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ABSTRACT 

A real time program is implemented to classify different model airplanes imaged using a 32x32 SPAD array camera in 

time-of-flight mode. The algorithm uses random feature extractors in series with a linear classifier and is implemented on 

the NVIDIA Jetson TX2 platform, a power efficient embedded computing device. The algorithm is trained by calculating 

the classification matrix using a simple pseudoinverse operation on collected image data with known corresponding 
object labels. The implementation in this work uses a combination of serial and parallel processes and is optimized for 

classifying airplane models imaged by the SPAD and laser system. The performance of different numbers of 

convolutional filters is tested in real time. The classification accuracy reaches up to 98.7% and the execution time on the 

TX2 varies between 34.30 and 73.55 ms depending on the number of convolutional filters used. Furthermore, image 

acquisition and classification use 5.1 W of power on the TX2 board. Along with its small size and low weight, the TX2 

platform can be exploited for high-speed operation in applications that require classification of aerial targets where the 

SPAD imaging system and embedded device are mounted on a UAS. 

Keywords: LiDAR, convolutional layer, embedded computing, SPAD, Single photon avalanche diode, UAS, time-of-

flight, classification 

 

1. INTRODUCTION 

Autonomous systems are increasingly used for remote and dangerous operations in Defence. In particular, Unmanned 

Aerial Systems (UASs) are often used for remote surveillance. One major limitation of UASs is their short flight time 

due to on-board portable battery limitations. A larger battery size provides more power however also uses more UAS 

power to carry. Hence there is a requirement for any on-board sensors and processors to be small in size, and low in 

weight and power usage (SWaP) to prolong the flight time of UASs. 

 

In this work, a real time classifier for live images from a 32x32 Single Photon Avalanche Diode (SPAD) camera is 

implemented in a mix of serial and parallel processes to classify different types of model airplanes. Identifying an 

airplane is a difficult problem because it is a fast-moving target and its different classes share common complex features. 

 

SPADs detect single photons and can be paired with a pulsing laser to determine the distance to a target by measuring a 

laser pulse’s time-of-flight (ToF) to the target; arrays of SPADs can be proficiently exploited as 3D imagers by 
measuring the ToF of each photon that is detected by every pixel1. SPAD array cameras that are used in conjunction with 

a laser have a broad range of applications including military, meteorology, space, augmented reality, remote sensing, 

drone-based surveillance, advanced driver assistance systems (ADAS) and autonomous robotics. 

 

The classifier and SPAD imaging system are run and tested on the NVIDIA Jetson TX2 board. This is to demonstrate the 

feasibility of having an on-board object classifier for UASs that can classify SPAD images in high speed and high 

accuracy. The Jetson TX2 is an embedded System-on-Module (SoM) board that contains GPUs where their parallel 



 

 
 

 

 

 

processes can be called via the board’s CPU using NVIDIA’s parallel programming language Compute Unified Device 

Architecture (CUDA). Its small size and low power consumption make it suitable for UAS operation or other 

applications that require the embedded classifier to have low SWaP. The image first goes through a filter to determine if 

an object is in it, and if so, the image goes through a classifier. This is where the image is processed through a 

convolutional layer, then is mapped into a vector for matrix multiplication with the classification matrix to produce a 
vector that enables decision to be made on the most likely airplane type. This structure can also be viewed as a single 

layer Convolutional Neural Networks (CNNs), which is unlike many existing CNNs as they are usually multi-layered.  

 

Currently in the literature, there are many algorithms that perform classification. However, in many cases the 

classification algorithm is used as one building block in an overall process that is aimed at the detection of multiple 

objects in a scene. In this work, detection and classification are defined to be separate processes. Detection is defined as 

determining whether an object is in the field of view, and classification is defined as the categorization of an object into 

one of the trained classes.  

To the best of the authors’ knowledge, while there exists algorithms that classify SPAD data2 and LiDAR point clouds3, 

none of them have been implemented on an embedded system. For SPAD data, two CNNs have been proposed; one 2D 

and one 3D network2. Both networks utilize a multi-layer CNN and they are used to classify 64x64 SPAD images, which 

are higher in resolution than the 32x32 images that are used in this paper. The networks are trained and tested separately 
to classify eight different objects into three different classes: airplane, chair and UAS. The average precision, recall and 

F1-score are used to measure the network’s performance. The authors report that the 2D network achieves the same 

score of 0.95 for all these measures2. Likewise, the 3D network is reported to achieve the same score of 0.97 for all these 

measures2. 

