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Abstract

This paper proposes a new method for estimating cali-
bration parameters of plenoptic cameras by minimizing the
nonlinear plenoptic reprojection error. Novel plenoptic fea-
ture types are proposed as data for the calibration method.
These plenoptic disc features are in a natural one-to-one
correspondence with physical points in front of the cam-
era. We exploit the intrinsic geometry of plenoptic cameras
in a novel projection model that relates the plenoptic disc
features to physical points. The resulting calibration qual-
ity, as quantified by mean reprojection error and 3D recon-
struction error, outperforms recently published results.

1. Introduction

Figure 1: A zoomed view of a raw light-field image taken by
a Raytrix R42 camera. In the large red circle is a plenoptic
disc containing the set of lenslets that can see a specific fea-
ture. The yellow dots highlight the detected feature. Subim-
ages corresponding to different lenslet types are shown in
the blue circle in different colors.

Calibration estimation is a fundamental problem in com-
puter vision. Accurate calibration, both intrinsic and extrin-
sic, is essential for the generation of metrically correct scene
reconstructions, as well as being crucial in other preprocess-
ing tasks. Due to the complexity of the lenslet geometry of

plenoptic cameras, existing multi-camera calibration meth-
ods are not directly effective and there is a growing liter-
ature aimed at developing effective models for calibration
[17, 16, 19, 18, 8, 5, 15, 7, 2, 13, 1].

Most existing calibration techniques, for both plenop-
tic and other sorts of cameras, consist of three main steps
and are based on estimating a projective transformation that
models the camera for a ray-based model of light. The first
step takes in as data raw images, and estimates the locations
of features in these images generating a list of correspon-
dences between frames. The second step is initialisation,
generating an initial estimate of the calibration parameters.
A cost function, typically mean reprojection error, is then
minimised in the third, optimisation step.

This paper proposes a new calibration method for
plenoptic light-field cameras that outperforms existing
methods on the key performance measures of mean repro-
jection error and 3D reconstruction error. The first step
of most existing calibration methods requires matching of
subimage feature points between subimages, and data asso-
ciation between these image points between different light-
fields (image frames) of a known target. As there can be
dozens of subimages in which a given feature is visible per
frame (see Fig. 1), the identification of subimage features
becomes an onerous task [13]. This process is made more
difficult by the fact that the different focal lengths used for
multi-focus light field cameras [10] mean that many of the
subimages are out-of-focus for each of the images. Further-
more, since each subimage has a small resolution there is
limited information available to make highly accurate fea-
ture extraction, especially when a feature point approaches
the edge of a subimage. Reliable and robust extraction of
accurate subimage feature points for lightfield calibration is
a key limitation to existing calibration methods. Our pro-
posed method avoids this problem by exploiting the intrin-
sic geometry of the light-field camera in order to derive a
feature type that is unique to plenoptic cameras, namely
plenoptic disc features. These features are similar in na-
ture to ‘circles of confusion’ in conventional photography
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[14], although this term can also refer to a certain type of
optical aberration [6]. This feature type has similarities to
the feature type suggested in [3], however that paper does
not use such feature types for calibration. Furthermore, we
show that our plenoptic disc feature parametrisation is 3-
dimensional and these features are in one-to-one correspon-
dence with positions of points in the body-fixed frame of
the camera. We call the function that maps points to these
features the plenoptic projection.

Exploiting this feature parametrisation, together with the
simplified 3-intrinsic parameter model originally proposed
by [2], vastly simplifies the optimisation problem used in
the final step. The initialisation procedure is based on the
work by [2], reformulated to use our plenoptic disc features.
The cost function minimised in our final step is a plenoptic
reprojection error, that minimises distance between the co-
ordinates of the plenoptic disc features used as data and the
expected coordinates of these features given camera param-
eter estimates.

The mean reprojection and reconstruction errors that we
obtain from this approach outperform state-of-the-art re-
sults [2, 13]. In summary, the main contributions of this
paper are:

• Full use of the plenoptic camera geometry to derive a
plenoptic disc feature type that allows robust feature
extraction from raw light-field images.

• A calibration method based on this geometry that out-
performs existing state-of-the-art techniques in terms
of accuracy and robustness.

