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Abstract— This paper studies initial-value privacy problems
of linear dynamical systems. We consider a standard linear
time-invariant system with random process and measurement
noises. For such a system, eavesdroppers having access to
system output trajectories may infer the system initial states,
leading to initial-value privacy risks. When a finite number of
output trajectories are eavesdropped, we consider a require-
ment that any guess about the initial values can be plausibly
denied. When an infinite number of output trajectories are
eavesdropped, we consider a requirement that the initial values
should not be uniquely recoverable. In view of these two
privacy requirements, we define differential initial-value privacy
and intrinsic initial-value privacy, respectively, for the system
as metrics of privacy risks. First of all, we prove that the
intrinsic initial-value privacy is equivalent to unobservability,
while the differential initial-value privacy can be achieved for a
privacy budget depending on an extended observability matrix
of the system and the covariance of the noises. Next, the
inherent network nature of the considered linear system is
explored, where each individual state corresponds to a node and
the state and output matrices induce interaction and sensing
graphs, leading to a network system. Under this network
system perspective, we allow the initial states at some nodes
to be public, and investigate the resulting intrinsic initial-
value privacy of each individual node. We establish necessary
and sufficient conditions for such individual node initial-value
privacy, and also prove that the intrinsic initial-value privacy
of individual nodes is generically determined by the network
structure.

Index Terms— Initial-Value Privacy; Differential Privacy;
Identifiability; Observability

I. INTRODUCTION

The rapid developments in networked control systems
[1], internet of things [2], [3], smart grids [4], intelligent
transportation [5], [6] during the past decade shed lights
on how future infrastructures of our society can be made
smart via interconnected sensing, dynamics, and control over
cyber-physical systems. The operation of such systems in-
herently relies on users and subsystems sharing signals such
as measurements, dynamical states, control inputs in their
local views, so that collective decisions become possible. The
shared signals might directly contain sensitive information
of a private nature, e.g., loads and currents in a grid reflect
directly activities in a residence or productions in a company
[7]; or they might indirectly encode physical parameters, user
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preferences, economic inclination, e.g., control inputs in eco-
nomic model predictive control implicitly carry information
about the system’s economic objective as it is used as the
objective function [8].

Several privacy metrics have been developed to address
privacy expectations of dynamical systems. A notable metric
is differential privacy, which originated in computer science
[9]–[11]. When a mechanism is applied taking the sensitive
information as input and producing an output as the learning
outcome, differential privacy guarantees plausible deniability
of any inference about the private information by eavesdrop-
pers having access to the output. Differential privacy has
become the canonical solutions for privacy risk characteriza-
tion in dataset processing, due to its quantitative nature and
robustness to post-processing and side information [10], [11].
The differential privacy framework has also been generalized
to dynamical systems for problems ranging from average
consensus seeking [12] and distributed optimization [13],
[14] to estimation and filtering [7], [15] and feedback control
[16], [17]. Consistent with its root, differential privacy for a
dynamical system provides the system with the ability to
have plausible deniability facing eavesdroppers, e.g., recent
surveys in [18], [19].

Besides differential privacy, another related but different
privacy risk lies in the possibility that an eavesdropper makes
an accurate enough estimation of the sensitive parameters or
signals, perhaps from a number of repeated observations.
In [20], the variance matrix of the maximum likelihood
estimation was utilized to measure how accurate the initial
node states in a consensus network maybe estimated from
the trajectories of one or more malicious nodes. In [21],
a measure of privacy was developed using the inverse of
the trace of the Fisher information matrix, which is a
lower bound of the variance of estimation error of unbiased
estimators.

In particular, initial values of a dynamical system may
carry sensitive private information, leading to privacy risks
related to the initial values. For instance, when distributed
load shedding in micro-grid systems is performed by employ-
ing an average consensus dynamics, initial values represent
load demands of individual users [22]. In [12], [20], the
initial-value privacy of the average consensus algorithm over
dynamical networks was studied, and injecting exponentially
decaying noises was used as a privacy-protection approach.
The privacy of the initial value for a dynamical system is also
of significant theoretical interest as the system trajectories or
distributions of the system trajectories are fully parametrized
by the initial value, in the presence of the plant knowledge. In
[21], the initial-value privacy of a linear system was studied,



and an optimal privacy-preserving policy was established
for the probability density function of the additive noise
such that the balance between the Fisher information-based
privacy level and output performance is achieved.

