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1 Convex Sets in Pn

We start with a few simple observations about projective space Pn. This space
is formed from the n-sphere Sn by identifying opposite points. Thus, Sn is a
2-fold covering space of Pn, and as a direct consequence, π1(Pn) ≈ Z2 for n > 1,
since the n-sphere is simply connected for n > 1.

For n = 1, P1 and S1 are topologically and geometrically identical, but we
may still consider the 2-fold covering map of P1 → S1. Since S1 and P1 are
simple and easily understood, we will mainly be interested in the case n > 1,
and henceforth, we restrict our attention to this case.

One may consider a metric structure on Pn and refer to lines and planes as
geodesics, but this will not be useful in this note. We will only be interested in
the projective geometric properties of Pn and not any metric properties. The
most important objects are points, lines and planes, where we use the word
plane to mean a hyper-plane of dimension (n− 1) in Pn. Important properties
are as follows.

1. Any two points in Pn lie on a unique line. The line is separated by the
two points into two parts, called line segments.

2. A plane in Pn is projectively equivalent to Pn−1.

3. A plane and a line not lying in the plane meet in exactly one point.

4. A plane in Pn is non-separating. If π is a plane in Pn, then Pn − π is
projectively equivalent to IRn, lines and planes in Pn − π corresponding
to lines and planes in IRn.

It will be our practice to draw diagrams of configurations in projective space
P2 or more generally Pn by selecting a plane π, thought of as the plane at
infinity, and drawing objects in IR2 or IRn by representing lines in Pn by lines
in IRn. It should be remembered that a line between two points is made up of
two line segments, one which joins the points in IRn and the other which crosses
the plane at infinity.
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By a convex set in Pn, we mean a weakly convex set. That is, a convex set S
satisfies the condition that any two points X1 and X2 in S are joined by exactly
one line segment lying in S. We assume as a matter of notational convenience
that the empty set is a convex set.

The main purpose of this note is to show that if S is a convex set in Pn,
then there exists a plane in Pn that does not meet S. In this case, there is a
one-to-one correspondence between convex sets in IRn and convex sets in Pn.

2 Triangles in P2

In this section, we restrict attention to the 2-dimensional projective plane P2. A
triangle in P2 consists of three non-collinear points along with geodesic segments
joining the three pairs. Just to emphasize this, the word triangle is used to
represent the three edges and the vertices, not a region bounded by the triangle.
Three points in a weakly convex set S define a unique triangle lying in the set,
since each pair of vertices is connected by a line segment. The perimeter of the
triangle is the union of its three edges. We will consider two types of triangles.
A triangle is called a small triangle if its perimeter is a null-homotopic path
in P2. Otherwise, it is called a large triangle. It is easily seen that a triangle
is small if and only if there exists a line that intersects the perimeter of the
triangle in an even number of points. In making this observation, we exclude
lines that contain any of the vertices of the triangle.

Small and large triangles are shown in fig 1

Figure 1: Small (left) and large (right) triangles.

One can be more specific, as the following lemma shows.

Lemma2.1. If T is small triangle in P2, then there is a line that does not
intersect T in any point. If T is a large triangle, then there exists a line that
meets it in one point, interior to one of the edges.
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Proof. First a definition: if g is a line segment joining two points in P2, then the
complementary line segment is the other part of the complete line containing
the two points. We include the two end points as part of the complementary
line segment.

Consider a small triangle T and a line L that does not meet any of the three
vertices. If L and T do not intersect, then we are done. The alternative is
that it meets two of the sides g1 and g2. Let ḡ1 and ḡ2 be the line segments
complementary to g1 and g2. Now, select two points x1 ∈ ḡ1 and x2 ∈ ḡ2, not
vertices of the triangle, and let L be the line that joins these points. This line
does not meet g1 or g2, and since it must meet the triangle in an even number
of points, it does not meet g2 either. Hence it does not meet the triangle.

If T is a small triangle, select a point x1 in ḡ1 and point x2 in g2, and join
them with a line L. Since this line must meet the triangle in an odd number of
points, it cannot meet g3, and the proof is finished.