There is also another 3D CNN called VoxNet that is proposed for classifying LiDAR point clouds3. It utilizes the 

voxelization process which enables 3D point clouds to be divided into grids, which are called voxels. The voxels of the 

image are labelled as free, occupied or unknown depending on whether the points in the original data satisfy certain 

conditions. The  multi-layer network is designed for general point clouds, and its creation and application on LiDAR data 

is demonstrated by Maturana et. al3. A subset of 14 classes from the Sydney Urban Objects dataset is used to perform 

training and testing of VoxNet. This data is collected using the Velodyne LiDAR. VoxNet achieves an average F1 score 

of 0.733.  

Despite the lack of work being conducted with SPAD images, there are many classification algorithms for standard 

images. Most of these are implemented on standard desktop machines. For this reason, the papers do not report on the 

power consumption of the overall classification system because it is not designed for energy efficiency. A classification 

performance analysis of the three most popular convolution neural networks is reported by Sharma et al.4 The CNNs 

investigated are AlexNet, GoogLeNet and ResNet50. The authors fine-tune these pre-trained networks using three 

common datasets: CIFAR-100, ImageNet and CIFAR-10. For testing, the authors look at the classification accuracy of 

20 classes of objects, where 10 classes come from CIFAR-100 and CIFAR-10 each. The average accuracies are reported 

to be 40.0875% for AlexNet, 68.152% for GoogLeNet and 68.96% for ResNet50. 

 

For classification algorithms that are implemented on embedded systems, there is little existing work that focuses on 

single object classification. Nonetheless, there is one research group that has implemented a real time classifier called 

ShuffleNet on a Qualcomm Snapdragon 820 processor5. The network optimizes the performance of 1x1 convolutions in 
multi-layer CNNs by using pointwise group convolutions and a novel channel shuffle operation 5.The processor is 

designed for mobile devices so it is much smaller, lighter and power efficient than the Jetson TX2. In terms of GPU 

power, there has not been any formal comparisons made between them. The training and testing are conducted using the 

ImageNet 2012 classification dataset. The authors report ShuffleNet’s performance to have a classification error as low 

as 26.3% with an execution time of 108.8ms. 

 

In summary, to the best of the authors’ knowledge, this paper proposes the first real-time embedded classifier for single 

object classification from SPAD time-of-flight images with a performance on par with the best existing algorithms. 

 

This paper will start with the description of the SPAD technology in Section 2, then the algorithm will be described in 

Section 3. The collection of training data will be described in Section 4 which will then be followed by a discussion of 
the implementation in Section 5. Results and a brief discussion will be presented in Sections 6 and 0 respectively. 

Finally, conclusion will be provided in Section 8. 



 

 
 

 

 

 

2. SINGLE PHOTON AVALANCHE DIODE (SPAD) TECHNOLOGY 

The Single Photon Avalanche Diode (SPAD) is a type of solid-state photo-detector that is capable of detecting single 

photon, which makes it very attractive for high-sensitivity, low-illumination detection applications.  Creating an array of 

SPADs is possible by miniaturizing SPAD devices so that they all can fit onto a single integrated circuit chip.  By 

accompanying each SPAD device with digital circuits it is then possible to create an individual pixel or smart detector 

that has the ability to both count the number of photons impinging onto the detector and to time-stamp their arrival time. 

This type of SPAD array photo-detector microchip allows the development of SPAD cameras which are suitable for 

capturing 2D images in low-light conditions and particularly attractive for Direct Time-of-Flight (DToF) 3D imaging 

applications using LiDAR (Light Detection And Ranging).  

The DToF SPAD camera used in this work is based on a monolithic chip, fabricated in a standard silicon CMOS 

technology process, integrating one SPAD and one time-to-digital converter in each of the 32x32 pixels, as already 

presented by Villa et. al.6. Depth 3D-ranging information is obtained through the use of a pulsed laser operating at 660 

nm, synchronized to the camera, illuminating distant target with pulses of light.  The reflected photons are detected by 

the camera which by using a Direct Time-of-Flight (DToF) ranging method, accurately measures the time taken by 

photons to travel to and from the target.   In order to acquire a 3D depth-resolved image of a scene rapidly, it is possible 

to measure the ToF information pixel-by-pixel for an entire array of pixels in the SPAD sensor and communicate all this 

information off camera during each pulse of the laser.  