In this paper, we study initial-value privacy problems of
linear dynamical systems in the presence of random process
and sensor noises. For such a system, eavesdroppers having
access to system output trajectories may infer the system
initial states. When a finite number of output trajectories
are eavesdropped, we consider a requirement that any guess
about the initial values can be plausibly denied. When an
infinite number of output trajectories are eavesdropped, we
consider a requirement that the initial values should not be
uniquely recoverable. These requirements inspire us to define
and investigate two initial-value privacy metrics for the con-
sidered linear system: differential initial-value privacy on the
plausible deniability, and intrinsic initial-value privacy on the
fundamental non-identifiability. Next, we turn to the inherent
network nature of linear systems, where each dimension of
the system state corresponds to a node, and the state and
output matrices induce interaction and sensing graphs. In the
presence of malicious users or additional observations, the
initial states at a subset of the nodes may be known to the
eavesdroppers as well. With such a public disclosure set, the
intrinsic initial-value privacy of each individual node, and
the structural privacy metric of the entire network, become
interesting and challenging questions.

The main results of this paper are summarized in the
following:
• For general linear systems, we prove that intrinsic

initial-value privacy is equivalent to unobservability;
and that differential initial-value privacy can be achieved
for a privacy budget depending on an extended observ-
ability matrix of the system and the covariance of the
noises.

• For networked linear systems, we establish necessary
and sufficient conditions for intrinsic initial-value pri-
vacy of individual nodes, in the presence of a public
disclosure set consisting of nodes with known initial
states. We also show that the network structure plays a
generic role in determining the privacy of each node’s
initial value, and the maximally allowed number of
arbitrary disclosed nodes under privacy guarantee as a
network privacy index.

The network privacy as proven to be a generic structural
property, is a generalization to the classical structural ob-
servability results.

The remainder of the paper is organized as follows.
Section 2 formulates the problem of interest for linear dy-
namical systems. In Section 3, intrinsic initial-value privacy
and differential privacy are explicitly defined and studied
by regarding all initial values as a whole. Then regarding
the system from the network system perspective, Section
4 analyzes the intrinsic initial-value privacy of individual
nodes with a public disclosure set and studies a quantitative
network privacy index, from exact and generic perspectives.
Finally a brief conclusion is made in Section 5. All technical

proofs are omitted in this paper for page limitations, but are
explicitly presented in the full version [23].
Notations. We denote by R the real numbers and Rn the real
space of n dimension for any positive integer n. For a vector
x ∈ Rn, the norm ‖x‖= (x>x)

1
2 . For any x1, . . . ,xm ∈ Rn,

we denote [x1; . . . ;xm] as
[
x>1 . . . x>m

]> ∈ Rmn, and
[x1, . . . ,xm] as a matrix of which the i-the column is xi,
i = 1, . . . ,m. For any square matrix A, let σ(A) denote
the set of all eigenvalues of A, and σM (A), σm(A) denote
the maximum and minimum eigenvalues, respectively. For
any matrix A ∈ Rn×m, the norm ‖A‖= σM (A>A)

1
2 . The

range of a matrix or a function is denoted as range(·), and
the span of a matrix is denoted as span(·). We denote pdf(·)
as the probability density function, and ei ∈ Rn as a vector
whose entries are all zero except the i-th being one.

II. PROBLEM STATEMENT

A. Initial-Value Privacy for Linear Systems

We consider the following linear time-invariant system

xt+1 = Axt + νt
yt = Cxt + ωt

(1)

for t = 0, 1, . . ., where xt ∈ Rn is state, yt ∈ Rm is output,
νt ∈ Rn is process noise, and ωt ∈ Rm is measurement
noise. Throughout this paper, we assume that νt and ωt are
random variables according to some zero-mean distributions,
and rank (C) > 0.