This lemma shows that the forms of the triangles shown in fig 1 represent the
most general form of small and large triangles in P2, where the line guaranteed
by lemma 2.1 is chosen as the line at infinity, π∞.

2.1 Small triangles

We list some important facts about small triangles. Choosing a line not meeting
a small triangle as the line at infinity in P2, one may envisage a small triangle
as lying in the Euclidean plane IR2. From this, several properties follow.

Lemma2.2. 1. A small triangle separates P2 into two regions. One region
is a topological disk, and the other one (containing the line at infinity)
is not. The region homeomorphic to a disk is termed the interior of the
triangle. The other region (homeomorphic to a projective plane, less a
disk1) is the exterior of the triangle.

2. If a small triangle in P2 is contained in a convex set S, then the interior
of the triangle lies in S.

Proof. The first statement follows from the properties of a triangle in IR2. To
prove the second statement, let x be a point in the interior of the triangle,
and suppose that x ̸∈ S. Let L be any line through x. This line must meet
the triangle at two points where it crosses the triangle. These points divide
L into two segments g in the interior of the triangle, and ḡ in the exterior of
the triangle. One of these two segments must lie entirely inside S, since S is
convex. However, since x is not in S, this cannot be the segment g, and so ḡ
lies in S. As line L rotates around the point x, the line segment ḡ exterior to
the triangle sweeps out the whole exterior of the triangle, which must therefore
be contained in S. However, the exterior of the triangle contains the whole line
at infinity π∞, which contradicts the fact that S is convex (it cannot contain
a complete line). From this contradiction, it follows that x ∈ S, and so the
complete interior of the triangle lies in S.

1By a classical result, this is not a disk, see [1]

3



2.2 Large triangles

Now, we consider large triangles. It will be our goal to show that large triangles
in a convex set S do not exist. However, this will need to be proved in several
steps.
Notation. Let Xi be points in P2, not lying on a given plane π. A notation
such as [X1X2 . . . Xm] denotes the path consisting of line segments between
successive points X1 to Xm. Since there are two line segments between any
two points, we separate two points Xi and Xi+1 by a vertical bar | to indicate
that the line segment that crosses the plane π is to be chosen. For instance,
the path [X1X2X3|X1] is a large triangle in which the segment [X3|X1] crosses
π. A triangle will be large if and only if it contains an odd number of | in its
representation.
Notation: The notation [X1X2X3]S denotes the triangle with vertices Xi and
edges lying in S. In this notation, we do not use bars | to indicate whether one
of the edges crosses the plane π∞.

Since it is easy to find a plane that misses one given side of a triangle, we
see that a triangle is large if and only if there is some plane that meets just one
of the edges.

Definition 2.3. An incomplete solid triangle in a set S ⊂ P2 is a small triangle
that bounds an open region in S and such that exactly two edges of the triangle
lie entirely in S.

In this definition, note that if S is a convex set then the complement of the
edge not in S must lie in S. Next we prove the following lemma.

Lemma2.4. If a convex set S in P2 contains a large triangle, then it contains
an incomplete solid triangle.

Proof. Refer to fig 2 and fig 3 for an illustration of the following proof.

Figure 2: Left: If [X1X4] is in S, then the triangle [X1X2X4X1] lies in S.
Right: If [X1|X4] is in S, then the triangle [X1|X4X3|X1] lies in S.

Let [X1X2X3|X1] be a large triangle contained in S. Consider a point X(t)
moving at constant speed along the line segment from X2 to X3, parametrized
by t ∈ [0, 1]. Since X ∈ S, there is line segment from X1 to X(t) lying in S.
Some of these line segments will cross the plane π and some will not. Let I0 be
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Figure 3: X4 is the point on [X2X3] that separates small from large triangles
[X1X2X4]S. Left: If [X1X4] is in S, then the triangle [X1|X4X3|X1] is
an incomplete solid triangle. Right: If [X1|X4] is in S, then the triangle
[X1X2X4X1] is an incomplete solid triangle.

the set of values t such that the line segment from X1 to X(t) does not cross
the plane π and let I1 be the set of t such that the line segment from X1 to
X(t) does cross the plane π. This may alternatively be stated as follows: I0 is
the set of t such that the triangle [X1X2X(t)]S is small, and I1 is the set of t
such that this triangle is large. Now 0 ∈ I0 since the edge [X1X2] = [X1X(0)]
does not cross π. Similarly, 1 ∈ I1. However, each value of t must be in I0 or
I1, so sup I0 ≥ inf I1.