Using the images produced from the 3D DToF SPAD camera offers an ideal opportunity to develop novel classification 

algorithms that can deal with the classification of 3D objects in various LiDAR based imaging applications. 

In this work, the SPAD camera is fitted with a Navitar NMW-12WA7 lens and a Thorlabs 660 nm filter8. The SPAD 

camera’s field of view is set to 26.22 degrees. The laser used to obtain ToF data is a 100 mW 660 nm Coherent CUBE 

diode laser (name: CUBE 660-100C). It is fitted with Navitar 1-50486 12x zoom lens9 and is adjusted to illuminate the 

field of view of the SPAD camera. The laser’s beam divergence is at 22.61 degrees and its focus is at 40 mm. As the 

laser’s divergence is smaller, the laser is moved further away from the object until its beam covers the SPAD camera’s 

field of view. The object is always placed at 400 mm away from the camera and the minimum distance of the laser is 

calculated to be 473 mm away from the object. 

3. THE ALGORITHM 

The algorithm that is used consists of three major steps; denoising, detection and linear classification. The detection step 
determines whether there is an object in the current image frame, that is then elaborated by the classification step which 

determines the type of the detected object. If no object is detected, the algorithm moves onto the next image frame. 

 

3.1 Denoising 

A moving average of 5 images is used for training, which is found to be the minimum number of images needed to 

average in order to remove noise without compromising the information in each image. For testing, a block average of 

16 images is used instead. This will be explained in Section 5.2. 

 

3.2 Detection 

Detection is carried out by determining if there is a block of columns and rows whose sum is above a defined threshold 

value. The threshold values are determined empirically, by visually identifying if the calculated boundaries include most 

of the object. The boundary values are updated by the following: 

 𝐸𝑡  =  (1 − k) ∗ 𝐸𝑡−1  +  k ∗  e; (1) 

 

where Et is the current edge, Et-1 is the edge value from the previous image, and e is the intermittent edge value from 

determining the indices of the block of column or block of row that satisfies the threshold condition. The value k is set to 

0.14 for this work. To ensure the boundary encompasses the object, the current edge value is rounded up for east and 

south edges while it is rounded down for west and north edges. The choice of rounding up or down depends on which 

side the indices start counting. Here the indices start on the west and north edges. The block size is checked for whether 



 

 
 

 

 

 

it is within the required range, which is defined to be 10 to 30 for this work with model airplanes. If an object is detected, 

the region within the identified boundaries is used for classification. Otherwise, the algorithm waits for the next image.  

 

3.3 Linear classification 

A linear classifier is used in this work where the object is classified by determining the largest value of the product of the 

image vector X and the classification matrix W. The equation is written as follows: 

 𝑋𝑊 = 𝑌 (2) 

 

The object that corresponds to the index of the largest value in the vector Y is the classified type determined by the 

algorithm. The image vector X is the histogram of the original image and its corresponding filtered images while the 

classification matrix W is calculated from images with known object labels. Details of them are given in the following 

sections. 

 

3.4 Determining the image vector X 

The image from the detector is transformed in multiple steps into the image vector X. Firstly, the denoised image passes 

through one convolutional layer, where it is convolved with a number of different filters. For this work, the classification 
performance of different numbers of filters are investigated. The filters’ dimensions are 4 by 4 pixels, which are 

empirically determined to be the smallest possible filter size that is effective.  

Secondly, the convolved images are split into positive and negative valued frames. This approach is found empirically to 

produce better classification accuracy than keeping the positive and negative values together. The original images are 

also normalized because this is found to produce better classification results. Thirdly, the original and convolved images’ 

positive and negative matrices are cropped at the boundaries identified by the detection algorithm in Section 3.2.  

For the fourth step, each of these cropped images are then summed along the row and column to form two vectors each, 

and then these vectors are resampled. The resampling algorithm used here is also optimized for fast processing, which 

will be discussed in more detail in Section 3.5. The vectors are then concatenated into the image vector X for 

classification. 

