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Abstract— The classical concept of rigidity characterises con-
ditions under which distance constraints between agents in R3

enforce a rigid structure on the whole collection of agents. The
present paper has two goals. Firstly, we propose a generalised
theory for rigidity to allow heterogeneous agent states on
non-Euclidean spaces and general non-linear relative state
constraints. To do this, we characterise rigidity as an invariance
property with respect to a topological group action that is
introduced as a natural structure in the problem formulation.
Secondly, we use this new framework to formulate a new
concept of path-rigidity, which captures the property that allows
a rigid formation to be steered continuously between any
two configurations that are congruent. This is an important
property for path planning and control of rigid formations.
The main result of the second part of the paper provides a
simple and easily checked condition to determine if a globally
rigid formation is also path-rigid.

I. INTRODUCTION

Over the past few decades, the classical concept of rigidity
[8] involving distance constraints between nodes in R2 or R3

has drawn widespread interest for applications such as the
design of beam structures or the study of chemical molecules
(see e.g. the collection of references in [13]). Recently, more
general notions of rigidity have been applied to problems of
network localisation [5], computer-aided design (CAD) [10]
and formation control [1].

In formation control, rigidity theory can not only be used
to determine whether a desired formation is uniquely defined
by the available sensor measurements, but it can also play a
key role in the control analysis [1]. While numerous control
architectures have been proposed for formations based on
classical range-only constraints with states in R2 or R3 [9],
[3], growing interest in the use of other sensor modalities
and more general agent state-spaces has led to the need
for a more general development of the concepts of rigidity.
For example, formations based only on relative bearing or
direction measurements [4], [6] will always be invariant to
scale, and are therefore never rigid in the normal sense.
To address this, the term parallel rigidity [4] has been
specifically introduced. However, this ad-hoc definition is
no longer valid for scenarios that combine direction and
distance constraints [12]. A major limitation of the literature
in dealing with such situations is the dependence of classical
rigidity theory on agent states lying in Euclidean space, while
common measurement modalities (e.g. bearings) depend on
the full pose of agents. We note a recent exception that
considers rigidity with regard to states in SE(2) [14].
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In [10], rigidity is interpreted as a type of symmetry action
of a group. This formulation has been used to solve system
constraints in Computer Aided Design (CAD) applications.
A similar formulation has been used for the notion of affine
rigidity [7]. Apart from these few references there appears
to be little other work in this direction and to the best of
the authors’ knowledge, there is no general formation of
rigidity based on invariance principles. In particular, the
authors are not aware of any existing theory that allows
the case of heterogeneous (non-Euclidean) agent states as is
necessary in modern robotics applications with formations
of different vehicles and multiple sensor modalities. Clearly,
as autonomous vehicle sensor networks and agent models
become more sophisticated, there is a strong motivation to
generalise existing rigidity theory so that it may be more
readily and more widely applied.

In this paper, we present a general framework for rigidity
analysis based on invariance principles. Although we use
formation control as a primary motivation, the proposed
framework is general and will apply to a wide range of
applications. We define rigidity in the context of an explicit
symmetry action on the full state-space that preserves a spec-
ified set of state constraints. We define generalised rigidity
by the condition that the only transformations admitted by the
constraints are those associated with the natural symmetry. A
particular benefit of the proposed framework is that neither
the vehicles, nor the relative state constraints, need to lie
in identical state-spaces. We develop generalised rigidity
theory to the extent that we define and motivate the classical
concepts of local rigidity and global rigidity. In the second
part of the paper we propose a new concept of path-rigidity.
This concept captures the particular case of a globally
rigid system where any two congruent configurations are
connected by a continuous path preserving all constraints,
allowing the formation to be steered from one configuration
to the other. The principal technical result is the derivation of
an easily verifiable group theoretic characterisation of path-
rigidity for a globally rigid system.

Following the present introduction, Section II formally
introduces the system structure necessary for the framework
and defines helpful terminology. In Section III we present
the formal definition of generalised rigidity for formations,
followed by some analysis and discussion with regard to
path-rigidity in Section IV. Finally, we provide a brief
conclusion in Section V.

II. PROBLEM FORMULATION

In this section we develop the framework with which
we study rigidity, and introduce some key concepts for the



discussion. The formulation applies to a very broad class
of agent state-spaces and sensor modalities, with a topo-
logical group describing the symmetries of the system. The
generality of the formulation is a significant consideration
in this paper, and we demonstrate it with several examples.
Subsection II-A models the full state-space and the available
sensor measurements, along with associated assumptions.
Subsection II-B then introduces the notions of symmetry with
which we define rigidity.

A. Generalised agent networks and formations

Consider a system whose full state x lies in a topo-
logical space Mτ ∶= (M, τ(M)), where τ(M) denotes
a Hausdorff topology on the set M. We envision the full
state x being derived from the individual states of n agents;
however, we do not specify a particular construction of the
full state-spaceMτ from the individual state-spaces, in order
to preserve the generality of our formulation.

Example 2.1: A simple and very common scenario is
where the ith agent state xi lies in a Hausdorff topological
spaceMτ

i , and the full system state lies in the product space
M℘ ∶= ∏

n
i=1M

τ
i . In this case, M℘ inherits the Hausdorff

property from the individual state-spacesMτ
i . Note that this

construction does not assume the individual state-spaces to
be identical, i.e. we do not require Mτ

i =M
τ
j for i ≠ j. ◇

Example 2.2: To motivate the consideration of non-
product structures for Mτ , suppose that all agent states
xi ∈ M

τ
i lie in the same Hausdorff topological space (i.e.

that Mτ
i = Mτ

j for all i, j ∈ {1, . . . , n}), and that the
agents are regarded as interchangeable (i.e. that we are
not concerned with which agent assumes each position). In
this case, a state x̃ = (x1, . . . , xn) in the product space
M℘ is equivalent to another state x̃′ ∈ M℘ if it can be
obtained from x̃′ by switching the positions of the agents
(or reassigning the agent indexes). Let Pn(x̃) denote the
group of permutations of the n-tuple x̃; that is, σ(x̃) ∶=

