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ABSTRACT

This paper considers the work by (Panetta et al 2008) and (Hartley et al 2010) on self-calibration of cone-
beam CT systems in the context of helical scanning trajectories. Their technique is based on minimising 
the difference between opposing rays (pi-lines) and applies only to data on a horizontal line through the 
center of the detector for a circular scanning trajectory. Therefore it only uses a small portion of the total 
data and can't be used for all misalignments, e.g., detector tilt. For data from a helical scan this ray-
difference applies to the upper and lower edges of the Tam-Danielsson window. The data therefore spans 
the detector both horizontally and vertically meaning this technique can be used for all misalignments. It 
also uses information from the entire sample making it a robust technique. Here we investigate the 
performance of this method on helical-CT data and investigate it as an enhancement to robustness of our 
currently used tomogram sharpness maximisation technique. 

1. INTRODUCTION 

Geometric alignment of micro- and nano- computed-tomography (CT) components is not a trivial exercise. 
The position of the X-ray source and rotation/translation stage are required to be known to a tolerance of 
less than the imaging resolution of the system. Even if a system is physically aligned after imaging some 
calibration phantom, component drift due to thermal expansion can change the alignment parameter 
values significantly. A software method for post-acquisition alignment or self-calibration is desirable. Our 
group has found such software methods (e.g., Kingston et al 2011) to be so useful that physical alignment 
is rarely necessary (if ever). 
 
Since 2010 our group has moved to a helical scanning trajectory. This satisfies Tuy’s data sufficiency 
condition (Tuy 1983) which enables exact reconstruction techniques (e.g., Katsevich 2002) and extremely 
high cone-angles, i.e., high X-ray flux. However, it has a translation and rotation stage, has 9 
misalignment parameters, a minimum of redundancy in imaging. It is therefore highly sensitive to 
misalignment. The standard circular scanning trajectory by contrast does not satisfy Tuy’s condition and 
requires an approximate reconstruction technique such as (Feldkamp et al 1984). It however has only a 
single rotation stage, a total of 7 misalignment parameters, and redundant 360 degree scanning. It copes 
well with misalignments and inconsistencies as they appear as a slight blurring. 
 
Robust and precise software alignment of helical systems is therefore essential. To overcome non-uniform 
resolution problems due to finite detector sampling we use a double-helix scanning trajectory (Varslot et al 
2012). This adds significant redundancy to the data that makes alignment by maximising tomogram 
sharpness work well (Kingston et al 2011). However, if the data from one helix fails, or for cases where 
dose must be minimised, it may be necessary to align projection data from a single-helix trajectory. 
Sometimes in this case there is insufficient information/redundancy for sharpness to work well. Here we 
show that a method that minimises the difference between opposing rays (known as pi-lines) is the perfect 
counterpart to sharpness. 
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The remainder of this extended abstract is organized as follows: The experimental geometry is outlined in 
section 2. Based on this geometry, pi-lines are defined in section 3. In section 4 we present methods to 
determine geometric alignment of tomographic projection data. The proposed method using pi-lines is 
outlined in section 4.1 followed by a brief review of the existing method used at our micro-CT facility: 
sharpness, in section 4.2. The performance of these measures, along with a hybrid, is investigated in 
section 5. Lastly, some concluding remarks are included in section 6. 

2. EXPERIMENT GEOMETRY 

Here we assume a lensless fine-focus geometry where magnification is achieved through the expanding 
spherical wave-front of X-rays emitted from a micro(nano)-focus X-ray source (S) that is a distance R from 
the rotation axis. A flat-panel detector (D) is located a distance L from the rotation axis (in the opposite 
           y Z per 
revolution. Source position at angle θ is denoted Sθ, likewise detector position at angle  is denoted D . 
The coordinates on the detector are (w,h), for w = width and h = height and -N/2 <= w,h < N/2, with the 
origin at the center of the detector. 
 

 
Figure 1: Depiction of experiment geometry and occurrence of equal but opposite ray paths (pi-lines). 

3. PI-LINES 

We are interested in finding the set of x-ray paths from S  to D (w,h) denoted as ray R (w,h) for which 
there exists another ray D '(w',h') that has an equivalent direction but with the opposite trajectory. We can 
see from Figure 1 that w' = -w and h' = -h and defining  = arctan(w/L), then '=  + π - 2 . Two ray 
   ey coincide with the upper 
and lower edges of the Tam-Danielsson window, hu and hd. It is sufficient to determine only one of these h 
values due to symmetries, i.e., hd(w) = - hu(-w). Therefore it remains to determine hu as follows: 
 

hu = Z(  - 2 ) / (4  R cos2 ).                                                      (1) 
 

Tam-Danielsson (TD) window (Tam et al 1998, Danielsson et al 1997) defines a non-redundant 
(minimum) region of projection data required for reconstruction. Pi-lines first defined in (Danielsson et al 
1997) define the boundaries of the window. If one were to draw the source trajectory in 3D space, the TD 
window is the projection of this trajectory onto the detector. One very important property of pi-lines is that 
each voxel in the tomogram belongs to a unique pi-line (Danielsson et al 1997, Defrise et al 2000). This 
implies that any method using pi-lines is probing the entire data set. 

