinate
frame in SO(3).

Since each of the rotations Rti traces out continuous paths
in SO(3) as t varies, we may define a mapping γ : [0, 1] ×
[0, 1] → SO(3) as γ(t, s) = γt(s). Our purpose is to show
the following properties:

1. γ is a continuous mapping.
2. For each t, γ(t, 0) = γ(t, 1) = I.

Under these circumstances, we say that the two paths
γ0(s) and γ1(s) are homotopic or homotopy equivalent as
closed paths based (starting and ending) at the base point
I ∈ SO(3). Under the equivalence relationship of homo-
topy, based paths in SO(3) form the fundamental group
π1(SO(3), I). Under the two conditions given above, the
two paths γ0(s) and γ1(s) represent the same element of
the fundamental group.

It is well known that the fundamental group of SO(3) is
equal toZ2, the group with two elements. This is easily seen,
since the mapping from the geodesic sphere S3 to SO(3) is
a 2-fold covering, and π1(S3) is the trivial group with one
element. (Using another common terminology, S3 is simply-
connected.)

We now look at the first of the two conditions given
above, namely that γ should be a continous mapping. Con-
sider a point (t, s) with i/n ≤ s ≤ (i + 1)/n. Then the
point γ(t, s) lies on the shortest geodesic from Rti to Rti+1.
As t varies, the rotations Rti and Rti+1 vary continuously. If
the shortest geodesic between these two rotations also varies
continuously, then γ(t, s) will move as a continuous func-
tion of t and s. There are in general two geodesic paths be-
tween any two points (rotations) in SO(3), corresponding
to different arcs of the great circle in the quaternion sphere.
However, if the angular distance between Rti and Rti+1 re-
mains less than π, then the shorter of the two geodesics will
be unambiguously defined, and the geodesic will move con-
tinuously with its end points. Thus, we have shown the fol-
lowing result.

Lemma 6 Let (Rt0, . . . , R
t
n) with Rt0 = Rtn = I be rotation

estimates continuously varying for t ∈ [0, 1], from an initial
estimate when t = 0 to a final estimate when t = 1. Define
paths γt(s) in SO(3) by the construction above, interpolat-
ing between the rotations Rti for fixed values of t ∈ [0, 1].

Suppose that d∠(Rti, R
t
i+1) < π for all t and all i. Then the

paths γ0(s) and γ1(s) are homotopy equivalent.

From this we may deduce that if the two paths γ0 and γ1
are not homotopy equivalent, then at some point t between
0 and 1, and for some value of j, d∠(Rtj , R

t
j+1) = π. This

means that the cost of the intermediate solution (Rt1, . . . , R
t
n)

must satisfy

C(Rt0, . . . , R
t
n−1) =

n−1∑
i=0

d∠(Rti,i+1, R
t
i+1R

t
i
>)2

≥ d∠(Rtj,j+1, R
t
j+1R

t
j
>)2

≥ (d∠(Rtj , R
t
j+1)− d∠(Rtj,j+1, I))2

≥ (π − d∠(Rtj,j+1, I))2 ,

where the second-last line follows from the triangle inequal-
ity.

Therefore, to transform an initial estimate of the rota-
tions to a final estimate, where the initial and final interpo-
lated trajectories γ0(s) and γ1(s) are not homotopy equiv-
alent, must involve an intermediate estimate which has cost
greater than the above value. If the initial and final estimates
have smaller cost than this, then they must lie in different
basins of attraction and to get from one to the other must
require an intermediate estimate of large cost.

Finally, we show that in the example we gave above, the
two paths γ0 and γ1 are not homotopy equivalent, since one
path contains a rotation through 2π and the other one does
not.

In one case, R1i = I, the interpolated path is γ1(s) =

I, that is, the path is constant at the base point I. In the
true solution, all the rotations are about the same axis, and
∠(R0i ) = 2πi/n. From this we see that the interpolated path
is given by γ0(s) = R0s with ∠(Rs) = 2πs. During this
path the rotation turns through one complete turn through
2π radians about the rotation axis. However, this is not a
null-homotopic path in SO(3), since when lifted to the 2-
fold covering space, namely the quaternion sphere, it lifts to
a path from the quaternion r = (1, 0, 0, 0) to (−1, 0, 0, 0).

We can conclude that to pass from the wrong solu-
tion R1i = I with cost 4π2/n to the correct solution
∠(R0i ) = 2πi/n with zero cost, a continuous optimization
scheme would have to overcome a hurdle of cost at least
(π−2π/n)2, which is much larger than the cost of the wrong
solution, 4π2/n, for large n.

7.4 An Iterative Algorithm for Multiple Rotation Averaging

As discussed in the previous sections, there seems to be no
direct method of minimizing the multiple rotation averaging
cost function under any of the distances we consider. There-
fore, our strategy is to minimize the cost function by using
rotation averaging to update each Ri in turn. At each step of
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this algorithm, the total cost decreases, and hence the cost
converges to a limit. We do not at present claim a rigorous
proof that the algorithm converges to even a local minimum.
We do know that the sequence of estimates must contain a
convergent subsequence, and the limit of this subsequence
must be at least a local minimum with respect to each Ri in-
dividually. In light of the existence of saddle points in the
cost function this is however a relatively weak result.

Initial values for each Ri are easily found by propagating
from a given rotation R0 assumed to be the identity.

1: Set t:=0 and pick initial values R(0)1 , . . . , R
(0)
n .

2: loop
3: for j=1,. . . ,n do
4: Set R(t+1)

j := dp-mean({RijR
(t)
i }(i,j)∈N ).

5: end for
6: t← t+ 1.
7: end loop

Algorithm 5: An iterative algorithm for multiple rotation
averaging

We term Algorithm 5 a block Jacobi type algorithm be-
cause Step 4 entails a minimization of C over the jth fac-
tor in SO(3)n while the other variables are being kept con-
stant. Steps 3-5 hence contain a Jacobi sweep over the full
parameter space. Since SO(3) is 3-dimensional, this corre-
sponds to a block version of a classical Jacobi type algorithm
where each inner minimization would be carried out over a
1-dimensional curve.

The convergence of block Jacobi type methods on man-
ifolds has been studied by Hüper [36], but at this stage we
haven’t been able to successfully apply this theory to the
particular cost function at hand.

