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Introduction Super-Martingales A Convergence Theorem

At AISTATS 2007, Schraudolph et. al. present an online (L)-BFGS algorithm  In 1971, Robbins and Siegmund proved a super-martingale convergendectlier) be a twice differentiable strictly positive cost function definedronWe
whose scaling matrices which do not always converge. Bottou has proved con- orem that implies convergence for the multivariate version of the Robsindy updates that depend on independent realizatjarisa random variable.
vergence for quasi-Newton methods with converging scaling matrices using strong Monro procedure and therefore also for multivariate stochastic gradient de- Wyl = wr — arBY (2, wy) (2)
stochastic Lyapunov functions. We here use weak stochastic Lyapunov functions scent. It is only neccesary to add a transpose to the last condition which re- - | | | der the followi ditions:
to do the same for methods with scaling matrices which are only assumed to have sults in the multivariate conditiomf, ¢.;M(w) (w —6) > o for all § > 0. ™ CONVErges 1@ = argmin C'(w) 2lMOST surely under the Tollowing conditions:

unitormly bounded spectrum. The Robbins-Siegmund Theorem o C.1 By(Y (z,wy)) = Vi C(w) fOr all w,

¢ C.2.|V20(w)| < 2K.

Theorem 1 (Robbins, Siegmund).et (2, 7, P) be a probability space and; < o C.3.infr,) it I VwC(w)[| >0 for all 5 > o.
F, C ... be a sequence of sunfields of 7. Letu;, 5,6 and ¢, ¢ = 1,2,... D€ NON- ¢ C.4. E,(|Y (2, w)|?) < A + BC(w) for all w.
negativer;-measurable random variables such that

Optimization with "batch” methods

e Machine learning poses optimization problems with loss functions of the form

C(w) = E,L(z,w). In reality an empirical average,(w) = 3", L(z;,w) IS MINi- e C.5. B; Is positive for all: and all the eigenvalues are larger thamnd smaller
mized. "Batch” optimizers have to calculate the entire sum for each evalutation EUpr | Ft) (1 +B)U — G+ &, t=1,2, ... (1) thani whereo <m < M < .
of Cy(w) and v, Cr(w). Then on the sety", 3 < 0, >, & < oo}, Uy cOnverges a.s. to a random variable ae€.6. > a7 < oo andy” a; = .

e As data sets grow larger the "batch” methods becomes increasingly inefficient >_;¢ < oo @.S.

and they are ill-suited for the online setting. Proof sketch

Stochastic Lyapunov functions

Stochastic (online) gradient-based methods . Sincec is twice differentiable and has bounded Hessian (C.2) we can use Taylo
e The Theorem above enables us to bring Lyapunov methods into the stochaspiansion and the upper eigenvalue bound (C.5) to prove that
» Stochastic gradient methods work with gradient estimates obtained from subsam-  setting. To prove convergence for the multivariate Robbins-Monro procedure We ¢,y _ c(w, — 0,B,3) < Clwr) — ar(VuClwn)) L BiY: + K M2a2||v; (3)
ples of the training data. choosea/(w) = |w — ¢||3 as the strong Lyapunov function ang= U(w,). -

which implies, using (C.1) and (C.4) that

. : : : : o F _pl2) = _ 912 —9 — T 2. (112 112).
On large redundant data sets simple stochastic gradient descent (SGD) typically t([[werr = 0]]7) = [Jwe = 0|7 = 2a¢(w — 0)" M(w¢) + ai Ex(||Yz]]7) E(Clwe1)) < Clwy) — ap(VClw))! Bi(VwCl(wy)) + KM?ai(A+ BC(wy).  (4)

outperfoms second order "batch™ methods by orders of magnitude. « Assuming thatz,(|[v;|?) is uniformly bounded is sufficent (but not necessary) to R
o w1 = wr — a;V; WhereE(y;) = v,,C(w) anda; > 0 defines SGD. conclude that™, «2E(|Y;|2) < o. The Robbins-Siegmund theorem then guarahi-we letv; = C(w;) and merge the terms containingit follows that
« For online Quasi-Newton methods like online (L)-BFGS, Natural Gradient and tees that|w; — 0| converges almost surely and thafe, ai(w; — 0)* M(w;) < oo Et(Up1) < U(1 + af BK M?) — may||VwC(wy)|* + AK M ay. (5)

almost surely. e Sincey, a7 < o (C.6), the Robbins-Siegmund theorem can now be applied.

o : 00 _ : v i .
tSr:gtCi%_;;;t fig?gggtgjﬁéf;u )7 M)} > 0torall o> 0we can conclude, It follows that }", a;|| V. C(wy)||* < co. SINCEYa; = oo (C.6) It must be true that

||(Vwc<wt>>||2 — 0. (C-B) implies thatj(wt) — (C'(0) = infy, C'(w) aSt — .

Kalman filtersw,,; = w; — a;B;Y; wheren, Is a positive scaling matrix.

« Stochastic Meta-Descent (SMD) uses diagonal scaling. For @& always the
identity matrixi.

Stochastic approximation theory with scaling matrices

iven B; we can define modifications which satisfies given eigenvalue bounds.

« The field of stochastic approximation was founded in 1951 by Herbert Robbins  * Consider updates, = w; — a;3;Y; Wheres; Is a ranc.jiom positive scaling matri
and Sutton Monro. It has influenced statistics, control, optimization and online e If we try exactly the same method as above we will have the problem that WS 1$9/du have the scaling matrices of the fomp = Q7 D;@; whereD; is diagonal,

learning. They wanted a root of a functionw) given a sequencg = M (w;) + «. not be certain thate, — 6)' BM (wy) IS positive. Q: is orthogonal and the diagonal entriesrofared, ;, then we can define, by

« The Robbins-Monro procedure is definedly; = w; — a;y; andw; converges to o That B is positive implies thato! Bw > 0 > ;! w Wheren,,;, is the smallest letting its diagonal entries bg ; = max(m, min(d; ;, M)) and thenB; = QT D:Q;.
the unique root that s Is assumed to have If a; < oo, 3= as = oo, M(w) > 0 fOr eigenvalue oB. It doesNOT imply thatw’sy > 0 whenevers”y > 0. « In the Online BFGS formula there is a constanto that regularizes the updates
w >0, M(w) < 01f w<¢. They also had a regularity condition for and a noise « Solution: Letv(w) = C(w) if ¢ is a cost function withv,,C(w) = M(w). in the sense thas; is approximating # + \I)~! where1 is the identity matrix
model with uniformly bounded variation. . This is the weak Lyapunov method. instead of the inverse of the Hessian It forces the eigenvalues af to be less

o That|M(w)| < C(lw — 6] + 1) @ndinfy,_g-; M(w)(w — ) > 0 for all 6 > 0 Is a sufficient thanx—!. We can add a further modification = B; + v whereo < v < x~!. The
regularity condition was proved by Blum in 1954. eigenvalues of; lie in [y, A~ 1.
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