(σ1(x̃), . . . , σn(x̃)) for σ ∈ Pn(x̃), with each σi(x̃) = xj
for some j ∈ {1, . . . , n} and each j appearing exactly once
in the list. With interchangeable agents, the full system
state x lies in the quotient space Mτ ∶= M℘/ ∼, where
x̃ ∼ x̃′ ⇔ ∃σ ∈ Pn(x̃) ∶ x̃

′ = σ(x̃) defines an equivalence
relation for x̃, x̃′ ∈M℘. The quotient topology τ(M) is the
final topology of the natural projection π ∶M℘ →M℘/ ∼;
equivalently, a set U ⊆Mτ is open if and only if the pre-
image π−1(U) ⊆M℘ is open. Observe that the map π is open
since the equivalence relation maps open sets to a union of
open sets. Furthermore, the graph of the equivalence relation
is closed in M℘ ×M℘ since it is the product of M℘ with a
finite number of singletons corresponding to the permutations
of the agents. These conditions ensure that the quotient space
Mτ is Hausdorff [11, Proposition 7.1.6]. ◇

Example 2.3: A further practical consideration is the ex-
clusion of some points from a product space M℘. Consider
a collection of physical vehicles in a common state-space,
i.e. where xi ∈Mτ

i and Mτ
i =M

τ
j for all i ≠ j. With this

arrangement, the case where xi = xj is not physically feasible
since the vehicles cannot be physically co-located. Such

points can be problematic for particular sensor modalities,
e.g. direction measurements become ill-defined when the
agents are co-located (see Example 2.10). For the purposes
of rigidity analysis, it is therefore appropriate to consider the
state-space Mτ ∶=M℘ ∖Wτ , where Wτ ∶= {x ∈M℘ ∣ xi =
xj for some i ≠ j}. Here, Mτ is an open subset of M℘,
and has the induced topology of the product space; i.e., a
set U ⊆ Mτ is open if and only if it is open as a subset
U ⊆ M℘. We emphasise that Mτ is not a product space;
each vehicle can assume any state in Mτ

i , but its position
imposes a constraint on those of the others. ◇

The state of the system is measured by an output map
h ∶ Mτ → Y , which will be used to specify constraints
on the system state. For the general notion of rigidity, we
do not require a topology on the output space Y . Should
a topology τ(Y) be considered, we denote the topological
space by Yτ . We will use y ∶= h(x) to denote the particular
output value of a state x. Throughout the following examples
and remarks, we will commonly suppose h(x) is composed
of m individual sensor modalities as outlined in Remark 2.4.

Remark 2.4: The typical interpretation of this formulation
is that y = (y1, . . . , ym) will be composed of m individual
state measurements yk, each of which corresponds to an
available sensor modality hk ∶ Mτ → Yk with Y℘ ∶=

∏
m
k=1Yk. Often, a sensor modality hk will not be a function

of the full state x, but will instead describe a relative
measurement between only two agent states. We emphasise
that the individual sensor modalities hk or the output spaces
Yk need not be the same, and we will also consider cases
where Y does not possess a product structure. ◇

Remark 2.5: Although a topology on Y (or Yk) is often
not strictly required for rigidity analysis, it is desirable
for many applications that h(x) be continuous (or even
differentiable). For example, this may be the case when h(x)
is used to derive a control law for a group of vehicles.
We will therefore provide some discussion concerning the
continuity of hk in the sequel, with the assumption of at
least a T0 (Kolmogorov) topology on Y (or each Yk). Note
that some common sensor modalities (e.g. directions, see
Example 2.10) are not continuous with any finer topology.
The product space Y℘ will inherit the T0 property, and also
preserve the continuity of each hk(x). ◇

Remark 2.6: We emphasise that for this paper we are
not interested in the availability of a measurement yk to
particular agents in the system. Rigidity is concerned only
with whether certain constraints yk = y⋆k are satisfied; the
information topology of the network only becomes relevant
when considering applications such as control algorithms. ◇

Remark 2.7: Although we regard hk as a sensor modality,
it may alternatively be interpreted as a task function that
measures the system state with respect to a goal. Examples
of task functions are described in [2]. ◇

Example 2.8: Consider two agents with states xi, xj ∈ Rd
(for d ≥ 1), and a product structure on the full state-space.
A range or distance measurement between these agents is
given by

yk ∶= hk(x) ∶= ∥xi − xj∥ ∈ R≥0, (1)



where ∥ ⋅ ∥ denotes the Euclidean norm of a vector and R≥0

denotes the set of nonnegative real numbers. ◇

Example 2.9: Consider two agents with states1 Xi,Xj ∈

SE(3) in the Special Euclidean group of dimension 3,
and a product structure on the full state-space. The matrix
representation of each state is

Xi ∶= (
Ri ξi
0⊺3 1

) ,

where Ri ∈ SO(3) is a 3×3 rotation matrix (i.e. an orthogonal
matrix of determinant 1), 03 denotes the 3 × 1 zero vector
and ξi ∈ R3. Let ẙj ∈ R3 be a point fixed with respect to
the coordinate frame Xj (typically the origin). A position
measurement of ẙj from agent i is described using a sensor
modality hk ∶ SE(3) × SE(3)→ R3 as follows:

ȳk ∶= hk(X) ∶=XiX
−1
j

¯̊yj . (2)

Here, v̄ ∶= (v⊺,1)⊺ denotes a vector v expressed in homo-
geneous coordinates. The intuition here is that yk expresses
the position of ẙj with respect to the body-fixed frame Xi.◇

Example 2.10: Consider two agents with states xi, xj ∈

R3 and a product structure on the full state-space. An inertial
direction measurement between agents i and j is defined by

yk ∶= hk(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(xi−xj)
∥xi−xj∥ ∈ S

2 xi ≠ xj

ℵ otherwise,
(3)

where S2 denotes the unit sphere. The measurement space is
Yk ∶= {S2 ∪ {ℵ}}, which we give the T0 topology τ(Yk) ∶=
{τ(S2),{S2 ∪ {ℵ}}} to make hk(x) continuous. Note that
this is the final topology with respect to hk(x), i.e. there is
no T1 topology such that hk is continuous. ◇

In some scenarios, a sensor may detect another vehicle
without identifying which vehicle it is.

