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Introduction

At AISTATS 2007, Schraudolph et. al. present an online (L)-BFGS algorithm
whose scaling matrices which do not always converge. Bottou has proved con-
vergence for quasi-Newton methods with converging scaling matrices using strong
stochastic Lyapunov functions. We here use weak stochastic Lyapunov functions
to do the same for methods with scaling matrices which are only assumed to have
uniformly bounded spectrum.

Optimization with ”batch” methods

•Machine learning poses optimization problems with loss functions of the form
C(w) = EzL(z, w). In reality an empirical averageCn(w) =

∑n
i=1 L(zi, w) is mini-

mized. ”Batch” optimizers have to calculate the entire sum for each evalutation
of Cn(w) and∇wCn(w).

•As data sets grow larger the ”batch” methods becomes increasingly inefficient
and they are ill-suited for the online setting.

Stochastic (online) gradient-based methods

•Stochastic gradient methods work with gradient estimates obtained from subsam-
ples of the training data.

•On large redundant data sets simple stochastic gradient descent (SGD) typically
outperfoms second order ”batch” methods by orders of magnitude.

•wt+1 = wt − atYt whereE(Yt) = ∇wC(w) andat > 0 defines SGD.
•For online Quasi-Newton methods like online (L)-BFGS, Natural Gradient and

Kalman filterswt+1 = wt − atBtYt whereBt is a positive scaling matrix.
•Stochastic Meta-Descent (SMD) uses diagonal scaling. For SGDBt is always the

identity matrixI.

Stochastic Approximation Theory

•The field of stochastic approximation was founded in 1951 by Herbert Robbins
and Sutton Monro. It has influenced statistics, control, optimization and online
learning. They wanted a root of a functionM(w) given a sequenceyt = M(wt) + εt.

•The Robbins-Monro procedure is defined bywt+1 = wt − atyt andwt converges to
the unique rootθ thatM is assumed to have if:

∑
a2
t < ∞,

∑
at = ∞, M(w) > 0 for

w > θ, M(w) < 0 if w < θ. They also had a regularity condition forM and a noise
model with uniformly bounded variation.

•That |M(w)| ≤ C(|w − θ|+ 1) andinf|w−θ|>δ M(w)(w − θ) > 0 for all δ > 0 is a sufficient
regularity condition was proved by Blum in 1954.

Super-Martingales

In 1971, Robbins and Siegmund proved a super-martingale convergence the-
orem that implies convergence for the multivariate version of the Robbins-
Monro procedure and therefore also for multivariate stochastic gradient de-
scent. It is only neccesary to add a transpose to the last condition which re-
sults in the multivariate conditioninf|w−θ|>δ M(w)T (w − θ) > 0 for all δ > 0.

The Robbins-Siegmund Theorem

Theorem 1 (Robbins, Siegmund)Let (Ω,F , P ) be a probability space andF1 ⊆
F2 ⊆ ... be a sequence of subσ-fields ofF. Let Ut, βt, ξt and ζt, t = 1, 2, ... be non-
negativeFt-measurable random variables such that

E(Ut+1 | Ft) ≤ (1 + βt)Ut − ζt + ξt, t = 1, 2, ... (1)

Then on the set{
∑

t βt < ∞,
∑

t ξt < ∞}, Ut converges a.s. to a random variable and∑
t ζt < ∞ a.s.

Stochastic Lyapunov functions

•The Theorem above enables us to bring Lyapunov methods into the stochastic
setting. To prove convergence for the multivariate Robbins-Monro procedure we
chooseU(w) = ‖w − θ‖2

2 as the strong Lyapunov function andUt = U(wt).
•Et(‖wt+1 − θ‖2) = ‖wt − θ‖2 − 2at(w − θ)TM(wt) + a2

tEt(‖Yt‖2).
•Assuming thatEt(‖Yt‖2) is uniformly bounded is sufficent (but not necessary) to

conclude that
∑

t a
2
tEt(‖Yt‖2) < ∞. The Robbins-Siegmund theorem then guaran-

tees that‖wt − θ‖2 converges almost surely and that
∑∞

t=1 at(wt − θ)TM(wt) < ∞
almost surely.