 

3.5 Resampling 

Zero-order hold is used in this work for upsampling where for an upsample factor of n, every element in the vector is 

replicated n times. For a downsampling factor of n, every i+n-th element is kept where i={1,2,3,4….}. An additional step 

is added before resampling to decrease the processing time. It determines whether artificially extending or shortening the 

original vector will decrease the processing time of the resampling operation. This is because if the original vector’s 

length is coprime with the output vector length, the upsample factor becomes very large, hence increasing the processing 

time. However, by changing the original vector’s length by a few elements, the upsample factor can decrease 

significantly. 

This extra step takes advantage of the noisy nature of the SPAD data to prioritize processing time over precision. Losing 

a few values or adding a few zeros at either end of the summed row and column vectors (from Section 3.4) will have a 

negligible effect on the overall information in the data. The implementation details are as follows. 

The new length x for the original vector is determined by finding a minimum of the following function. 

 𝑓(𝑥) = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥) ∗ 𝐿𝐶𝑀(𝑥, 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ) (3) 

where 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥)

= 𝑟𝑒𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ (𝑥 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ)2 + 1 

(4) 

The LCM in equation (3) is a measure of the relative computational cost of resampling. The penalty function from 
equation (4) measures the loss in information for removing elements or adding additional zeros to the original vector 

before resampling. The remapping resistance factor is used to determine how much difference in length can be tolerated. 

The higher the value, the lesser the tolerance. The remapping resistance factor in this work is set to 1.25. 



 

 
 

 

 

 

In the implementation, a lookup table is calculated for all possible original vector lengths. These are between 1 to 31 

because all the images are cropped before resampling. Only one lookup table is required since the output vector length is 

always 32 for this work. 

Once the desired input vector length is determined, the length of the original vector is changed by adding zeros to either 

side or removing elements as required. The number of elements to remove or add on the left and right is determined by 

the following formulas: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑎𝑑𝑑 𝑜𝑟 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

=  {

𝑛𝑒𝑤 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

2
   𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛𝑒𝑤 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ − 1

2
    𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑠 𝑜𝑑𝑑

 

(5) 

 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑎𝑑𝑑 𝑜𝑟 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

=  {

𝑛𝑒𝑤 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

2
            𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛𝑒𝑤 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ + 1

2
    𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑠 𝑜𝑑𝑑

 

(6) 

Once the original vector has been changed to the desired length, then it is upsampled using zero order hold and down 

sampled by choosing every n-th element of the vector. 

 

3.6 Determining the classification matrix W 

The classification matrix in this work is determined using the following operation. 

 𝑊 = (𝑋𝑡𝑟𝑎𝑖𝑛
𝑇 ∗ 𝑌𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ)𝑇(𝑋𝑡𝑟𝑎𝑖𝑛

𝑇 ∗ 𝑋𝑡𝑟𝑎𝑖𝑛 + 𝑏)−1 (7) 

where b is the regularization factor added to the diagonal of the matrix product. Xtrain is a matrix that contains the image 

vectors of the recorded frames of the airplanes in each row. In this work where four different airplanes are classified, the 
regularization factor is set to 100. This value is found through trial and error on what value provides the best 

classification matrix. Equation (7) is derived by using the pseudoinverse of Xtrain and applying the Ridge Regression (also 

called Tikhonov regularization). 

4. MODEL AIRPLANE DATASET 

The model airplane dataset is collected from dropping each of the four types of model airplanes in front of the SPAD 

camera and laser system. This simulates the airplanes moving across the camera’s field of view at a high speed. The 

model airplanes are shown in Figure 1 and are Tu-128, Su-35, Su-24 and MQ-9. Their sizes vary but are not larger than 

17 cm by 12 cm by 2 cm. This allows them to be within the camera’s field of view when imaged at a closer distance. 

 

 
Figure 1: Model airplanes used for imaging. 

 
 



 

 
 

 

 

 

 
Figure 2: A selection of images from the training dataset. The airplane types are (from left to right) Tu-128, Su-35, Su-24 

and MQ-9. 

A separate recording is made for each airplane drop and each airplane is dropped 100 times. The model airplanes are 

painted white to standardize the recordings. The recordings collected are also flipped left to right to double the number of 
images available for training. This gives a training set of 800 recordings in total where each recording on average has 

427 images. Figure 2 shows a sample of the collected data after denoising. The airplanes are dropped in different 

orientations 40 cm from the front of the camera to simulate a large airplane flying past the camera’s field of view. The 

laser pulse width is 17 ns and the camera has a timing resolution of 390 ps, hence making the model airplanes correspond 

to pixel values ranging between 44 different time bins.  

