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Abstract

This paper studies the relationship between the differential privacy of initial values and the observability for general linear
dynamical systems with Gaussian process and sensor noises, where certain initial values are privacy-sensitive and the rest is
assumed to be public. First of all, necessary and sufficient conditions are established for preserving the differential privacy and
unobservability of the global sensitive initial values, respectively to show their independent properties. Specifically, we show
that the observability matrix reduced by the set of sensitive initial states not only characterizes the structural property of
noises for achieving the differential privacy, but also affects the achievable privacy levels, while the unobservability relies on the
rank of such reduced observability matrix. Next, the inherent network nature of the considered linear system is explored, where
each individual state corresponds to a node and the state and output matrices induce interaction and sensing graphs, leading
to a network system. Under this network perspective, the previously established results are extended for initial values of local
nodes to study their differential privacy and connections with their observability. Moreover, it is shown that the qualitative
property of the differential initial-value privacy is either preserved generically or lost generically, which is the same as the
unobservability in the local sense, while subject to a subtle difference from the unobservability in the global sense that is either
preserved fully or lost generically. Finally, a privacy-preserving consensus algorithm is revisited to illustrate the effectiveness
of the established results.
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1 Introduction

The rapid developments in networked control systems
[2], internet of things [3, 4], smart grids [5], intelligent
transportation [6, 7] during the past decade shed lights
on how future infrastructures of our society can be made
smart via interconnected sensing, dynamics, and control
over cyber-physical systems. The operation of such sys-
tems inherently relies on users and subsystems sharing
signals such as measurements, dynamical states, control
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inputs in their local views, so that collective decisions be-
come possible. The shared signals might directly contain
sensitive information of a private nature, e.g., loads and
currents in a grid reflect directly activities in a residence
or productions in a company [8]; or they might indirectly
encode physical parameters, user preferences, economic
inclination, e.g., control inputs in economic model pre-
dictive control implicitly carry information about the
system’s economic objective as it is used as the objective
function [9].

Initial values of a dynamical system may carry sensi-
tive private information, leading to privacy risks related
to the initial values. For instance, when distributed load
shedding in micro-grid systems is performed by employ-
ing an average consensus dynamics, initial values repre-
sent load demands of individual users [10]. Besides, tak-
ing an autonomous vehicle for an instance, the initial
position may represent the home address of user [11].
In the literature, several results have been reported to
address the initial-value privacy, such as [12–15], where
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the initial-value privacy of the average consensus algo-
rithm over dynamical networks was studied, and inject-
ing noises was used as a privacy-protection approach.
The privacy of the initial value for a dynamical system is
also of significant theoretical interest as the system tra-
jectories or distributions of the system trajectories are
fully parametrized by the initial values, in the presence
of the plant knowledge.

Observability is a fundamental notion of dynamical
systems, measuring how well the system states can be
inferred from measured outputs. This also implies the
intrinsic connection between the observability and the
initial-value privacy risk. Along this line, the initial-value
privacy in the unobservability sense has been studied
in [16–18]. Moreover, in [28] a sufficient condition is es-
tablished, showing that the differential privacy of initial
values is also quantitatively related to the observability
in the sense that the achievable privacy levels rely on the
observability matrix. A qualitative, and more thorough
connection, e.g., from a necessary and sufficient condi-
tion, between the differential privacy and the observabil-
ity is still unclear. Besides, it is worth noting that in the
previously mentioned results the whole system initial
states are regarded as sensitive. However, in the pres-
ence of malicious agents or sensors, or due to the phys-
ical nature of certain state entries (e.g. the velocity of
an autonomous vehicle), part of the initial states might
be subjected to public disclosure. Particularly, though
the system initial values or individual initial values can
be unobservable from the outputs, they may become ob-
servable under such publicly disclosed information, lead-
ing to a different observability of initial values. In view
of this, it is natural to ask how the observability is re-
lated to the differential privacy of initial values in the
presence of the disclosed initial values.

In this paper, we consider general linear dynamical
systems with Gaussian process and sensor noises, in
which there are certain sensitive initial values and the
non-sensitive initial values are supposed to be public.
For such linear systems, we aim to establish necessary
and sufficient conditions so as to comprehensively re-
veal the fundamental relationship between the differen-
tial initial-value privacy and the observability for linear
systems.

1.1 Contributions

This paper studies the differential privacy of certain
initial values for general linear systems, and explores
the connection with the corresponding observability. We
first study both concepts from a global level by taking
the sensitive initial values as a whole, and then turn
to local initial values by exploring the inherent network
nature of linear systems, where each dimension of the
system state corresponds to a node, and the state and
output matrices induce interaction and sensing graphs.

The contributions of this paper can be summarized into
the following three aspects.

(i) Taking the sensitive initial values as a whole, we estab-
lish necessary and sufficient conditions, respectively
for both differential privacy and unobservability to
show their independent properties. Particularly, both
qualitative and quantitative conditions are developed,
characterizing the effect of the observability matrix
reduced by the sensitive initial states on the noise
structure for achieving the differential privacy and the
achievable privacy levels by the noises, respectively.
In contrast, the unobservability equals to the non-full-
rank property of such a reduced observability matrix.
This in turn clarifies the fundamentally different roles
played by the observability matrix in both notions.

(ii) Taking the system as a networked system, we gener-
alize the results for the global sensitive initial values
by establishing necessary and sufficient conditions for
the differential privacy and the unobservability of ini-
tial values of local nodes, respectively.

(iii) We further investigate the qualitative effect of network
structure to differential initial-value privacy, and show
that it is either preserved generically or lost generi-
cally, which is the same as the unobservability in the
local sense, while subject to a subtle difference from
the unobservability in the global sense which is either
preserved fully or lost generically.

The structural analysis for differential privacy and un-
observability in the presence of disclosed initial values
extends the classical work on structural observability
[19–21] where generic conditions are established. Be-
sides, the results on differential initial-value privacy may
shed insights on privacy preservation of linear systems.

1.2 Related Work

This paper is established on the privacy metrics in the
literature to address privacy concerns of dynamical sys-
tems. A notable metric is differential privacy, which has
received significant attention in the database field since
the seminal works [22, 23]. Recently, such privacy met-
ric has been applied to dynamical systems for problems
ranging from average consensus seeking [12, 13, 24, 25]
and distributed optimization [26, 27] to estimation and
filtering [8,11] and feedback control [28–30]. In particu-
lar, random noises are injected to measurements to pro-
tect the state-trajectory privacy, with initial-value pri-
vacy as a particular case, for a filtering problem in [11]
and a cloud-based linear quadratic regulation problem
in [29]. In [28], the differential privacy of control inputs
and initial states is investigated for linear control sys-
tems. It is shown that the (input) observability affects
the differential privacy levels that can be achieved by the
added noises. In [13], an average consensus algorithm is
developed by perturbing the communication messages
and computation procedures with exponentially decay-
ing noises to preserve the differential privacy of initial
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values, and an optimal policy has been established by
perturbing the initial values with random noises. We
note that all these results consider a strong differential
privacy requirement in the sense that there is no public
information on the privacy-sensitive data, which is dif-
ferent from our case where there are some public initial
values. Moreover, this paper also develops qualitative
conditions on the noise structure and studies the generic
property of the differential privacy, which are absent in
these results.

Another related but different privacy risk lies in the
possibility of making an accurate enough estimation of
the sensitive parameters or signals from observations.
In [17,18], the initial-value privacy is defined in the sense
that the initial values cannot be deterministically recov-
ered. In [16] the variance matrix of the maximum likeli-
hood estimation was utilized to measure the adversary’s
inherent ability to infer system states, with initial states
as a particular case. If the system is unobservable from
the adversary’s observations, then the resulting variance
matrix is not finite, leading to the so-called security of
the system states. This idea is further developed in [15]
to propose a privacy-preserving average consensus with
a malicious node. In [31], a measure of privacy was de-
veloped using the inverse of the trace of the Fisher infor-
mation matrix, which is a lower bound of the variance
of estimation error of unbiased estimators.