7.5 L1 averaging multiple rotations

The iterative averaging scheme described in the previous
section may be used for L1 geodesic multiple rotation av-
eraging by using successive applications of the Weiszfeld
algorithm. At any given point during the computation, a ro-
tation Rj will have an estimated value, and so will its neigh-
bours Ri, for (i, j) ∈ N . Therefore, we may compute esti-
mates R(i)j = RijRi, where the superscript (i) indicates that
this is the estimate of Rj derived from its neighbour Ri. We
then use our Weiszfeld L1 averaging method on SO(3) to
compute a new estimate for Rj by averaging the estimates
R
(i)
j . In one pass of the algorithm, each Rj is re-estimated

in turn, in some order. Multiple passes of the algorithm are
required for convergence.

Since the Weiszfeld algorithm on SO(3) is itself an itera-
tive algorithm, we have the choice of running the Weiszfeld
algorithm to convergence, each time we re-estimate Rj , or
else running it for a limited number of iterations leaving the
convergence incomplete, and passing on to the next rota-

tions. To avoid nested interation, we choose to run a single
iteration of the Weiszfeld algorithm at each step. The com-
plete algorithm is as follows.

1. Initialization: Set some node Ri0 with the maximum
number of neighbours to the identity rotation, and con-
struct a spanning tree in the neighbourhood graph rooted
at Ri0 . Estimate the rotations Rj at each other node in the
tree by propagating away from the root using the relation
Rj = RijRi.

2. Sweep: For each j in turn, re-estimate the rotation Rj
using one iteration of the Weiszfeld algorithm. (As each
new Rj is computed, it is used in the computations of the
other Rj during the same sweep.)

3. Iterate: Repeat this last step a fixed number of times,
or until convergence.

The whole computation is most conveniently carried out us-
ing quaternions.

Unlike the single rotation averaging problem considered
in section 5 we can not guarantee convergence of this al-
gorithm to a global minimum, but initial simulation results
demonstrate good performance, see [27].

7.6 Summary for Multiple Rotation Averaging

For the multiple rotation averaging problem, there seems
to be no direct optimization method on SO(3)n. We have
shown that the associated cost function usually exhibits non-
trivial structure, including saddle points and multiple local
minima in separate basins of attraction. We propose two al-
gorithms: iterative averaging, and Weiszfeld based L1 aver-
aging.
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Appendix – Convexity

Of major relevance to questions of convergence and unique-
ness of solutions of averaging problems is determining if
and where the defined cost functions are convex functions.

In this section we consider the question of convexity of a
function measuring distance in SO(3) from a given rotation
R. Since we are dealing with a function defined on SO(3),
rather than a Euclidean space, we will need the concept of
geodesic convexity to analyze this problem.

The general definition of convexity of a function in Rn
is as follows. Given a convex region U ⊂ Rn a function f
defined on U is convex if for any two points x0 and x1 in
U , and any point y lying on the line segment bounded by x0
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and x1, given by y = (1− λ)x0 + λx1 with 0 ≤ λ ≤ 1, we
have

f(y) ≤ (1− λ)f(x0) + λf(x1) .

In adapting this definition to SO(3), or indeed to any
Riemannian or differentiable manifold, the role of a line is
naturally taken by a geodesic. The appropriate definition of
a convex set in SO(3) is a little less clear, and will be con-
sidered next.

Convex sets in SO(3)

As discussed in section 4 the geodesics on SO(3) are doubly
covered by great circles on S3 and there is a uniform length
scaling by a factor of 2 between the geodesics on SO(3)

and those on S3. In particular, we see that the geodesics on
SO(3) are closed curves with a total length of 2π. There are
exactly two geodesic segments between any two points in
SO(3) (without exception). Given two points (rotations) R0
and R1 in SO(3), we call the shorter of the two geodesic
segments from R0 to R1 the short geodesic segment between
these points. If R0 and R1 differ by a rotation through π,
then which of the two geodesic segments is the shorter one
is ambiguous and hence there is no short geodesic segment
between such points.

We can now define two slightly different notions of geo-
desic convexity of sets in SO(3). (The definition is general-
izable to other manifolds.)

Definition 1 A non-empty region U ⊂ SO(3) is called
weakly convex if for any two points R0 and R1 in U exactly
one geodesic segment from R0 to R1 lies entirely inside U .

A weakly convex region U ⊂ SO(3) is called convex
if the geodesic segment from R0 to R1 in U is always the
short geodesic segment between these points, having length
strictly smaller than π.

The empty set is not considered to be convex or weakly
convex.

A closed ball of radius r ≥ 0 in SO(3) is a set

B(R, r) = {S ∈ SO(3) | d∠(S, R) ≤ r}

for some R in SO(3).

Radius and Diameter. We introduce two useful pieces of
terminology, the radius and diameter of a set. The diameter
of a set C in SO(3) is the supremum of d∠(R, S) over all
R, S ∈ C. According to this definition, the diameter of a
convex set is at most equal to π, moreover, no two points in
the set actually achieve this bound.

An open ball of radius r > 0 in SO(3), denoted B̊(R, r),
is the interior of the closed ball, consisting of rotations at
distance strictly less than r from R. We emphasize for clarity

that the balls B(R, r) or B̊(R, r) are defined in terms of the
geodesic (angular) distance on SO(3).

The radius of a set C in SO(3) is the infimum of all
r such that C is contained in some ball of radius r. It is
evident by the triangle inequality that radius is at least half
the diameter of the set.

Lemma 7 A closed ball in SO(3) is convex if and only if its
radius is less than π/2. Similarly, an open ball in SO(3) is
convex if and only if its radius is less than or equal to π/2.
A closed ball in SO(3) is weakly convex if and only if its
radius is less than π, and an open ball in SO(3) is weakly
convex if and only if its radius is less than or equal to π.

If we visualize this in terms of the quaternion sphere, the
proof is straightforward, and hence omitted. Note that an
open ball of radius π is the whole of SO(3) except for one
plane, consisting of rotations at distance π from the centre
of the ball.

Convex and weakly convex subsets of SO(3) can not be
arbitrarily “large”, in the following precise sense.

Theorem 10 Any weakly convex subset of SO(3) is con-
tained in an open ball of radius π. In other words, there
exists a plane in SO(3) (the boundary of the open ball) that
does not meet the said weakly convex set. Any convex subset
of SO(3) is contained in a closed ball of radius 2π/3.

The proof of this theorem turns out to be surprisingly
difficult (particularly the first part) and will be reported else-
where [30]. As a consequence of this result we may picture
any weakly convex subset of SO(3) simply as a convex set in
R3 under a suitably chosen gnomonic projection, namely the
one mapping the boundary of the containing ball of radius
π to the plane at infinity (cf. section 3.4). This is because
the gnomonic projection maps geodesics to geodesics, and
hence weakly convex sets to convex sets.