5. IMPLEMENTATION 

As this work is focussed on the real time classification of SPAD images on the Jetson TX2 board, only the inference part 

of the algorithm is implemented on the TX2. The algorithm is trained and tested offline with different numbers of filters 

before the classification matrix and filter values are transferred to the TX2 board. The 200 recordings for each airplane 

are split randomly in half for training and testing. This allows for fast training and testing to be executed before the 

optimal parameters are transferred to the TX2 board. Furthermore, the size of the training datasets will not be limited in 
the future by the memory capacity of the TX2 board. 

  

5.1 Software implementation 

The implementation of the classifier is designed to adhere to three principles: multithread where appropriate to increase 

performance, make use of the L1 caches when possible, and offload specific functions to the GPU only when they can 

benefit from concurrent operations. Image acquisition and classification are split into two separate threads in the 

implementation. This design choice is made because image acquisition requires less time than classification, so the 

implementation can acquire the next image before the classifier finishes processing the current image. Hence, the 

classifier only idles during data transfer between threads. The TX2 board contains an ARM Cortex A57 with 80 KiB L1 

cache which is sufficient for accommodating 1024 numerical values for each image frame. Therefore, the execution time 

of data transfers between threads is minimal. Furthermore, cache hits are able to be utilized to perform basic arithmetic 

functions serially. This is much faster overall than transferring data from the CPU to the GPU, performing the same 

arithmetic functions concurrently, and then transferring the data back to the CPU. 



 

 
 

 

 

 

Implementing parts of the classifier in parallel processes is another way to improve the classification time. Operations 

are implemented in parallel using CUDA when the reduction in time resulting from concurrent execution in the GPU 

outweighs the extra time spent transferring data to the GPU. This is true for convolution, summation of matrices to 

vectors and matrix multiplication. In particular, the summation of matrix rows and columns is implemented using the 

CUDA warp shuffle functions. This accesses the image at the register level, allowing very fast summation operations. 
Furthermore, two design steps are implemented to reduce the amount of time spent on transferring data between CPU 

and GPU. Firstly, the functions that are parallelized are only called once. For example, this is achieved in convolution by 

concatenating multiple filters into one array and multiple output images into another. Secondly, the GPU’s shared 

memory is used to store values.  

 

5.2 Denoising of real time images 

A block average of 16 images is implemented instead of a moving average of 5 images for real time classification. This 

is because a burst of 16 raw images is transferred to the TX2 at each camera acquisition and extra steps will be required 

if a moving average of 5 images is to be implemented. Since camera acquisition and classification are implemented in 

two separate threads as explained in Section 5.1, calculating an average of 16 frames does not risk losing any real time 

information whilst keeping the processing time short. 

 

5.3 Additional check for real time detection 

An additional detection check is added to stop any background noise to be detected as an object for classification. The 

detected object is only used if its distance is within the distance range which the airplanes are placed. This is determined 

by checking whether the 5th percentile’s value of the frame is less than a certain threshold value. The threshold value is 

determined by calculating the 5th percentile value of frames which contain the airplane being held at the furthest possible 

point. 

6. RESULTS 

6.1 Denoising and detection 

Denoising and detection are implemented as described in Sections 3.1 and 3.2. Example outputs are shown in the 

following figures: 

 

Figure 3: Effect of averaging 16 frames on the TX2 
board, here the first 6 rows contain the raw images and 
the last row contains the averaged images.  

 

Figure 4: Detection identifying the bounding box of 
each airplane.  

 



 

 
 

 

 

 

The last images in each column in Figure 3 are averaged images of the 16 raw images, only 6 of the 16 raw images are 

shown to illustrate the nature of the raw images. Figure 4 shows the model airplane being detected by the bounding box. 

 

6.2 Filters selection 

In this work, the classification accuracy of the implementation on the TX2 board is tested for different numbers of 
random filters in the convolution layer. 10 sets of random filters are generated offline for each number of filters to decide 

which set should be used on the TX2 based on the resulting classification performance. 200 recordings of each airplane 

are split in half randomly 20 times to train and test the algorithm for each set of random filter values. This means the 

training and testing sets contain 107800 images each. Recordings are split instead of images to prevent the training or 

testing dataset from containing too many images of the airplanes at a certain position in the drop. 