Example 2.11: Suppose agent p is equipped with a sensor
modality hk(x) that measures the range to each other agent,
without differentiating which agent corresponds to which
distance. We model this sensor modality as a mapping

hk(x) ∶= {∥xi − xp∥}i≠p ∈ Y
τ
k , (4)

where Yτk ∶= Rn−1
≥0 / ∼yk . Here, the equivalence relation is

defined by yk ∼yk y
′
k⇔ ∃σ ∈ Pn−1(yk) ∶ y

′
k = σ(yk). ◇

We now provide a generalised definition of an agent
network, based on the state x ∈Mτ and output y ∈ Y .

Definition 2.12: A generalised agent network N ∶=

(Mτ ,Y, h) consists of a Hausdorff topological space Mτ ,
an output space Y and an output map h ∶Mτ → Y . ◇

Although our generalised notion of an agent network does
not involve a graph structure, it allows a similar interpretation
to the classical concept of a network via the construction of
Mτ and h, as illustrated by the prior examples and remarks.
For convenience, we will simply use the term agent network
for this generalised form in the sequel. For the discussion of
agent networks we introduce the following concepts.

Definition 2.13: A configuration of an agent network
N ∶= (Mτ ,Y, h) is specified by a fixed state x ∈Mτ . ◇

1We use capital letters to indicate states with a matrix representation.

Remark 2.14: The popular concept of a framework [8],
[9], [14] is defined by an agent network N ∶= (Mτ ,Y, h)
along with a configuration x ∈Mτ . We do not use the notion
of a framework in this paper. ◇

Definition 2.15: For a given agent network N ∶=

(Mτ ,Y, h), two configurations x,x′ ∈ Mτ are equivalent
[8] or indistinguishable if y = h(x) = h(x′) = y′. ◇

A major advantage of our framework is that it accommo-
dates somewhat more general structures than those allowed
in existing rigidity formulations; for example, we can con-
sider state-dependent network topologies (Remark 2.16) and
interchangeable agents (Remark 2.17).

Remark 2.16: In practical scenarios it is commonly the
case that a sensor (such as an onboard camera) has a limited
field of view, i.e. that the availability of a measurement yk
depends upon the states of certain agents. Such situations can
be appropriately modelled in our framework by augmenting
a measurement space Ỹk with an additional point ℵ (i.e. to
obtain Yk ∶= Ỹk ∪ {ℵ}). This point is used to indicate that
the measurement is not available, which can itself be useful
knowledge of the system state. ◇

Remark 2.17: Consider the case of interchangeable agents
as described in Example 2.2, where ∼ denotes the equivalence
relation of agent permutations. Let h̃ ∶ M℘ → Yτ be a
continuous sensor modality, and suppose x̃ ∼ x̃′ implies that
x̃, x̃′ ∈M℘ are indistinguishable, i.e. that h̃(x̃) = h̃(x̃′). Let
π ∶ M℘ → Mτ be the natural projection to the quotient
space M℘/ ∼. The universal property of quotient spaces
then ensures the existence of a unique continuous map
h ∶ Mτ → Yτ such that h̃ = h ○ π. The existence of such
a map h shows that our formulation readily accommodates
this scenario. ◇

Example 2.18: Consider a group of four agents, where
agents 1 and 2 are both equipped with a range sensor that
does not distinguish between other agents, as in Exam-
ple 2.11. The quotient structure of the measurement space
Yτk means that agents 3 and 4 are indistinguishable, and
can therefore be regarded as interchangeable. Agents 1 and
2 are not indistinguishable because the measurements y1

and y2 correspond to measurements from agents 1 and 2,
respectively (i.e. the full measurement space has the product
topology Y℘ ∶= Yτ1 ×Y

τ
2 ). However, we could choose to make

them indistinguishable by defining an equivalence relation
(y1, y2) ∼y (y2, y1) on Y℘ (independent of the equivalence
relation on each Yτk described in Example 2.11), and using
the measurement space Yτ ∶= Y℘/ ∼y . This would enable us
to regard agents 1 and 2 as an interchangeable pair, and
agents 3 and 4 as another interchangeable pair, with the
output map h remaining well-defined on the corresponding
quotient space Mτ ∶=M℘/ ∼. In this way, we can create a
network of several different types of agents, with all agents
of each type being interchangeable. ◇

The following definition formalises the concept of an agent
formation, which is associated with a fixed output y⋆ ∈ Y .

Definition 2.19: For a given agent network N ∶=

(Mτ ,Y, h) on a Hausdorff topological spaceMτ , a forma-
tion F(y⋆) is defined as the set of configurations x ∈Mτ



such that h(x) = y⋆. That is,

F(y⋆) ∶= {x ∈Mτ
∣ y = h(x) = y⋆}. ◇

Conceptually, a configuration fixes the state x ∈ Mτ of
the system while a formation is the set of configurations in
the pre-image of a fixed output y⋆ ∈ Y . We may alternatively
regard F(y⋆) as the set of configurations that are equivalent
to some reference configuration x̊ ∈Mτ that generates the
reference measurement y⋆ = h(x̊). It should be noted that a
particular specification y⋆ may not be realisable; in this case
the corresponding formation is the null set.

B. Equivariance and Congruence

We define rigidity with respect to a symmetry of the
system. Let G be a Hausdorff topological group2 with a
continuous group action Φ ∶G×Mτ →Mτ . In this paper we
shall work with left group actions, but the choice is arbitrary.