In this paper, we suppose that initial values x0 are
privacy-sensitive information for the system. Eavesdrop-
pers having access to the output trajectory (yt)

T
t=0 with

T ≥ n − 1 attempt to infer the initial values. To
facilitate subsequent analysis, we denote the measure-
ment vector Yt = [yT−t;yT−t+1; . . . ;yT ], the noise
vectors Vt = [νT−t;νT−t+1; . . . ;νT−1] and Wt =
[ωT−t;ωT−t+1; . . . ;ωT ], and let

Oob =
[
C;CA; · · · ;CAn−1

]
, Ot =

[
C;CA; · · · ;CAt

]
,

Ht =



0 0 · · · 0 0

C 0
. . . 0 0

CA C
. . . 0 0

...
. . . . . . . . .

...

CAt−2 CAt−3 . . . C 0
CAt−1 CAt−2 · · · CA C


.

Here Oob is observability matrix, and Ot denotes extended
observability matrix for t ≥ n and Ht is a lower block
triangular Toeplitz matrix. Thus, the mapping from initial
state x0 to the output trajectory YT as M : Rn → Rm(T+1)

can be described by

YT = M(x0) := OTx0 + HTVT + WT . (2)

The system (1) may be implemented or run independently
for multiple times with the same initial state x0. When all
resulting output trajectories are eavesdropped, the eavesdrop-
per may derive an estimate of x0 by statistical inference
methods such as maximum likelihood estimation (MLE).



The resulting estimate accuracy may converge to zero as
the number of eavesdropped output trajectories converges to
infinity, leading to initial-value privacy risks. In view of this,
we consider a requirement that

(R1) the initial values should not be uniquely recoverable by
an eavesdropper having an infinite number of output
trajectories.

To address the requirement (R1), we define intrinsic initial-
value privacy as below.

Definition 1: The system (1) preserves intrinsic initial-
value privacy if the initial state x0 is statistically non-
identifiable from observing (yt)

T
t=0, i.e., for any x0 ∈ Rn,

there exists a x′0 6= x0 ∈ Rn such that

pdf (YT |x0) = pdf (YT |x′0) . (3)
In Definition 1, equality (3) indicates that there exist other

values x′0, yielding the same output trajectory distribution as
that of the initial value x0. This in turn guarantees that the
system preserving the intrinsic initial-value privacy satisfies
the requirement (R1).

Remark 1: The intrinsic initial-value privacy guarantees
the initial state x0 indistinguishable from the x′0 satisfying
(3), which is related to the notion of undetectable attacks
in the secure control literature, e.g. [24], where the attacker
tries to inject signals that are indistinguishable.

On the other hand, when a finite N output trajectories are
eavesdropped, the eavesdroppers may infer the initial values
under which there is a probability of generating these output
trajectories. In view of this, we consider a requirement that

(R2) any inference about the true initial value from the
eavesdroppers can be denied by supplying any value
within a range to the inference with a similar probability
of generating the eavesdropped N output trajectories.

This property is referred to as plausible deniability in the lit-
erature [25]. With this in mind, we denote the eavesdropped
output trajectories as Y1

T , . . . ,Y
N
T . The mapping from initial

state x0 to Y1
T , . . . ,Y

N
T is a concatenation of N mappings

M(x0), i.e., Y1
T

· · ·
YN
T

 = MN (x0) :=

M(x0)
· · ·

M(x0)

 . (4)

We then define differential initial-value privacy as below [9],
[10].

Definition 2: We define two initial values x0,x
′
0 ∈ Rn

as d-adjacent if ‖x0 − x′0‖≤ d. The system (1) preserves
(ε, δ)-differential privacy of initial values for some privacy
budgets ε > 0, 0.5 > δ > 0 under d-adjacency if for all
R ⊂ range(MN ),

P(MN (x0) ∈ R) ≤ eε · P(MN (x′0) ∈ R) + δ (5)

holds for any two d-adjacent initial values x0,x
′
0 ∈ Rn.

In Definition 2, inequality (5) indicates that the system
can plausibly deny any guess from the eavesdroppers having
N output trajectories, using any value from its d-adjacency.
Namely, the system preserving the differential initial-value
privacy satisfies the requirement (R2).