 

Figure 5: Classification Accuracies per Frame of Different Filter Values for Different Numbers of Filters 

Their classification accuracies are shown in Figure 5. Each ‘+’ data point in the figure represents the mean accuracy of 

one set of random filters over 20 random airplane data splits. Each ‘o’ data point represents the mean accuracy of all the 

sets of filters for that number of filters. 

 

6.3 Accuracy results 

The classifier is tested with different numbers of filters and with the airplane being held in three different ways: 

downwards vertically, angled downwards and dynamically. The third way is done by moving the airplane in a small 

circular motion to simulate the camera experiencing vibrations whilst on the UAS. For each number of filters and each 
way of holding the model airplane, 32 classification experiments are conducted for each airplane type. As an example, 

Figure 6 shows some of the live image feed used to test the classifier for each way of holding the airplane. The number 

of filters that is used in the classifier during this testing is 16. The image feeds for the dynamic case look similar to the 

image feed for the vertical case because for all three cases, the airplanes are placed 40 cm away from the camera, and the 

dynamic case only has the airplanes moving within a radius of 1.5 cm from that position. 



 

 
 

 

 

 

 

 

Figure 6: Images saved from testing the classifier with 16 filters using a live image feed, each group of four columns are 
chosen from each way of holding the airplane (starting from the left): a) vertical, b) angled, c) dynamic (where the airplane 

is moving in a circle). 

Confusion matrices are used to analyse the performance of the classifier with different numbers of filters and in different 
ways of holding the model airplanes. The predictions from the set of 32 classifications are recorded and used for 

calculating the performance measures in Table 1. The predictions are recorded as percentages for each airplane type. 

Recall and overall accuracy share the same row because they have the same values since the number of testings for each 

airplane are the same. 

 
Table 1: Performance measures for different number of filters. 

Measures Way of 

holding the 

airplane 

Number of Filters 

4 8 16 32 64 

Overall 

Accuracy 

(%) and 

Macro 

Recall (%) 

Vertical 90.63 96.88 97.66 98.44 100.00 

Angled 87.50 90.63 94.53 96.88 99.22 

Dynamic 82.81 89.06 93.75 95.31 96.88 

Average 86.98 92.19 95.31 96.88 98.70 

Macro 

Precision 

(%) 

Vertical 92.37 97.22 97.77 98.48 100.00 

Angled 88.81 92.45 94.91 97.01 99.24 

Dynamic 85.99 91.05 94.64 95.86 97.06 

Average 89.06 93.57 95.77 97.12 98.77 

Macro F1 

measure 

(scale of 0-

1) 

Vertical 0.91 0.97 0.98 0.98 1.00 

Angled 0.88 0.92 0.95 0.97 0.99 

Dynamic 0.84 0.90 0.94 0.96 0.97 

Average 0.88 0.93 0.96 0.97 0.99 

Average 

Error Rate 

(%) 

Vertical 4.69 1.56 1.17 0.78 0.00 

Angled 6.25 4.69 2.73 1.56 0.39 

Dynamic 8.59 5.47 3.13 2.34 1.56 

Average 6.51 3.91 2.34 1.56 0.65 

 

 



 

 
 

 

 

 

In further test runs we simulate an airplane flying past the camera. The camera is fixed onto a gimbal and moved at a 

constant speed to scan a static vertical model airplane from bottom to top. The classifier is only stopped after the airplane 

exits the field of view. The number of detections during each scan is recorded and the classifier’s confidence rate for 

each airplane type during the midpoint of the scan is shown in Table 2 below. 64 filters are used in the classifier for these 

test runs because Table 1 shows this number of filters has the best performance. 
 

Table 2: Classification performance of classifier when model airplane is moving at a constant speed in field of view. 

Airplanes 

scanned 

Confidence Rate of the scan’s middle frame (%) Number of 

detections Tu-128  Su-35 Su-24 MQ-9 

Tu-128 91.30 0 8.70 0 44 

Su-35 0 86.96 13.04 0 45 

Su-24 0 0 100 0 43 

MQ-9 0 0 4.76 95.24 40 

  

6.4 Execution time 

The average execution time for the TX2 board to classify an image is presented in Table 3. These are the average 

execution times for the dynamic case. The overall execution time is only the classification time because image 

acquisition and classification are implemented in two separate threads as discussed in Section 5.1. Also, the amount of 

time it takes for the SPAD camera to see the object will depend on the laser strength and the distance to the target hence 

this is not included in the execution time.  