Although we provide no proof here, we nevertheless
make frequent use of the result of theorem 10 for weakly
convex sets. However, in a sense the rest of the paper does
not depend on this result, as long as we are willing to mod-
ify the definition of weakly convex set to include the (re-
dundant) condition that such a set lies inside an open ball of
radius π.

According to this theorem, the radius of a convex set
is at most 2π/3, and a closed convex set must have ra-
dius strictly less than 2π/3. On the other hand, lemma 7
states that a convex ball can have radius no greater than
π/2. It is therefore somewhat surprising that we claim that
a ball of radius 2π/3 is required to contain any convex set.
This bound is tight however, as a simple example shows.
Consider a regular tetrahedron in R3, centred at the origin.
The inverse gnomonic map will take this to a tetrahedron
in SO(3) bounded by geodesic planes. Let the size of this
tetrahedron be such that its vertices are at geodesic distance
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2π/3 from its centre. Knowing that the angle α between the
vectors from the origin to any two vertices of a regular tetra-
hedron is given by cos(α) = −1/3, it may be verified di-
rectly using (13) (the cosine rule) that the angular distance
between two vertices of the tetrahedron is equal to π. It fol-
lows from this that for each vertex A of the tetrahedron, the
whole geodesic plane passing through the three other ver-
tices lies at distance π from A. Consequently, no two points
in the tetrahedron lie at a greater distance than π from each
other. The interior of the tetrahedron is therefore convex,
contained in a closed ball of radius 2π/3, but not in any
closed ball of lesser radius.

Observe that we may add a single vertex (or even the
whole boundary, less one face) to this tetrahedron and it
will still be convex, but will not lie in an open ball of ra-
dius 2π/3; thus we cannot replace the words “closed ball”
with “open ball” in the theorem statement. Furthermore, the
complete closed tetrahedron (although weakly convex) is
not convex, since it contains points at an angular distance
π from each other.

Some results about weakly convex sets in SO(3) follow
easily from corresponding statements about convex sets in
R3.

Proposition 3 Let B be a set in SO(3).

1. If B is a weakly convex set of radius r < π, then the
closure of B is weakly convex.

2. If B is a convex set of diameter d < π, then the closure
of B is convex.

3. If B is a closed or open weakly convex set, then for any
point x 6∈ B, there exists a plane through x that does
not intersect B.

4. If B is a closed or open weakly convex set, then B =

SO(3) \
⋃
Πi, where Πi runs over all planes not inter-

secting B.

Proof. We select a plane not containing B and map it to the
plane at infinity. The set B is thereby mapped to a convex
set in R3. In the case when B has radius r < π, this map-
ping can be chosen so that B maps to a bounded set. The
four parts of the theorem then all follow from properties of
convex sets in Rn. The corresponding properties of sets in
Rn are not quite trivial. The reader is referred to [69] for the
required proofs. ut

Separation properties of convex sets by planes are im-
portant in the study of convex sets in Rn. The basic separa-
bility property in Rn is that two disjoint convex open sets are
separable by a plane ([69], theorem 11.3). As the following
results show, similar properties hold for weakly convex sets
in SO(3), but this does not follow immediately from the Rn
case. The necessary modification reflects the fact that a sin-
gle plane in SO(3) does not separate SO(3) into two parts
(but two planes do).

Proposition 4 If S and T are two disjoint open weakly con-
vex sets in SO(3), then there exists a plane Π that intersects
neither of them.

Proof. Consider a plane disjoint from S, and identify it as
Π∞, the plane at infinity. If Π∞ is disjoint from T , then it
is the required plane. Otherwise, T is cut into two parts by
Π∞, such that T1 ∪ T2 = T \Π∞, and T1 and T2 are open
convex sets in R3. We form the set S′ =

⋃
L(x,y) where

L(x,y) is a line segment in R3 joining a point x ∈ S and a
point y ∈ T1, and S′ is the union of all such line segments.
We claim that S′ is the convex hull (in R3) of S ∪ T1.

To see this, consider two points a and b in S′, where a

is on a line L(x1,y1) and b is on a line L(x2,y2). Now,
the points x1, x2, y1 and y2 are the vertices of a tetrahe-
dron. (The case where the four points are coplanar is a spe-
cial case which is easily treated separately.) This tetrahedron
is convex, and hence contains the line segment from a to b.
Furthermore, every point in the tetrahedron lies on some line
with endpoints in the line segments x1x2 and y1y2, which
lie inside S and T1 respectively. Hence the whole tetrahe-
dron, and in particular the line segment from a to b, lies
inside S′.

Now, we claim that this convex set S′ is disjoint from
T2. In particular, if a point a ∈ T2 lies on the line segment
L(x,y), with x ∈ S, y ∈ T1, then both a and y lie in T ,
which is by assumption weakly convex. A line segment from
a to y in T must pass through the plane at infinityΠ∞, since
T1 and T2 are different connected components of T \Π∞.
However, in this case, this line segment must pass through x,
which contradicts the assumption that S and T are disjoint.

Therefore, the sets T2 and S′ are disjoint and convex in
R3. Theorem 11.3 of [69] ensures that there exists a planeΠ
separating S′ from T2. This plane is therefore disjoint from
both S and T , except possibly on the plane Π∞. However,
since both S and T are assumed open, it is not possible for
the plane Π to intersect S or T only on the plane at infinity.

This completes the construction of the plane disjoint
from S and T . ut

The previous proposition allows us to show that two
open weakly convex sets may be separated by two planes.

Proposition 5 If S and T are two disjoint open weakly
convex sets in SO(3), then there exist two planes Π1 and
Π2 such that S and T lie in different components of
SO(3) \(Π1 ∪Π2).

Proof. There is a plane Π1 that meets neither of S and T .
Map this plane to infinity. Then S and T are mapped to two
open convex sets in R3, which are therefore separable by a
plane Π2. These are the two required planes. ut

Another separation property of convex sets in Rn that
carries over, slightly modified to weakly convex sets in
SO(3) is the existence of supporting planes.
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Fig. 4 The supporting plane constructed in proposition 6.

Fig. 5 The gnomonic model used in the proof of proposition 6.

Proposition 6 Let S be a closed convex set in SO(3), R a
point not in S and T a closest point in S to R. Further, let Π
be the plane through T perpendicular to the line RT. Then,
the plane Π divides the open ball B = B̊(T, π) into two
half-balls, and S lies entirely in the closed half ball not con-
taining R. Consequently, the interior of S lies in the open
half ball not containing R.