The study of unobservability of initial values and its
generic property in this paper are of relevance to the
works on the classical observability/controllability and
their structural properties [21], respectively. Recent ad-
vances along these lines contain such as [32] for structural
controllability of symmetric networks, [33] for structural
observability of bilinear systems, [34] for structural state
variable controllability and [35,36] for strong structural
controllability. Readers of interest can see [20] for a sur-
vey. It is worth noting that the notion of observability has
been developed for undetectable attacks in [37,38]. Com-
pared to these relevant results, our (generic) unobserv-
ability of global sensitive initial values can be regarded
as a generalization of the classical (structural) unobserv-
ability by additionally considering the effect of the pub-
lic non-sensitive initial values. Besides, the unobservabil-
ity of local initial values is shown to be either preserved
generically or lost generically, which is indeed different
from the classical structural properties [20,21,32,33], in
which the observability/controllability is either generi-
cally preserved or fully lost.

1.3 Organization and Notation

The remainder of the paper is organized as follows.
Section 2 formulates the problem of interest for linear
(networked) systems. In Section 3, the relationship be-
tween the differential privacy and unobservability of sen-
sitive initial values as a whole is addressed. Then regard-

ing the system from the network perspective, the previ-
ously established results are extended to study differen-
tial initial-value privacy of local nodes and its connec-
tion with the observability in Section 4, and in Section
5 the generic properties of all these differential privacy
and unobservability are discussed from a qualitative per-
spective. To illustrate the effectiveness of the proposed
results, the privacy-preserving average consensus algo-
rithm proposed in [15] is revisited in Section 6. Finally a
brief conclusion is made in Section 7. All technical proofs
are presented in Appendices. This paper is a significant
extension over the preliminary version [1] by developing
new technical results in Theorems 1-4 and illustrative
examples.

Notation. Denote by R the real numbers, Rn the real
space of n dimension for any positive integer n and N
the set of natural numbers. For any x1, . . . , xm ∈ Rn, we

denote [x1; . . . ;xm] as a vector
[
x>1 . . . x>m

]>
∈ Rmn,

and [x1, . . . , xm] as a matrix of which the i-the column
is xi, i = 1, . . . ,m. For any matrix A ∈ Rn×m, denote
A† as its Moore–Penrose inverse. The range of a matrix
(i.e., column space) or a function is denoted as range(·),
and the span of a matrix (i.e., row space) is denoted
as span(·). Denote ei ∈ Rn as a basis vector whose en-
tries are all zero except the i-th being one. For any set
P ⊆ {1, 2, . . . , n} of l elements, we denote EP ∈ Rn×l as
the matrix with each column as a basis vector ej with
j ∈ P. We denote by η ∼ N(0,Σ) if η is drawn from a
multivariate Gaussian distribution with zero mean and
covariance matrix Σ. Given a symmetric, positive (semi)-

definite matrix Σ ∈ Rn×n, we denote
√

Σ as a matrix
A ∈ Rn×n satisfying A>A = Σ.

2 Problem Statement

2.1 Preliminaries

We consider the following linear time-invariant (LTI)
system

xt+1 = A xt + νt

yt = C xt + ωt
(1)

for t ∈ N, where xt := [x1,t; . . . ;xn,t] ∈ Rn is state, yt ∈
Rm is output, νt ∈ Rn is process noise, and ωt ∈ Rm is
measurement noise. Throughout the paper, we assume
that νt and ωt are random variables according to some
zero-mean multivariate Gaussian distributions, but not
necessary to be mutually independent, and C 6= 0.

In this paper, we let certain initial values xP
0 := E>P x0

of system (1) be privacy-sensitive, with P ⊆ V :=
{1, . . . , n}, and denote the rest initial states as
xD

0 = E>Dx0 with D = V/P. Besides, we impose the
following assumption.
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Assumption 1 The system matrices A,C, the initial
states xD

0 and the output yt for t = 0, 1, . . . , T are public.

It is known that if the system (1) is observable, then
the system initial values x0 are identifiable/observable
(or accurately estimated in the absence of noises) from
the output. This clearly implies the intrinsic connection
between the initial-value exposure risk and the observ-
ability of linear systems. In view of this, this paper aims
to further study the connection of the observability with
the initial-value privacy, with a particular focus on an in-
creasingly popular notion of differential privacy [39], as
defined in the subsequent subsections. As a result, this
can not only add to our understanding of initial-value
privacy for linear systems, but also provide insights on
the role of the observability in protecting differential pri-
vacy of initial states.

It is worth noting that this paper considers a gen-
eral scenario where certain initial values xP

0 are privacy-
sensitive, with the overall initial values x0 being sensi-
tive, i.e., P = V as a particular case. This is mainly be-
cause each system state may have a different physical
meaning and only a part of their initial values contain
sensitive information. For example, consider dynamical
systems of autonomous vehicles [11], in which initial po-
sitions may be sensitive as they may represent private
information (e.g. home addresses) of users, while initial
velocities are not sensitive. Besides, in Assumption 1 the
non-privacy-sensitive initial states xD

0 are assumed to
be disclosed, which, on the one hand allows the consid-
ered setup applicable to more general adversaries, and
on the other hand, is motivated from practical scenar-
ios. For example, the vehicle from home has a public
initial velocity as zero. Besides, when running a consen-
sus algorithm to compute the average of initial values
(i.e., loads) for the load shedding problem in a power
grid [10], some of the network initial values are public,
e.g., since they belong to government organizations that
openly publish their energy usage, while the remainder
belongs to private users and their energy usage is con-
sidered commercially sensitive. In view of the different
properties of the initial values associated to the sets P
and D, we thus term the sets P and D as the private set
and the disclosed set, respectively in the sequel.

Remark 1 It is noted that the noises νt and ωt in the
system (1) may also contain the noises injected for pri-
vacy protection, such as the noises added to the measured
positions in a privacy-preserving traffic monitoring sys-
tem [11], or the noises added to both the iteration process
and communication messages in the privacy-preserving
average consensus algorithm [13, 15].

2.2 Global Initial-Value Privacy

In this subsection, we take the sensitive initial values
xP

0 as a whole and specify the differential privacy and the
unobservability of xP

0 for the system (1), respectively.

To facilitate the subsequent definitions, we denote
the measurement vector YT = [y0; y1; . . . ; yT ], the
noise vectors VT = [ν0;ν1; . . . ;νT−1] and WT =
[ω0;ω1; . . . ;ωT ], and

Ot =


C

CA
...

CAt

 , Ht =



0 0 · · · 0 0

C 0
. . . 0 0

CA C
. . . 0 0

...
. . .

. . .
. . .

...

CAt−2 CAt−3 . . . C 0

CAt−1 CAt−2 · · · CA C


.

Thus, the mapping from the initial state x0 to the output
trajectory YT as M : Rn → Rm(T+1) can be described
by

YT = M (x0) := OTx0 + HTVT + WT . (2)

Then we introduce the following definitions.

Definition 1 Let the private set P ⊆ V and the disclosed
set D = V\P.

(a) The initial values xP
0 of system (1) are (ε, δ)-

differentially private under µ-adjacency for ε ≥ 0,
δ ∈ [0, 1) and µ > 0, if for all M ⊆ range(M ),

P(M (x0) ∈M) ≤ eε P(M (x̂0) ∈M) + δ (3)

for any x0, x̂0 ∈ Rn, satisfying xD
0 = x̂D

0 and ‖xP
0 −

x̂P
0 ‖≤ µ.

(b) The initial values xP
0 of system (1) are unobservable,

if for any initial state x0 ∈ Rn, there exists x̂0 ∈ Rn
satisfying xD

0 = x̂D
0 and xP

0 6= x̂P
0 , such that for all

M ⊆ range(M ),

P(M (x0) ∈M) = P(M (x̂0) ∈M) . (4)

The notion of differential initial-value privacy in Defi-
nition 1.(a) follows the standard differential privacy [23,
39] and has been studied in [13,30]. Particularly, under a
particular case with an empty D, it is shown in [30] that
the achievable differential privacy levels (ε, δ, µ) rely on
the observability matrix OT . The notion of unobserv-
ability in Definition 1.(b) can be regarded as a simple
generalization of the standard unobservability of the sys-
tem (1) in the presence of the noises and the disclosed
set. From a conceptual perspective, the x̂0 satisfying (4)
yields (3) with ε = δ = 0. However we cannot say that
the unobservability of xP

0 implies its (0, 0)-differential
privacy, as there is no guarantee that such x̂0 can be ar-
bitrary in the µ-adjacency of x0. On the other hand, it is
clear that when ε = δ = 0, the (ε, δ)-differential privacy
of xP

0 implies its unobservability, while for other cases of
(ε, δ), there is no guarantee of such implication.
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Remark 2 In this paper, we focus on the additive noises
νt,ωt in (1) according to Gaussian distributions, which
renders the mapping M in (2) to be a Gaussian mech-
anism and makes the subsequent privacy analysis con-
venient. However, considering that these noises may be
designed for preserving initial-value privacy as addressed
in Remark 1, it is worth noting that they may be multi-
plicative noises [43] or additive Laplace noises [13] for
other type of mechanisms, under which the desired dif-
ferential privacy can be preserved, but with possibly new
noise requirements compared to the conditions given in
the forthcoming Theorems 1 and 2.

