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Abstract— Accurate localisation of unmanned aerial vehicles
is vital for the next generation of automation tasks. This
paper proposes a minimum energy filter for velocity-aided
pose estimation on the extended special Euclidean group. The
approach taken exploits the Lie-group symmetry of the problem
to combine Inertial Measurement Unit (IMU) sensor output
with landmark measurements into a robust and high perfor-
mance state estimate. We propose an asynchronous discrete-
time implementation to fuse high bandwidth IMU with low
bandwidth discrete-time landmark measurements typical of
real-world scenarios. The filter’s performance is demonstrated
by simulation.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) are an increasingly
important technology in modern society with applications
in photography, logistical deliveries, mapping, inspection
tasks, etc. Accurate estimation of a vehicle’s position and
orientation (pose) is critical for the new generation of appli-
cations of such vehicles. Most pose estimation algorithms for
aerial vehicles depend heavily on Global Navigation Satellite
Systems (GNSS) to provide ground truth on position [1].
However, GNSS signals become unreliable and fail entirely
in urban canyons, forest environments, or any situation where
direct reception of the satellite signal is compromised [1].
This has focused attention on the development of algorithms
that use exteroceptive sensors such as vision and lidar to
provide position information [2]–[5].

Historically, the most successful state estimation algo-
rithms for UAV systems have been derived from stochastic
principles. Early work on attitude estimation built upon the
Extended Kalman Filter (EKF), typically representing the
system state using Euler angles [6]. Markley’s Multiplicative
EKF (MEKF) [7] introduced a quaternion attitude repre-
sentation and exploited group multiplication to propagate
error estimates. Recently, Filipe et al. [8] extended this to
pose estimation. Bonnabel et al. [9] proposed a general
filtering framework for Lie-groups, introducing the Invariant
Extended Kalman Filter (IEKF) [10]. This framework has
lead to applications in velocity aided attitude estimation [11],
visual odometry and Simultaneous Localisation and Mapping
(SLAM) [3], [12]. An alternative to the stochastic approach is
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to consider deterministic observer construction or minimum
energy filtering. The complementary filter [13] on the special
orthogonal group SO(3) [14], [15] was fundamental in
overcoming the limitations of low quality IMU systems in
the early years of aerial robotics. Pose estimation was studied
at the same time [16]–[19] and there is recent work in this
area on SLAM [4], [5]. The deterministic signal perspective
also underlies filters based on the principle of minimum
energy filtering [20], [21]. Minimum energy filters have been
developed on the special orthogonal and special Euclidean
Lie-groups for attitude and pose estimation problems [22]–
[24]. Saccon et al. [25] developed a general minimum
energy filtering theory which also applies to second order
systems. Minimum energy filtering combines the advantages
of the gain tuning characteristics of stochastic filters with the
deterministic geometric insight of the underlying symmetry
group, in particular allowing for a non-zero curvature of the
associated Lie-group to be chosen.

In this paper, we specialise the general filter described
in Saccon et al. [25] to derive a minimum energy filter to
estimate the pose and linear velocity of an unmanned aerial
vehicle equipped with IMU and landmark measurements.
The paper extends earlier work that required linear velocity
measurements directly [26] to a second order model based
on the geometry introduced in [11]. This Lie-group is known
as the extended special Euclidean group SE2(3) [12] and
provides a model of the pose (attitude and position) along
with the linear (but not angular) velocity of the vehicle. We
model the uncertainty in the signals as a deterministic input
disturbance and minimize a deterministic least squares cost
functional in these disturbance inputs over trajectories that
are compatible with the measured outputs. A key contribution
is to incorporate the landmark observations by an asyn-
chronous update to the filter state that occurs when landmark
information is available at discrete times. The proposed
update is based on decomposing the Riccati equation into
a part that is dependent on the landmark measurements
and a part that models the state evolution. The landmark
information is modelled as Dirac delta signal leading to
a discrete update analogous to that obtained in [23]. We
provide an explicit matrix representation of the filter and
a simple simulation to demonstrate the performance of the
proposed algorithm, although the principle contribution of
the paper is theoretical.