This situation is illustrated in fig 4. The proposition
holds in a more general context than in SO(3), but we give
a proof only for SO(3), using the cosine rule.

Proof. If the distance RT is equal to π, then the whole of
the set S lies in the plane Π(R, π), and the result is trivially
true. Therefore, assume that the distance RT is less than π.
Since S is convex, any point in S lies at distance less than π
from T.

Via a gnomonic mapping centred at T, the ballB maps to
the whole of R3, the set S maps to a closed bounded convex
set and angles at T are preserved. We may therefore use this
gnomonic model to access familiar concepts concerning sets
in R3.

Suppose that there is a point X in S on the same side of
Π as R. Since S is convex, the whole of the line TX lies in
S. Furthermore, it forms an angle γ < π/2 with the line TR.

Let Xt be a point on the line TX at distance t from T in the
direction towards X.

Applying the cosine rule (proposition 2) to the triangle
RXtT as shown in fig 5, we see that

cos(
c(t)

2
) =

∣∣∣∣cos(
t

2
) cos(

b

2
) + sin(

t

2
) sin(

b

2
) cos(γ)

∣∣∣∣ ,
where we write c(t) in recognition that the length c depends
on the value of t. Since 0 ≤ t < π and 0 ≤ b < π, we see
that for γ < π/2 the expression inside the absolute value | · |
is positive, so

c(t) = 2 arccos

(
cos(

t

2
) cos(

b

2
) + sin(

t

2
) sin(

b

2
) cos(γ)

)
.

Taking derivatives with respect to t at t = 0, we find
dc/dt|t=0 = − cos(γ), which is negative when γ < π/2.
Thus, for sufficiently small t we have c(t) < c(0) = b.
Thus, the point Xt is closer to R than the distance RT, which
contradicts the assumption that T is the closest point in S
to R. The conclusion is that the open half ball containing R

contains no point of S, as required. ut

Intersections of weakly convex sets

We now consider various properties of intersections of con-
vex and weakly convex sets in SO(3) in a series of proposi-
tions. In the following discussion, we will use the language
of projective geometry, speaking of lines and planes, instead
of geodesics and geodesic planes. These relate to the ge-
ometric properties of SO(3), considered as the projective
plane P3, in which geodesics play the role of lines in pro-
jective geometry. Note that the concept of weakly convex
set is purely a property of the projective geometry of SO(3),
viewed as a projective plane P3; a set S is weakly convex
if any two points in S are joined by a single line segment
contained in S. According to theorem 10, for any weakly
convex set S there exists a plane that does not intersect S.

We consider families of convex sets Bi, indexed by i in
some index set I , finite or infinite.

Proposition 7 The intersection of a family of convex sets in
SO(3) is convex or empty.

Proof. If points x and y are in the intersection of a family
of convex sets Bi then the shortest geodesic from x to y lies
in each Bi, and hence in their intersection. Thus the inter-
section is convex. ut

Proposition 8 Consider a family of weakly convex sets Bi
in SO(3). If there exists a plane Π disjoint from all of them,
then their intersection is weakly convex or empty.
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Proof. Consider two points x and y in
⋂
i∈I Bi. There ex-

ist two geodesic line segments joining x to y which together
make up a complete closed geodesic. One of these line seg-
ments meets the plane Π , and hence does not lie completely
inside any of the Bi. Since each Bi is weakly convex, the
other line segment joining x to y must lie inBi. Since this is
true for all i, this line segment lies in the intersection of all
the sets Bi, which is therefore weakly convex. ut

Proposition 9 If B is a weakly convex set in SO(3) and Π
is a plane then B ∩ Π is either empty or weakly convex.
Further, B \Π consists of at most two weakly convex com-
ponents.

Proof. That B ∩ Π is weakly convex unless it is empty is
easily shown; we therefore turn to consider B \Π .

If Π does not intersect B then B \Π = B. Otherwise,
according to theorem 10 there exists a plane Π ′ that does
not intersect B, and this must be different from Π , since Π
intersects B. By a suitable homography, we may map Π ′ to
the plane at infinity. The set B maps to a convex set in R3

and Π to a plane in R3. From properties of convex sets in
R3, the plane Π divides B into at most two parts, each of
which is convex in R3, and hence weakly convex as a subset
of SO(3). Note that this also covers the case where B \Π is
empty. ut

Proposition 10 If Bi, i ∈ I is a family of weakly convex
sets in SO(3), then any connected component of

⋂
i∈I Bi is

weakly convex.

Proof. We select one Bi and choose a plane Π that it does
not intersect. Then⋂
j∈I

Bj =
⋂
j∈I

(Bj \Π).

Now, let x be a point in
⋂
j∈I Bj , and for any j ∈ I let B′j

be the component of Bj \Π which contains x. It is weakly
convex by proposition 9. Then

⋂
j∈I B

′
j is the component of⋂

j∈I Bj containing x. It is weakly convex by proposition 8.
Since x was arbitrary, every component is weakly convex.

ut

Proposition 11 If Bi, i = 1, . . . , n are a finite family of
weakly convex sets in SO(3), then their intersection consists
of at most

(
n
3

)
+ n disjoint weakly convex components.

Proof. The connected components are weakly convex by
proposition 10. We simply need to estimate how many such
components there are. For each Bi, select a plane Πi that it
does not intersect. The union of planes Πi is disjoint from
the intersection of the sets Bi.

Now, map the first plane Π1 to the plane at infinity via a
homography. The other n − 1 planes divide R3 into convex
regions Vj . Generically (if no 4 planes meet in a point and

no 3 planes meet in the same line) there are
(
n
3

)
+ n such

regions Vj , but fewer in the non-generic case [74].
Each Vj is convex in R3 and hence weakly convex as a

subset of SO(3). Now,

Vj ∩
n⋂
i=1

Bi =

n⋂
i=1

(Bi ∩ Vj).

However, each Bi ∩ Vj is weakly convex by proposition 8,
since both Bi and Vj avoid Πi. Similarly, the total intersec-
tion is weakly convex, since each Bi ∩Vj avoids any and all
of the planes Πi.

Thus, there is at most one weakly convex component of⋂n
i=1 Bi contained in each Vj , and hence there are not more

than
(
n
3

)
+ n components in total. ut

Convex hulls and convex basins

In the light of proposition 7 we may define the convex hull of
a setB ⊂ SO(3) to be the minimal convex set (if one exists)
that containsB. IfB is not empty, and as long as there exists
at least one convex set containingB, then the intersection of
all such convex sets containing B is itself convex, and is
therefore the convex hull of B.