2.3 Linear Networked Systems and Local Initial-Value
Privacy

The system (1) can also be understood from a net-
work system perspective, e.g., [41]. Let xi,t be the i-th
entry of xt. By viewing each xi,t as the dynamical state
of a node, the matrix A indicates a graph of interac-
tions among the nodes. Similarly, viewing each entry of
yt as the measurement of a sensor, the matrix C indi-
cates a graph of interactions between the nodes and the
sensors. In this respect, we consider a network consist-
ing of n network nodes and m sensing nodes, leading to
a network node set V = {1, . . . , n} and a sensing node
set VS = {s1, . . . , sm} 2 , respectively. Define the in-
teraction graph G = (V,E) with edge set E ⊂ V × V,
and the sensing graph GS = (V,VS,ES) with edge set
ES ⊂ V×VS. Then, the private set P represents a set of
nodes whose initial states are confidential, while the dis-
closed set D represents the rest nodes whose initial states
are non-confidential and public. Let A = [aij ] ∈ Rn×n
and C = [cij ] ∈ Rm×n. We say (A,C) to be a configu-
ration complying with the graphs G,GS, if aij = 0 for
(j, i) /∈ E and cij = 0 for (j, si) /∈ ES.

In the network setting, the local agent is concerned
about its own local initial-value privacy. In the following,
we generalize the global notions in Definition 1 to the
network setting for local privacy and unobservability.

Definition 2 Given any network structure G,GS, let the
private set P ⊆ V, the disclosed set D = V\P and (A,C)
be any configuration complying with graphs G,GS.

(a) The initial-value of node i ∈ P is (ε, δ)-differentially
private under µ-adjacency for ε ≥ 0, δ ∈ [0, 1) and
µ > 0, if for all M ⊆ range(M ), (3) holds for any
non-identical x0, x̂0 ∈ Rn, satisfying |xi,0 − x̂i,0|≤ µ
and xj,0 = x̂j,0 for all j 6= i.

(b) The initial-value of node i ∈ P is unobservable, if for
any initial state x0 ∈ Rn, there exists x̂0 ∈ Rn such
that xi,0 6= x̂i,0, xj,0 = x̂j,0 for j ∈ D, and (4) holds.

2 To be distinguished with notations for nodes in the inter-
action graph G, we use si to denote the i-th sensing node
whose measurement is yi.

Under a particular case with P = V, we note that the
unobservability of node i’s initial value is equivalent to
state variable unobservability of the node state xi,t, a
dual notion of state variable uncontrollability [34].

Remark 3 In Definition 2.(a), the pair (x0, x̂0) is re-
quired to be distinct only at the i-th entry, which differs
from the global version in Definition 1.(a). The intuition
behind such difference lies in establishing a strong local
initial-value privacy in the sense that even if all initial
values of other nodes are known to an adversary, it should
still be difficult for the adversary to infer the initial value
of node i, measured by (ε, δ, µ). In Definition 2.(b), the
pair (x0, x̂0) is required to be distinct at the i-th entry and
same at the entries in the disclosed set D, while having
no requirement to the nodes in V\{D∪ {i}}, as node i is
concerned about only its own local initial value.

2.4 Problems of Interest

In this paper, we will focus on the differential privacy
and unobservability of certain initial values xP

0 for sys-
tem (1), from both global and local perspectives, and ex-
plore the effect of network structure to these notions. To
be precise, we aim to investigate the following questions:

(Q1) From a global perspective, when will the differential
privacy and unobservability of xP

0 be preserved, and
in particular, what is the relationship between both
notions?

(Q2) If we zoom in the study and focus on the local initial
value for a node i ∈ P, what will be the conditions of
the differential privacy and unobservability?

(Q3) How the structure of the interaction and sensing
graphs affects the privacy preservation conditions and
the unobservability conditions, respectively?

Answers to these questions (detailed in the subsequent
three sections, respectively) will add to our understand-
ing of differential initial-value privacy for linear systems,
the role of the observability in preserving the differential
initial-value privacy of linear systems, and also the effect
of the network structure to the differential initial-value
privacy for a linear network system.

3 Global Initial-Value Privacy of Linear Sys-
tems

3.1 Global Differential Initial-Value Privacy and Un-
observability

Let (VT ; WT ) v N(0,ΣTΣ>T ) and matrix ΩT =
[HT Im(T+1)]ΣT , and denote

∆P := ‖
√

(ΩTΩ>T )
†
OTEP‖ , (5)
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Figure 1. Relationship between the differential privacy and
the unobservability of initial values.

and the extended observability matrix by the disclosed
set D as OD

T := [OT ; E>D]. We then introduce function

κ(r, s) := Q(
s

2
− r

s
)− erQ(−s

2
− r

s
) (6)

with Q(w) = 1√
2π

∫ w
−∞ e−

v2

2 dv. It is noted that

∂κ(r, s)

∂s
=

1√
2π

exp
(
− 1

2
(
s

2
− r

s
)2
)
> 0 ,

which implies that κ(r, s) is a strictly increasing func-
tion with respect to s > 0, uniformly in r. For conve-
nience, given any r, we denote by κ−1

r (·) the inverse of
the function κ(r, s) with respect to s.

The following results establish necessary and sufficient
conditions for both the differential privacy and unob-
servability of initial values xP

0 , demonstrating that both
notions are mutually independent (see Fig. 1).

Theorem 1 Let Assumption 1 hold. The differential
privacy and unobservability of initial values xP

0 for sys-
tem (1) are independent properties.

(i). The initial values xP
0 of system (1) is (ε, δ)-differentially

private under µ-adjacency for ε ≥ 0, δ ∈ (0, 1) and
µ > 0, if and only if there hold the following both
conditions

rank (ΩT ) = rank ([ΩT OTEP]) , (7)

∆P ≤ κ−1
ε (δ)/µ . (8)

(ii). The initial values xP
0 of system (1) is unobservable if

and only if
rank

(
OD
T

)
< n . (9)

The key ideas in the proof of Theorem 1.(i) and (ii)
lie in transforming the differential privacy of M in (2)
to the problem considered in [40] and constructing the
x̂0 in Definition 1.(ii), respectively.

Theorem 1.(i) implies that the necessary and suffi-
cient conditions for the (ε, δ)-differential privacy are
comprised of two ingredients: (7) and (8), playing dif-
ferent roles in achieving the (ε, δ)-differential privacy of

xP
0 . Specifically, the former indicates that the column

subspace of the P-reduced observability matrix OTEP

is contained by that of ΩT , characterizing the structural
property of the noise covariance ΣTΣ>T for the differen-
tial privacy, while the latter quantifies the privacy levels
that can be achieved by the amount of noises. It is
worth noting that given any structured noise covariance
ΣTΣ>T satisfying the qualitative condition (7), there al-
ways exists a finite privacy budget ε ≥ 0 such that the
quantitative condition (8) is satisfied under any fixed
0 < δ < 1 and µ > 0. In view of this, it can be easily ver-
ified that if and only if (7) holds, the differential privacy
of xP

0 is preserved with a finite privacy budget ε ≥ 0 for
any 0 < δ < 1 and µ > 0, which implies a qualitative
property of the differential privacy of xP

0 and is termed
the differential privacy of initial values xP

0 with a finite
privacy budget in the sequel.