The remainder of the paper is organised as follows.
Section II introduces the required notation and concepts from
differential geometry. Section III formally defines the system
model and optimisation problem. Section IV introduces the
abstract filter derived by Saccon et al. An explicit matrix



representation for the minimum energy filter is presented
in Section V. Section VI provides the proposed discretisa-
tion of the differential equations to deal with asynchronous
landmark updates. A simple simulation is presented in Sec-
tion VII before conclusions are given in Section VIII.

II. PRELIMINARIES AND NOTATION

This section introduces the notation and conventions used
throughout the paper.

The following symbols related to differential geometry
will be used in the same way as in [25];
G a connected Lie group
h, g elements of G
g the Lie algebra associated with G
X,Y elements of g
[ . , . ] the Lie bracket operator
g∗ the dual of the Lie algebra g
µ an element of g∗

Lg : G→ G left translation Lgh = gh
ThLg the tangent map of Lg at h ∈ G
gX shorthand for TeLg(X) ∈ TgG
〈 . , . 〉 duality pairing 〈µ,X〉 = µ(X)
.∗ adjoint operator,

〈µ,AX〉 = 〈A∗µ,X〉
V finite dimensional vector space
f : G→ V differentiable map
df(g) : TgG→ V differential of f at g
d1 differential with respect to the

first argument
∇XY covariant derivative on vector

fields X and Y
ω : g× g→ g connection function associated

with ∇
ωX : g→ g ωX(Y ) = ω(X,Y )
T : g× g→ g torsion function associated with

ω
TX : g→ g TX(Y ) = T (X,Y )
Hess f(g) Hessian operator of a twice-

differentiable function f

A. Exponential Functor

Given a linear map φ : U → V and a third vector space
W , the exponential functor (.)W lifts the map φ to the linear
map φW : L(W,U)→ L(W,V ) defined by φW (ξ) = φ ◦ ξ

If the reader is unfamiliar with the exponential functor,
they should note its appearance in the abstract operator E(t)
in (31). In Lemma 5.3 we remove the exponential functor
by using the identity[

φW ◦Hess f(g)
]
◦ gX = φ ◦ [Hess f(g) ◦ gX] . (1)

B. The Lie Group SE2(3)

The filter presented in this paper estimates the position,
orientation and linear velocity of a robot, which can con-
veniently be represented as a matrix Lie group. Here, we
define the structure of the extended special euclidean group,

SE2(3), and the corresponding Lie algebra, se2(3), as in [12,
A.1.2],

SE2(3) :


R v x
0 1 0
0 0 1

 : R ∈ SO(3), v, x ∈ R3

 , (2)

se2(3) :

{
ξ =

[
(ξR)× ξv ξx

02×5

]
: ξR, ξv, ξx ∈ R3

}
. (3)

The skew operator, (.)×, transforms a vector to a skew-
symmetric matrix;

(.)× : R3 → so(3), ω× :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (4)

vex : so(3)→ R3, vex(Ω) := vex(ω×) = ω. (5)

The wedge, ∧, and vee, ∨, operators can be used to
transform between matrix and vector representations of the
lie algebra, respectivelyξRξv

ξx

∧ :=

[
(ξR)× ξv ξx

02×5

]
, (6)

[
(ξR)× ξv ξx

02×5

]∨
:=

ξRξv
ξx

 . (7)

We also use the vee to denote the matrix representation of
a linear group operator. For example, for a group operator
A : g→ g, the matrix representation, A∨, satisfies

(A ◦ g)∨ = A∨g∨. (8)

C. Miscellaneous Operators

The symmetric projector is defined as

Ps : Rn×n → Rn×n, Ps (A) :=
1

2
(A+A>). (9)