 
Table 3: Average execution time of classifier using different number of filters (ms). 

 Number of Filters 

 4 8 16 32 64 

Tu-128 31.99 30.00 40.61 46.22 64.79 

Su-35 28.63 32.39 39.76 48.43 66.45 

Su-24 29.06 31.85 35.98 46.79 62.99 

MQ-9 31.04 31.38 38.07 49.80 66.04 

Average 30.18 31.40 38.61 47.81 65.07 

 
The power consumption of the TX2 board when executing the classifier in real time is found to be 5.1 W. 

7. DISCUSSION 

From the classification results in Table 1, it is evident that the classifier performs best with 64 filters. In this setting, its 

overall classification accuracy reaches 98.7% and its error rate is at its lowest of 0.65. Its F1 measure is 0.99 given its 

recall and precision scores are at 98.7 and 98.77 respectively. Overall, the classification accuracy improves with 

increasing number of filters. The average execution time for this classifier with 64 filters is around 73.55 ms. The power 

consumption for the classifier to execute in real time is between 5.1 W. As there is no reported power consumption in 

other related work, the power consumption cannot be compared. 

The performance of the classifier is comparable to other existing CNNs presented in the literature. Using 16 or more 

filters result in the classifier having a higher precision, recall and F1 score than the 2D network proposed by Ruvalcaba-

Cardenas et. al.2. However, there are a few differences between the 2D network and this paper’s proposed network. First 

of all, the 2D network uses a VGG-16 model that is pre-trained on 14 million standard images, and adds four layers to 
fine-tune the network to classify SPAD images2. This makes a total of 18 layers which is much larger than this paper’s 

random feature detecting network. Secondly, the training data is different. An average of 4270 SPAD images per class 

are used for training in this paper while 641 SPAD images per class are used to fine-tune a pre-trained model for the 2D 

network2. Thirdly, this paper’s images are 32x32 in size and Ruvalcaba-Cardenas et. al.’s original images are 64x64 

which are then scaled up to 224x224 to be compatible with the VGG-16 model’s input layer2. Furthermore, Ruvalcaba-

Cardenas et. al. are classifying eight different objects into three classes (airplane, chair, UAS)2 while this paper is 



 

 
 

 

 

 

classifying four different  airplanes into four different classes (Tu-128, Su-35, Su-24, MQ-9), where there is a one-to-one 

correspondence between each object to a class. 

For the 3D network proposed for SPAD images2, this paper’s classifier has equal performance when using 32 filters and 

performs better at 64 filters. Point clouds are used as input data for the 3D network. This is different to this paper’s work 

where the SPAD images are interpreted as 2D images with the values giving distance information. Furthermore, the 
object’s pixels are projected over the z-plane to create a 3D point cloud for the 3D CNN2. This is needed because the 

objects are being timed at the same bin by the SPAD and laser system, hence appearing flat in a 3D map2. The 3D 

network also has a different structure to this paper’s network, where the 3D network has 11 layers2 and this paper’s 

network can be viewed as a single layer CNN. 

The network in this paper also performs better than VoxNet3 for all numbers of filters. The average F1 score of the Multi 

Resolution VoxNet is 0.733 while this paper’s network has a lowest F1 score of 0.88 at 4 filters. However, this work is 

only classifying 4 classes of objects while VoxNet is tested to classify 14 classes of objects3. VoxNet’s training data size 

is unknown so it is difficult to determine whether we are using a larger dataset for training. It is known that the dataset 

used (Sydney Urban Objects dataset) for VoxNet only has 631 images10 for each class of object, and this is much smaller 

than this paper’s training dataset of 4270 images per class. VoxNet also uses many more layers than this paper’s network 

that can be viewed as a single layer CNN. Its CNN consists of two identical 5-layer networks working in parallel and 

then one final classification layer. The two parallel networks are used to process the data that is voxelized by two 

different sized grids, 0.1m and 0.2m. This is to ensure the classifier is rotationally invariant.  