4. GEOMETRIC ALIGNMENT MEASURES 

4.1. Pi-line difference 
Suppose there exist M rays, R m(w, hu) for 1 <= m <= M, with opposing rays, R + -2

m(-w,- hu). We then 
define the pi-line difference, Δ, as follows: 
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Search for detector shift (Scan 0: Dw) followed by R (Scan 1: Rl) using both Pi-line-difference 

and Sharpness measures for both single- and double-helix trajectories. 
The plots in Figure 2 show that pi-line difference has broader peaks (less precise) but is unchanged (more 
robust) when reduced from double- to single-helix data. Sharpness fails in single-helix Dw search (Scan 0) 
and therefore cannot locate a peak in Rl search (Scan 1). Peaks in sharpness although more prominent 
due to high-frequency analysis but are consequently highly localised and easily missed. Peaks in pi-line 
difference are affected by high redundancy in low-frequency data and are thus much smoother. 
 
Two new alignment techniques arise: 1) Multi-dimensional gradient based searches are likely to work 
quickly for pi-line difference to get close enough to the solution for sharpness to refine it, and 2) A hybrid 
alignment method: Sharpness/pi-line difference. This combines the low-frequency robustness of pi-line 
difference with the high-frequency precision of sharpness as has been demonstrated in Figure 3. 
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Figure 3: Search for detector shift (Scan 0: Dw) followed by R (Scan 1: Rl) using Hybrid:Sharpness/Pi-line-

difference measures for both single-helix trajectory. 

6. CONCLUSIONS 

For helical scan projections, pi-line difference applies to data on the upper and lower edges of the Tam-
Danielsson window spanning the detector both horizontally and vertically. This implies the technique can 
be used for all misalignments. It is affected by the redundancy of low-frequency data using information 
from the entire sample. This makes it a robust technique amenable to multi-dimensional gradient based 
optimisation techniques. However, it is not as precise as the high-frequency method based on sharpness. 
Pi-line difference can therefore act as a fast initial coarse alignment before refinement by sharpness, or 
can act as an enhancement to the robustness of tomogram sharpness maximisation technique as hybrid. 

7. REFERENCES 

Danielsson, PE., Edholm, P., and Seger, M. (1997) Towards exact 3D-reconstruction for helical cone-
beam scanning of long objects. A new detector arrangement and a new completeness condition Proc. 
1997 Int. Meet. on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, pp 141-4. 
Defrise, M., Noo, F., and Kudo, H. (2000) A solution to the long-object problem in helical cone-beam 
tomography Phys. Med. Biol. 45 623-43.
Feldkamp, L., Davis, L., and Kress, J. (1984) Practical cone-beam algorithm. J. Opt. Soc. Am., A(1):612-
619.
Hartley, R., Maniotis, A., Trumpf, J. (2010) Self-Calibration of a Cone-Beam CT Imager, Submitted to 
MICCAI. 
Katsevich, A. (2002) Theoretically Exact Filtered Backprojection-Type Inversion Algorithm for Spiral 
CT. SIAM Journal of Applied Mathematics 62(6): 2012-2026. 
Kingston, A., Sakellariou, A., Varslot, T., Myers, G., Sheppard, A. (2011) Reliable automatic alignment of 
tomographic projection data by passive auto-focus. Med Phys. 38(9):4934-45. 
Panetta, D., Belcari, N., Del Guerra, A., and Moehrs, S. (2008) An optimization-based method for 
geometrical calibration in cone-beam CT without dedicated phantoms. Phys. Med. Biol, 53(14):3841-3861. 
Tam, KC., Samarasekera, S., and Sauer, F. (1998) Exact cone-beam CT with a spiral scan Phys. Med. 
Biol. 43 1015–24. 
Tuy, H. (1983) An inversion formula for cone-beam reconstruction. SIAM Journal of Applied Mathematics, 
43:546-552. 
Varslot, T., Kingston, A., Myers, G., and Sheppard, A. (2012) Considerations for high-magnification high-
cone-angle helical micro-CT. Proc. SPIE 8506, Developments in X-Ray Tomography VIII, 8506-14. 

 
 
 