We define the matrix operators F̄ and Ḡ : R3 → R5×9 as

F̄ (v) :=

[
−v× 0 I3

02×9

]
, (10)

Ḡ(v) :=

v× 0 0
0 v> 0
0 0 v>

 . (11)

For an element X ∈ se2(3), the following identities allow us
to transform between the matrix and vector representation of
the Lie algebra;

Xv̄ = F̄ (v)X∨, (12)

X>v̄ = Ḡ(v)X∨, (13)

where the bar operator transforms a vector to homogeneous
coordinates. Given a vector, v ∈ R3,

v̄ :=

v0
1

 . (14)



We will also utilise the non-homogeneous representations of
F and G : R3 → R3×9;

F (v) =
[
−v× 0 I3

]
, (15)

G(v) =
[
v× 0

]
. (16)

III. PROBLEM FORMULATION

We consider a single robot operating in free space. We
represent the position, x ∈ R3, orientation, R ∈ SO(3), and
linear velocity, v ∈ R3, all with respect to the inertial frame
and expressed in the coordinates of the inertial frame.

The kinematics of the vehicle is represented by

Ṙ = RΩ×, (17a)
v̇ = Ra, (17b)
ẋ = v, (17c)

where Ω ∈ R3 is the angular velocity, and a ∈ R3 is the
linear acceleration, both in the coordinates of the body-fixed
frame. We can express the state of the robot, (R, v, x), as an
element of the matrix Lie group SE2(3),

g :=

R v x
0 1 0
0 0 1

 . (18)

The matrix group representation of the kinematics in (17) is
then

ġ = g

[
Ω× a R>v

02×5

]
. (19)

The robot is equipped with an IMU, which measures
linear acceleration, ua, and angular velocity, uω , of the body-
fixed frame in the coordinates of the body-fixed frame. The
measurements are modelled by

uΩ = Ω +BΩδΩ, (20a)
ua = a+Baδa, (20b)

where δΩ, δa are unknown error signals assumed to be zero
mean and square integrable with values in R3. BΩ and Ba :
R3 → R3 are known linear maps.

In addition to the IMU, the robot is also equipped with a
sensor that measures relative translations to a number of fixed
landmarks, li ∈ R3, i ∈ {1, . . . , N}, in the environment.
The measurement signal for each of the landmarks, yi(t), is
modelled by

yi(t) = R>(li − x) +Dεi (21a)
= hi(g) +Dεi, (21b)

where εi is the unknown, zero mean, square integrable
measurement error signal with values in R3. D : R3 → R3

is a known invertible linear map.
Consider the following cost function on the system;

Jt =
1

2
m0(g0) +

1

2

∫ t

t0

‖δ(τ)‖2 +
∑
i

‖εi(τ)‖2 dτ (22)

where δ =

[
δΩ
δa

]
and m0 : SE2(3) → R is a bounded

smooth function with a unique global minimum. We define

the minimising trajectory g∗[t0,t] as the trajectory which is
compatible with the system kinematics and measurement
model and that minimises Jt.

The filter estimate, ĝ, is defined as the terminal point of
the minimising trajectory over the time period [t0, t]. More
specifically,

ĝ(t) = g∗[t0,t](t). (23)

IV. ABSTRACT FILTER

In this section, we present the abstract operator formula-
tion of the filter, drawing on the results from [25] as the
basis for the derivation.

Substituting the measurement model from (20) into (19)
gives

ġ = g(

[
(uΩ)× ua R>v

02×5

]
+

[
(−BΩδΩ)× −Baδa 0

02×5

]
)

(24a)
= g (λt(g, u) +B(δ(t))) (24b)

where λt(g, u) is shorthand for λ(g(t), u(t)).
The model described by (24b) and (21b), together with

the cost functional (22) is a case of the general model and
cost functional described by Saccon et al. in [25]. Because of
this, we can directly use the resulting filter equations derived
by Saccon et al.