Remark 2.20: Although it is quite common to have an
individual group action for each agent (i.e. to have Φ
composed of n group actions φi ∶ G × Mτ

i → Mτ
i ),

the more general definition is crucial for enabling other
possibilities. For example, one may wish the symmetry to
allow permutations of the agent positions, or reflections of
an agent’s location through a line between two others. ◇

There are two types of invariance that are of interest to
our study of rigidity, depending upon the scenario at hand.
The first of these is as follows.

Definition 2.21: An output map h(x) is termed invariant
with respect to a continuous group action Φ of a Hausdorff
topological group G if h(x) = h(Φ(S,x)) for all S ∈G and
x ∈Mτ . ◇

Example 2.22: For a range measurement (Example 2.8),
we can act on agent states xi ∈ R3 by a rigid-body transfor-
mation and (optionally) a reflection,

Φ((Q, ξ), x) ∶= (Qx1 + ξ, . . . ,Qxn + ξ).

That is, the same element S = (Q, ξ) ∈ E(3) (where Q ∈

O(3)) is applied to each individual state xi. Then

hk(Φ(S,x)) = ∥Qxi + ξ −Qxj − ξ∥ = ∥xi − xj∥ = hk(x),

and we confirm the well-known result that distances are
invariant to rigid-body transformations and reflections. ◇

Example 2.23: For a relative position measurement be-
tween agents in SE(3) (Example 2.9), the group action asso-
ciated with a rigid-body transformation is left multiplication
by the Lie-group SE(3), i.e.

Φ(S,X) ∶= (SX1, . . . , SXn)

where S ∈ SE(3). The relative position measurement is

hk(Φ(S,X)) = (X−1
i S−1SXj)˚̄yk = (X−1

i Xj)˚̄yk = ȳk. ◇

In practice, full invariance of the output map may be
stronger than required for rigidity of a specific formation. It

2A topological group is Hausdorff [11, Proposition 12.1.6] and Tychonoff
[11, Theorem 12.1.7] if and only if it is a Kolmogorov (T0) space.

can be sufficient to have an invariance property hold at the
specific output value that defines a formation. This motivates
the following definition.

Definition 2.24: An output value y⋆ is termed invariant
with respect to a continuous group action Φ of a Hausdorff
topological group G if, for all x ∈Mτ such that h(x) = y⋆,
it holds that h(Φ(S,x)) = y⋆ for all S ∈G. ◇

Clearly, every output value is invariant if the associated
output map is invariant. The distinction between Defini-
tions 2.21 and 2.24 is illustrated by the following example.

Example 2.25: Let xi, xj ∈ R3 be the states of two agents
with an inertial direction measurement as in Example 2.10.
Considering invariance with respect to a Euclidean transform
S = (Q, ξ) ∈ E(3) (with φi(S,xi) ∶= Qxi + ξ), we have

hk(Φ(S,x)) =
Q(xi − xj)

∥xi − xj∥
= Qhk(x) (5)

if xi ≠ xj , and hk(Φ(S,x)) = hk(x) = ℵ otherwise.
Hence, the sensor modality hk is invariant with respect to
the translational component of E(3), but not to the rotations
or reflections3. However, the particular measurement y⋆k =

ℵ is invariant with respect to the group action of E(3).
Furthermore, we see from (5) that a fixed inertial direction
measurement y⋆k ∈ S2 is invariant with respect to rotations
about the axis of that measurement. ◇

Remark 2.26: Consider a Hausdorff topological group G
and a continuous group action Φ̄ ∶ G × M℘ → M℘.
Let Mτ ∶= M℘/ ∼ be a Hausdorff quotient space with
an equivalence relation ∼. The continuity of the natural
projection π ∶M℘ →Mτ ensures that the map Φ̃ ∶= π ○ Φ̄
is also continuous. Furthermore, analogously to the case in
Remark 2.17, suppose that x̃ ∼ x̃′ (where x̃, x̃′ ∈M℘) implies
Φ̃(S, x̃) = Φ̃(S, x̃′) for all S ∈ G. In this case there exists
a unique continuous map Φ ∶ G ×Mτ → Mτ such that
Φ(S,π(x̃)) ∶= Φ̃(S, x̃). ◇

Remark 2.27: Consider a Hausdorff topological group G
and a continuous group action Φ̃ ∶G×M̃τ → M̃τ . Suppose
we wish to consider the state-space Mτ ∶= M̃τ ∖W , where
W ⊂ M̃τ is an exceptional set. We can use the induced
group action Φ ∶ G ×Mτ → Mτ ,Φ(S,x) ↦ Φ̃(S,x) if
Φ̃(S,x) ∈Mτ for all S ∈G and all x ∈Mτ , i.e. if the orbits
of G intersecting W are contained in W . In particular, note
that this condition is always satisfied in the common case
where the group action acts on each agent state xi ∈Mτ

i in
the same way and W is the set of points where two agent
states coincide (as in Example 2.3). ◇

Rigidity of a formation is a property concerned with how
the symmetries of the system relate to the formation. The
two notions of invariance defined above (Definitions 2.21
and 2.24) lead to two classes of symmetry.

Definition 2.28: Let N ∶= (Mτ ,Y, h) be an agent net-
work on a Hausdorff topological space Mτ , let F(y⋆)
be a formation of the agent network N , and let G be a
Hausdorff topological group with a continuous group action
Φ ∶G ×Mτ →Mτ .

3Note that inertial direction measurements are also invariant to scaling,
but we have omitted demonstrating this in the interest of space.



(i) If the output map h(x) is invariant with respect to Φ,
then we say that the agent network N is equivariant
with respect to Φ.

(ii) If an output value y⋆ is invariant with respect to Φ,
then we say that the formation F(y⋆) is equivariant
with respect to Φ. ◇

Note that if an agent network is equivariant, then any
formation of that agent network is equivariant. We emphasise
that equivariance of a formation requires all measurements
y⋆k to be invariant to the same group action.

