Characterization of Weakly Convex Sets in Projective Space

Richard Hartley and Jochen Trumpf

2012

1 Convex Sets in \mathcal{P}^{n}

We start with a few simple observations about projective space \mathcal{P}^{n}. This space is formed from the n-sphere S^{n} by identifying opposite points. Thus, S^{n} is a 2 -fold covering space of \mathcal{P}^{n}, and as a direct consequence, $\pi_{1}\left(\mathcal{P}^{n}\right) \approx Z_{2}$ for $n>1$, since the n-sphere is simply connected for $n>1$.

For $n=1, \mathcal{P}^{1}$ and S^{1} are topologically and geometrically identical, but we may still consider the 2-fold covering map of $\mathcal{P}^{1} \rightarrow S^{1}$. Since S^{1} and \mathcal{P}^{1} are simple and easily understood, we will mainly be interested in the case $n>1$, and henceforth, we restrict our attention to this case.

One may consider a metric structure on \mathcal{P}^{n} and refer to lines and planes as geodesics, but this will not be useful in this note. We will only be interested in the projective geometric properties of \mathcal{P}^{n} and not any metric properties. The most important objects are points, lines and planes, where we use the word plane to mean a hyper-plane of dimension $(n-1)$ in \mathcal{P}^{n}. Important properties are as follows.

1. Any two points in \mathcal{P}^{n} lie on a unique line. The line is separated by the two points into two parts, called line segments.
2. A plane in \mathcal{P}^{n} is projectively equivalent to \mathcal{P}^{n-1}.
3. A plane and a line not lying in the plane meet in exactly one point.
4. A plane in \mathcal{P}^{n} is non-separating. If π is a plane in \mathcal{P}^{n}, then $\mathcal{P}^{n}-\pi$ is projectively equivalent to \mathbb{R}^{n}, lines and planes in $\mathcal{P}^{n}-\pi$ corresponding to lines and planes in \mathbb{R}^{n}.

It will be our practice to draw diagrams of configurations in projective space \mathcal{P}^{2} or more generally \mathcal{P}^{n} by selecting a plane π, thought of as the plane at infinity, and drawing objects in \mathbb{R}^{2} or \mathbb{R}^{n} by representing lines in \mathcal{P}^{n} by lines in \mathbb{R}^{n}. It should be remembered that a line between two points is made up of two line segments, one which joins the points in \mathbb{R}^{n} and the other which crosses the plane at infinity.

By a convex set in \mathcal{P}^{n}, we mean a weakly convex set. That is, a convex set S satisfies the condition that any two points X_{1} and X_{2} in S are joined by exactly one line segment lying in S. We assume as a matter of notational convenience that the empty set is a convex set.

The main purpose of this note is to show that if S is a convex set in \mathcal{P}^{n}, then there exists a plane in \mathcal{P}^{n} that does not meet S. In this case, there is a one-to-one correspondence between convex sets in \mathbb{R}^{n} and convex sets in \mathcal{P}^{n}.

2 Triangles in \mathcal{P}^{2}

In this section, we restrict attention to the 2-dimensional projective plane \mathcal{P}^{2}. A triangle in \mathcal{P}^{2} consists of three non-collinear points along with geodesic segments joining the three pairs. Just to emphasize this, the word triangle is used to represent the three edges and the vertices, not a region bounded by the triangle. Three points in a weakly convex set S define a unique triangle lying in the set, since each pair of vertices is connected by a line segment. The perimeter of the triangle is the union of its three edges. We will consider two types of triangles. A triangle is called a small triangle if its perimeter is a null-homotopic path in \mathcal{P}^{2}. Otherwise, it is called a large triangle. It is easily seen that a triangle is small if and only if there exists a line that intersects the perimeter of the triangle in an even number of points. In making this observation, we exclude lines that contain any of the vertices of the triangle.

Small and large triangles are shown in fig 1

Figure 1: Small (left) and large (right) triangles.
One can be more specific, as the following lemma shows.
Lemma 2.1. If T is small triangle in \mathcal{P}^{2}, then there is a line that does not intersect T in any point. If T is a large triangle, then there exists a line that meets it in one point, interior to one of the edges.

Proof. First a definition: if g is a line segment joining two points in \mathcal{P}^{2}, then the complementary line segment is the other part of the complete line containing the two points. We include the two end points as part of the complementary line segment.