From [25], the second-order optimal1 minimum energy
estimate, ĝ, for the state of the system described above is

˙̂g = ĝ (λt(ĝ, u) +K(t)rt(ĝ)) , (25)
ĝ(t0) = arg min

g
m0(g). (26)

The residual, rt ∈ se2(3)∗, is given by

rt(ĝ) =
∑
i

TeL
∗
ĝ ◦ [(Py ◦ (yi − ŷi)) ◦ dhi(ĝ)] (27)

where Py = (D -1)∗ ◦D -1 and ŷi = hi(ĝ).
The gain operator, K(t) : se2(3)∗ → se2(3), satisfies the

Riccati equation

K̇ = A ◦K +K ◦A∗ −K ◦ E ◦K +B ◦B∗

− ωKr ◦K −K ◦ ω∗Kr
(28)

where

K(t0) = X -1
0 , X0 = TeL

∗
ĝ0 ◦Hessm0(ĝ0) ◦ TeLĝ, (29)

A(t) = d1λt(ĝ, u) ◦ TeLĝ − adλt(ĝ,u)−Tλt(ĝ,u), (30)

E(t) =
∑
i

−TeL∗ĝ ◦
[

(Py ◦ (yi − ŷi))TĝG ◦Hesshi(ĝ)

− (dhi(ĝ))∗ ◦ Py ◦ dhi(ĝ)
]
◦ TeLĝ,

(31)

1The derivation of the filter utilises the value function, V (g, t), which
is defined as the minimising cost among all trajectories of (24b) in the
interval [t0, t] which reach the state g ∈ SE2(3) at time t. Repeatedly
differentiating the value function with respect to time provides a set of
necessary conditions which define the optimal filter. Ordinarily, this would
result in an infinite number of conditions, and so a key step in the filter
derivation is to approximate the value function to second order, and assume
that all higher-order terms are negligible. This is the reason we refer to the
filter as second-order optimal [25].



and Kr is shorthand notation for Krt(ĝ).
There are a number of possible choices for the connection

function in (28), ω, and in this case we select the Cartan
(0)-Connection, which is defined as

ω(0)(X,Y ) =
1

2
[X,Y ] =

1

2
adX(Y ). (32)

V. EXPLICIT FILTER

The filter equations presented in Section IV represent
abstract operations on a general Lie group. In this section
we present one of the main contributions of this work, which
is to determine the explicit matrix representations of these
operators, specialised to the SE2(3) Lie group. Choosing
the standard basis for the Lie algebra, we detail the matrix
representations of the relevant operators in the proceeding
4 lemmas. These culminate in an explicit representation for
the entire filter, as detailed in Theorem 5.5.

Lemma 5.1: Consider the adjoint representation of se2(3),
adξ. This operator on the Lie algebra can be equivalently
represented by the matrix operator

ad∨ξ =

ξR× 0 0
ξv× ξR× 0
ξx× 0 ξR×

 . (33)

Proof: The adjoint operator for a matrix Lie group is
equivalent to the matrix commutator;

adξ γ = [ξ, γ] = ξγ − γξ. (34)

We then expand the matrix multiplication using the group
representation in (3) and use the identities on the cross
product,

ω×φ = −φ×ω, (35)
[ω×, φ×] = (ω×φ)×, (36)

for ω, φ ∈ R3.
Lemma 5.2: Consider the operator A(t) : se2(3) →

se2(3) defined in (30). Let A∨(t) ∈ R9×9 denote the matrix
representation of A(t). Then

A∨(t) :=

−uΩ× 0 0
−ua× −uΩ× 0

0 I −uΩ×

 . (37)

Proof: We determine the matrix representation of the
first term of (30) by taking the directional derivative in an
arbitrary direction, gX ∈ TĝSE2(3),

d1λt(ĝ, u) ◦ ĝX =

 0 0 0
0 0 0

(R>v)× I 0

X∨
∧ . (38)

Considering the direction was arbitrary, this gives

(d1λt(ĝ, u) ◦ TeLĝ)∨ =

 0 0 0
0 0 0

(R>v)× I 0

 (39)

as the matrix representation. The second term of (30) is
evaluated by using Lemma 5.1 and the final term is zero

as the (0)-connection has trivial torsion, i.e. T (X,Y ) = 0.
The result then follows.