Table 4: Classification accuracy of different CNNs  

 AlexNet GoogLeNet ResNet50 

Average accuracies 40.0875 68.152 68.96 

Max accuracy 95.9 (Truck from CIFAR-10) 
 

97.1 (Truck from CIFAR-10) 
 

99.2 (Motorcycle from 
CIFAR-10) 

Min accuracy 0 (Bed from CIFAR-100) 
 

0.84 (Streetcar from CIFAR-
100) 

33.4 (Table from CIFAR-100) 
 

 

The network in this paper has an overall accuracy that is comparable to the accuracies reported on AlexNet, GoogLeNet 

and ResNet50 by Sharma et. al.4. Table 4 shows the average, minimum and maximum accuracies of the three CNNs at 

classifying 20 different classes of objects. Classes from CIFAR-100 and CIFAR-10 each make up half of the 20 testing 

classes. The accuracies for each of the classes vary a lot and are much lower than this paper’s network accuracy for any 

number of filters. Even though the number of testing classes are greater than the classes used in this paper, all three of 

these CNNs have far more layers than the proposed random feature detecting network proposed in this paper. AlexNet 

has 8 layers11, GoogLeNet has 22 layers12, and ResNet50 has 50 layers13. Also, the authors take the pre-trained models of 
these CNNs and further fine-tune these models with three datasets: CIFAR-100 with 32x32 RGB images, ImageNet with 

varying sizes of RGB images, and CIFAR-10 with 32x32 RGB images. Further fine-tuning is possible because these 

models allow transfer learning, which is also the case for the 2D network proposed by Ruvalcaba-Cardenas et. al.2 that 

stemmed from VGG-16 to classify SPAD images.  This is different to this paper’s network as it is unable to store 

memory from previous learning. 

Furthermore, the minimum accuracies of these three networks are always from one of CIFAR-100’s classes and the 

maximum accuracies always come from one of CIFAR-10’s classes. One possibility is that the difference between 

CIFAR-10 and CIFAR-100 is that CIFAR-10 only has 10 classes while CIFAR-100 has 100 classes with 20 

superclasses. Superclasses are a broader category that encompasses more than one of the classes such that each image 

had two labels, one representing its class and the other representing its superclass. Hence, the training for CIFAR-100 is 

performed with each of its images containing two labels, which is different to the training dataset used to test this paper’s 

random feature detecting network. We only use one label for each image. 

Finally, this paper’s random feature detecting network for all numbers of filters has a much smaller error rate than 

ShuffleNet5. The network’s highest error rate is 6.51% when using 4 filters whereas ShuffleNet’s lowest error rate is 

26.3%5. ShuffleNet is tested against the ImageNet 2012 classification dataset5, which is different to the dataset used in 

this paper. There are multiple error rates because ShuffleNet is tested with different numbers of filters at each layer and 



 

 
 

 

 

 

different numbers of pointwise convolutions to be grouped at a time. However, it is not clear how the authors of 

ShuffleNet calculated the classification error. For this paper, the error rate is calculated by averaging the percentage of 

false negatives and false positives for each model airplane. When comparing the execution times, the real time classifier 

in this paper has an execution time that varies between 34.30 and 73.55 ms for different numbers of filters whereas 

ShuffleNet’s times are between 15.2 to 108.8 ms for 224x224 images5. The values vary because the authors measure the 
time of the three highest performing configurations of ShuffleNet. Further testing is required before arriving at any 

conclusions regarding execution time.  

8. CONCLUSION 

A real time classifier for time-of-flight SPAD images is implemented on the NVIDIA Jetson TX2 board. It processes the 

images with a convolutional layer and uses matrix multiplication to determine the highest likelihood object class. It has 

been tested to classify four different types of model airplanes (Tu-128, Su-35, Su-24 and MQ-9) when using five 

different numbers of filters (4, 8, 16, 32 and 64). The classifier achieves an overall classification accuracy of 98.7% with 

an F1-score of 0.99 when using 64 filters. Its execution time varies between 34.30 and 73.55ms depending on how many 

filters are used and its power consumption is between 5.1 W. Overall, the results show that the proposed classifier can be 

executed on a TX2 board that is mounted on a UAS as well as for low SWaP applications. 

9. FUTURE WORK 

There are many potential branches in the future for this work. Firstly, further speedups can be investigated to decrease 
the execution time of the classifier. Secondly, more classes of planes or other objects can be introduced for classification. 

Thirdly, the system’s robustness can be improved further to allow eventual implementation as a neuromorphic system-

on-chip. 
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