The final concept we require to define rigidity is a gener-
alised form of congruence [8].

Definition 2.29: Two configurations x,x′ ∈ Mτ of an
agent network are congruent with respect to a continuous
group action Φ ∶G×Mτ →Mτ of a Hausdorff topological
group G if there exists a transform S ∈ G such that
Φ(S,x) = x′. ◇

III. DEFINING RIGIDITY

In this section we provide a generalised definition of
rigidity for formations, using the concepts of equivalent and
congruent configurations. We then apply group theory to
study the relationship between the group symmetry and the
space of configurations in a rigid formation.

Definition 3.1: (Generalised rigidity) Let F(y⋆) be a
formation that is equivariant with respect to a continuous
group action Φ ∶G×Mτ →Mτ of a Hausdorff topological
group G. The formation F(y⋆) is locally rigid with respect
to Φ if, for any configuration x ∈ F(y⋆), there exists an open
neighbourhood Ux ⊆ Mτ of x such that all configurations
x′ ∈ (F(y⋆)∩Ux) are congruent. That is, there exists S ∈G
such that Φ(S,x) = x′. If this holds with Ux =Mτ , we say
that F(y⋆) is globally rigid. ◇

We emphasise that global rigidity is a special case of
local rigidity. The essence of global rigidity for a formation
is that all possible configurations equivalent to an element
of the formation are reachable in state-space by applying a
suitable symmetry transformation. That is, the group action
is transitive on the set of valid configurations, and therefore
the formation has the structure of a homogeneous space. We
shall explore this insight further after a few examples.

Example 3.2: Consider four agents forming a rectangle in
R2 with nonzero distance constraints (Example 2.8) specified
between all pairs (i.e. m = 6). This formation F(y⋆) will
be globally rigid with respect to the group action of E(2).
However, it is only locally rigid with respect to the action
of SE(2), because in this case the neighbourhood Ux about
any configuration x ∈ F(y⋆) must be small enough not to
include a reflected configuration. ◇

Example 3.3: To demonstrate the flexibility of our frame-
work, we extend the scenario of the previous example by
adding a fifth agent with state X5 = (R5, ξ5) ∈ SE(3), where
the third element of the position ξ5 ∈ R3 is constrained
to be positive (i.e. e⊺3ξ5 > 0, where e3 ∶= (0,0,1)⊺). This
scenario might correspond in practice to the case of four
ground vehicles (i.e. in the x-y plane) maintaining formation
with a single aerial vehicle. Suppose that the aerial vehicle

is equipped with a downwards pointing camera that obtains
a bearing measurement (in the body-fixed frame) to each of
the ground vehicles, modelled as follows:

hk(xi,X5) ∶=
R⊺

5(x̃i − ξ5)

∥x̃i − ξ5∥
∈ S2.

Here, i ∈ {1,2,3,4} and x̃i ∶= (x⊺i ,0)
⊺ is the embedding of

the R2 state into R3. Note that the constraint e⊺3ξ5 > 0 ensures
the agents are not co-located. Since the ground vehicles are
constrained to the plane, we consider rigidity with respect to
SE(2). The group action on X5 with S = (RS , ξS) ∈ SE(2)
is simply given by φ5(S,X5) ∶= S̃X5, where S̃ denotes the
block matrix

S̃ ∶=
⎛
⎜
⎝

RS 0 ξS
0 1 0
0 0 1

⎞
⎟
⎠
∈ SE(3).

Using this construction, we determine that the formation is
globally rigid with respect to the group action of SE(2); in
particular, note that a reflection in E(2) would result in a
state for vehicle 5 that does not lie in SE(3). This stronger
rigidity property is a result of the orientation constraints im-
posed by the bearing measurements, and cannot be achieved
with distance constraints alone. ◇

Example 3.4: To illustrate the interest in invariant output
values (rather than invariant output maps), consider the case
of two vehicles in R2 (in the x-y plane) with a distance
measurement between them. Suppose a third vehicle in R3

measures the relative height (i.e. the z-component of the
relative position) and the inertial direction (Example 2.10) of
the first vehicle, with the goal of being positioned directly
above it. Although the directional sensor modality is not
invariant to rotations, the particular desired measurement
y⋆k = (0,0,−1)⊺ is invariant to rotations about the z-axis.
Hence, the formation will still be globally rigid with respect
to the group E(2) acting in the x and y directions. ◇

We define the stabiliser of a point x ∈Mτ as stab Φx ∶=
{S ∈ G ∣ Φ(S,x) = x} ⊆ G, i.e. the set of transformations
in G that leave x unchanged by the group action. It is
well-known (and straightforward to verify) that this is a
subgroup of G. Since it is the pre-image of a singleton set
in Mτ (which is T1, and indeed Hausdorff), the continuity
of Φx(S) ∶= Φ(S,x) implies that it is closed. It follows
that the quotient space G/ stab Φx is Hausdorff [11, Propo-
sition 7.1.6, note also Proposition 12.3.1]. The following
theorem considers some well-known characteristics of homo-
geneous spaces in the context of globally rigid formations.

Theorem 3.5: Let F(y⋆) be a formation and let G be a
Hausdorff topological group with a continuous group action
Φ ∶G ×Mτ →Mτ . Then, the following hold:

(i) if F(y⋆) is globally rigid, then all stabilisers stab Φx̊
with x̊ ∈ F(y⋆) are homeomorphic. More specifically,
for all x̊, x̊′ ∈ F(y⋆), there exists S ∈ G such that
stab Φx̊′ = S ⋅ stab Φx̊ ⋅ S

−1.
(ii) the formation F(y⋆) is globally rigid with respect to

Φ if and only if there exists some reference state x̊ ∈



F(y⋆) such that the mapping

Ψx̊ ∶G/ stab Φx̊ →M
τ ,Ψx̊(S ⋅ stab Φx̊)↦ Φx̊(S)

is continuous and bijective onto F(y⋆), where S ∈ G
(see Figure 1).
Proof: To show (i), we note that there exists S ∈ G

such that Φ(S, x̊) = x̊′ since F(y⋆) is globally rigid. For any
S′ ∈ stab Φx̊′ , we have Φ(S′, x̊′) = x̊′ and therefore Φ(S−1 ⋅

S′ ⋅S, x̊) = Φ(S−1, x̊′) = Φ(S−1 ⋅S, x̊) = x̊. This implies that
stab Φx̊′ ⊆ S ⋅ stab Φx̊ ⋅ S

−1. The analogous argument with
Φ(S−1, x̊′) = x̊ shows that the relation can be reversed, so
the two sets are equal. Note that the group operation (⋅) is a
homeomorphism in either of its arguments.