1.1. Previous Work
Seminal work in the calibration of lenslet based plenop-

tic cameras was published in 2013 [3, 8]. Dansereau et al.
used the Lytro plenoptic camera and derived a camera rec-
tification formulation that allowed a simple optimisation al-
gorithm for image calibration. A similar approach is under-
taken more recently in [7]. An advantage of this approach is
that the resulting calibration optimisation tends to be more
robust, however, the parameters identified are less directly
associated with physical parameters of the camera. More-
over, the approach is less well suited to multi-focal light
field cameras.

Johannsen et al. [8] formulated a general reprojection
model in terms of the physical parameters of a Raytrix cam-
era. This work considered a relatively simple model of lens
distortion and required careful initialisation of the optimisa-
tion to converge. Strobl et al. [15] recognised the fragility of
the calibration optimisation and proposed a step-wise cal-
ibration approach where first the focal length and optical
centre of the main lens is determined (as well as some dis-
tortion parameters) before the internal offset of the Micro-
Lens Array (MLA) from the sensor and main lens respec-
tively are determined. Sun et al. [16] use a similar approach,

where they hand determine the ratio of MLA distance to
sensor with respect to MLA distance to the image plane for
a specific point, allowing them to effectively identify the rel-
ative focal length of the main lens separately form the cali-
bration process. Another recent contribution is proposed by
Zeller [17, 18]. Although the focus of these papers is on vi-
sual odometry, they require a calibrated camera to provide
metric reconstructions. The depth calibration proposed in
[18] uses a separate optimisation process. Another direc-
tion stemming from this approach has lead to the consid-
eration of more sophisticated models of the lens distortion
and non-planarity of the MLA. Heinze et al. [5] consider
more sophisticated models of the distortion of the main lens.
Zhang et al. [19] consider a detailed model of the lenslet ar-
ray geometry that calibrates for non-planarity of the array.
Lenslet based plenoptic cameras, however, are constructed
with careful attention to the coplanarity of the lenslet ar-
ray and the image plane [12], and for cameras such as the
Raytrix R42, this additional complexity is not required.

All the above papers require matching of point features
across multiple images and multiple subimages. Although
many of the methods use standard feature extraction meth-
ods to automate the matching process, there are necessar-
ily errors in the identification and data association of these
features. Bok et al. [2] introduced novel line features to
improve the automation and accuracy of the feature identi-
fication. More recently Nousias et al. [13] developed corner
based features along with an end-to-end calibration process.
Both these papers have achieved improved performance
through automation and accurate identification of feature
correspondences. These papers provide a good benchmark
for the evaluation of the present work, particularly since
they minimize a mean reprojection error criterion as we do.

2. Problem Formulation
In this section, we introduce the projective model used

in the proposed calibration method.

2.1. Projection Through a Thin Lens
In this sub-section we express all points in the body-fixed

frame C of the camera. A point P expressed in this frame
has coordinates (P x, P y, P z). We model the focus lens po-
sitioned in front of the micro-lens array (MLA) as a thin
lens. For thin lenses, every point P on one side of the lense
corresponds to another point Q, for which all the rays of
light passing through P pass through Q and vice-versa (see
Fig. 2). The point Q is called the image point of P . For
points P in front of the camera, so that P z > 0, we have
that the image point Q satisfies

1

F
=

1

P z
− 1

Qz
, (1)

where F is the focal length of the focus lens. Because the
image point Q always lies on a line passing through P and



the optical centre, we can determine the position of Q to be
given by

Q =

(
F

F − P z

)
P. (2)
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Figure 2: A point P with image point Q is shown. Two
lenslets ` and `′ are shown with the pixels p and p′ of the
perspective projections of the point Q through each respec-
tive lenslet.

2.2. Projection Through a Micro-Lens Array
Lenslet-based light-field cameras are constructed by po-

sitioning an MLA in between a focus lense and an imaging
plane. The raw data of a light-field camera appears as an
hexagonal array of smaller circular subimages stitched to-
gether (Fig. 1). A subimage in the raw data is the image
produced by a single lenslet `. The pixel coodinates (pu, pv)
of a pixel p are counted positively from the top left corner of
the raw light-field image. We assign to each lenslet ` lenslet
coordinates (`s, `t) ∈ R2 given by the pixel coordinates of
the centre of the subimage of that lenslet (Fig. 5)

Lenslets ` and pixels p are also represented by their phys-
ical coordinates expressed in the body-fixed frame C of the
camera, denoted ` = (`x, `y, `z) and p = (px, py, pz), re-
spectively. We assume that the MLA is parallel to the main
focus lens of the camera, so that all the lenslets have a con-
stant displacement `z = −D, and so ` = (`x, `y,−D), see
Fig. 2.