Since the intersection of weakly convex sets is not gen-
erally weakly convex we cannot define a weakly convex
hull of a set of points in the same way. For example, a line
segment of length less than 2π is weakly convex, but the
intersection of two line segments of length 3/2π arranged
suitably on a single line will not be connected and hence
not weakly convex. This is easily pictured thinking of lines
(closed geodesics) as circles. Under certain circumstances,
however, there will exist a smallest weakly convex set con-
taining a set B. We therefore make the following definition.

Definition 2 Let S be a set in SO(3) and H a weakly con-
vex set containing S. If H is a subset of any other weakly
convex set H ′ that contains S, then we say that the weakly
convex hull of S exists, and is H .

Thus, H is the minimal weakly convex set containing S,
if such a minimal set exists. Note that not every set has a
weakly convex hull, even if it is contained in some weakly
convex set. The empty set has no weakly convex hull since
the empty set is not considered to be weakly convex.

We list some simple properties of weakly convex hulls.

Proposition 12 A nonempty set S in SO(3) has a weakly
convex hull if and only if the intersection of all weakly con-
vex setsHi containing S consists of a single connected com-
ponent. This component is the weakly convex hull.

The proof is immediate.
Sets with weakly convex hulls can be characterized sim-

ply in terms of connectivity. A nonempty set S may be called
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convex-connected if whenever S is contained in the disjoint
union of two open weakly convex sets, S ⊂ H1 ∪H2, then
either S ∩ H1 or S ∩ H2 is empty. Note that this is analo-
gous to the usual definition of a connected set; in fact every
connected set is convex-connected. It may seem more ap-
propriate to say that S is weakly convex-connected, but this
seems too verbose, so we choose this terminology.

Proposition 13 A nonempty set S in SO(3) has a weakly
convex hull if and only if it is contained in some weakly con-
vex set and is convex-connected.

Proof. Suppose that S is convex-connected and contained
in the weakly convex set B. Let ΠS be a plane that does not
intersectB (theorem 10) and hence does not intersect S. We
define H =

⋂
iBi where Bi runs over all weakly convex

sets containing S. If we can show that H is itself weakly
convex, then it is the weakly convex hull of S. This will be
accomplished by showing that

H =
⋂
i

Bi =
⋂
i

B′i (29)

whereB′i is a weakly convex subset ofBi andB′i∩ΠS = ∅.
In this case H is weakly convex according to proposition 8.

To this end, let Bi be such a weakly convex set contain-
ing S. The plane ΠS divides Bi into at most two weakly
convex sets, Bi \ΠS = B1

i ∪B2
i (proposition 9), where B2

i

may be empty. Since Bi \ ΠS contains S, the other com-
ponent B1

i will then be nonempty. Now let Πi be a plane
not intersecting Bi. Then SO(3) \ (ΠS ∪ Πi) is a union
of two disjoint open weakly convex sets, and it contains S.
Therefore, S is contained in one of these two sets, since S is
assumed to be convex-connected. Furthermore, since either
B2
i is empty or B1

i and B2
i lie in different sets, it follows

that S ⊂ B1
i or S ⊂ B2

i . In particular, we may replace Bi in
(29) by B′i, where B′i is the component of Bi \ΠS contain-
ing S. This completes the demonstration that S has a weakly
convex hull.

Conversely, suppose that S has a weakly convex hull H ,
which is therefore a weakly convex set containing S and is
the intersection of all weakly convex sets containing S. Let
H1 and H2 be two disjoint weakly convex open sets with
S ⊂ H1 ∪ H2. Let Π1 and Π2 be two planes such that
H1 and H2 are in different components of SO(3) \(Π1 ∪
Π2). These planes exist according to proposition 5. Then
SO(3) \Π1 and SO(3) \Π2, are both weakly convex sets
containing S. It follows that H is disjoint from both Π1 and
Π2. Suppose neither S ∩ H1 nor S ∩ H2 is empty. Then
S, and hence H contains points from both components of
SO(3) \(Π1 ∪ Π2), so H cannot be connected. This is a
contradiction since H is weakly convex, and leads to the
conclusion that S is contained completely in one of the two
sets H1 or H2. Hence S is convex-connected. ut

As a simple corollary of this result, a connected set S
contained in some weakly convex setB has a weakly convex
hull.

Convex basins. We now turn to the study of convex basins
of sets S in SO(3). These will be important in defining the
domain of convexity of sums of distance functions defined
on SO(3), in section 5.

For x ∈ SO(3), define Π(x) to be the plane consisting
of all points at distance π from x.

Let S be a set in SO(3). We define the set

S\ =
⋂
x∈S

B̊(x, π) = SO(3) \
⋃
x∈S

Π(x),

which will be called the convex basin of S. The following
implications are easily demonstrated for a point x and set S
in SO(3), following directly from the definition of S\.

x ∈ S\ ⇔ Π(x) ∩ S = ∅ ⇔ S ⊂ B̊(x, π), (30)

x ∈ S ⇒ Π(x) ∩ S\ = ∅ ⇔ S\ ⊂ B̊(x, π). (31)

Note that the implication on the left in (31) is not bidirec-
tional; for example, Π(y)\ = ∅ for any y ∈ SO(3).

We give some properties of convex basins.

Proposition 14 If S is a weakly convex set then so is S\; in
particular, S\ is connected.

Proof. Consider two points y0 and y1 in S\, lying on a line
L and dividing L into two line segments L0 and L1. We
show that one of the line segments Li lies entirely in S\.
Assume the contrary; thus for i = 1, 2, there exist points
x0 ∈ L0 and x1 ∈ L1 with xi 6∈ S\.

Therefore, by (30) there exist points x′i ∈ S such that
x′i ∈ Π(xi) or, equivalently, such that xi ∈ Π(x′i). Since
S is weakly convex, there exist points x′t ∈ S, for t ∈ [0, 1]

tracing out the line segment from x′0 to x′1. For each t, let
xt = L∩Π(x′t). Note that this intersection must be a single
point, since Π(x′t) does not contain the line L because yi ∈
S\ lies on L. Also, for t = 0 and t = 1 we recover our
previous points x0 and x1, respectively. Then x′t ∈ Π(xt)∩
S and xt 6∈ S\ by (30). Furthermore, xt traces out a path
from x0 to x1 on L. This path must pass through y0 or y1,
contradicting the assumption that y0,y1 ∈ S\.

On the other hand, the whole line L = L1 ∪ L2 cannot
lie in S\, since if x is any point in S, then Π(x) ∩L is non-
empty (a plane and a line must meet). Thus some point in L
is not in S\, unless S is empty. ut

Proposition 15 If S has a weakly convex hullH , then S\ =

H\; in particular, S\ is weakly convex.