For (ii), the forward implication is well-known [11, p. 352]
in the context of orbit spaces. For the reverse implication, we
observe that since Ψx̊ is bijective, then for any x,x′ ∈ F(y⋆)
there exist S ⋅ stab Φx̊, S

′ ⋅ stab Φx̊ ∈ (G/ stab Φx̊) such
that Ψx̊(S ⋅ stab Φx̊) = Φx̊(S) = x and Ψx̊(S

′ ⋅ stab Φx̊) =
Φx̊(S

′) = x′. Thus, we have Φ(S′ ⋅ S−1, x) = Φ(S′, x̊) = x′.
The formation F(y⋆) is equivariant since it is the image of
Ψx̊ (Figure 1). It follows that F(y⋆) is globally rigid.

Remark 3.6: In Figure 1, the canonical projection π is
continuous and open [11, Proposition 12.3.1]. Therefore, if
F(y⋆) is globally rigid then Ψx̊ will be a homeomorphism
if and only if Φx̊ is also open. ◇

G

π

��

Φx̊

''

G/ stab Φx̊
Ψx̊

// F(y⋆)

Fig. 1. Mappings between spaces, with a globally rigid formation F(y⋆).
Here, π is the canonical projection, and the diagram commutes.

Example 3.7: The idea of Theorem 3.5 can be illustrated
by returning to Example 3.2. For the given situation, the
stabiliser of any point x̊ ∈ F(y⋆) is the identity of E(2).
However, if the agent states are elements of R3, the formation
is then globally rigid with respect to E(3). In this case,
the stabiliser of x̊ ∈ F(y⋆) would include any reflection
combined with the SE(3) action that compensates for the
change induced by that reflection. The existence of such an
SE(3) transform is a consequence of the formation being
planar; if the fourth vehicle lay outside the plane of the other
three, no SE(3) transform following a reflection would be
able to return the vehicle to the original “side” of that plane
(note that the plane is fixed to the other three vehicles, not
fixed to the inertial frame). ◇

IV. PATH-RIGIDITY

In this section we introduce the concept of path-rigidity,
which is a stronger property than global rigidity. In the
classical literature, this concept is overlooked in favour of
infinitesimal rigidity [8], but it is of significant interest in the
general case where h may not be differentiable. Path-rigidity
is particularly relevant to trajectory planning tasks because
it guarantees that the agents can continuously transition

between any two configurations of the formation without
breaking the state constraints. We begin with the formal
definitions of continuous congruence and path-rigidity.

Definition 4.1: For a given agent network N ∶=

(Mτ ,Y, h) and a Hausdorff topological group G with con-
tinuous group action Φ ∶G×Mτ →Mτ , two configurations
x,x′ ∈Mτ of N are continuously congruent with respect to
Φ if there exists a continuous parametrised function σ(t) ∶
[0,1] → G such that σ(0) = ι (where ι ∈ G denotes the
identity) and Φ(σ(1), x) = x′. ◇

Definition 4.2: (Path-rigidity) Let F(y⋆) be a formation
that is equivariant with respect to a continuous group action
Φ ∶ G ×Mτ → Mτ of a Hausdorff topological group G.
The formation F(y⋆) is path-rigid with respect to Φ if all
configurations x,x′ ∈ F(y⋆) are continuously congruent. ◇

Clearly, path-rigidity implies global rigidity. A simple
topological characterisation of path-rigidity is as follows.

Lemma 4.3: Let G be a Hausdorff topological group with
a continuous group action Φ ∶ G ×Mτ → Mτ . Then, a
globally rigid formation F(y⋆) is path-rigid with respect
to Φ if and only if, for any configuration x̊ ∈ F(y⋆), the
quotient G/ stab Φx̊ is path-connected.

Proof: The forward implication follows by projecting
the path in G onto G/ stab Φx̊ (cf. Figure 1). For the reverse
implication, recall from Theorem 3.5 that the stabilisers
of each x̊ ∈ F(y⋆) intersect the same number of path-
connected components (since the group operation (⋅) is a
homeomorphism), and that Ψx̊ ∶ G/ stab Φx̊ → F(y⋆) is a
continuous bijection. Since the quotient G/ stab Φx̊ is path-
connected, for any two points x,x′ ∈ F(y⋆) there exists a
path σ ∶ [0,1]→G/ stab Φx̊ such that Ψx̊ ○σ is a path from
x to x′. By the universal property of quotients, σ lifts to a
continuous path σ̃ ∶ [0,1]→G, which will have σ̃(0) = ι ∈G
and Φ(σ̃(1), x) = x′.

A. Group theoretic analysis

In this subsection we prove a useful group-theoretic result
(see Theorem 4.7) that provides an algebraic criterion for the
application of Lemma 4.3.

For any group, we can define G0 as the connected com-
ponent [11] of the identity, which is closed since connected
components are closed [11, Proposition 3.2.2]. Similarly, we
denote G1 as the path-connected component [11] of the
identity. Note that G1 ⊆G0. It is well-known that both G0

and G1 are normal subgroups of G [11, Proposition 12.2.4,
Exercise 21 from §12.2].