The physical coordinates ` of the optical centre of the
lenslet are related to its lenslet coordinates (`s, `t) by the
equation

` =

(
S

D

D + d
(`s − cu), S

D

D + d
(`t − cv),−D

)
. (3)

In this equation, S is the physical scale of the MLA in me-
tres per pixel, (cu, cv) are the pixel coordinates of the op-
tical centre of the camera, and d is the distance between
the MLA and the imaging plane. The parameter D+d

S is re-
ferred to as f in other papers [13, 2], and in the literature
is called the “focal length” of a pinhole camera model for
the lenslet. However, the physical meaning of this parame-
ter should not be confused with that of the focal length of a
thin-lens.

Under the assumption that pixels are at a constant dis-
tance d from the micro-lens array, the physical coordinates
of a pixel p with pixel coordinates (pu, pv) are given by

p = (S(pu − cu), S(pv − cv),−D − d) . (4)

Given physical coordinates ` of a lenslet and an image
point Q, the location of the pixel that images Q through
the lenslet ` is found by determining where the line passing
through Q and ` intersects the pixel plane (Fig. 2). Using a
similar-triangles argument, p is given by

p =
d

D +Qz
(`−Q) + `. (5)

The pixel coordinates of p are then found by solving (4) for
(pu, pv).

3. Plenoptic Projections and Features
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Figure 3: A plenoptic disc corresponding to a point P is
entirely determined by the parameters w and ρ. A straight
line passing through the optical centre of the focus lens and
the image point Q is shown, and where this line intersects
the pupilar plane is the plenoptic disc centre w. A lenslet on
the boundary ofW is labelled `. The pixel p in the subimage
of ` that imagesQ appears on the boundary of the subimage
of `. The radius ρ can be calculated from the aperture A
using a similar-triangles argument. The figure also shows
the subimage radius r.

In this section, we use an idealised model of a plenoptic
camera called the two-plane parametrisation. In this model,
we assume that there are an infinite number of lenslets po-
sitioned at every point of a plane, called the pupilar plane,
behind the focus lens of the plenoptic camera.

In such a model, a point P is projected to a set of lenslet-
pixel pairs (`, p), where p is the projection of the image
point Q through the lenslet `, as given by (5). However, if
the subimages of each of the lenslets are circular and equal
in radius, the set of lenslet-pixel pairs contains no more in-
formation than the set W of lenslets ` for which the point P
is visible to lenslet `. We call the set W the plenoptic disc
of a point P .

If the subimages of each of the lenslets are circular, the
plenoptic disc will be circular, and thus can be represented



entirely by a centre w = (wx, wy,−D) and a signed radius
ρ. This is because the set of lenslets ` for which a virtual
point Q projects into the subimage of ` forms a disc in the
pupilar plane, see Fig. 3.

The relationship between an image point Q and the
plenoptic disc data is as follows. Let A be the physical
aperture radius of the circular focus lens of the camera. A
lenslet physical coordinate ` is on the boundary of the set
W if there is a line passing from ` through Q such that the
intercept of this line with the focus lens has length A, see
Fig. 3. By similar triangles, we find that

ρ =
D +Qz

−Qz
A. (6)

The physical centre of W is given by

w = − D

Qz
Q. (7)

Since the physical radius ρ is related to a radiusR in the raw
image by the relation ρ = S D

D+dR, then usingA = D
d (Sr),

where r is the lenslet subimage radius expressed in pixels,
together with (6) and (1), we find that

1

P z
=
D − F
DF

− d

r(D + d)D
R, (8)

where P is the real point corresponding to the image point
Q. The parameters D−F

DF and − d
r(D+d)D , are equal to −K1

K2

and − 1
rK2

, respectively, using the notation of [2].
Because a physical camera may have different scales Su

and Sv for the pixels this will result in two different param-
eters fu = D+d

Su and fv = D+d
Sv . We obtain the relation of

a point P and the plenoptic disc data (ws, wt) and R as

P = − rK2

rK1 +R

(
ws − cu
fu

,
wt − cv
fv

, 1

)
. (9)

The parameters fu, fv , cu, cv , K1 and K2 are the intrinsics
we estimate for from plenoptic disc data. They are sufficient
to provide point estimates using (9). This relation is bijec-
tive, and determining the plenoptic disc data (ws, wt, R)
determines entirely the point P corresponding to it, and
vice-versa, if the extrinsics and intrinsics of the camera are
known. The projection of a point P to the triple (ws, wt, R)
is called the plenoptic projection, denoted Π, and is given
by

Π(P ) =

(
−fuP

x

P z
+ cu,−fv P

y

P z
+ cv,−rK2

P z
− rK1

)
.