In Theorem 1.(ii), (9) indicates that the D-extended
observable subspace, denoted by span

(
OD
T

)
, does not

span the whole state space. We notice that

rank
(
OD
T

)
= rank

(
OD
T [EP ED]

)
= rank (OTEP)+|D|

which, together with (9), implies that the rank of OTEP

determines the unobservability of xP
0 . In contrast, from

(7) the effective randomness structure (i.e., the struc-
ture of ΣT ) for the differential privacy of xP

0 relies on
the column subspace of OTEP, which characterizes the
minimum feasible column subspace of ΩT . Besides, by
(8) and (5) the OTEP also affects the privacy levels
that can be achieved. Thus, the P-reduced observabil-
ity matrix OTEP affects the differential privacy of xP

0 in
both qualitative and quantitative senses. This, in turn,
demonstrates the difference between the differential pri-
vacy and unobservability of xP

0 in terms of the P-reduced
observability matrix OTEP.

Remark 4 In [28, Theorem 2.6], a sufficient condition
similar to (8) is proposed to quantify the achievable pri-
vacy levels for linear systems with control inputs by ap-
plying the computation method in [11], which is different
from the one used in the paper based on [40, Theorem
5] from the perspective of privacy loss. As a result, this
leads to a more general quantifiable condition, rendering
a necessary and sufficient condition, and a more gen-
eral range of privacy levels (ε ≥ 0, 0 < δ < 1) in contrast
with the condition ε > 0 and 0 < δ < 1/2 established
in [11,28]. As for the qualitative condition, we note that
ΩT is assumed to be full-rank in [28], which enables (7)
satisfied automatically.

Remark 5 We remark that the effect of the disclosed set
D on the differential privacy and unobservability of initial
values xP

0 is different. By increasing the number of en-
tries in D, the column subspace of the resulting P-reduced
observability matrix OTEP becomes tightened, render-
ing a less restrictive qualitative condition (7) in terms
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of ΩT and thus the noise structure, while the ∆P defined
in (5) reduces, leading to a larger requirement of µ with
fixed (ε, δ) by (8), i.e., a stronger differential privacy.
In contrast, the dimension of the D-extended observable
subspace span

(
OD
T

)
increases as the D is enlarged, im-

plying a weaker unobservability in the sense that more
information on the initial values is observable.

Remark 6 If the noises νt,ωt (i.e., the covariance
Σ>T ΣT ) are design freedoms for (ε, δ)-differential initial-
value privacy with µ-adjacency, Theorem 1.(i) indeed
implies a two-step design method as below.

(1) Fix a matrix Σ̄T ∈ Rm(2T+1)×h for some h ∈ N, e.g.,
[0mT ; Im(T+1)], such that

rank (Ω̄T ) = rank ([Ω̄T OTEP]) = h

with Ω̄T := [HT Im(T+1)]Σ̄T .

(2) Design ΣT = Σ̄TΛ with Λ ∈ Rh×h being an invertible
matrix such that

‖Λ−1Ω̄†TOTEP‖≤ κ−1
ε (δ)/µ .

It is noted that due to the presence of the structural con-
straint (7), an optimal design of ΣT , e.g., in the sense
of minimizing the trace of the noise covariance ΣTΣ>T
as in [44], turns out a non-trivial optimization problem,
which is out of the scope of this paper and needs to be
further studied in the future.

3.2 An Illustrative Example

In this subsection, an illustrative example is presented
to demonstrate the relationship between the differential
privacy and the unobservability.

Example 1. Consider system (1) with

A =

[
1 3

1 −1

]
,C =

[
1 1
]
,νt = 0 ,ωt v N(0, σ2

t )

and let T = 2, which yields
y0

y1

y2

 = M (x0) := OTx0 + WT , OT =


1 1

2 2

4 4

 .

Regarding the differential initial-value privacy, we let
the noises ωt, t = 0, 1, 2 be i.i.d., and observe that ΩT =
diag(σ0, σ1, σ2) .

• For σ0 = 0 and σ1, σ2 > 0, as rank (ΩT ) = 2
and rank ([ΩT OT ]) = 3, we have rank (ΩT ) 6=
rank ([ΩT OTEP]) for all P ⊆ {1, 2}\∅, indicating
that the differential privacy of initial values xP

0 cannot
be achieved by Theorem 1.(i).

• For σ0, σ1, σ2 > 0, we can obtain rank (ΩT ) = 3. Thus,
the condition (7) is satisfied with any P ⊆ {1, 2}\∅. It
is noted that rank (OT ) = 1, which indicates that the
noises ωt satisfying (7) are not necessarily i.i.d. but
can be correlated, e.g., ω2 = 2ω1 = 4ω0. Regarding
the condition (8), we let σt = 1 and choose µ = 1, and
by the guideline in [39] that δ is less than any inverse of
polynomials in the size of the database, let δ = 10−2.
It then can be computed from (8) that the mapping
M (x0) is (ε, δ)-differentially private with ε = 36.0768
for P = {1, 2} and ε = 21.1609 for P = {1} and
P = {2}.

For the unobservability, we have the following.

• For P = {1, 2}, xP
0 is unobservable for σt ≥ 0, t =

0, 1, 2 by Theorem 1.(ii) as rank (OD
T ) = 1 < 2.

• For either P = {1} or P = {2}, xP
0 turns out ob-

servable for σt ≥ 0, t = 0, 1, 2 by Theorem 1.(ii) as
rank (OD

T ) = 2.

In view of the above analysis, both notions of differen-
tial privacy and unobservability of initial values in Def-
inition 1 are neither inclusive nor exclusive, validating
Theorem 1.

4 Local Initial-Value Privacy of Linear Net-
worked Systems

In this section, we regard (1) as a networked system as
specified in Section 2.3 and study the local differential
initial-value privacy and local unobservability following
Definition 2.

Define ∆i := ‖
√

(ΩTΩ>T )
†
OTei‖. We present the fol-

lowing result.

Theorem 2 Take i ∈ P ⊆ V and let Assumption 1 hold.

(i) The (ε, δ)-differential initial-value privacy of node i
under µ-adjacency is preserved for ε ≥ 0, δ ∈ (0, 1)
and µ > 0, if and only if there hold the following both
conditions

rank (ΩT ) = rank (
[
ΩT OTei

]
) , (10)

∆i ≤ κ−1
ε (δ)/µ . (11)

(ii) The initial value of node i is unobservable if and only if

rank

([
OD
T

e>i

])
= rank

(
OD
T

)
+ 1 . (12)
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From (10) and (11) it can be seen that the i-th column
of the observability matrix, i.e., OTei affects the local
differential initial-value privacy of node i qualitatively
and quantitatively. In contrast, Theorem 2.(ii) demon-
strates that the unobservability of xi,0 is preserved if and
only if ei does not belong to the D-extended observable
subspace span

(
OD
T

)
. This thus implies the mutually in-

dependent relationship between the differential privacy
and the unobservability of local initial value xi,0. Simi-
lar to the discussions after Theorem 1, it is seen that if
and only if (10) holds, the differential privacy of node i
is preserved with a finite privacy budget ε ≥ 0, for any
0 < δ < 1 and µ > 0, which also implies a qualitative
property of the local differential privacy in Definition
2.(i), termed the differential initial-value privacy of node
i with a finite privacy budget in the sequel.

Remark 7 We observe that

rank
(
OD
T

)
= rank (OTEP̄) + |D|

rank

([
OD
T

e>i

])
= rank

([
OT

e>i

]
EP

)
+ |D| .

Thus, (12) can be simplified as

rank

([
OT

e>i

]
EP

)
= rank (OTEP) + 1 . (13)

In view of this, we occasionally use (13) to replace (12)
in Theorem 2.(ii) in the sequel.

Remark 8 It is noted that the row subspace of Ot does
not change as t ≥ n − 1 increases. Namely, by letting
Oob = On−1 and OD

ob = [Oob; E>D], for T ≥ n − 1 we
have

rank (OD
ob) = rank

(
OD
T

)
rank

(
[OD

ob; e
>
i ]
)

= rank
(
[OD

T ; e>i ]
)
,

which implies an equivalent and simplified condition of
(9) and (12), respectively by using OD

ob to replace OD
T in

(9) and (12).

5 Generic Property of Initial-Value Privacy

In the previous sections, both the differential privacy
and unobservability of initial values have been studied
from both global and local levels, under a fixed config-
uration (A,C) complying with the network structure
(G,GS). In this section, we aim to explore the effect of
the network structure (G,GS) on these properties.