Consider a small triangle T and a line L that does not meet any of the three vertices. If L and T do not intersect, then we are done. The alternative is that it meets two of the sides g_{1} and g_{2}. Let \bar{g}_{1} and \bar{g}_{2} be the line segments complementary to g_{1} and g_{2}. Now, select two points $x_{1} \in \bar{g}_{1}$ and $x_{2} \in \bar{g}_{2}$, not vertices of the triangle, and let L be the line that joins these points. This line does not meet g_{1} or g_{2}, and since it must meet the triangle in an even number of points, it does not meet g_{2} either. Hence it does not meet the triangle.

If T is a small triangle, select a point x_{1} in \bar{g}_{1} and point x_{2} in g_{2}, and join them with a line L. Since this line must meet the triangle in an odd number of points, it cannot meet g_{3}, and the proof is finished.

This lemma shows that the forms of the triangles shown in fig 1 represent the most general form of small and large triangles in \mathcal{P}^{2}, where the line guaranteed by lemma 2.1 is chosen as the line at infinity, π_{∞}.

2.1 Small triangles

We list some important facts about small triangles. Choosing a line not meeting a small triangle as the line at infinity in \mathcal{P}^{2}, one may envisage a small triangle as lying in the Euclidean plane \mathbb{R}^{2}. From this, several properties follow.
Lemma 2.2. 1. A small triangle separates \mathcal{P}^{2} into two regions. One region is a topological disk, and the other one (containing the line at infinity) is not. The region homeomorphic to a disk is termed the interior of the triangle. The other region (homeomorphic to a projective plane, less a disk ${ }^{1}$) is the exterior of the triangle.
2. If a small triangle in \mathcal{P}^{2} is contained in a convex set S, then the interior of the triangle lies in S.

Proof. The first statement follows from the properties of a triangle in \mathbb{R}^{2}. To prove the second statement, let x be a point in the interior of the triangle, and suppose that $x \notin S$. Let L be any line through x. This line must meet the triangle at two points where it crosses the triangle. These points divide L into two segments g in the interior of the triangle, and \bar{g} in the exterior of the triangle. One of these two segments must lie entirely inside S, since S is convex. However, since x is not in S, this cannot be the segment g, and so \bar{g} lies in S. As line L rotates around the point x, the line segment \bar{g} exterior to the triangle sweeps out the whole exterior of the triangle, which must therefore be contained in S. However, the exterior of the triangle contains the whole line at infinity π_{∞}, which contradicts the fact that S is convex (it cannot contain a complete line). From this contradiction, it follows that $x \in S$, and so the complete interior of the triangle lies in S.

[^0]
2.2 Large triangles

Now, we consider large triangles. It will be our goal to show that large triangles in a convex set S do not exist. However, this will need to be proved in several steps.
Notation. Let X_{i} be points in \mathcal{P}^{2}, not lying on a given plane π. A notation such as $\left[X_{1} X_{2} \ldots X_{m}\right]$ denotes the path consisting of line segments between successive points X_{1} to X_{m}. Since there are two line segments between any two points, we separate two points X_{i} and X_{i+1} by a vertical bar \mid to indicate that the line segment that crosses the plane π is to be chosen. For instance, the path $\left[X_{1} X_{2} X_{3} \mid X_{1}\right]$ is a large triangle in which the segment $\left[X_{3} \mid X_{1}\right]$ crosses π. A triangle will be large if and only if it contains an odd number of \mid in its representation.
Notation: The notation $\left[X_{1} X_{2} X_{3}\right]_{S}$ denotes the triangle with vertices X_{i} and edges lying in S. In this notation, we do not use bars \mid to indicate whether one of the edges crosses the plane π_{∞}.

Since it is easy to find a plane that misses one given side of a triangle, we see that a triangle is large if and only if there is some plane that meets just one of the edges.

Definition 2.3. An incomplete solid triangle in a set $S \subset \mathcal{P}^{2}$ is a small triangle that bounds an open region in S and such that exactly two edges of the triangle lie entirely in S.

In this definition, note that if S is a convex set then the complement of the edge not in S must lie in S. Next we prove the following lemma.