(10)
In summary, we model a plenoptic camera in terms of a

projection that sends a point P to a triple (ws, wt, R), called
the plenoptic disc data, where (ws, wt) are lenslet coordi-
nates, called the plenoptic disc centre, and R is a signed
radius called the plenoptic disc radius.

Because the triple (ws, wt, R) can be determined purely
from raw light-field data, we can use this feature data, to-
gether with knowledge of the true positions of the feature
points they correspond to, to estimate the intrinsics and ex-
trinsics of the camera using (10).

3.1. Distortion Model
Although the focus lens used with the Raytrix R42 cam-

era in the experiments has a negligible lens distortion of
0.02% total variation [9], Lytro cameras suffer from signifi-
cant lens distortion, which affects only plenoptic disc centre
coordinates in our projection model. We model the effect of
plenoptic disc distortion with a first-order approximation

(ws
u, w

t
u) = (1 + k1δ

2)((ws
d, w

t
d)− (cu, cv)) + (cu, cv)

(11)
where (ws

u, w
t
u) are the undistorted plenoptic disc coordi-

nates and (ws
d, w

t
d) are the distorted coordinates and δ is the

distance in pixels from the distorted plenoptic disc centre
to the optical centre δ = ||(ws

d, w
t
d)− (cu, cv)||. This one-

parameter lens distortion model corrects the majority of the
observed distortion in the raw Lytro images.

4. Plenoptic Camera Calibration
Calibration of a plenoptic camera has three main blocks,

see Fig. 4: the first is a feature estimation block. In this
paper, we estimate the plenoptic disc data corresponding to
corners of a checkerboard (cf. Sections 3 and 4.1). The sec-
ond block is an initialisation block, that produces a calibra-
tion parameter estimate (cf. Section 4.2). The third block
is a non-linear optimisation routine that refines the initial
estimate produced by the second block (cf. Section 4.3).

Feature Calibration
Estimation Initialisation

Calibration
Optimisation

Light-field

Data

Feature

Data

Initial

Parameters

Optimal

Parameters

Figure 4: A block diagram of a generic calibration method.

4.1. Feature Estimation
We propose a novel plenoptic feature estimation method

that avoids problems associated with identifying features
in the low-resolution subimages by instead using higher-
resolution sub-aperture images [4] that are computed from
raw light-field data. Other papers [2, 13] extract features
from the low-resolution subimages. An additional advan-
tage of the proposed method is lower memory usage. Our
high-resolution Raytrix data is ill-suited for the method pro-
posed in [2], as the template size used in that paper grows
geometrically with subimage radius, resulting in that algo-
rithm failing to terminate in our experiments.

We assume that the calibration grid consists of M inte-
rior corners, and that a corner point has body-fixed-frame
coordinates Pi indexed by i = 1, . . . ,M . The first step of
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Figure 5: The centre (ws, wt) and radius R of a plenoptic
disc W is shown on a raw light-field image, cf. also Fig. 7.
The three lenslets in W are labelled by their lenslet coordi-
nates (`s1, `

t
1), (`s2, `

t
2), (`s3, `

t
3) that are in the centres of the

subimages of these lenslets. The pixels (pu1 , p
v
1), (pu2 , p

v
2),

and (pu3 , p
v
3) within the subimages of each of these lenselets

corresponding to the same feature point are depicted. These
pixels have offsets (u1, v1), (u2, v2), and (u3, v3) from the
subimage centre, repectively.

calibration is estimation of the plenoptic disc feature data
(ws

i , w
t
i , Ri) corresponding to each of the corner points Pi

of the calibration grid for the given raw light-field image.
This step is repeated for each raw light-field image.