In the following, we say a property to be generically
preserved (or lost) if it is (or is not) fulfilled for almost

all configurations (A,C) complying with any non-trivial
network structure (G,GS), and fully preserved (or lost)
if such property is (or is not) fulfilled for all configu-
rations (A,C) complying with any non-trivial network
structure (G,GS). It is clear that these properties are
qualitative. Thus, in the following we focus on the qual-
itative property of the differential initial-value privacy,
i.e., with a finite privacy budget ε ≥ 0 under any fixed
δ ∈ (0, 1) and µ > 0. Such a qualitative property has
been addressed in the previous context to be equivalent
to the rank conditions (7) and (10) for the global and
local differential initial-value privacy, respectively.

5.1 Generic Global Initial-Value Privacy

In this subsection, we take the system initial values
as a whole and study the generic property of differential
privacy and unobservability of global initial values xP

0
for system (1).

Theorem 3 For system (1), let P ⊆ V and Assumption
1 hold.

(i) The differential privacy of initial values xP
0 with a finite

privacy budget is either preserved generically or lost
generically.

(ii) The unobservability of initial values xP
0 is exactly ei-

ther preserved fully or lost generically.

Theorem 3 demonstrates that the differential privacy
and the unobservability of initial values xP

0 in Defini-
tion 1 are both generic qualitatively, but subject to some
distinctions. By Theorem 3.(ii), given a configuration
(A,C) complying with (G,GS) if the unobservability of
xP

0 is lost, then it must be lost generically, while if it is
preserved then there is no guarantee of preserving such
privacy generically. Note that with P = ∅, Theorem 3.(ii)
is consistent with the classical structural unobservabil-
ity [19, 20] of system (1), where the unobservability is
either preserved fully or lost generically. This indeed is
consistent with Theorem 3.(ii). However, for the differ-
ential privacy of xP

0 with a finite privacy budget, from
Theorem 3.(i) if there exists a configuration (A,C) com-
plying with (G,GS) such that it is preserved (or lost),
there is no guarantee of preserving (or losing) it generi-
cally.

5.2 Generic Local Initial-Value Privacy

In this subsection, we study the generic property of the
differential privacy and unobservability of local initial
values.

Theorem 4 Take i ∈ P ⊆ V and let Assumption 1 hold.

(i) The differential initial-value privacy of node i with a
finite privacy budget is either preserved generically or
lost generically.
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(ii) The unobservability of node i’s initial value is either
preserved generically or lost generically.

Theorem 4 demonstrates that given any network
structure (G,GS) and P ⊂ V, both the differential
initial-value privacy with a finite privacy budget and
the unobservability of local node i are either preserved
generically or lost generically. Note that the generic
property of the local unobservability, in which there is
no guarantee of generic preservation (or loss) if there
exists a configuration (A,C) complying with (G,GS)
such that the local unobservability is preserved (or
lost), which is different from the global unobservability
addressed in Theorem 3.(ii). To have a better view of
this, the following examples are formulated.

Example 2. Consider the unobservability of node 1’s
initial value with (A,C) complying with the network
structure in Fig. 2. Let the private set P = {1, 2, 3}, and
the system output trajectory YT with T = 2 is given by
(2) with

OT =


c11 0 c13

0 c11a12 0

c11a12a21 0 c11a12a23

 .
It is seen that OT is full-rank for almost all configura-
tions (A,C) complying with Fig. 2. Thus, for any x0, x̂0

with x1,0 6= x̂1,0 and OTx0 6= OT x̂0 there exists M ⊆
range(M ) such that P(M (x0) ∈ M) 6= P(M (x̂0) ∈
M), for almost all configurations (A,C) complying with
Fig. 2. By Definition 2, this indicates that the initial
value of node 1 is observable generically.

Figure 2. Network topologies (G,GS) with 3 network nodes
(blue circles) and 1 sensing nodes (red circles). The line
without arrow denotes a bidirectional edge.

However, by letting the configuration (A,C) be
such that c11a23 = c13a21, simple calculations show
that P(M (x0) ∈ M) = P(M (x̂0) ∈ M) for all
M ⊆ range(M ) and all x0, x̂0 with x1,0 6= x̂1,0 and
c13(x̂3,0 − x3,0) = c11(x1,0 − x̂1,0). According to Defini-
tion 2, this indicates that the initial value of node 1 is
unobservable under the configuration (A,C) satisfying
c11a23 = c13a21.

Thus, even if there exists a configuration such that
the initial value of node i is unobservable, it may still be

observable generically. This validates the statement (i)
of Theorem 4. �

Example 3. Consider the unobservability of node 4’s
initial value under the network structure in Fig. 3. Let
the private set P = {1, 2, 3, 4}, and the output trajectory
YT with T = 3 is given by (2) with

OT =


c11 0 c13 0

c11a11 c11a12 0 c11a14

c11a
2
11 c11a12(a11 + a22) c11a12a23 c11a11a14

c11a
3
11 ∗ ? c11a

2
11a14


with ∗ = c11a12(a2

11+a11a22+a2
22) and ? = c11a12a23(a11+

a22). Simple calculations then can show that P(M (x0) ∈
M) = P(M (x̂0) ∈ M) for all M ⊆ range(M ) and
any x0, x̂0 with x4,0 6= x̂4,0 and x̂j,0 = xj,0 + ηj for
j = 1, 2, 3, where ηj ’s satisfy

c11η1 + c13η3 = 0

a11η1 + a12η2 = a14(x4,0 − x̂4,0)

a22η2 + a23η3 = 0 .

(14)

It is clear that the above matrix equations (14) have a
solution for almost all configurations (A,C) complying
with Fig. 3, which, by Definition 2, indicates that the
initial value of node 4 is unobservable generically.

Figure 3. Network topologies (G,GS) with 4 network nodes
(blue circles) and 1 sensing nodes (red circles).

However, by letting the configuration (A,C) be such
that c13a11a22 + c11a12a23 = 0 and c11a14a22 6= 0, it can
be seen that there exists no ηj ’s such that the matrix
equations (14) holds for any x4,0 6= x̂4,0, and

(a22+a11)y1−a11a22y0−y2 = c11a14a22x4,0+g(WT ,VT )

with g(WT ,VT ) being some function of noise vectors
WT ,VT . This immediately yields that for any x0, x̂0

with x4,0 6= x̂4,0 there exists M ⊆ range(M ) such that
P(M (x0) ∈ M) 6= P(M (x̂0) ∈ M). By Definition 2,
this indicates that the unobservability of node 4’s initial
value is lost under the configuration (A,C) satisfying
c13a11a22 + c11a12a23 = 0 and c11a14a22 6= 0.
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Thus, even if there exists a configuration such that
the unobservability of node i’s initial value is lost, such
property may still be preserved generically. This is con-
sistent with the statement (ii) of Theorem 4. �

Remark 9 It is noted that all previously established re-
sults can be extended to linear systems with time-varying
state and output matrices At,Ct by replacing the ob-

servability matrix OT by its time-varying variant Ô :=
[C0; C1A0; · · · ; CTAT−1 · · ·A0].

6 Applications to Privacy-Preserving Consen-
sus

In this section, we revisit the privacy-preserving con-
sensus algorithm proposed in [15] over an undirected
connected communication graph Gcom = (V,Ecom),
which can be described by

xt+1 = (I− L)zt , zt = xt + γt (15)

where xt is the vector of node states, zt is the vector of
node messages, and γt is the random noise satisfying

γt =

{
v0 , t = 0

ϕtvt − ϕt−1vt−1 , t ≥ 1

with ϕ ∈ (0, 1) and {vt} being i.i.d. Gaussian vectors
with zero mean and covariance I, and L is the Laplacian
matrix complying with Gcom, i.e., [L]ij = [L]ji ≥ 0,
[L]ij = 0 if (j, i) 6∈ Ecom, and

∑n
i=1,i6=j [L]ij ≤ 1. Let us

arrange the eigenvalues of A := I− L in the decreasing
order as λ1 > λ2 . . . ≥ λn with λ1 = 1 and |λi|< 1 for
i = 2, . . . , n by [41]. According to [15], there holds

E‖xt − 1n1>nx0/n‖2= o(ρt), ρ = max(ϕ2, λ2
2, λ

2
n) .
(16)

In [15], the initial-value privacy of the algorithm (15)
is studied against a malicious node under an observabil-
ity condition, by employing the estimation covariance
matrix as the privacy measure. In the following, we con-
sider a different scenario where some transmission mes-
sages and initial values are public and the observabil-
ity condition is removed, and analyze the corresponding
differential privacy and unobservability of initial values.