Lemma 2.4. If a convex set S in \mathcal{P}^{2} contains a large triangle, then it contains an incomplete solid triangle.

Proof. Refer to fig 2 and fig 3 for an illustration of the following proof.

Figure 2: Left: If $\left[X_{1} X_{4}\right]$ is in S, then the triangle $\left[X_{1} X_{2} X_{4} X_{1}\right]$ lies in S. Right: If $\left[X_{1} \mid X_{4}\right]$ is in S, then the triangle $\left[X_{1}\left|X_{4} X_{3}\right| X_{1}\right]$ lies in S.

Let $\left[X_{1} X_{2} X_{3} \mid X_{1}\right]$ be a large triangle contained in S. Consider a point $X(t)$ moving at constant speed along the line segment from X_{2} to X_{3}, parametrized by $t \in[0,1]$. Since $X \in S$, there is line segment from X_{1} to $X(t)$ lying in S. Some of these line segments will cross the plane π and some will not. Let I_{0} be

Figure 3: X_{4} is the point on $\left[X_{2} X_{3}\right]$ that separates small from large triangles $\left[X_{1} X_{2} X_{4}\right]_{S}$. Left: If $\left[X_{1} X_{4}\right]$ is in S, then the triangle $\left[X_{1}\left|X_{4} X_{3}\right| X_{1}\right]$ is an incomplete solid triangle. Right: If $\left[X_{1} \mid X_{4}\right]$ is in S, then the triangle [$\left.X_{1} X_{2} X_{4} X_{1}\right]$ is an incomplete solid triangle.
the set of values t such that the line segment from X_{1} to $X(t)$ does not cross the plane π and let I_{1} be the set of t such that the line segment from X_{1} to $X(t)$ does cross the plane π. This may alternatively be stated as follows: I_{0} is the set of t such that the triangle $\left[X_{1} X_{2} X(t)\right]_{S}$ is small, and I_{1} is the set of t such that this triangle is large. Now $0 \in I_{0}$ since the edge $\left[X_{1} X_{2}\right]=\left[X_{1} X(0)\right]$ does not cross π. Similarly, $1 \in I_{1}$. However, each value of t must be in I_{0} or I_{1}, so $\sup I_{0} \geq \inf I_{1}$.

We make various observations.

1. If X_{4} lies on the line segment $\left[X_{2} X_{3}\right]$, then
(a) If $\left[X_{1} X_{4}\right]$ lies in S, then the triangle $\left[X_{1} X_{2} X_{4} X_{1}\right.$] bounds a region lying in S. (See fig 2 left).
(b) If $\left[X_{1} \mid X_{4}\right]$ lies in S, then the triangle $\left[X_{1}\left|X_{4} X_{3}\right| X_{1}\right]$ bounds a region lying in S. (See fig 2 right).
2. If $X_{4}=X(t)$ where $t<\sup I_{0}$, then $\left[X_{1} X_{2} X_{4} X_{1}\right]$ is a triangle with interior lying in S.
3. If $X_{4}=X(t)$ where $t>\inf I_{1}$, then $\left[X_{1}\left|X_{4} X_{3}\right| X_{1}\right]$ is a triangle with interior lying in S.

If $\sup I_{0}>\inf I_{1}$, then there exists a value of $t \operatorname{such}$ that $\inf I_{1}<t<\sup I_{0}$. If $X_{4}=X(t)$, then from the remarks above, both the segments [$X_{4} X_{1}$] and [$X_{1} \mid X_{4}$] lie in S, which contradicts the assumption that S is weakly convex.

The other possibilty is that $\sup I_{0}=\inf I_{0}=t$ for some t. We define $X_{4}=X(t)$. There are then two cases.

1. If $\left[X_{1} X_{4}\right]$ is in S, then the triangle $\left[X_{1}\left|X_{4} X 3\right| X_{1}\right]$ is an incomplete solid triangle. (See fig 3 left).
2. If on the other hand [$X_{1} X_{4}$] is not in S, then the triangle [$X_{1} X_{2} X_{4} X_{1}$] is an incomplete solid triangle. (See fig 3 right).

The following lemma implies that a convex set does not contain incomplete solid triangles.

Lemma 2.5. Suppose a set S has the property that every two points are connected by at least one line segment. If S contains an incomplete solid triangle, then it contains a complete line.