Our feature estimation process starts by obtaining a set
of N sub-aperture images Ik indexed by k = 1, . . . , N by
selecting from each lenslet subimage the pixel with con-
stant offset (uk, vk) from the subimage centre and stitch-
ing the resulting image together. Because the lenslets are
arranged in an hexagonal lattice, generating a rectangular
sub-aperture image from the constant offset pixels of each
subimage requires interpolation. The dimensions of the
subimage are U

r and V
r , whereU×V is the dimension of the

raw light-field image and r is the lenslet subimage radius.
For the interpolation, the colour Ik(qu, qv) assigned

to pixel (qu, qv) in the sub-aperture image Ik is
given by finding the three nearest lenslet coordinates
(`s1, `

t
1), (`s2, `

t
2), (`s3, `

t
3), of lenslets in the subimage to

r(qu, qv). Then, r(qu, qv) is expressed as a convex sum
of these coordinates so that r(qu, qv) = α1(`s1, `

t
1) +

α2(`s2, `
t
2) +α3(`s3, `

t
3), where α1 +α2 +α3 = 1. Then we

assign the colour to pixel q that respects this convex sum,
so that Ik(qu, qv) = α1L(`s1 + uk, `

t
1 + vk) + α2L(`s2 +

uk, `
t
2 + vk) + α3L(`s3 + uk, `

t
3 + vk).

Running a standard checkerboard detector on each of
the resulting sub-aperture images Ik gives a list of detected
checkerboard corner features Fk = {(qui,k, qvi,k)}Mi=1 ap-
pearing in the image. Note that the set Fk of point features
is indexed by the offset index k, whereas individual point
features within Fk are indexed by both the point index i and
the offset index k.

Scaling any detected corner feature (qui,k, q
v
i,k) ∈ Fk by

r gives the lenslet coordinates (`si,k, `
t
i,k) of the lenslet `i,k

for which Pi is visible in the subimage of `i,k with offset

(uk, vk) from the subimage centre (`si,k, `
t
i,k). As Pi is vis-

ible in the subimage of `i,k, Pi projects to some pi,k de-
fined by equations (2) and (5). This pixel has pixel coor-
dinates (pui,k, p

v
i,k) = (`si,k, `

t
i,k) + (uk, vk), because qi,k

was found in a sub-aperture image generated with constant
offset (uk, vk).

Therefore, from a raw light-field image we
can obtain a collection of lenslet-pixel pairs
{((`si,k, `ti,k), (pui,k, p

v
i,k))}M,N

i=1,k=1 corresponding to
the N corners as seen in M sub-aperture images.

Now, for any two of these obtained lenslet-pixel pairs
((`si,k, `

t
i,k), (pui,k, p

v
i,k)) and ((`si,k′ , `ti,k′), (pui,k′ , pvi,k′))

corresponding to some Pi, we note that(
pui,k − pui,k′

pvi,k − pvi,k′

)
=

(
1 +

r

Ri

)(
`si,k − `si,k′

`ti,k − `ti,k′

)
. (12)

Note that when (uk′ , vk′) = (0, 0), we have (`si,k′ , `ti,k′) =

(ws
i , w

t
i), because a point feature will appear in the centre

of the subimage of the plenoptic disc centre. Therefore,
(12), with (uk′ , vk′) = (0, 0) provides a linear system of
equations that can be used to estimate the plenoptic disc
feature data (ws

i , w
t
i , Ri) by solving

(
−1 0 −uk

r `sk
0 −1 −vk

r `tk

)
ws

i

wt
i

Ri

1

 = 0, (13)

where there are 2 rows in the data matrix for each offset
index k for which the corner Pi is successfully detected in
the sub-aperture image Ik. In practice, we only use sub-
aperture images Ik for which all M checkerboard corners
are successfully detected.

In summary, the method for obtaining the plenoptic disc
feature data estimates for a single raw light-field image is as
follows:

1. For each pixel offset (uk, vk), generate the sub-
aperture image Ik.

2. For each sub-aperture image Ik, run a standard corner
detector to obtain a set of sub-aperture image features
qi,k.

3. Compute the corresponding lenslet-pixel pairs
((`si,k, `

t
i,k), (pui,k, p

v
i,k)).

4. Using the lenslet-pixel pairs corresponding to a given
point feature Pi, find the least-squares estimate of
(ws

i , w
t
i , Ri) by solving (13).

These steps are applied to every raw light-field image in the
dataset.