Remark 2: The requirement (R1) indeed can be under-
stood from a perspective of denability. Namely,

(R1′) [Deniability from non-identifiability] any inference
x̂0 about the true initial value from the eavesdroppers
having an infinite number of output trajectories, can be
denied by supplying any other value x′0 satisfying

pdf (YT |x̂0) = pdf (YT |x′0) . (6)

Note that the derivation of such x′0 needs extra computation
such that (6) is fulfilled and the resulting x′0 may be very
close to or far away from the inference x̂0. In contrast, the
x′0 used to deny x̂0 in (R2) is arbitrarily selected within
a range to x̂0. In view of this, the plausible deniability in
(R2) provides the system with a more convenient denial
mechanism. On the other hand, it can be seen that (6)
indicates that (5) holds with (ε, δ) = (0, 0), yielding that
the eavesdroppers cannot distinguish between x̂0 and x′0
with probability one. The above analysis thus demonstrates
that intrinsic initial-value privacy and differential initial-value
privacy are not inclusive mutually.

III. INITIAL-VALUE PRIVACY OF GENERAL LINEAR
SYSTEMS

In this section, both intrinsic and differential initial-value
privacy of systems (1) are analyzed. We first present the
following result on the equivalence of intrinsic initial-value
privacy and unobservability.

Proposition 1: The system (1) preserves intrinsic initial-
value privacy if and only if (A,C) is not observable, i.e.,
rank (Oob) < n.

Remark 3: Observability has been extensively studied in
the fields of estimation [26] and feedback control [27]. In
[16], for a linear control system the input observability is
also explored to preserve differential privacy of control inputs
and initial states. In Proposition 1, the intrinsic initial-value
privacy and observability are bridged for linear systems (1).

Next, the differential privacy of initial values for (1) is
studied. As in [15], we define Q(w) := 1√

2π

∫∞
w
e−

v2

2 dv,

and κ(ε, δ) :=
Q−1(δ)+

√
(Q−1(δ))2+2ε

2ε .
Theorem 1: Suppose that (VT ;WT ) are random vari-

ables according to (VT ;WT ) v N(0,ΣT ). Then the dynam-
ical system (1) preserves (ε, δ)-differential privacy of initial
state under d-adjacency, with ε > 0 and 0.5 > δ > 0, if

σm

([
HT Im(T+1)

]
ΣT
[
HT Im(T+1)

]>)
≥ d2N‖OT ‖2κ(ε, δ)2 .

(7)

Remark 4: In Theorem 1, νt,ωt are assumed to admit
Gaussian distributions. This renders the mapping (4) to be
a Gaussian mechanism [10], [15], resulting in the (ε, δ)-
differential privacy. One may wonder if assuming Laplacian
noise νt,ωt would lead to a stronger (ε, 0)-differential pri-
vacy, as in [14]. However, we note that the resulting mapping
(4) is not a Laplace mechanism, because there is no guarantee
that HTVT + WT is still Laplacian, even if νt,ωt are
Laplacian variables.



Remark 5: Though only initial values of system (1) are
treated as private information, we note that the results in
Theorem 1 can be extended to the case that all states xt
are sensitive. For dynamical systems (1), the outputs yk for
all k ≥ t in YT contain the information of xt, rendering a
mapping from xt to YT−t as

YT−t = Mt(xt) := OT−txt + HT−tVT−t + WT−t .

By combining all Mt(xt), t = 0, 1, . . . , T together, one then
can establish a mapping from the state trajectory (xt)

T
t=0

to the output trajectory YT . For such a combined mapping,
following the arguments in the proof of Theorem 1, one then
can establish (ε, δ)-differential privacy of the state trajectory
(xt)

T
t=0 with some ε > 0 and 0.5 > δ > 0. In this way, our

framework can be further applied to solve the problems in
[15], [17], where the state trajectory is private information.

We note that given any covariance matrix ΣT > 0, there
always exist ε > 0 and 0.5 > δ > 0, depending on
the norm of extended observability matrix OT such that
(7) is satisfied, yielding the (ε, δ)-differential initial-value
privacy. Thus, the (ε, δ)-differential initial-value privacy and
the intrinsic initial-value privacy are mutually independent,
with the latter determined by the unobservability of systems
(1), i.e., rank (Oob) < n by Proposition 1. This will be
further explained in the subsequent Example 1.