Proof. Since S ⊂ H , it follows easily that H\ ⊂ S\. Now,
let x ∈ S\, so S ⊂ B̊(x, π) by (30). This is a weakly convex
set containing S. Since H is the minimal weakly convex set
containing S, it follows that H ⊂ B̊(x, π), and so x ∈ H\

(again by (30)). Hence, S\ ⊂ H\, and the result follows. ut
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Proposition 16 If S is connected, then so is S\.

Proof. Since S is connected, it is convex-connected. If there
exists some plane Π disjoint from S, then proposition 13
shows that S has a weakly convex hull, so by proposition 15,
S\ is weakly convex, hence connected.

On the other hand if each plane Π meets S, consider a
point x ∈ SO(3). Since Π(x) ∩ S 6= ∅, it follows (from
(30)) that x 6∈ S\. Thus S\ is empty, and hence connected.

ut

Proposition 17 If S is an open set then S\ is closed. If S is
closed, then S\ is open.

Proof. It is easily seen that if B is an open ball then B\ is
a closed ball. Now if S is open, then it is the union of open
balls Bi. Consequently, S\ =

⋂
i B

\
i , which is closed.

Next, suppose S is closed and consider a convergent se-
quence of points xi in SO(3) \S\ =

⋃
y∈S Π(y). We wish

to show that their limit point xlim is also in SO(3)\S\. This
would imply that SO(3) \ S\ is closed, so S\ is open.

We choose points yi in S such that xi ∈ Π(yi). Since
S is closed, hence compact, there exists a convergent subse-
quence of yi converging to a point ylim in S. Select a value
ε > 0. There exist points yi and xi such that d(yi,ylim) <

ε, d(xi,xlim) < ε, and by definition d(yi,xi) = π. By
the triangle inequality, π − 2ε < d(xlim,ylim) < π + 2ε.
Since ε is arbitrary, it follows that d(xlim,ylim) = π. Since
ylim ∈ S, it follows that xlim ∈ SO(3) \ S\. ut

The following result shows that the relationship S ↔
S\ is a dual relationship between open and closed weakly
convex sets.

Proposition 18 If S is an open or closed weakly convex set
then S\\ = S.

Proof. If x ∈ S then Π(x) ∩ S\ = ∅, by (31). Then by
(30), x ∈ S\\, so S is contained in S\\. To show the inverse
inclusion, let x be a point not in S. As remarked in proposi-
tion 3, there exists a plane through x that does not intersect
S. Let this plane be Π(x′). Then x′ ∈ S\ (by (30)), and so
Π(x′) ∩ S\\ = ∅ (by (31)). In particular x 6∈ S\\. ut

Proposition 19 If S is contained in a convex set H , then
H is contained in a single connected component of S\. In
particular, if S is itself convex, then S\ is a weakly-convex
set containing S.

Proof. Since the distance between two points in H is less
than π, no plane Π(x),x ∈ S will intersect with H . Con-
sequently,

⋃
x∈S Π(x) is disjoint from H , and H lies fully

inside S\ = SO(3) \
⋃

x∈S Π(x). Since H is connected it
lies within a single connected component of this set. ut

Examples. Let S be the closed ball B(S, r), with r < π.
Then S\ is the open ball B̊(S, π − r). Similarly, if S is the
open ball B̊(S, r) with r ≤ π, then S\ is the closed ball
B(S, π − r).

In particular when r = π/2 and S = B̊(S, π/2), then
S\ = B(S, π/2). This is a special case of proposition 19.

Convex functions in SO(3)

Convex functions can be defined as in Rn, except that
geodesic curves in SO(3) take the place of straight lines
joining two points in Rn. To make this explicit, we need
the following terminology, requiring geodesic curves to be
parametrized to have constant speed.

A geodesic curve in SO(3) is a constant speed path
along a geodesic. Here, we think of speed as being defined
in terms of the angle metric in SO(3), but either of the other
metrics dchord or dquat can be used instead, since they result
in the same path length (except for scale).

Definition 3 Consider a function f : U → IR defined on
a weakly convex subset U of SO(3). Let x0,x1 ∈ U and
let g : [0, 1] → U be a geodesic curve from x0 to x1 in U ,
such that g(0) = x0 and g(1) = x1. The function f is called
convex, if for any such x0, x1 and g, we have an inequality

f(g(λ)) ≤ (1− λ)f(x0) + λf(x1)

for all λ ∈ [0, 1]. The function is called strictly convex if this
inequality is strict for all λ ∈ (0, 1) whenever x0 6= x1.

Various properties of convex functions hold true, just as
with convex functions in Rn.

Proposition 20 1. The sum of convex (or strictly convex)
functions defined on a weakly convex region U is convex
(respectively, strictly convex) .

2. A strictly convex function defined on a weakly convex set
has at most a single local minimum, which is therefore
the global minimum; for convex functions (even if they
are not strictly convex), any local minimum is a global
minimum and the minima form a weakly convex set on
which the function is constant.

The proof is the same as for convex functions in Rn.
Convexity of functions can be defined locally through

computing the second derivative of their restriction along
geodesic paths through a point.

Definition 4 A function f : SO(3) → IR is locally convex
at a point R0 ∈ SO(3) if for any constant speed geodesic
path γ : [−1, 1] → SO(3), with γ(0) = R0 the function
f ◦ γ(t) = f(γ(t)) has non-negative second derivative at
t = 0. It is locally strictly convex at R0 if any such f ◦ γ(t)

has positive second derivative at t = 0.
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The connection between local convexity and convexity
is as follows.

Proposition 21 If f : SO(3) → IR is smooth and locally
convex (or strictly convex) at each point in a weakly convex
set U , except possibly at isolated global minima of f , then it
is convex (respectively, strictly convex) in U . If f : SO(3)→
IR is smooth but not locally convex at some point then it is
not convex in any non-trivial ball around that point.

Next we investigate when the function d(S, R) defined
for two rotations is a convex function of S (for fixed R).

Theorem 11 (Convexity of metrics) Consider the function
f(S) = d(S, R)p for a fixed rotation R, a metric d(·, ·), and
an exponent p. The function is convex, or strictly convex, as
a function of S in the following cases.

1. d∠(·, R) is convex on the set B̊(R, π).
2. dchord(·, R) is not convex on any non-trivial ball around

R.
3. dquat(·, R) is not convex on any non-trivial ball around

R.
4. d∠(·, R)2 is strictly convex on the set B̊(R, π).
5. dchord(·, R)2 is strictly convex on the set B(R, π/2).
6. dquat(·, R)2 is strictly convex on the set B̊(R, π).