Proof. For this proof, refer to fig 4.

Figure 4: The existence of the incomplete triangle $\left[X_{1} X_{2} X_{3} X_{1}\right]$ in a convex region S implies that a complete region lying between two lines lies in S, and hence, S contains a complete line.

Suppose that that the vertices of an incomplete solid triangle are X_{1}, X_{2} and X_{3}. We may assume that there is a plane π not meeting the triangle, or its interior lying in S. Let the edge $\left[X_{1} X_{3}\right]$ not lie entirely in S. Then $\left[X_{1} \mid X_{3}\right]$ does lie in S. By an argument similar to the one used previously, there exists a point X_{4} on the line segment $\left[X_{3} \mid X_{1}\right]$ that divides the triangles $\left[X_{2} X_{3} X_{4}\right]_{S}$ that are small from those that are large. Note that if $\left[X_{2} X_{3} X_{4}\right]_{S}$ is large, then [$\left.X_{2} X_{1} X_{4}\right]_{S}$ is small. Without loss of generality (for notational convenience only) we assume that the segment $\left[X_{3} X_{4}\right]$, not crossing the plane π, lies in S. It follows as before that the two triangles $\left[X_{2} X_{3} X_{4} X_{2}\right.$] and $\left[X_{1}\left|X_{4}\right| X_{2} X_{1}\right.$] are small and bound regions in S.

The union of the three triangles $\left[X_{1} X_{2} X_{3} X_{1}\right],\left[X_{2} X_{3} X_{4} X_{2}\right]$ and $\left[X_{1}\left|X_{4}\right| X_{2} X_{1}\right]$ now consists of the complete region lying between the two lines $\left[X_{4} \mid X_{2} X_{4}\right]$ and [$X_{4} \mid X_{1} X_{3} X_{4}$], and the interior of this region lies entirely in S. Finally, since X_{4} also lies in S, any complete line lying strictly between these two lines will lie completely in S. This completes the proof of lemma 2.5 . As a result we obtain the following result.

Lemma 2.6. A convex set S can not contain a large triangle.

3 Convex sets and planes

We consider planes in projective spaces. By a plane, we mean an $(n-1)$ dimensional plane in \mathcal{P}^{n}. In the case where $n=2$, a plane is the same as a line, but we will continue to refer to them as planes when appropriate.

Lemma 3.7. 1. n distinct points X_{1}, \ldots, X_{n} define a plane.
2. Let X_{1} and X_{2} be two points lying in a plane. Then the line containing X_{1} and X_{2} must lie in the same plane.

Now, we consider the relationship between a convex set and a plane.
Lemma 3.8. Let S be a convex set and π a plane. The intersection of S and π is a convex set. Further, $S-\pi$ is made up of two disjoint sets, $S-\pi=A \cup B$ where A and B are both convex.

Proof. It is easy to see that $S \cap \pi$ is convex, since if X_{1} and X_{2} are both in $S \cap \pi$, then they are joined by a single line segment lying in S, and this must also lie in π according to lemma 3.7.

We now consider a relation defined on $S-\pi$. Two distinct points X_{1} and X_{2} are related (we write $X_{1} \sim X_{2}$) if the line segment [$X_{1} X_{2}$] (not meeting π) lies in S. In addition, we define $X_{1} \sim X_{1}$ for any point X_{1}. We now proceed to show that this is an equivalence relationship. The only thing we need to show is transitivity. Thus, suppose $X_{1} \sim X_{2}$ and $X_{2} \sim X_{3}$, but $X_{1} \nsim X_{3}$. In this case, the triangle $\left[X_{1} X_{2} X_{3} \mid X_{1}\right]$ is a large triangle in S, which is not possible, according to lemma 2.6.

This equivalence relationship divides $S-\pi$ into two disjoint equivalent classes, A and B which are both convex, according to the definition of the relation \sim, and which are connected only by line segments crossing the plane π. This completes the proof.

4 The main separation theorem

The main result we want to achieve is as follows.
Theorem 4.9. If S is a convex set in \mathcal{P}^{n}, then there exists a plane π in \mathcal{P}^{n} that does not meet S.

This theorem will be proved by induction on n. The case $n=1$ is trivial. Note that a "plane" in \mathcal{P}^{1} consists of a single point, so this is saying that if S is convex in \mathcal{P}^{1}, then there exists a point not in S.