4.2. Calibration Initialisation
Initialisation parameters are found by deriving a linear

system of equations that perfect data from a single light-
field image must satisfy, and solving the system for gathered
data in a least-squares sense. Let Xj ∈ SE(3) denote the
pose of the camera with respect to the fixed frame O when
it captures the raw light field image frame j. Let OPi be the
position of the corner of a checkerboard expressed in the
coordinates of the fixed frame O. At frame j, the corner Pi

has coordinates Pi,j in the body-fixed frame of the camera.
Using (10) with fu = fv = f , we obtain the relations

wsP z
i,j + fP x

i,j = 0 (14)

wtP z
i,j + fP y

i,j = 0 (15)

(rK1 +R)P z
i,j + rK2 = 0. (16)

Denoting X−1
j = (Ωj , τj) with Ωj the rotational part and

τj the translational part, we haveP x
i,j

P y
i,j

P z
i,j

 =

Ω11
j Ω12

j Ω13
j

Ω21
j Ω22

j Ω23
j

Ω31
j Ω32

j Ω33
j

OP x
i

OP y
i

OP z
i

+

τxjτyj
τzj

 .

(17)
Substituting the expressions for Pi,j into (14) - (16), we
obtain the system

ws
i,j 1 0 0

wt
i,j 0 1 0

Ri,j 0 0 1

⊗ (OP x
i

OP y
i 1
)



Ω31
j

Ω32
j

τzj
−fΩ11

j

−fΩ12
j

−fτxj
−fΩ21

j

−fΩ22
j

−fτyj
rK1Ω31

j

rK1Ω32
j

rK2 + rK1τ
z
j



= 0.

Here, ⊗ denotes the Kronecker product. For each frame j,
this system is solved for the vector which satisfies the equa-
tion in a least sqaures sense. Extracting the initial intrinsics
and extrinsics from the resulting singular vectors follows
the same procedure as in [2].

4.3. Calibration Optimisation
The plenoptic disc feature data estimates are used as data

in a non-linear optimisation routine, where the intrinsics
and extrinsics of the camera are the parameters being esti-
mated. Initial parameter estimates are given using the linear
solution obtained in Section 4.2. The separate f -parameters
fu and fv are initialised with the same f given in the initial-
isation step, the initial estimate of the optical centre (cu, cv)
is the centre of the light-field image, and the initial lens dis-
tortion parameter k1 is 0.

The error function that is minimised in this routine
comes from (10), and (17), where the plenoptic disc feature
data (ws

i,j , w
t
i,j , Ri,j) have been estimated using the method

discussed in Section 4.1, and world-frame point locations
OPi are known. Let Λ = (K1,K2, f

u, fv, cu, cv, k1) be
the intrinsics of the camera, Ξ = {Xj} be the set of ex-
trinsics of the camera, and Φ = {(ws

i,j , w
t
i,j , Ri,j ,

OPi,j)}
be the known data. We minimise the plenoptic reprojection
error, given by

ε(Λ,Ξ; Φ) =
∑
i,j

(ΠΛ(Pi,j)− (ws
i,j , w

t
i,j , Ri,j))

2 (18)

where Pi,j = X−1
j

OPi, given by (17), and ΠΛ denotes the
plenoptic projection (10) with lens distortion modelled by
(11), and parameters given by the intrinsic parameter esti-
mate Λ.

5. Results
In this section we compare the proposed calibration al-

gorithm to existing state-of-the-art methods proposed in
[2, 3, 13]. Our code is publicly available1.

5.1. Experimental Data
For our obtained datasets, a Raytrix R42 camera was

used with a Kowa LM35SC 35mm focus lens [9]. The ap-
proximate focus distance was set to 0.25m, 0.5m, and 1m.
We call these datasets R-A, R-B, and R-C, respectively.

A standard checkerboard was used as a calibration grid
for the various experiments. As at shorter focal distances,
the camera needed to be closer to the calibration target,
the grid sizes for datasets R-A, R-B, and R-C were 4mm,
6mm, and 15.5mm, respectively. These datasets contained
24, 22, and 18 images, respectively. For datasets R-A and
R-C the checkerboards contained 15 by 10 feature points.
For dataset R-B, the checkerboard contained 6 by 8 feature
points. The obtained resolutions of the raw light-field im-
ages were 7716 pixels (width) by 5364 pixels (height). De-
bayering and colour-correction was conducted upon capture
using Raytrix software.