Compare these results to the graphs in fig 2 in section 4.
From these graphs, parts 2 and 3 of the theorem are evident.
It is also clear that d∠(·, R) is not strictly convex anywhere.
The other parts of the theorem are obtained by direct compu-
tation of second derivatives. Details of how these values are
computed and a table of Hessians and gradients are found in
table 3 in the following appendix.

Two geometric lemmas

The following two lemmas are used in the proof of Theo-
rem theorem 5.

Lemma 8 (Pumping lemma.) Let B be a closed convex
subset of SO(3) then there exists a larger closed convex sub-
set B̂ of SO(3) such that all points of B lie in the interior of
B̂. Furthermore, the intersection of all such sets B̂ is equal
to B.

Proof If B is a closed convex set, then its diameter must
be strictly less than π. Let ε be a number such that
diameter(B) + 4ε < π. Now, let Γ be the gnomonic
map based at some point in B. This takes B to a closed
bounded convex set Γ (B) in R3. Let Nε(Γ (B)) be an ε-
neighbourhood of Γ (B), that is, the union of closed balls of
radius ε centred on points of Γ (B). This is a closed con-
vex set in R3 containing Γ (B) in its interior. Let B′ =

Γ−1(Nε(Γ (B))), which is a closed weakly convex set in

SO(3). To show that B′ is convex, it remains to show that
the diameter of B′ is less than π.

The gnomonic map expands distances. More exactly, el-
ementary trigonometry shows that ‖Γ (R) − Γ (S)‖ > α =

d∠(R, S)/2, where α is the angle between R and S on the
unit quaternion sphere. In particular, the inverse image under
Γ−1 of a closed ball of radius ε in R3 is a set of radius less
than 2ε in SO(3). It follows using the triangle inequality that
the diameter of B′ is no more than diameter(B) + 4ε < π.

Lemma 9 Theorem 5 is true in the special case where B is
a closed convex set and the rotations Ri lie in the interior of
B.

Proof Let B be a closed convex set containing all Ri in its
interior and let R be a point not in B. We will show that R
cannot be the point that minimizes the cost Cf (R) by ex-
plicitly computing a point R′ with lesser cost. Since B is
compact, there exists a point T ∈ B that minimizes the dis-
tance to R. There may be more than one such point T, but we
take any one. We observe first that d∠(R, T) < π, since if
this is not true, then T and hence every point in B must be at
distance π (the maximum possible distance) from R. In this
case B lies in the plane at distance π from R, and hence has
empty interior, contrary to assumption.

Now, if we were in Rn, we could argue that d∠(T, Ri) <

d∠(R, Ri), for any point Ri ∈ B, but this is not true in SO(3).
Instead we find a point R′ such that d∠(R′, Ri) < d∠(R, Ri),
and hence di(R′) < di(R), which proves that R is not the
point that minimizes Cf .

The point R′ is constructed as follows. Consider the min-
imal geodesic from R to T and continue it beyond T by the
same distance to a point R′. Thus d∠(T, R) = d∠(T, R′) < π.
We do not claim that R′ ∈ B, or that R′ minimizes the cost
function. Next, consider the plane Π passing through T per-
pendicular to the geodesic from R to T. The configuration
described here satisfies the hypotheses of proposition 6.

Now, we consider the gnomonic projection Γ centred at
T. Since the diameter of B is less than π, and T ∈ B, the
whole of B is mapped to a bounded convex set in R3. Sim-
ilarly, the shortest geodesic from R to T maps to a bounded
line segment in R3, not meeting the interior of Γ (B), and
the plane Π maps to a plane in R3. Since the gnomonic map
preserves angles at the base point, Γ (Π) is perpendicular to
the line from Γ (R) to Γ (T).

According to proposition 6, the plane Γ (Π) separates
R3 into two half-spaces, with the interior of Γ (B) and Γ (R′)

lying in one half space, and Γ (R) in the other. This is shown
in fig 6. For a point S ∈ B̊, we claim that the angle RTS

is greater than π/2. This is obvious for the corresponding
points in R3 since Γ (S) is separated from Γ (R) by the plane
Γ (Π) which passes through Γ (T). Since the gnomonic pro-
jection preserves angles at the base point, the claim is valid
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Fig. 6 The supporting plane in the gnomonic picture.

Fig. 7 Notation used in proving that c = d∠(S, R) > c′ = d∠(S, R′).

in SO(3). Since R, T and R′ lie on a single geodesic, it fol-
lows that the angle R′TS < π/2.

To complete the proof, it is sufficient to show that
d∠(S, R′) < d∠(S, R). Note that we can not appeal to
the gnomonic projection to demonstrate this claim, which
would be obvious in R3, since the gnomonic projection does
not preserve lengths. Furthermore, we do not know whether
the shortest geodesics from S to R or R′ cross the plane at
infinity in the gnomonic projection or not.

To prove the claim, we appeal to the cosine rule (13)
to compute geodesic lengths in SO(3). We use notation
as shown in fig 7, where c = d∠(S, R) ≤ π and c′ =

d∠(S, R′) ≤ π. Since γ + γ′ = π, it follows that cos(γ) =

− cos(γ′). Then applying the cosine rule, we find

cos(
c

2
) =

∣∣∣∣cos(
a

2
) cos(

b

2
)− sin(

a

2
) sin(

b

2
) cos(γ′)

∣∣∣∣
cos(

c′

2
) =

∣∣∣∣cos(
a

2
) cos(

b

2
) + sin(

a

2
) sin(

b

2
) cos(γ′)

∣∣∣∣
Now, 0 < a < π and 0 < b < π, so sin(a/2) sin(b/2) > 0,
and cos(a/2) cos(b/2) > 0. Furthermor cos(γ′) > 0, since
γ′ < π/2. It follows easily that cos(c′/2) > cos(c/2) ≥ 0,
so c′ < c as required.

Appendix – gradients and Hessians

Given a function f : SO(3) → R, we wish to define and
calculate the gradient and Hessian of this function. These
entities may be expressed in terms of the exponential map at
the point of interest. Let expR : R3 → SO(3) be the expo-
nential map at a point R ∈ SO(3), defined by expR[v]× =

R exp[v]×. The gradient and Hessian of the function f at the

point R are defined as the gradient and Hessian (the matrix
of second derivatives) of the function f ◦ expR : R3 → R,
evaluated at v = 0.