We suppose that the algorithm (15) runs for a finite
T ≥ n− 1 iterations and the eavesdroppers have access
to the transmission messages of nodes m1, . . . ,mq. Then
we can obtain the system (1) with

C = [em1 , . . . , emq ]> , νt = Aγt , ωt = Cγt .

With a bit abuse of notations, we let

ΩT =



C 0 0 · · · 0

C(A− I) ϕC 0 · · · 0

CA(A− I) ϕC(A− I) ϕ2C · · · 0

. . .
. . .

. . .
. . .

...

CAT (A− I) ϕCAT−1(A− I) · · · · · · ϕTC


.

According to Theorem 1, the following result is formu-
lated to demonstrate the differential initial-value privacy
of the algorithm (15).

Proposition 1 Let P ⊆ V be any private set. Then for
all Laplacian matrix L complying with Gcom, the algo-
rithm (15) preserves the (ε, δ)-differential privacy of ini-
tial values xP

0 under µ-adjacency if and only if

∆P ≤ κ−1
ε (δ)/µ (17)

with ∆P = ‖Ω†TOTEP‖.

With Proposition 1, as T increases, it can be verified
that a larger lower bound of ε is derived from (17) with
fixed µ, δ. This, together with (16), implies a trade-off be-
tween the differential privacy and computation accuracy,
as in the conventional differential privacy-preserving av-
erage consensus algorithms [13,14] by perturbing the ini-
tial values with random noises. Note that when T con-
verges to infinity, the resulting ε grows to infinity. As
for the differential initial-value privacy of local node i,
Proposition 1 can still be applied by letting P = {i}.

On the other hand, given any P and with D = V\P,
one can compute the corresponding D-extended observ-
ability matrix OD

T and verify (9) in Theorem 1 (respec-
tively, (12) in Theorem 2) to conclude whether the global
(respectively, local) unobservability for the algorithm
(15) is preserved. About the generic property, the fol-
lowing result is formulated.

Proposition 2 The initial values xP
0 of (15) are observ-

able generically, i.e., for almost all Laplacian matrix L
complying with the undirected network Gcom.

In summary of the previous analysis, we have estab-
lished a series of new insights on the differential privacy
and unobservability of initial values for the algorithm
(15), which together with [15] forms a deep understand-
ing of the initial-value privacy for the algorithm (15).
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Figure 4. Cycle graph of 6 nodes

Figure 5. Trajectory of each state xi,t. The black dashed line
corresponds to the average value.

Example 4. We consider the cycle graph of 6 nodes
as in Fig. 4. We assign each edge (i, j) with the same
weight 1

6 and choose ϕ = 0.9. Fig. 5 illustrates the
trajectory of each node state xi,t with T = 30, and
‖xT−1n1>nx0/n‖= 0.0954. We assume that the message
of node 1 is public, i.e., C = e>1 . Regarding the differen-
tial privacy of the algorithm, we let µ = 1 and δ = 0.01,
and then can obtain ε = 797.6 for P = {1, . . . , 6}, and
ε = 663.1 for P = {1, 3, . . . , 6} from (17). As far as the
differential privacy of local initial values is concerned,
the resulting local εi with P = {1, 3, . . . , 6} are given by

ε1 = 195.5, ε3 = 134, ε4 = 127.2, ε5 = 134, ε6 = 155.4.

We note that all these privacy levels can be lowered for
better privacy guarantees by reducing the running time
to T = 15, as ε = 86.0 for P = {1, . . . , 6}, and for
P = {1, 3, . . . , 6}, ε = 72.1 and

ε1 = 45.8, ε3 = 10.0, ε4 = 7.3, ε5 = 10.0, ε6 = 20.4,

while the computation accuracy becomes larger as ‖xT−
1n1>nx0/n‖= 0.5885. This thus demonstrates the trade-
off between the differential privacy and the accuracy.

Regarding the unobservability, the observability ma-
trix satisfies rank (OT ) = 4. Besides, we have

rank
(
[OT ; e>i ]

)
= 5 , for i = 2, 3, 5, 6,

yielding that the unobservability of initial values of all
nodes except 1, 4 is preserved by Theorem 2. We assume
that x2,0 (or x6,0) is public to the eavesdropper, i.e.,
D = {2} (or {6}), under which we have OD

T = 5 and

rank
(
[OD

T ; e>i ]
)

= 6 , for i = 3, 5,

yielding that the unobservability of initial values of
nodes 3, 5 is preserved and of node 6 (or 2) is lost w.r.t.
D = {2} (or {6}). Thus, the unobservability of initial
values of nodes 2 and 6 are closely related, i.e., to protect
the unobservability of nodes 2 (or 6), extra measures
should be taken to protect x6,0 (or x2,0) being public.
Similarly, it is verified that the unobservability of initial
values of nodes 2, 6 is preserved and of node 5 (or 3) is
lost w.r.t. D = {3} (or {5}). Thus, the unobservability
of nodes 3 and 5 are closely related.

7 Conclusions

In this paper, we have studied the differential pri-
vacy and unobservability of certain sensitive initial val-
ues for linear dynamical systems with random process
and measurement noises where the non-sensitive initial
values are assumed to be public. We developed neces-
sary and sufficient conditions for both differential initial-
value privacy and unobservability, which demonstrates
their independent relationship. Particularly, for the dif-
ferential initial-value privacy both qualitative and quan-
titative conditions were developed, characterizing the ef-
fect of the observability matrix reduced by the set of
sensitive initial states on the noise structure and the
achievable privacy levels by the noises, respectively. In
contrast, it was shown that the unobservability equals
to that such a reduced observability matrix is not full-
rank. Next, by regarding the considered linear system
as a network system, the previously established results
have been extended to establish the differential initial-
value privacy and unobservability of local nodes. In ad-
dition, we showed that all these initial-value proper-
ties are generically determined by the network structure
from a qualitative perspective. In future works, topo-
logical conditions (see e.g. [21, 42]) will be explored for
generic global and local unobservability, and the consid-
ered privacy metrics will be utilized to develop privacy-
preservation approaches for linear dynamical systems.

A Proof of Theorem 1

We notice from the necessary and sufficient conditions
(7)-(8) and (9) that the differential privacy of initial val-
ues xP

0 with any privacy levels (ε, δ, µ) neither implies nor
is implied by the unobservability of xP

0 , demonstrating
their independent properties. Thus, we focus on proving
the statements (i) and (ii) in the following.
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A.1 Proof of statement (i)

The proof is established on the following lemma,
adapted from [40, Theorem 8].

Lemma 1 For any ε ≥ 0, δ ∈ (0, 1), µ > 0, the Gaussian
mechanism M(x) = Fx+ Z with Z ∼ N(0, In) is (ε, δ)-
differentially private under µ-adjacency if and only if

κ(ε, µ‖F‖) ≤ δ . (A.1)

With this lemma in mind, and noting that (A.1) is
equivalent to the inequality

‖F‖≤ κ−1
ε (δ)/µ ,

we now proceed to prove the statement (i) of Theorem
1. Let rank (ΩT ) = rn, and define the orthogonal matrix

U := [U1 U2] ∈ R(m(T+1))×(m(T+1))

where U1 ∈ R(m(T+1))×(m(T+1)−rn) and U2 ∈ Rm(T+1)×rn

are the matrices, whose columns are eigenvectors cor-
responding to zero and nonzero eigenvalues of matrix
ΩTΩ>T , respectively. Thus, we have U>1 ΩTΩ>TU1 = 0
and ΛT := U>2 ΩTΩ>TU2 is a nonsingular diagonal ma-
trix. Then we define two mappings

M1(x0) := U>1 M (x0)

M2(x0) := Λ
−1/2
T U>2 M (x0)

With this in mind, we notice that for any x0, x̂0 sat-
isfying xD

0 = x̂D
0 and ‖xP

0 − x̂P
0 ‖≤ µ, (3) is equivalent to

saying

P(M1(x0) ∈M1)P(M2(x0) ∈M2)

≤ eεP(M1(x̂0) ∈M1)P(M2(x̂0) ∈M2) + δ ,

∀M1 ⊆ Rm(T+1)−rn ,M2 ⊆ Rrn .

(A.2)

In view of the above analysis, the proof reduces to
show that (A.2) holds if and only if (7) and (8) are sat-
isfied.

