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Abstract— This paper proposes two variants of the Geometric
Approximate Minimum Energy (GAME) filter on the Special
Euclidean Group SE(3) in the case that exteroceptive mea-
surements are obtained in discrete time. Continuous-discrete
versions of the GAME filter are provided that near-continuously
predict pose and its covariance using high frequency interocep-
tive measurements and then update these estimates utilizing
low frequency exteroceptive measurements obtained in discrete
time. The two variants of the proposed filter are differentiated
in their derivation due to the choice of affine connection used
on SE(3). The proposed discrete update filters are derived
based on first principles of deterministic minimum-energy
filtering extended for discrete time measurements and derived
directly on SE(3). The performance of the proposed filters
is demonstrated and compared in simulations with a short
discussion of practical implications of the choice of affine
connection.

I. INTRODUCTION

This paper is concerned with filters used for estimating
the position and attitude (together referred to as pose) of
a moving rigid-body using noisy interoceptive velocity and
exteroceptive vector measurements that bear information on
the pose. Pose estimation has many applications in au-
tonomous systems and is a fundamental building block of
many control, vision and robotic problems. The literature for
pose estimation methods goes back to the early applications
in space explorations (see [1], [2] and references therein).

The Extended Kalman Filter (EKF) [3], which is based
on applying the optimal Kalman filter [4] to the linearized
equations of nonlinear problems, is perhaps the best known
generic engineering tool for performing state estimation
on systems with nonlinear dynamics. While the EKF has
traditionally been applied to the pose filtering problem as
well, more recent methods take advantage of the symmetries
inherent in the nonlinear space of attitude and pose models
in order to improve the estimation performance.

Early accounts of nonlinear attitude and pose estimation
methods can be found in [1], [2], [5], [6] and the references
therein. In this work, we focus on nonlinear pose filters
with time-varying gains, as opposed to nonlinear constant
gain observers for attitude and pose estimation [6]–[13]. A
number of geometric nonlinear filtering approaches appli-
cable to attitude and pose estimation problems exist in the
literature. Among those, the Multiplicative Extended Kalman
Filter (MEKF) [1] and the variants of the Invariant EKF
(IEKF) [14]–[16] utilize a nonlinear Lie group structure
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of the observer state space which includes a linear space
innovation term. The dynamics of the innovation term is
then derived based on Kalman filtering resulting in a time-
varying gain equation where the overall filter preserves the
Lie group (symmetric) structures of the attitude and pose
spaces. These works have shown improved performance over
non-geometric implementations of the EKF for attitude and
pose filtering. Our earlier works [17], [18] similarly preserve
the Lie group (symmetric) structures of the attitude and pose
spaces but are derived based on adapting the first principles
of least squares deterministic filtering design [19], [20] to
the nonlinear Lie group kinematic equations of attitude and
pose. As a result, we proposed additional terms in the
resulting Riccati equation that bear information on second
order derivatives of the filtering cost function, not previously
taken advantage of in the attitude and pose filtering literature.
On the other hand, [14], [21] and some similar methods have
additionally offered convergence and stability results for their
proposed filters. These questions are outside the scope of
this work. The papers [6], [8] include a stability analysis
of the observer error system. The aforementioned methods
have been benchmarked against a nonlinear complimentary
observer [6] in [22] where their performances were observed
to be comparable.

In this work, we extend our previously proposed
continuous-time Geometric Approximate Minimum Energy
(GAME) filter on the Special Euclidean Group SE(3) [18]
to a continuous-discrete formulation. The derivation is based
on first principles least squares filtering and the variational
analysis adapted to the Lie group structure of the special
Euclidean group SE(3). We prove that the continuous prop-
agation of the left-invariant kinematics based on velocity
measurements is the optimal solution to the continuous-time
least squares minimum-energy filtering problem. Moreover,
using a quadratic assumption on the value function of the
problem we derive the discrete update step on SE(3) as the
optimal solution of the point optimization problem concern-
ing fusion between the discrete measurement error energy
and the continuous-time value function. Two versions of the
continuous-discrete filter are derived based on the choice of
affine connection on SE(3). We provide a simulation study
that demonstrates the performance of the proposed filters in
a scenario with large measurement errors and low frequency
discrete landmark measurements.