•Since
∑∞

t=1 at = ∞ andinf‖w−θ‖>δ{(w − θ)TM(w)} > 0 for all δ > 0 we can conclude
thatwt → θ ast →∞ almost surely.

Stochastic approximation theory with scaling matrices

•Consider updateswt+1 = wt − atBtYt whereBt is a random positive scaling matrix.
• If we try exactly the same method as above we will have the problem that we can

not be certain that(wt − θ)TBtM(wt) is positive.
•That B is positive implies thatwTBw > 0 ≥ λminwTw whereλmin is the smallest

eigenvalue ofB. It doesNOT imply thatwtBy ≥ 0 wheneverwTy ≥ 0.
•Solution: LetU(w) = C(w) if C is a cost function with∇wC(w) = M(w).
•This is the weak Lyapunov method.

A Convergence Theorem

Let C(w) be a twice differentiable strictly positive cost function defined onR
n. We

study updates that depend on independent realizationszt of a random variablez.

wt+1 = wt − atBtY (zt, wt). (2)

wt converges toθ = argmin C(w) almost surely under the following conditions:

•C.1. Ez(Y (z, wt)) = ∇wC(w) for all w.
•C.2. ‖∇2

wC(w)‖ ≤ 2K.
•C.3. infC(w)−inf C>δ ‖∇wC(w)‖ > 0 for all δ > 0.
•C.4. Ez(‖Y (z, w)‖2) ≤ A + BC(w) for all w.
•C.5. Bt is positive for allt and all the eigenvalues are larger thanm and smaller

thanM where0 < m ≤ M < ∞.
•C.6.

∑
a2
t < ∞ and

∑
at = ∞.

Proof sketch

•SinceC is twice differentiable and has bounded Hessian (C.2) we can use Taylor
expansion and the upper eigenvalue bound (C.5) to prove that

C(wt+1) = C(wt − atBtYt) ≤ C(wt)− at(∇wC(wt))
TBtYt + KM2a2

t‖Yt‖2 (3)

which implies, using (C.1) and (C.4) that

Et(C(wt+1)) ≤ C(wt)− at(∇wC(wt))
TBt(∇wC(wt)) + KM2a2

t (A + BC(wt)). (4)

• If we let Ut = C(wt) and merge the terms containingUt it follows that

Et(Ut+1) ≤ Ut(1 + a2
tBKM2)−mat‖∇wC(wt)‖2 + AKM2a2

t . (5)

•Since
∑

t a
2
t < ∞ (C.6), the Robbins-Siegmund theorem can now be applied.

• It follows that
∑

t at‖∇wC(wt)‖2 < ∞. Since
∑

at = ∞ (C.6) it must be true that
‖(∇wC(wt))‖2 → 0. (C.3) implies thatC(wt) → C(θ) = infw C(w) ast →∞.

Realization
GivenBt we can define modifications̃Bt which satisfies given eigenvalue bounds.

• If you have the scaling matrices of the formBt = QT
t DtQt whereDt is diagonal,

Qt is orthogonal and the diagonal entries ofDt aredt,j, then we can definẽDt by
letting its diagonal entries bẽdt,j = max(m, min(dt,j, M)) and thenB̃t = QT

t D̃tQt.
• In the Online BFGS formula there is a constantλ > 0 that regularizes the updates

in the sense thatBt is approximating(H + λI)−1 whereI is the identity matrix
instead of the inverse of the HessianH. It forces the eigenvalues ofBt to be less
thanλ−1. We can add a further modificatioñBt = Bt + γI where0 < γ ≤ λ−1. The
eigenvalues of̃Bt lie in [γ, λ−1].