Lenslet types were identified in the raw light-field im-
ages using a standard method. Since the pinhole models for
each lenslet type are identical, we consider only calibration
for the lenslet types where the calibration grid is in best fo-
cus. Exploiting the multi-focal arrangement would likely
improve the feature-extraction process but was not consid-
ered in this paper.

We also compared results on the datasets given in [3].
In those datasets, referred to here as L-B, L-D, and L-E, a
Lytro camera was used. These datasets were chosen be-
cause each used a different focal distance and contained
light-fields at a wide variety of poses and raw light-field
images of varying degrees of focus.

1Available at: https://github.com/sgpobrien/PlenCalToolbox



The cells in Table 1 for Nousias et al. [13] comparing
against the Lytro datasets were left blank in Table 1 be-
cause the small resolution of the Lytro subimages produces
poor results for the feature-detection method of [13]. As
the method proposed in [13] relies on detecting features in
subimages, it is expected that their method would not fare
well with these datasets. It is noted that the focal lenses of
Lytro cameras have far higher lens distortion than the focal
lenses used by Raytrix cameras. Since the method in [13]
does not model lens distortion, comparing on Lytro data
would be an unfair comparison. As dataset R-A also con-
tained many in-focus lightfields where features are not vis-
ible in subimages, we did not compare [13] on this dataset.

As the method proposed by Dansereau et al. [3] relies
on a particular formatting of the raw light-field images, it
does not produce estimates for the Raytrix datasets, and as
such the corresponding cells in Table 1 are left blank. On
our version of Matlab, running the code of [3] on dataset L-
D resulted in an exception being thrown to do with incon-
sistent orientations of the detected checkerboard, so these
cells are left blank. For the same formatting reason, com-
parison of Bok et al. [2] on the Raytrix datasets was not
conducted. We did not run the code of [2] on the dataset
L-D because, as the authors note in that paper, their feature
detection method does not work for in-focus light-fields, of
which there are many in dataset L-D.

5.2. Performance Measures
The aim of these experiments was to test the accuracy of

our calibration under a variety of conditions. However, the
sparsity of Table 1 indicates that there is no standard per-
formance measure to verify calibration methods for plenop-
tic cameras. Comparisons were made difficult by the wide
variety of types of errors reported between each of the cal-
ibration methods. Our method calculates the widest vari-
ety of errors, rather than only the error being optimised.
Note that any method that optimises a given error should
have a natural advantage when that error is used as a per-
formance measure. As such, we compare against a variety
of errors rather than our optimised plenoptic reprojection
error. Mean 3D reconstruction error (M3DE) is calculated
by taking the average of the distances of point estimates
from the actual points and dividing by the depth of the ac-
tual point in the estimated camera coordinate system. Note
that plenoptic cameras allow single-image 3D reconstruc-
tions, making this a sensible measure. Mean reprojection
error (MRE) is the average of the distances between ex-
tracted subimage corner feature coordinates and reprojected
corner feature coordinates on the raw image, an example of
which is given in Fig. 7. Mean sub-aperture reprojection
error (MSRE) is the average of distances between extracted
feature coordinates in sub-aperture images and reprojected
feature coordinates onto those sub-aperture images.

As the code provided by each of the other methods

[13, 3, 2] does not produce 3D reconstructions we derived
several methods based on the projection models used in
these papers and the obtained feature data of these methods.
For Nousias, the reconstruction method finds the point that
best fits their projection model [13], given a set of lenslet-
pixel pairs known to correspond with that point. The recon-
struction method used for Dansereau et al. [3] is based on
calculating for all the lenslet-pixel pairs corresponding to a
point P , the ray corresponding to that lenslet-pixel pair and
finding the point that minimises the sum of distances to all
of these rays. We were unable to find a reliable reconstruc-
tion method for the data obtained by Bok et al. [2].

The MSRE method used for Dansereau et al. [3] in Table
1 is based on solving their projection model given known
ideal checker positions and pixel offsets for the unknown
lenslet coordinates, which has a direct solution in their pro-
jection model, then applying their distortion model.

5.3. Discussion
In Table 1 we show the results of our calibration method

compared against other existing state-of-the-art methods.
Our method runs on the widest variety of datasets, and
most consistently produces the smallest errors. The code
we compared our method to were supplied by Nousias et
al. [13], Dansereau et al. [3], and Bok et al. [2].