If the noise can be designed, then there always exists a
sufficiently large covariance matrix ΣT such that (7) holds
for any privacy budgets ε > 0, 0.5 > δ > 0. To have a better
view of this, we consider a particular case that νt and ωt
are i.i.d. random variables. The following corollary can be
easily derived by verifying the condition (7).

Corollary 1: Suppose νt and ωt, t = 0, 1, . . . , T are i.i.d.
random variables according to νt v N(0, σ2

νIn) and ωt v
N(0, σ2

ωIm). Then for any ε > 0, 0.5 > δ > 0, and all
σν ≥ 0 and σω ≥ d

√
N‖OT ‖κ(ε, δ), the dynamical system

(1) preserves (ε, δ)-differential privacy of initial state under
d-adjacency.

Remark 6: Though in Corollary 1 arbitrary (ε, δ)-
differential privacy can be achieved by choosing a sufficiently
large σω , this doesn’t mean that the process noise νt does
not contribute to the differential privacy. In fact, simple
calculations following the proof of Theorem 1 can lead to a
less restrictive condition as

‖O>T (σ2
νHTH

>
T + σ2

ωIm)−1OT ‖≤
1

d2Nκ(ε, δ)2
,

from which it can be seen that σν also plays a role in
achieving arbitrary differential privacy of initial values.

Example 1. Consider system (1) with A =

[
0 1
0 −1

]
. Let

T = 1, and νt,ωt be i.i.d. random Gaussian noises with
variances being σ2

νI2 > 0 and σ2
ω > 0, respectively. In the

following, we will respectively consider two kinds of outputs.

(a) Let output yt = C1xt with C1 =
[

1√
2

1√
2

]
. We then

obtain that (A,C1) is not observable as rank (OT ) =
1. It is clear that the intrinsic initial-value privacy is
preserved by Proposition 1. Regarding the differential

privacy, one can find that ‖OT ‖= 1 and the differential
initial-value privacy is preserved with some privacy
budgets (ε, δ) by Theorem 1.

(b) Let output yt = C2xt with C2 =
[
1 0

]
. We then

obtain that (A,C2) is observable as rank (OT ) = 2.
By Proposition 1 the intrinsic initial-value privacy is
disclosed, while the system preserves the differential
initial-value privacy with some privacy budgets (ε, δ)
by Theorem 1 as ‖OT ‖= 1.

Therefore, it can be seen that whether the system preserves
the intrinsic initial-value privacy is independent of the dif-
ferential initial-value privacy.

IV. INTRINSIC INITIAL-VALUE PRIVACY OF NETWORKED
LINEAR SYSTEMS

The system (1) can also be understood from a network
system perspective, e.g., [28]. Let xi,t be the i-th entry of
xt. If each xi,t is viewed as the dynamical state of a node,
the matrix A would indicate a graph of interactions among
the nodes. If each entry of yt is viewed as the measurement
of a sensor, then the matrix C would indicate a graph of
interactions between the nodes and the sensors.

In view of this, we consider a network consisting of n
network nodes and m sensing nodes, leading to a network
node set V = {1, . . . , n} and a sensing node set VS =
{s1, . . . , sm} 1, respectively. Define the interaction graph
G = (V,E) with edge set E ⊂ V × V, and the sensing
graph GS = (V,VS,ES) with edge set ES ⊂ V × VS. Let
A = [aij ] ∈ Rn×n and C = [cij ] ∈ Rm×n.

To this end, this section aims to study how topological
effects affect the privacy analysis of the networked system
(1) with (A,C) being a configuration complying with the
graphs G,GS, i.e., if aij = 0 for (j, i) /∈ E and cij = 0 for
(j, si) /∈ ES.

A. Intrinsic privacy of individual initial values

It is noted that in Definition 1 regarding intrinsic initial-
value privacy, the initial state vector x0 is considered as
a whole, and we suppose that the eavesdroppers have no
prior knowledge of any individual initial values. In the
following, we present several definitions that refine the
notion in Definition 1 to dynamical networked systems (1)
by studying intrinsic privacy of individual initial values, i.e.,
xi,0, against eavesdroppers having knowledge of the whole
sensor measurements (i.e., yt) and initial values of some
network nodes. For convenience, we term the set of nodes
whose initial values are prior knowledge to eavesdroppers as
a public disclosure set.