We make various observations.

1. If X4 lies on the line segment [X2X3], then

(a) If [X1X4] lies in S, then the triangle [X1X2X4X1] bounds a region
lying in S. (See fig 2 left).

(b) If [X1|X4] lies in S, then the triangle [X1|X4X3|X1] bounds a region
lying in S. (See fig 2 right).

2. IfX4 = X(t) where t < sup I0, then [X1X2X4X1] is a triangle with interior
lying in S.

3. If X4 = X(t) where t > inf I1, then [X1|X4X3|X1] is a triangle with
interior lying in S.

If sup I0 > inf I1, then there exists a value of t such that inf I1 < t < sup I0.
If X4 = X(t), then from the remarks above, both the segments [X4X1] and
[X1|X4] lie in S, which contradicts the assumption that S is weakly convex.

The other possibilty is that sup I0 = inf I0 = t for some t. We define
X4 = X(t). There are then two cases.

1. If [X1X4] is in S, then the triangle [X1|X4X3|X1] is an incomplete solid
triangle. (See fig 3 left).

2. If on the other hand [X1X4] is not in S, then the triangle [X1X2X4X1] is
an incomplete solid triangle. (See fig 3 right).

The following lemma implies that a convex set does not contain incomplete
solid triangles.
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Lemma2.5. Suppose a set S has the property that every two points are con-
nected by at least one line segment. If S contains an incomplete solid triangle,
then it contains a complete line.

Proof. For this proof, refer to fig 4.

Figure 4: The existence of the incomplete triangle [X1X2X3X1] in a convex
region S implies that a complete region lying between two lines lies in S, and
hence, S contains a complete line.

Suppose that that the vertices of an incomplete solid triangle are X1, X2

and X3. We may assume that there is a plane π not meeting the triangle, or
its interior lying in S. Let the edge [X1X3] not lie entirely in S. Then [X1|X3]
does lie in S. By an argument similar to the one used previously, there exists
a point X4 on the line segment [X3|X1] that divides the triangles [X2X3X4]S
that are small from those that are large. Note that if [X2X3X4]S is large, then
[X2X1X4]S is small. Without loss of generality (for notational convenience
only) we assume that the segment [X3X4], not crossing the plane π, lies in S.
It follows as before that the two triangles [X2X3X4X2] and [X1|X4|X2X1] are
small and bound regions in S.

The union of the three triangles [X1X2X3X1], [X2X3X4X2] and [X1|X4|X2X1]
now consists of the complete region lying between the two lines [X4|X2X4] and
[X4|X1X3X4], and the interior of this region lies entirely in S. Finally, since X4

also lies in S, any complete line lying strictly between these two lines will lie
completely in S. This completes the proof of lemma 2.5. As a result we obtain
the following result.

Lemma2.6. A convex set S can not contain a large triangle.

3 Convex sets and planes

We consider planes in projective spaces. By a plane, we mean an (n − 1)-
dimensional plane in Pn. In the case where n = 2, a plane is the same as a line,
but we will continue to refer to them as planes when appropriate.
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Lemma3.7. 1. n distinct points X1, . . . , Xn define a plane.

2. Let X1 and X2 be two points lying in a plane. Then the line containing
X1 and X2 must lie in the same plane.

Now, we consider the relationship between a convex set and a plane.

Lemma3.8. Let S be a convex set and π a plane. The intersection of S and π
is a convex set. Further, S − π is made up of two disjoint sets, S − π = A ∪B
where A and B are both convex.

Proof. It is easy to see that S ∩ π is convex, since if X1 and X2 are both in
S ∩ π, then they are joined by a single line segment lying in S, and this must
also lie in π according to lemma 3.7.