In Table 1 we compare each of the methods on different
performance measures where it was possible to do so with
the feature data produced by these methods. We first com-
pared the methods on the measure of M3DE. As we were
not able to provide reconstructions for the method of Bok et
al. [2], this column is left blank. On this metric our method
outperforms all the other methods except on dataset L-E,
where the method of Dansereau et al. [3] performs better.
This is likely due to their method implementing better pre-
conditioning and higher-order lens distortion. One of our
reconstructions together with extrinsics is shown in Fig. 6.
The high M3DEs for Nousias et al. [13] are likely due to
a flaw in their implementation discussed in the following
paragraph.

In Table 1 we then compare our method with the method
of Nousias et al. [13] on the measure of MRE. Although
it was not possible to calculate this error using the feature
data provided by the other methods [3, 2], our results for
this measure are still shown. One likely factor affecting
the accuracy of Nousias et al. [13] is preconditioning. It is
noted that appropriate centering and scaling of parameters
is often essential in order for Matlab-based optimisation al-
gorithms to converge [11]. The algorithm implemented in
[13] does not implement any centering or scaling, and the
results for [13] reported in Table 1, can be improved for
each of the datasets using both our feature data and scaling
factors. These scaling factors did not significatly improve
their results when using their feature data, however, sug-
gesting that there may also be inaccuracies in their feature



Table 1: Table of error results. Best results per row are
shown in bold. Measures that could not be computed are
left blank.

Dataset Ours Nousias Dansereau Bok
[13] [3] [2]

Mean 3D Reconstruction Error (%)
R-A 0.5206
R-B 0.4482 28.5775
R-C 1.4274 53.7746
L-B 1.8642 2.0419
L-D 4.2736
L-E 8.7459 5.9599

Mean Reprojection Error (pixels)
R-A 0.9743
R-B 0.2619 2.0104
R-C 0.3832 4.6925
L-B 0.3467
L-D 1.2443
L-E 0.2802
Mean Sub-aperture Reprojection Error (pixels)

R-A 0.5750
R-B 1.0751
R-C 0.6588
L-B 0.3427 0.1775 1.3125
L-D 0.3061
L-E 0.3514 0.7383 0.3552

estimation step. A comparison between the intrinsics ob-
tained using our method versus Nousias et al. is shown in
Table 2. The accuracy of our feature estimation step and
reprojections are demonstrated in Fig. 7.

In Table 1 we compare our results to the other meth-
ods on the measure of MSRE. Although it was not possi-
ble to calculate this error using the feature data of Nousias
et al. [13], our results for these datasets are still shown.
Our method outperforms the other proposed methods on
this metric with the exception of dataset L-B, where it is
beaten by Dansereau et al. [3], likely due to their higher-
order approximation of lens distortion. Note that although
the MSRE is smaller than ours for this cell, its M3DE is
larger, demonstrating the non-transitive relation between
these measures.

6. Conclusions and Future Work
In this paper we use a novel plenoptic feature type, namely

plenoptic disc features, for use in plenoptic camera calibration.
Our method produces both superior mean reprojection errors onto
the raw light-field images and better mean reconstruction errors.

To the authors’ knowledge, the proposed calibration imple-
mentation is the first that successfully and reliably runs with both
Raytrix and Lytro data with only minor preprocessing required.

Along with better performance, our method provides a novel
projection model that allows an easy translation between plenoptic

Table 2: Intrinsic Parameters for Dataset R-B.

Var. Ours Nousias
K1 −13.1706 −10.23
K2 1.14× 104 1.13× 104

fu 3.21× 104 3.18× 104

fv 3.21× 104 3.18× 104

cu (pix) 2675 2681
cv (pix) 4415 3857
k1 −1.7× 10−10 0
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Figure 6: Calibration grid reconstruction and poses for
dataset R-B. Camera faces forwards along blue axis.

Figure 7: An example of a plenoptic disc feature and
plenoptic reprojection of a point on a raw light-field image
from dataset R-B. In the cyan circles are the lenslet coor-
dinates (`s, `t) within a plenoptic disc W shown with red
boundary and a reprojected plenoptic disc shown with yel-
low boundary. The red dots are the estimated subimage fea-
tures corresponding to the plenoptic disc feature, and the
yellow dots are the reprojected features.

disc features and physical 3D points, making it better suited for 3D
reconstruction than ray-based approaches.
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