(7)-(8) =⇒ (A.2). With (7), it immediately follows
that ΓOTEP = 0 for any Γ ∈ R1×m(T+1) such that
ΓΩT = 0. As U>1 ΩTΩ>TU1 = 0, we then can obtain
that M1 is deterministic and U>1 OTEP = 0, implying
U>1 OT (x0 − x̂0) = 0. This further yields

P(M1(x0) ∈M1) = P(M1(x̂0) ∈M1) ∈ {0, 1} . (A.3)

Moreover, we observe that Ω>T ΩT = U2ΛTU>2 , which

implies (ΩTΩ>T )
†

= U2Λ−1
T U>2 and thus

√
(ΩTΩ>T )

†
=

Λ
−1/2
T U>2 . According to Lemma 1, we then can conclude

from (8) that the mapping

M3(xP
0 ) := Λ

−1/2
T U>2 OTEPxP

0 + η

with η ∼ N(0, Irn), is (ε, δ)-differential private under µ-
adjacency. Note that M2(x0) can be rewritten as

M2(x0) = M3(xP
0 ) + Λ

−1/2
T U>2 OTEDxD

0 .

Thus, M2(x0) is also (ε, δ)-differential private under µ-
adjacency, i.e.,

P(M2(x0) ∈M2) ≤ eεP(M2(x̂0) ∈M2) + δ ,

∀M2 ⊆ Rrn .
(A.4)

Therefore, by combining (A.3) and (A.4), the (A.2)
immediately follows.

(A.2) =⇒ (7)-(8). We first prove that (A.2) implies
(7) by contradiction. We suppose (7) is not satisfied, i.e.,

rank (ΩT ) 6= rank (
[
ΩT OTEP

]
) . (A.5)

It then follows that U>1 OTEP 6= 0, and thus there exist
x0, x̂0 satisfying xD

0 = x̂D
0 and ‖xP

0 − x̂P
0 ‖≤ µ such that

U>1 OT (x0−x̂0) 6= 0. With such x0, x̂0 being the case, we
letM1 be such that U>1 OTx0 ∈M1 and U>1 OT x̂0 /∈M1,
and M2 = Rrn . This yields that

P(M1(x0) ∈M1)P(M2(x0) ∈M2) = 1

P(M1(x̂0) ∈M1)P(M2(x̂0) ∈M2) = 0 ,

which contradicts with (A.2). Therefore, (7) is satisfied.

With (7), from the previous arguments we can ob-
tain (A.3). This, together with (A.2), then implies that
(A.4) must hold, leading to (8) by Lemma 1 and recall-

ing

√
(ΩTΩ>T )

†
= Λ

−1/2
T U>2 .

In summary of the previous proofs, the statement (i)
is concluded.

A.2 Proof of statement (ii)

Sufficiency. We suppose (9) holds. Thus, there exists
nonzero η ∈ ker

(
OD
T

)
such that OTx0 = OT (x0 + η),

which, together with (2), implies

P(M (x0) ∈M) = P(M (x0 + η) ∈M) (A.6)
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for all M ⊆ range(M ) and all x0 ∈ Rn. Moreover, given
any x0 ∈ Rn, we have E>D(x0 + η) = E>Dx0 + E>Dη =
E>Dx0. This, together with (A.6), completes the proof by
Definition 1.(b).

Necessity. To show the necessity part, the contradiction
method is used. With the unobservability of xP

0 , we sup-
pose that (9) does not hold, i.e., rank

(
OD
T

)
= n. Then

for all non-identical x0, x̂0 satisfying xD
0 = x̂D

0 , we have
OD
T (x0 − x̂0) 6= 0, yielding OTx0 6= OT x̂0. Thus, from

the definition of M in (2), it is clear that there exists
M ⊆ range(M ) such that

P(M (x0) ∈M) 6= P(M (x̂0) ∈M) . (A.7)

This contradicts with the fact that the xP
0 of system (1)

is unobservable. Therefore, it can be concluded that (9)
holds, completing the proof of statement (ii).

B Proof of Theorem 2

We note from Definition 2 that the local differential
initial-value privacy of node i is established on the sce-
nario where initial states of all nodes except node i are
known by eavesdroppers. Thus, the proof of Theorem
2.(i) can be easily derived by applying Theorem 1.(i)
with P = {i}. In the following, we focus on the proof of
Theorem 2.(ii).

Necessity. We first use the contradiction method to show
that if the initial value of node i ∈ P is unobservable,
then necessarily (12) holds. Following Definition 2.(b),
we fix x0, x̂0 as a pair of initial states satisfying xi,0 6=
x̂i,0, xj,0 = x̂j,0 for j ∈ D, such that

P(M (x0) ∈M) = P(M (x̂0) ∈M) (B.1)

for all M ⊆ range(M ), and suppose that (12) does not
hold, i.e.,

rank
(
[OD

T ; e>i ]
)

= rank
(
OD
T

)
which indicates that there exists Γ1 ∈ Rm(T+1) and Γ2 ∈
R|D| such that

Γ>1 OT + Γ>2 E>D = e>i .

It then follows from (2) that

Γ>1 M (x0) = Γ>1 OTx0 + Γ>1 (HTVT + WT )

= (e>i − Γ>2 E>D)x0 + Γ>1 (HTVT + WT )

= xi,0 − Γ>2 xD
0 + Γ>1 (HTVT + WT ) .

Thus, by xi,0 6= x̂i,0 and xj,0 = x̂j,0 for j ∈ D, there
exists M̄ ⊆ range(Γ>1 M ) such that

P(Γ>1 M (x0) ∈ M̄) 6= P(Γ>1 M (x̂0) ∈ M̄) .

This contradicts with (B.1). Therefore, the identity (12)
must hold, completing the necessity proof.

Sufficiency. We approach the sufficiency proof by con-
structing a x̂0 with any given x0 such that xi,0 6= x̂i,0,
xj,0 = x̂j,0 for j ∈ D, and (4) holds.

With (12), we can obtain that e>i /∈ span([OT ; E>D]),
and there exists K ∈ ker([OT ; E>D]) such that

OTK = 0 , E>DK = 0 , e>i K 6= 0.

Then given any x0 ∈ Rn, let x̂0 = x0 + K, yielding

xD
0 − x̂D

0 = E>D(x0 − x̂0) = −E>DK = 0

x̂i,0 = e>i x̂0 = e>i x0 + e>i K = xi,0 .

Moreover, we have

M (x0) = OTx0 + HTVT + WT

= OTx0 + OTK + HTVT + WT

= OT x̂0 + HTVT + WT ,

yielding (B.1). By Definition 2, this thus proves that the
initial value of node i ∈ P is unobservable, completing
the proof.

C Proof of Theorem 3

To ease the subsequent analysis, we collect all edge
weights aij , cij in a configuration vector θ ∈ RN with N
being the total number of edges in (G,GS). In this way,
all matrices A,C are indeed functions of θ, and so are
the resulting ΩT and OT .

Instrumental to the proof is the following lemma.

Lemma 2 Let Φ(θ) ∈ Rn×m with m ≤ n be a matrix
each entry of which is a polynomial function of θ. Then
there exists a nobP ≤ m such that

rank (Φ(θ)) = rmax , for almost all θ ∈ RN (C.1)

rank (Φ(θ)) ≤ rmax , for all θ ∈ RN . (C.2)

Proof. The proof of this lemma is to find the maximal
value of rank(Φ(θ)). Let ᾱj(θ) : RN → R, j = 1, . . . ,m
be such that

det
(
sI− Φ(θ)>Φ(θ)

)
=

m∑
j=1

ᾱj(θ)s
j−1 + sn−l .
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Note that all ᾱj(θ) are polynomial functions of θ. We
run the following recursive algorithm from k = 1 until
rmax is found.

Step k: Check whether there exists θ′ ∈ RN such
that ᾱk(θ′) 6= 0. If so, using the fact that analytic func-
tions that are not identically zero vanish only on a zero-
measure set, we can conclude that ᾱk(θ) 6= 0 holds for
almost all θ ∈ RN . This, together with the fact that
ᾱj(θ) = 0 for all j ≤ k − 1 and all θ ∈ RN , indicates
that (C.1) and (C.2) hold with rmax = m− k + 1. Oth-
erwise, if for all θ ∈ RN , ᾱk(θ) = 0, we then proceed to
Step k + 1.