Definition 3: For any given configuration (A,C) comply-
ing with graphs G,GS, take i ∈ V and let P ⊂ V. The
networked system (1) preserves intrinsic initial-value privacy
of node i w.r.t. public disclosure set P if for any initial state
x0 ∈ Rn, there exists an x′0 = [x′1,0; . . . ;x′n,0] ∈ Rn such
that xi,0 6= x′i,0, xj,0 = x′j,0 for all j ∈ P, and

pdf (YT |x0) = pdf (YT |x′0) . (8)
1To be distinguished with notations for nodes in the interaction graph G,

we use si to denote the i-th sensing node whose measurement is yi.



Remark 7: The equality (8) indicates that even if the
initial values of some nodes j ∈ P are public, the initial value
xi,0 cannot be identified from trajectories of yt, even with
an infinite number of realizations of the dynamic networked
system (1).

Remark 8: If the eavesdroppers have no prior knowledge
of any node initial states, the above definition is also applica-
ble with P = ∅. In this case, according to Proposition 1, the
notion of intrinsic initial-value privacy of node i is related
to state variable unobservability of state xi,t, that is a dual
notion of state variable uncontrollability in [29].

Let l = |P| and P = {p1, . . . , pl} ⊂ V. Define P̄ :=
{p̄1, . . . , p̄n−l} = V\P. For convenience, we further let
EP = [ep1 , . . . , epl ] ∈ Rn×l and EP̄ = [ep̄1 , . . . , ep̄n−l

] ∈
Rn×(n−l), and Kob

j be the j-the column of matrix Oob.
Theorem 2: Let the dynamical networked system (1) be

equipped with configuration (A,C) complying with graphs
G,GS. Let i ∈ V and P ⊂ V with i /∈ P. The following
statements are equivalent.
a). The networked system (1) preserves intrinsic initial-

value privacy of node i w.r.t. P.
b). rank (OobEP̄) = rank ([Kob

i1
, . . . ,Kob

in−l−1
]) with

{i1, . . . , in−l−1} = V\(P ∪ {i}).

c). rank
([

Oob

e>i

]
EP̄

)
= rank (OobEP̄) + 1.

In Theorem 2, explicit rank conditions are proposed to
determine whether the intrinsic initial-value privacy of indi-
vidual nodes is preserved, with respect to any given public
disclosure set P. On the other hand, for a networked system,
one may naturally ask what is the maximum allowable
disclosure such that there always exists at least one node
whose initial-value privacy is preserved. To address this
issue, the network privacy index is introduced below.

Definition 4: The networked system (1) achieves level-l
network privacy, if for any public disclosure set P ⊂ V with
|P|= l, there exists a node i ∈ V\P whose intrinsic initial-
value privacy is preserved w.r.t. P. The network privacy index
of (1), denoted as Irp, is defined as the maximal value of l
such that level-l relative privacy is achieved.

Proposition 2: The network privacy index of networked
system (1) is Irp = n− rank (Oob)− 1.

Remark 9: By Definition 4, the full initial value is not
disclosed irrespective of which Irp nodes are public. It is
clear that a larger Irp means a stronger privacy-preservation
ability of the networked system (1). According to Proposition
2, this further implies that a networked system possesses
a better privacy-preservation ability, if the dimension of its
unobservable subspace (i.e., n− rank (Oob)) is higher.
Example 2. Consider a networked system (1) with (A,C)
complying with the graphs G,GS in Figure 1, in which each
edge is assigned with the same weight 1.

Ir can be seen that rank (Oob) = 6. According to
Proposition 2, the network privacy index Irp = 9 −
rank (Oob) − 1 = 2. Taking intrinsic privacy of individual
initial values into consideration, simple calculations show
that rank ([Oob; e

>
j ]) = 7 for j = 1, 2, 4, 5, 7, 8 and

rank ([Oob; e
>
j ]) = 6 for j = 3, 6, 9. This indicates that

the initial values of all nodes except nodes 3, 6, 9 are private
in the sense of Definition 3 using Theorem 2 with the public
disclosure set P = ∅.