Lemma 5.3: Consider the operator E(t) : se2(3) →
se2(3)∗ defined in (31). Let E∨(t) ∈ R9×9 denote the matrix
representation of E(t). Then

E∨(t) =
∑
i

[
− Ps

(
F (ŷi)

>G
(
Py(yi − ŷi)

))
+ F (ŷi)

>PyF (ŷi)
]
. (40)

Proof: We apply the operator in (31) to two arbitrary
elements of se2(3), X and Y , and use the identity in (1),
which gives

[E(t) ◦X] ◦ Y =∑
i

[
− (Py ◦ (yi − ŷi)) ◦ [Hesshi(ĝ) ◦ ĝX] ◦ ĝY

+ [[(dhi(ĝ))∗ ◦ Py ◦ dhi(ĝ)] ◦ ĝX] ◦ ĝY
]
. (41)

The Hessian operator, in homogeneous coordinates, is
given by

[Hess h̄i(ĝ) ◦ ĝX] ◦ ĝY
= d(dh̄i(ĝ) ◦ ĝY ) ◦ ĝX − dh̄i(ĝ) ◦ ĝωX(Y )

(42)

=
1

2

(
XY h̄i(ĝ) + Y Xh̄i(ĝ)

)
. (43)

Substituting the Hessian operator into (41) and evaluating
the derivatives in the second term gives

[E(t)◦X]◦Y =
∑
i

[
− 1

2

〈
Pȳ(ȳi − ¯̂yi), XY ¯̂yi + Y X ¯̂yi

〉
+
〈
Pȳ, X ¯̂yiY ¯̂yi

〉 ]
(44)

where ŷi = hi(ĝ).
We then utilise the identities in (12), (13) to isolate the X

and Y terms, giving

[E(t) ◦X] ◦ Y =∑
i

[
− 1

2
(Y ∨)>F̄ (ŷi)

>Ḡ (Py(yi − ŷi))X∨

− 1

2
(Y ∨)>Ḡ (Py(yi − ŷi))> F̄ (ŷi)X

∨

+ (Y ∨)>F̄ (ŷi)
>PȳF̄ (ŷi)X

∨
]
. (45)

From this, we convert back from homogeneous coordinates
and the lemma follows.

Lemma 5.4: Consider the operator rt : se2(3) → R
defined in (27). Let r∨t ∈ R9 denote the matrix representation
of rt. Then

r∨t (ĝ) =
∑
i

(yi − ŷi)>PyF (ŷi). (46)

Proof: Similarly to Lemma 5.3, we apply the operator
(27) to an arbitrary element X ∈ se2(3) which gives

rt(ĝ) ◦X =
∑
i

〈Py ◦ (yi − ŷi),dhi(ĝ) ◦ ĝX〉 . (47)



We then evaluate the derivative and apply the identity from
(12) and the lemma follows.

Theorem 5.5: The explicit matrix representation of the
second-order optimal minimum energy filter is given by

˙̂g = ĝ (λt(ĝ, u) +K(t)rt(ĝ)) , (48)

K̇ = Ps
(
2A∨K − ad∨KrK

)
−KE∨K +B∨(B∨)> (49)

Proof: This follows as a consequence of Lemmas 5.2,
5.3, and 5.4.

VI. IMPLEMENTATION

There are a number of considerations that need to be made
when implementing the filter on a physical system. Primarly,
we must propose a method of discretising the continuous-
time differential equations and also consider the effect of
differing sensor update rates. In this section, we propose one
possible way of discretising the filter given the real-world
constraints of the system.