This definition corresponds with the notion of Rieman-
nian gradient and Hessian, which are defined on the tangent
space TR(SO(3)) to SO(3) at the point R. In this more ab-
stract context, the Hessian is a quadratic form defined on the
tangent space. If we identify R3 with its standard Euclidean
basis as the tangent space, this quadratic form is represented
by the symmetric second derivative matrix defined here.

We have defined the concept of convexity of a function
defined on SO(3) in terms of the values of the function along
geodesics.

Theorem 12 If the Hessian of a function f : SO(3) → R
is positive semi-definite at a point R0 ∈ SO(3), then f is
locally convex at R0. If the Hessian is positive definite, then
the function is locally strictly convex.

Proof. Let γ : R → SO(3) be a constant speed geodesic
path with γ(0) = R0. We may pull γ back to a path γ̃ :

R → R3 such that γ = expR0
◦ γ̃. To show that f is locally

convex, we need to show that f ◦ γ(t) = f ◦ expR0
◦ γ̃(t)

has non-negative second derivative at t = 0. However, the
second derivative may be written as v>Hv, where H is the
Hessian of f ◦ expR0

and v = γ̃′(0) is the derivative of γ̃.
If the Hessian is positive definite (or semi-definite), this is
positive (non-negative) as required. ut

Thus, to show that a function on SO(3) is convex, it is
sufficient to show that its Hessian is positive definite, except
possibly at isolated local minima.

Gradient and Hessian of distance functions. Consider
S ∈ SO(3) and let f(R) = dp(R, S) where d(·, ·) is some
bi-invariant metric defined on SO(3). By definition, Hf is
the Hessian of the function

f̃(x) = f(R exp[x]×) = dp(exp[x]×, R
>S) .

Define θ = d∠(exp[x]×, R
>S) and let R>S be a rotation

through angle θ0 about unit axis ŵ. Then, using the cosine
rule (13), we may write

cos(
θ

2
) = cos(

‖x‖
2

) cos(
θ0
2

) + sin(
‖x‖
2

) sin(
θ0
2

)
〈x, ŵ〉
‖x‖2

.

Since we wish to take derivatives up to second order, we may
replace this by its second-order approximation, yielding

θ ≈ 2 arccos

((
1− ‖x‖

2

8

)
cos(

θ0
2

) +
1

2
sin(

θ0
2

) 〈x, ŵ〉
)
.

Now, we define f(R) = dp(R, S) = g(d∠(R, S)) = g(θ),
for some function g. The various metrics being considered
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can all be expressed in this way for suitable functions g (see
table 2). Taking first derivatives using the chain rule gives

∂f̃

∂xi
=
∂g

∂θ

∂θ

∂xi
or ∇f = g′(θ0)∇θ .

Evaluating at the point x = 0 gives the gradient

∇f = −g′(θ0)ŵ .

In interpreting this, note that R exp[tŵ]× = expR[tŵ]× is
a geodesic from R when t = 0 to S when t = 1. Thus, as
a vector in the tangent space at R, the unit vector ŵ may
be viewed as the direction from R to S. The gradient points
directly away from S, in the direction of greatest increasing
distance.

Similarly, taking second derivatives using the chain and
product rules leads to

∂2f̃

∂xi∂xj
=
∂2g

∂θ2
∂θ

∂xi

∂θ

∂xj
+

∂g

∂θ

∂2θ

∂xi∂xj

or

Hf = g′′(θ0)∇θ∇θ > + g′(θ0)Hθ .

From this it is straight-forward to compute the Hessian. The
result is

Hf = g′′(θ0) ŵiŵi
> + g′(θ0)

cot(θ0/2)

2
(I− ŵiŵi

>) .

Note that both ŵiŵi
> and I− ŵiŵi

> can be diagonal-
ized simultaneously to diag(1, 0, 0) and diag(0, 1, 1). Thus,
the Hessian may be transformed orthogonally (but differ-
ently for each i) to the form

Hf ≈ g′′(θ0)diag(1, 0, 0) + g′(θ0)
cot(θ0/2)

2
diag(0, 1, 1) .

In particular, the Hessian is positive definite exactly when
both the derivatives of g are positive. We can apply this for-
mula with different functions g to obtain the results in ta-
ble 3.

Conjugate distance function. Given rotations Ri and Li,
we consider the function S 7→ dp(RiS, SLi). We wish to
compute the gradient and Hessian of this function. For
simplicity, we will compute these quantities at the point
S = I, and see later that the general case is easily de-
rived from this special case. Setting S = exp[x]×, the gra-
dient and Hessian are defined as the gradient and Hessian of
dp(Ri exp[x]×, exp[x]×Li) with respect to the vector x.

Let ri, li and s be corresponding quaternion representa-
tions, chosen to lie in the upper quaternion hemisphere. Let

θi = d∠(RiS, SLi) and define C = cos(θi/2). Then, C may
be written in terms of the quaternion inner product

C = 〈ri · s, s · li〉 .

Let the quaternion representations of Ri and Li be ri =

(r0, r
′
i) and li = (l0, l

′
i). The quaternion representation of

S = exp[x]× is (cos(‖x‖/2), sin(‖x‖/2)x/‖x‖), which, as
above, we may replace by its second-order approximation
s = (1 − ‖x‖2/8,x/2). Now, we may compute the inner
product C = 〈ri · s, s · li〉, and differentiate with respect to
x. The results for the gradient and Hessian of C are

∇C = l′i × r′i , (32)

and

HC = (l′ir
′
i
> + r′il

′
i
>)/2− 〈l′i, r′i〉 I . (33)

Note that r′i and l′i are vectors of length sin(θri /2) and
sin(θli/2), where θri and θli are the respective rotation an-
gles of Ri and Li. Hence, the above formulas may easily
be rewritten in terms of the unit rotation axes of the ro-
tations, by multiplying by weights wi = sin(θri /2) resp.
sin(θli/2). The eigenvalues of HC may be easily computed,
and expressed in the form (wi cos(αi/2), wi(cos(αi) −
1), wi(cos(αi) + 1)) where αi is the angle between the axes
of Ri and Li. Hence, the Hessian has at least one negative
eigenvalue, unless αi = 0, when it has two positive and one
zero eigenvalue.

Let dp(RiS, SLi) be written as g(C) for some appropri-
ate function g. For example, since C = cos(θ/2), we have
dquat(·, ·)2 = 4 sin2(θ/4) = 2(1 − C) and dchord(·, ·)2 =

8 sin2(θ/2) = 8(1 − C2). The gradient and Hessian may
then be expressed as in table 4.
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