We now consider a relation defined on S − π. Two distinct points X1 and
X2 are related (we write X1 ∼ X2) if the line segment [X1X2] (not meeting π)
lies in S. In addition, we define X1 ∼ X1 for any point X1. We now proceed to
show that this is an equivalence relationship. The only thing we need to show
is transitivity. Thus, suppose X1 ∼ X2 and X2 ∼ X3, but X1 ̸∼ X3. In this
case, the triangle [X1X2X3|X1] is a large triangle in S, which is not possible,
according to lemma 2.6.

This equivalence relationship divides S − π into two disjoint equivalent
classes, A and B which are both convex, according to the definition of the
relation ∼, and which are connected only by line segments crossing the plane π.
This completes the proof.

4 The main separation theorem

The main result we want to achieve is as follows.

Theorem4.9. If S is a convex set in Pn, then there exists a plane π in Pn

that does not meet S.

This theorem will be proved by induction on n. The case n = 1 is trivial.
Note that a “plane” in P1 consists of a single point, so this is saying that if S
is convex in P1, then there exists a point not in S.

Now, assume the theorem is true for Pn−1, and consider Pn. Let π∞ be a
plane in Pn. If π∞ does not meet S, then we are done. Otherwise, π∞ meets S
in a convex set, and since π∞ is an instance of Pn−1, there exists a plane µ∞ (of
dimension n− 2) in π∞ that is disjoint from S. Note that µ∞ has codimension
1 in π∞, or codimension 2 in Pn. This situation is shown in fig 5, which will be
used to illustrate the proof.

The plane π∞ divides S into two convex sets A and B in IRn. We may
therefore find a further plane π1 in IRn that separates A and B. This plane
extends to a plane in Pn, which may or may not meet S on π∞. If it does not,
then π1 is the plane we are looking for, and the proof is complete. So, assume
that π1 ∩ π∞ contains points of S.
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Figure 5: Pn is separated by the planes π∞, π1 and π2 into 4 regions. Any plane
lying between π1 and π2 will be disjoint from the set S.

Now, we consider the set of all planes in Pn that contain the codimension-2
plane µ∞. There is a one-dimensional family of such planes, in fact they may
be parametrized by S1. Since π∞ is one such plane, the remaining planes may
be parametrized by the interval (0, 1). We denote them by πt where t ∈ (0, 1).
The intersection of πt and π∞ consists precisely of µ∞, which does not contain
points of S. Therefore, if any πt is disjoint from A and B, then it is the plane
we are looking for. On the other hand, πt can not intersect both A and B, for
if X1 ∈ A and X2 ∈ B, then there is a line segment in S joining X1 to X2. This
line segment must lie in πt, since X1 and X2 do, but it must also cross π∞,
since A and B are only joined by a line segment passing through π∞. However,
πt ∩ π∞ = µ∞ which is disjoint from S, which supplies a contradiction.

Therefore, we suppose that every plane πt meets exactly one of A and B.
Let IA be the set of those t for which πt meets A and IB be the set of t such
that πt meets B. It is easy to see that IA and IB are connected sets in (0, 1)
since if two planes πt1 and πt2 both meet A, then so does any plane πt with
t1 < t < t2. Therefore, there exists s ∈ (0, 1) and a plane π2 = πs such that
πt meets A for t ∈ (0, s) and πt meets B for t ∈ (s, 1). Further, πs itself meets
either A or B.

Now, consider the two planes π1 and π2. They are not the same, because
π2 meets π∞ in µ∞ which does not contain a point in S, whereas π1 ∩ π∞ does
contain a point in S. The three planes π∞, π1 and π2 divide up Pn into 4 open
regions as shown in fig 5. Both the planes π1 and π2 separate A from B. It
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follows that A and B are contained in only two of the four regions, and they
must be opposite regions, as shown in fig 5.

To complete the proof, we consider a plane that lies between π1 and π2,
passing through the regions of Pn−π∞ that do not contain A or B. This plane
will not meet S in Pn − π∞. In addition, there does not exist a point lying on
π∞ between the planes π1 and π2 either, since such a point can not be joined
to any point in A or B without crossing one of the planes π1 and π2 at a point
not in π∞.

This completes the proof.
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