Modern IMU sensors have sufficiently high fixed sample
rates that we can simply numerically integrate the terms in
the differential equation relating to the IMU measurements.
However, we consider that the landmark sensor information
may be available at a much slower rate, and potentially
intermittently. Thus, for the terms in the differential equation
relating to the landmark sensor, we perform a discrete update
step. This approach is similar to that of Zamani and Trumpf
in [23], but we aim to find a discretisation of the continuous
time equations, rather than directly derive the discrete update
equations.

In discretising the filter, we will find that it is simpler to
work with the inverse form of the Riccati equation for the
gain matrix, P = K -1, which gives

Ṗ = −Ps
(
2PA∨ − P ad∨P -1r

)
+ E∨ − PB∨(B∨)>P.

(50)

Considering just the IMU measurements, we apply the Lie
Group Euler method to propagate the state estimate forwards
in time from t to t + ∆t, where ∆t is the time between
successive IMU measurements. We also apply the standard
Euler method to the gain matrix P , excluding the terms that
are dependent on the landmark measurement. This gives

ĝ(t+ ∆t) =ĝ(t) · exp(∆t · λt(ĝ, u)), (51)
P (t+ ∆t) =P (t)− 2∆t · Ps (P (t)A∨(t))

−∆t · P (t)B∨(B∨)>P (t),
(52)

where exp is the matrix exponential.
When landmark measurements are available at some time,

t, we perform a discrete update step, updating the state
and gain matrix from ĝ(t) and P (t) to ĝ(t+) and P (t+)
respectively,

ĝ(t+) = ĝ(t) · exp
(
α
[
P (t+) -1r∨t (ĝ)

]∧)
, (53)

P (t+) = P (t) + αE∨(t) + αPs
(
P (t) ad∨P (t) -1r∨t (ĝ)

)
.

(54)

It is necessary to apply a gain, α, to account for the disparity
in frequency between landmark and velocity measurements.
Consider that, if landmark measurements were available at
the same frequency as velocity measurements, then directly
taking the Euler integration of (50) would result the same
equations as (52) and (54) with α = ∆t. Additionally, if at a
given time step only a subset of landmark measurements are
available, then the summands in E(t) and rt corresponding
to other landmarks become zero. For example, this might
occur in a real-world scenario if a landmark is out of range
or obscured by an obstacle.

VII. SIMULATION

In this section, we demonstrate an implementation of the
discrete-time minimum energy filter from section VI. We
consider a single UAV operating in free space on a trajectory
with a constant angular and linear velocity. The filter is
initialised with a displaced state estimate and an initial value
for P = diag(10−3, 10−3, 10−3, 3, 3, 3, 5, 5, 5).

We model the IMU with an update rate of 1000 Hz and
model the noise with a normal distribution, δ ∼ N (0, 1). We
select the gains BΩ = 0.1I3 and Ba = 0.1I3.

We position 4 fixed landmarks in the environment at
various points. The landmark sensor measures the relative
position of all landmarks at a fixed rate of 10 Hz, with the
sensor error drawn from a random distribution, ε ∼ N (0, 1)
and the gain terms selected as D = 0.5I3, α = 0.1.

The results of the simulation are shown in Figures 1 and
2. The two graphs show that the filter is able to relocalise
after a large initialisation error and maintain a consistently
low error in the state estimate. The filter converges from an
initial translation error of 3.8m and an initial rotation error
of 0.2 radians to an average error of 0.12m and 0.009 radians
respectively.

VIII. CONCLUSION

This paper proposes a minimum energy filter for pose
estimation of an aerial vehicle based on IMU and landmark
measurements. The key contribution of the paper lies in
specialising the results of [25] to the specific case of the
extended special Euclidean group SE2(3) [12] and providing
an explicit matrix representation of the filter. We also propose
an asynchronous discrete-time implementation to fuse high
bandwidth IMU with low bandwidth discrete-time landmark
measurements typical of real-world scenarios.
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