If at the m-th recursion of the above algorithm, we
still cannot find a θ ∈ RN such that ᾱm(θ) 6= 0, we then
can conclude that rmax = 0. �

With this lemma in mind, we now proceed to prove
the two statements in Theorem 3 respectively.

Proof of (i). According to Theorem 1.(i), the differential
privacy of initial values xP

0 can be preserved with a finite
privacy budget if and only if

rank (ΩT (θ)) = rank (
[
ΩT (θ) OT (θ)EP

]
) . (C.3)

Let S ⊆ RN be such that the above equality (C.3) holds
for all θ ∈ S and does not hold for all θ ∈ RN\S. We
now show that either such set S or its complementary set
RN\S is zero-measure, which in turn proves the state-
ment (i). In the following, the contradiction method is
applied by assuming that both S and RN\S are nonzero-
measure.

Note that each entry of ΩT (θ) and OT (θ) is indeed a

polynomial function of θ. By Lemma 2 there exist S′ ⊆
RN and S′′ ⊆ RN such that both RN\S′

and RN\S′′
are

zero-measure sets, and

rank (ΩT (θ)) ≤ romega , ∀θ ∈ RN

rank (ΩT (θ)) = romega , ∀θ ∈ S′

rank (
[
ΩT (θ) OT (θ)EP

]
) ≤ rmix , ∀θ ∈ RN

rank (
[
ΩT (θ) OT (θ)EP

]
) = rmix , ∀θ ∈ S′′

for some romega, rmix > 0. As S is assumed to
be nonzero-measure, it then can be seen that S ∩
S′

is nonzero-measure, and thus S ∩ S′ ∩ S′′
is

also nonzero-measure. Note that for all θ in such
nonzero-measure set S ∩ S′ ∩ S′′

, there holds the
equality (C.3) with rank (ΩT (θ)) = romega and

rank (
[
ΩT (θ) OT (θ)EP

]
) = rmix, which yields that

romega = rmix, i.e., (C.3) holds for all θ ∈ S′ ∩ S′′
.

Hence, it can be concluded that S′ ∩ S′′ ⊆ S, and thus
RN\S ⊆ RN\S′ ∪ RN\S′′

. Recalling that both RN\S′

and RN\S′′
are zero-measure, we then can obtain that

RN\S is also zero-measure, which contradicts with the
assumption that both S and RN\S are nonzero-measure.
Therefore, either S or RN\S is zero-measure, which
completes the proof of (i).

Proof of (ii). According to Theorem 1.(ii), the unobserv-
ablity of xP

0 is preserved if and only if

rank
(
[OT (θ); E>D]

)
< n . (C.4)

Note that each entry of OT (θ) is a polynomial function
of θ. Denote the maximal rank of matrix [OT (θ); E>D]
by rD

ob. By Lemma 2, it is clear that if there exists one
θ ∈ RN such that rD

ob = n, then rD
ob = n for almost all

θ ∈ RN , which indicates that the unobservablity of xP
0

is lost generically. Otherwise, if there does not exist such
θ such that rD

ob = n, then rD
ob < n for all θ ∈ RN , which

indicates that the unobservablity of xP
0 is preserved fully.

This completes the proof.

D Proof of Theorem 4

Proof of (i). The proof of the first statement can be easily
done by applying the arguments of the proof for Theorem
3.(i) with P = {i}, and is thus omitted for simplicity.

Proof of (ii). Let Θ1 ⊆ RN be a set of configuration vec-
tor θ such that the initial value of node i is unobservable
for all θ ∈ Θ1 and observable for all θ ∈ RN\Θ1. It is
clear that the proof is done if we show that either Θ1 or
RN\Θ1 is zero-measure. To prove it, we use the contra-
diction method, and assume that there exists a nonzero-
measure set Θ1 ∈ RN of configuration vector θ such that

(P1) the set RN\Θ1 is nonzero-measure, and
(P2) the complete initial-value privacy of node i is pre-

served only for θ ∈ Θ1 under (G,GS), and
(P3) the complete initial-value privacy of node i is lost for

θ ∈ RN\Θ1 under (G,GS).

Then, according to Theorem 2.(ii) and Remark 7, it can
be inferred that

(P2)⇐⇒

rank

[
OT (θ)EP

e>i EP

]
= rank (OT (θ)EP) + 1 , for all θ ∈ Θ1 .
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Let αj(θ) : RN → R, j = 1, . . . , n be such that

det

sI− [OT (θ)EP

e>i EP

]> [
OT (θ)EP

e>i EP

]
=

n−l∑
j=1

αj(θ)s
j−1 + sn−l .

By Lemma 2, there exists a nonzero-measure set Θob ⊆
RN such that the set RN\Θob is zero-measure, and for
all θ ∈ Θob, rank (Oob(θ)EP) = nobP . Besides, it is clear
that, for all θ ∈ RN

rank

([
OT (θ)EP

e>i EP

])
≤ rank (OT (θ)EP) + 1 . (D.1)

Since Θ1 is nonzero-measure and RN\Θob is zero-
measure, we have Θ1 ∩ Θob 6= ∅. Thus letting θ∗ ∈
Θ1 ∩Θob yields that rank (OT (θ∗)EP) = nobP and

rank

[
OT (θ∗)EP

e>i EP

]
= rank (OT (θ∗)EP) + 1

= nobP + 1 .

This then implies αnuo(θ∗) 6= 0 with nuo = n− l − nobP .
Note that analytic functions that are not identically zero
vanish only on a zero-measure set. This indicates that
there is a nonzero-measure set Θ2 ⊆ RN of configuration
vector θ such that

(P4) the set RN\Θ2 is zero-measure, and
(P5) the inequality αnuo

(θ) 6= 0 holds for all θ ∈ Θ2.

Thus, for all θ ∈ Θob ∩Θ2, we have

rank

([
OT (θ)EP

e>i EP

])
≥ nobP + 1

= rank (OT (θ)EP) + 1 ,

which, together with (D.1), yields

rank

([
OT (θ)EP

e>i EP

])
= rank (OT (θ)EP) + 1

for all θ ∈ Θob ∩ Θ2. According to Theorem 2.(ii)
and Remark 7, this implies that the initial value
of node i is unobservable for all configuration vec-
tor θ ∈ Θob ∩ Θ2. Then by (P2) and (P3), it fol-
lows that (RN\Θ1) ⊆ RN\(Θob ∩ Θ2), where the set

RN\(Θob∩Θ2) = (RN\Θob)∪(RN\Θ2) is zero-measure.
This indicates that RN\Θ1 is zero-measure, which con-
tradicts with (P1), and thus completes the proof.

E Proof of Proposition 1

Following the terminologies in previous sections, we
have

YT = OTx0 + ΩTv0,...,T (E.1)

with v0,...,T being a vector of i.i.d. noises vt over t ∈
[0, T ], satisfying the distribution N(0, I). Then, it is eas-
ily seen that the matrix ΩT is full-row rank, which in-
dicates that the condition (7) in Theorem 1 is fulfilled
for any disclosed set D ⊂ V and all Laplacian matrix L
complying with Gcom. The proof is thus completed ac-
cording to Theorem 1.

F Proof of Proposition 2

Following the terminologies in Section 2, we let
(G,GS) be the network associated to (A,C) with
A = I − L. As the communication graph Gcom is con-
nected, it is clear that for every node i ∈ V, there is a
directed path from i to a sensor node in GS in (G,GS).
Besides, there exist n disjoint self-cycles (i, i), i ∈ V
in G as A = I − L. Thus, according to Theorem 1
in [20], it is concluded that the pair (A,C) is observable
structurally, i.e., for almost all (A,C) complying with
(G,GS). Moreover, we collect all edge weights aij in a
configuration vector θ ∈ RN with N being the total
number of edges in G.

With this in mind, we next show that (I − L,C) is
observable for almost all Laplacian matrix L comply-
ing with the communication graph Gcom, which indeed
can be regarded as a generalization of the above analysis
on the structural observability of (A,C) by constrain-
ing θ ∈ W := {θ ∈ RN≥0 :

∑n
j=1 aij(θ) = 1, aij(θ) =

aji(θ), i ∈ V}, i.e., an algebraic variety of RN . Accord-
ing to [32, Theorem 3.3 and Remark 1] and the duality
between observability and controllability, it follows that
(I− L,C) is observable for almost all Laplacian matrix
L complying with Gcom. This completes the proof.
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