Let the public disclosure set P = {4, 8}. It can be verified

that rank (OobEP̄) = 6, and rank
([

Oob

e>j

]
EP̄

)
= 7 for

j = 1, 2 and rank
([

Oob

e>j

]
EP̄

)
= 6 for j = 3, 5, 6, 7, 9.

Thus, the intrinsic initial-value privacy of only nodes 1, 2 is
still preserved w.r.t. P = {4, 8}. In fact, for any P with two
elements, it can be verified that there always exist network
nodes whose intrinsic initial-value privacy is preserved. On
the other hand, if P = {1, 4, 8}, one then can see that the
intrinsic initial-value privacy of all nodes is disclosed. This
in turn is consistent with the fact that the network privacy
index Irp = 2.

(a) Interaction graph G (b) Sensing graph GS

Fig. 1. Network topologies.

B. Generic intrinsic initial-value privacy

In the previous subsection, the intrinsic initial-value pri-
vacy of individual nodes w.r.t. the public disclosure set P
of networked systems (1) is studied, and a network privacy
index Irp is proposed to quantify the privacy of networked
system (1). In the following, we turn to study the effect
of network structure (G,GS) to the intrinsic privacy and
the network privacy index. To be precise, we demonstrate
that these properties are indeed generic, i.e., are fulfilled for
almost all edge weights under any network structure (G,GS).

Theorem 3: Let P ⊂ V and i ∈ V. Then the intrinsic
initial-value privacy of node i w.r.t. P is generically deter-
mined by the network topology. To be precise, exactly one
of the following statements holds for any non-trivial network
structure (G,GS).
(i) The intrinsic initial-value privacy of node i is preserved

generically, i.e., for almost all configurations (A,C)
complying with the network structure (G,GS).

(ii) The intrinsic initial-value privacy of node i is lost
generically, i.e., for almost all configurations (A,C)
complying with the network structure (G,GS).

Theorem 3 demonstrates that given any network structure
(G,GS) and P ⊂ V, the intrinsic initial-value privacy of node
i is either preserved or lost generically. We note that if there
exists a configuration (A,C) complying with (G,GS) such
that the intrinsic initial-value privacy of node i is preserved
(or lost), there is no guarantee that such property is preserved
(or lost) generically. This is different from other common
generic properties like structural controllability [32], for



which if there exists a configuration such that a linear system
is controllable, then it must be controllable for almost all
configurations, i.e., structurally controllable.

Similar to Theorem 3, the network privacy index is also
generically determined by the network structure (G,GS).

Theorem 4: The network privacy index is generically de-
termined by the network topology. Namely, for almost all
configurations (A,C) complying with the network structure
(G,GS), the network privacy index Irp = n− ngob − 1 with
ngob given by the maximal rank of Oob.

Remark 10: We note that rank (Oob) = ngob holds for
almost all configurations (A,C) complying with (G,GS).
According to [30] and the duality principle between con-
trollability and observability, the ngob indeed is given by the
maximal number of edges in the set of stem-cycle disjoint
graphs [29], [30].

V. CONCLUSIONS

In this paper, we have studied the intrinsic initial-value
privacy and differential initial-value privacy of linear dy-
namical systems with random process and measurement
noises. We proved that the intrinsic initial-value privacy is
equivalent to unobservability, while the differential initial-
value privacy can be achieved for a privacy budget depending
on an extended observability matrix of the system and the
covariance of the noises. Next, by regarding the considered
linear system as a network system, we proposed necessary
and sufficient conditions on the intrinsic initial-value pri-
vacy of individual nodes, in the presence of some nodes
whose initial-value privacy is public. A quantitative network
privacy index was also proposed using the largest number
of arbitrary public nodes such that the whole initial values
are not fully exposed. In addition, we showed that both
the intrinsic initial-value privacy and the network privacy
index are generically determined by the network structure.
In future works, topological conditions (see e.g. [31], [32])
will be explored for generic intrinsic initial-value privacy of
individual nodes, and the considered privacy metrics will be
utilized to develop privacy-preservation approaches for linear
dynamical systems.
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