The remainder of the paper is structured as follows.
Section II contains some preliminary notions required later
on for the geometric formulation of the filtering problem. An
extensive account of useful definitions of operators, errors,
metrics and projections on the Lie group spaces of SO(3)



and SE(3) along with some identities are provided that
facilitate the arguments of the subsequent sections. Sec-
tion III formally introduces our continuous and discrete pose
filtering problems as deterministic least squares optimization
problems. Section IV contains our main results including
the proposed filters, their underlying assumptions and the
proofs of their optimality. We illustrate the performance of
the proposed filters in Section V and finally Section VI
concludes the paper.

II. PRELIMINARIES
Let A denote the global reference frame and B denote

a body fixed frame to a moving rigid body in 3D space.
Translation of B with respect to A, expressed in A, is
denoted as p ∈ R3. The attitude (orientation) of B relative
to the reference frame A is represented by a rotation matrix
R ∈ SO(3). The rotation group is denoted by SO(3) =
{R ∈ R3×3 |R>R = I, det(R) = 1}, where (.)> is the
transpose map, I is the 3 by 3 identity matrix and det(.)
is the matrix determinant. The associated Lie algebra so(3)
is the set of skew-symmetric matrices, so(3) = {ω× ∈
R3×3 |ω× = −ω>×}. For ω = [ω1, ω2, ω3]> ∈ R3, the
lower index operator (.)× : R3 −→ so(3) yields the skew-
symmetric matrix

ω× :=

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
.

The skew-symmetric matrix is associated with the cross
product by ω, i.e., ω×v = ω×v, for all v ∈ R3. Inversely, the
operator vex : so(3) −→ R3 extracts the skew coordinates,
vex(ω×) := ω.

A pose matrix consisting of attitude R and translation p of
the body fixed frame B with respect to the global reference

frame A can be represented as X =

[
R p

01×3 1

]
∈ SE(3)

where the special Euclidean group SE(3) is defined in the
following.

SE(3) = {X =

[
R p

01×3 1

]
∈ R4×4 | R ∈ SO(3), p ∈ R3}.

(1)
This representation, commonly known as homogeneous co-
ordinates, preserves the group structure of SE(3) with matrix
multiplication, i.e., X1X2 ∈ SE(3) for all X1, X2 ∈ SE(3).
The associated inverse pose X−1, which is also an element
of SE(3), is given by

X−1 =

[
R> −R>p
01×3 1

]
.

The associated Lie algebra is the set of twist matrices in
se(3).

se(3) =

{
Γ :=

[
(Γω)× Γv
01×3 0

]
∈ R4×4 | Γω,Γv ∈ R3

}
.

(2)

The map (.)∧ : R6 −→ se(3) and its inverse (.)∨ : se(3) −→
R6 are defined as[

Γω
Γv

]∧
:=

[
(Γω)× Γv
01×3 0

]
, (

[
Γω
Γv

]∧
)∨ :=

[
Γω
Γv

]
. (3)

Let TX SE(3) denote the linear space tangent to the
manifold of SE(3) at X . Note that the Lie algebra se(3)
coincides with TI SE(3). For all Γ ∈ se(3), the tangent
vector XΓ ∈ TX SE(3). Consider the following definitions.

1

2
:=

[
1
2I3×3 03×1

01×3 1

]
, 2 :=

[
2I3×3 03×1

01×3 1

]
,

and let the metric 〈. , .〉X : TX SE(3)×TX SE(3) −→ R
denote the standard left-invariant Riemannian metric on
SE(3). For Γ,Ω ∈ se(3) the following definitions hold.

〈XΓ, XΩ〉X = 〈Γ,Ω〉I := 〈Γ,Ω〉

:= trace(
1

2
Γ>Ω) := 〈Γ∨,Ω∨〉 := (Γ∨)>Ω∨.

(4)

Here, trace(.) : Rn×n −→ R is the matrix trace function. Let
P : R4×4 → se(3) denote the unique orthogonal projection
of R4×4 onto se(3) with respect to the inner product 〈·, ·〉,
i.e., for all Γ ∈ se(3), M ∈ R4×4, one has

〈Γ,M〉 = 〈Γ,P(M)〉 = 〈P(M),Γ〉 .