Now, assume the theorem is true for \mathcal{P}^{n-1}, and consider \mathcal{P}^{n}. Let π_{∞} be a plane in \mathcal{P}^{n}. If π_{∞} does not meet S, then we are done. Otherwise, π_{∞} meets S in a convex set, and since π_{∞} is an instance of \mathcal{P}^{n-1}, there exists a plane μ_{∞} (of dimension $n-2$) in π_{∞} that is disjoint from S. Note that μ_{∞} has codimension 1 in π_{∞}, or codimension 2 in \mathcal{P}^{n}. This situation is shown in fig 5 , which will be used to illustrate the proof.

The plane π_{∞} divides S into two convex sets A and B in \mathbb{R}^{n}. We may therefore find a further plane π_{1} in \mathbb{R}^{n} that separates A and B. This plane extends to a plane in \mathcal{P}^{n}, which may or may not meet S on π_{∞}. If it does not, then π_{1} is the plane we are looking for, and the proof is complete. So, assume that $\pi_{1} \cap \pi_{\infty}$ contains points of S.

Figure 5: \mathcal{P}^{n} is separated by the planes π_{∞}, π_{1} and π_{2} into 4 regions. Any plane lying between π_{1} and π_{2} will be disjoint from the set S.

Now, we consider the set of all planes in \mathcal{P}^{n} that contain the codimension- 2 plane μ_{∞}. There is a one-dimensional family of such planes, in fact they may be parametrized by S^{1}. Since π_{∞} is one such plane, the remaining planes may be parametrized by the interval $(0,1)$. We denote them by π_{t} where $t \in(0,1)$. The intersection of π_{t} and π_{∞} consists precisely of μ_{∞}, which does not contain points of S. Therefore, if any π_{t} is disjoint from A and B, then it is the plane we are looking for. On the other hand, π_{t} can not intersect both A and B, for if $X_{1} \in A$ and $X_{2} \in B$, then there is a line segment in S joining X_{1} to X_{2}. This line segment must lie in π_{t}, since X_{1} and X_{2} do, but it must also cross π_{∞}, since A and B are only joined by a line segment passing through π_{∞}. However, $\pi_{t} \cap \pi_{\infty}=\mu_{\infty}$ which is disjoint from S, which supplies a contradiction.

Therefore, we suppose that every plane π_{t} meets exactly one of A and B. Let I_{A} be the set of those t for which π_{t} meets A and I_{B} be the set of t such that π_{t} meets B. It is easy to see that I_{A} and I_{B} are connected sets in $(0,1)$ since if two planes $\pi_{t_{1}}$ and $\pi_{t_{2}}$ both meet A, then so does any plane π_{t} with $t_{1}<t<t_{2}$. Therefore, there exists $s \in(0,1)$ and a plane $\pi_{2}=\pi_{s}$ such that π_{t} meets A for $t \in(0, s)$ and π_{t} meets B for $t \in(s, 1)$. Further, π_{s} itself meets either A or B.

Now, consider the two planes π_{1} and π_{2}. They are not the same, because π_{2} meets π_{∞} in μ_{∞} which does not contain a point in S, whereas $\pi_{1} \cap \pi_{\infty}$ does contain a point in S. The three planes π_{∞}, π_{1} and π_{2} divide up \mathcal{P}^{n} into 4 open regions as shown in fig 5 . Both the planes π_{1} and π_{2} separate A from B. It
follows that A and B are contained in only two of the four regions, and they must be opposite regions, as shown in fig 5 .

To complete the proof, we consider a plane that lies between π_{1} and π_{2}, passing through the regions of $\mathcal{P}^{n}-\pi_{\infty}$ that do not contain A or B. This plane will not meet S in $\mathcal{P}^{n}-\pi_{\infty}$. In addition, there does not exist a point lying on π_{∞} between the planes π_{1} and π_{2} either, since such a point can not be joined to any point in A or B without crossing one of the planes π_{1} and π_{2} at a point not in π_{∞}.

This completes the proof.

References

[1] W. Massey. Algebraic topology: An introduction. Springer, 1977.

[^0]: ${ }^{1}$ By a classical result, this is not a disk, see [1]