Our analysis concerns the quotient space G/H for a closed
subgroup H ⊆ G. It is well-known that H being closed is
necessary and sufficient for this quotient to be Hausdorff [11,
Proposition 7.1.6 with Proposition 12.3.1]. As a simplifying
assumption, we suppose that G/H is path-connected if it
is connected. Proposition 4.4 presents a useful sufficient
condition for this to hold.

Proposition 4.4: Let G be a Hausdorff topological group
with a closed subgroup H ⊆G, and suppose that the quotient
G/H is connected. Then, G/H is path-connected if the path-
connected component G1 of the identity is open in G.



Proof: The coset G ⋅G1 is an open, path-connected
component of G since left multiplication by G is a homeo-
morphism. Since G ∈ G ⋅G1, every path-connected compo-
nent of G is of this form. In particular, they are all open,
and as a consequence they are all closed. It follows that all
connected components of G are path-connected.

Note that the canonical projection π ∶ G → G/H is
a continuous and open surjection [11, Proposition 12.3.1].
It follows from the continuity of π that the image of a
path-connected component is path-connected [11, Proposi-
tion 3.3.5]. Also note that if two (or more) path-connected
subspaces (in G/H) share a point, their union is path-
connected [11, Corollary 3.3.3].

Now suppose, for a contradiction, that G/H is not path-
connected. There must then exist two complementary collec-
tions {Ga∈I} and {Gb∈I} of (path-)connected components
of G whose images (under π) are disjoint (here, I denotes an
index set). Since π is open these images are open, and since
π is a surjection these images form a partition of G/H. This
would imply that G/H is not connected, which contradicts
the assumption of the proposition.

Note that in the particularly common case where G is
locally path-connected, G1 is open [11, Corollary 3.4.7].
In the sequel, it is convenient to assume that G1 is open
rather than the more general requirement that G/H be path-
connected if it is connected. The authors are not aware of
any practical scenario where this distinction is relevant, but
all following results in this paper hold for the broader case.

The following proposition concerns the relationship be-
tween the connected components of a group G and those of
a closed subgroup H.

Proposition 4.5: Let G be a Hausdorff topological group
and H ⊆G a closed subgroup. Let G0 and H0 be the con-
nected components of the identities in G and H, respectively.
Then the subgroup H∩G0 ⊆H is normal in H and the group
homomorphism

α ∶H/H0
→H/(H ∩G0

),H ⋅H0
↦H ⋅ (H ∩G0

) (6)

is well-defined and surjective for H ∈ H. Furthermore, the
group homomorphism

β ∶H/(H ∩G0
)→G/G0,H ⋅ (H ∩G0

)↦H ⋅G0 (7)

is well-defined and injective.
Proof: Note that H ⋅ (H∩G0) ⋅H−1 ⊆H ⋅H ⋅H−1 ⊆H

since H is a group and H ⋅(H∩G0)⋅H−1 ⊆H ⋅G0 ⋅H−1 ⊆G0

since G0 is normal in G. It follows that H ⋅(H∩G0) ⋅H−1 ⊆

H ∩G0 and so H ∩G0 is normal in H.
Let H1,H2 ∈H with H1 ⋅H

0 =H2 ⋅H
0. Then there exists

H3 ∈H
0 such that H1 =H2 ⋅H3. Since H0 is path-connected

and contains the identity element of H and G, we have
H0 ⊆G0 and hence H3 ∈H∩G0. Therefore H1 ⋅(H∩G0) =

H2 ⋅(H∩G0) and so α is well-defined. It is surjective since
H0 ⊆H ∩G0.

Now consider H1,H2 ∈H with H1 ⋅(H∩G0) =H2 ⋅(H∩

G0). Then there exists H3 ∈H∩G0 with H1 =H2 ⋅H3. Since
H3 ∈ G0, this implies that β(H1 ⋅ (H ∩G0)) = H1 ⋅G

0 =

H2 ⋅G
0 = β(H2 ⋅ (H ∩G0)) and so β is well-defined.

Finally, let H1,H2 ∈H with β(H1 ⋅(H∩G0)) =H1 ⋅G
0 =

H2 ⋅G
0 = β(H2 ⋅(H∩G0)). Then there exists H3 ∈G

0 such
that H1 =H2 ⋅H3. This implies that H3 =H

−1
2 ⋅H1 ∈H and

hence that H3 ∈ H ∩G0. It follows that H1 ⋅ (H ∩G0) =

H2 ⋅ (H ∩G0) and therefore β is injective.
Definition 4.6: Let G be a Hausdorff topological group

and let G0 be the connected component of the identity. The
component group of G is defined as π0(G) ∶=G/G0. ◇

For a subgroup H ⊆G we define the following homomor-
phism on the component groups:

πid
0 ∶ π0(H)→ π0(G),H ⋅H0

↦ id(H) ⋅G0. (8)

Here, id ∶H↪G,H ↦H is the inclusion group homomor-
phism. We are now ready to present the main result.

Theorem 4.7: Let G be a Hausdorff topological group,
let H be a closed subgroup of G, and let G0 and H0 be
the connected components of the identities in G and H,
respectively. Assume the path-connected component G1 of
the identity in G is open. Then the following are equivalent:

(i) The homogeneous space G/H is connected.
(ii) The subgroup H contains an element from every con-

nected component of G.
(iii) The homomorphism πid

0 (8) of component groups is
surjective.

(iv) The homomorphism β (7) is an isomorphism.
(v) For every G ∈G there exist H ∈H and G0 ∈G0 such

that G =H ⋅G0.
Proof: The proof is given as a sequence of implications

and equivalences.
(i)⇒ (ii): By Proposition 4.4, G/H is path-connected. Let

σ ∶ [0,1]→G/H be a continuous path connecting ι⋅H to any
G⋅H in G/H. By the universal property of quotients, the path
σ lifts to a continuous path σ̃ ∶ [0,1]→G such that σ = π○σ̃,
where π ∶G→G/H is the canonical projection. By design,
the path σ̃ connects some element ι ⋅H1 = H1 ∈ H ⊆ G to
some element G ⋅ H2 ∈ G, where H2 ∈ H. It follows that
σ̃ ⋅H−1

2 is a continuous path connecting H1 ⋅H
−1
2 ∈H ⊆G to

G ∈G1 ⊆G, where G1 is the path-connected component of
G. This implies that H1 ⋅H

−1
2 ∈G1∩H. Since G is arbitrary,

every path-connected component G1 contains an element of
H.

(ii) ⇒ (i): Let G1, G2 be two path-connected components
of G (we allow G1 = G2), with G1 ∈ G1 and G2 ∈ G2.
Pick H1 ∈G1 ∩H and H2 ∈G2 ∩H. The map γ ∶G →G,
G ↦ G ⋅ (H−1

1 ⋅ H2) is a homeomorphism, so the image
of G1 is a path-connected component of G. Since H2 =

H1 ⋅(H
−1
1 ⋅H2) = γ(H1), we have γ(G1) =G2. In particular,

γ(G1) = G1 ⋅(H
−1
1 ⋅H2) ∈G2 and hence there is a continuous

path σ̃ ∶ [0,1] → G connecting G1 ⋅ (H
−1
1 ⋅H2) to G2. Let

π ∶G→G/H be the canonical projection, and then σ ∶= π○σ̃
is a continuous path connecting G1 ⋅H to G2 ⋅H in G/H.
Since G1 and G2 are arbitrary, the quotient G/H is path-
connected.

(ii) ⇒ (iii): For any G ∈ G there exists H ∈ H with
H ∈ G ⋅G0. This implies that πid

0 (H ⋅H0) =H ⋅G0 = G ⋅G0,
and since G ∈G is arbitrary this means that πid

0 is surjective.



(iii) ⇒ (ii): For any G ∈ G there exists H ∈ H such that
G ⋅G0 = H ⋅G0 = πid

0 (H ⋅H0). In particular, H ∈ G ⋅G0.
Since G ∈ G is arbitrary, for every connected component
G ⋅G0 there exists H ∈H with H ∈ G ⋅G0.

(iii) ⇔ (iv): By definition the homomorphism πid
0 factors

as πid
0 = β ○ α with α surjective. Hence, πid

0 is surjective if
and only if β surjective. Since β is always injective, this is
the case if and only if β is an isomorphism.

(iv) ⇒ (v): For any G ∈ G there exists H ∈ H such that
G ⋅G0 = β(H ⋅ (H ∩G0)) = H ⋅G0. Hence, there exists
G0 ∈G0 such that G =H ⋅G0.

(v)⇒ (iv): For any G ∈G there exists H ∈H and G0 ∈G0

such that G = H ⋅ G0. This implies G ⋅ G0 = H ⋅ G0 =

β(H ⋅ (H ∩G0)). Since G ∈ G is arbitrary, β is surjective
and hence an isomorphism.

B. An algebraic characterisation of path-rigidity

In this subsection we employ Theorem 4.7 with H =

stab Φx̊ to acquire the following algebraic characterisation
for path-rigid formations.

Corollary 4.8: Let G be a Hausdorff topological group
with a continuous group action Φ ∶G×Mτ →Mτ . Assume
the path-connected component G1 of the identity in G
is open. Then, a globally rigid formation F(y⋆) is path-
rigid with respect to Φ if and only if the stabiliser of any
configuration x̊ ∈ F(y⋆) contains at least one element from
every (path-)connected component of G.

Proof: By Theorem 4.7, the quotient G/ stab Φx̊ is
path-connected if and only if stab Φx̊ contains an element
from every (path-)connected component of G. The result
follows from Lemma 4.3.

Due to space constraints, we shall illustrate the application
of this result with just a few simple examples.

Example 4.9: In Example 3.3 the formation is globally
rigid with respect to SE(2). This group has only one
(path-)connected component and the stabiliser trivially con-
tains the identity, so the formation is path-rigid. ◇

Example 4.10: Consider four agents in R3 with a distance
measurement between each of the six pairs, and suppose
we constrain all distances to be equal to 2. This results in
a triangular pyramid formation that is globally rigid with
respect to the action of E(3). Since the stabiliser is the
identity, the formation is not path-rigid.

Now suppose that we quotient the output space by the
equivalence relation y ∼y y′ ⇔ ∃σ ∈ P6(y) ∶ y

′ = σ(y), i.e.
let Yτ ∶= Y℘/ ∼y , and further suppose that agents 1 and 2
are interchangeable (see Example 2.18). Clearly, the specified
formation is still a triangular pyramid that is globally rigid
with respect to the group action of E(3). Now, if we align the
pyramid such that x1 = (−1,0,0)⊺ and x2 = (1,0,0)⊺, both
x3 and x4 will lie in the y-z plane. Reflecting the formation
through this plane will therefore only switch the positions
of agents 1 and 2, which are interchangeable, and hence this
reflection is an element of the stabiliser. From Corollary 4.8
it follows that the formation is path-rigid. ◇

As illustrated by the last example, a nice feature of the
corollary is that we only need to consider the stabiliser at

a single configuration of the formation. The authors believe
the corollary will be of particular appeal for more complex
scenarios involving non-product topologies on the state-
space.

V. CONCLUSION

We have presented a generalised formulation for the
concept of rigid formations. The definition of rigidity is asso-
ciated with a Hausdorff topological group and a continuous,
transitive group action on the space of valid configurations, to
which the constraints specifying the formation are invariant.
Our framework allows an extremely broad class of state-
spaces and output spaces, requiring only that the former are
Hausdorff. The framework therefore enables a very wide
range of possible scenarios in fields such as formation
control. In addition, we introduced the concept of path-
rigidity, where agents can move continuously between any
two configurations of the formation without breaking it. Our
final result provides a very useful characterisation of this
property in terms of the stabiliser of the group action.
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