One verifies that for all M1 ∈ R3×3,m2,3 ∈ R3,m4 ∈ R,

P
([

M1 m2

m>3 m4

])
=

[
Pa(M1) m2

01×3 0

]
.

Given any matrix M ∈ Rn×n, its symmetric and skew-
symmetric projections are defined as Ps(M) := 1/2(M +
M>) and Pa(M) := 1/2(M −M>), respectively.

For any two SE(3) elements X1, X2 and a positive definite
matrix P ∈ R6×6 > 0, their weighted Euclidean distance is
defined next.

‖X1 −X2‖P :=

√
〈(P log(X−1

2 X1)∨)∧, log(X−1
2 X1)〉.

(5)
Note that log(.) : se(3) −→ SE(3) is the matrix logarithm
on SE(3).

A. Differential Geometric Notions

Let f : SE(3) −→ R denote a differentiable map. Then
DXf(X) : TX SE(3) −→ R denotes the differential map
defined below.

DXf(X) ◦ (XΓ) = 〈∇Xf(X), XΓ〉X . (6)

Here, Γ ∈ se(3), XΓ ∈ TX SE(3) is a tangent direction
towards which the differential is calculated. The left invariant
metric 〈. , .〉 was introduced in (4) and∇Xf(X) ∈ TX SE(3)
is the gradient. Similarly, the second order differential map
D2
Xf(X) : TX SE(3)×TX SE(3) −→ R is defined next.

D2
Xf(X) ◦ (XΓ, XΞ) = 〈HessX f(X) ◦XΨ, XΓ〉X

= 〈HessX f(X) ◦XΓ, XΨ〉X .
(7)

Here, Γ,Ψ ∈ se(3) and the Hessian HessX f(X) :
TX SE(3) −→ TX SE(3) is a symmetric mapping with
respect to the left invariant metric. In another form,

D2
Xf(X) ◦ (XΓ, XΨ) =

DX(DXf(X) ◦ (XΓ)) ◦XΨ− 〈∇Xf(X), X ΛΨ(Γ)〉X .



Here, ΛΨ(.) : se(3) −→ se(3) is the connection function.
In this paper we will utilize the following two connection
functions on SE(3). Consider two elements of the Lie
algebra Γ,Ψ ∈ se(3). The first connection utilized is the
0−connection.

Λ0
Ψ(Γ) := P(ΨΓ). (8)

The second connection utilized in this paper is the symmetric
Cartan connection.

ΛC
Ψ(Γ) :=

1

2
[Ψ,Γ] :=

1

2
(ΨΓ− ΓΨ). (9)

Here, [. , .] : se(3) × se(3) −→ se(3) is the Lie bracket of
se(3). One verifies that the following identities holds.

(Λ0
Ψ(Γ))∨ =

[
1
2
Ψω × Γω

Ψω × Γv

]
,

(ΛC
Ψ(Γ))∨ =

1

2

[
Ψω × Γω

Ψω × Γv − Γω ×Ψv

]
.

(10)

Note that for every Ω× ∈ so(3), M ∈ R3×3 and S = S> ∈
R3×3 ,

trace(Ω×Ps(M)) = 0, trace(Ps(SΩ×)) = 0. (11)

Let Sn×n denote the set of symmetric matrices, and Pt(.) :
Sn×n −→ Sn×n denote the mapping defined in the following
for S ∈ S3×3.

Pt(S) := trace(S)I − S. (12)

The following identities hold for every γ, ψ ∈ R3, R ∈
SO(3).

γ×ψ× = ψγ> − γ>ψI. (13)

ψ × γ = ψ×γ = 2 vexPa(γψ>) = 2 vexPa(ψ×γ×). (14)

Pa(Sγ×) =
1

2
(Pt(S)γ)×. (15)

trace(γ>×Sψ×) = γ>Pt(S)ψ. (16)

III. PROBLEM FORMULATION

In this section we state the left invariant kinematics on
SE(3), introduce models for interoceptive and exteroceptive
measurements and formalize the filtering problem using these
models.

A. Pose Kinematics

Let X =

[
R p
01×3 1

]
denote the pose matrix of a

moving body in 3D space. The left invariant pose kinematics
on SE(3) is given by

Ẋ = X

[
Ω
V

]∧
, X(0) = X0. (17)

Recall that R ∈ SO(3) is the attitude and p ∈ R3 the
translation of the body fixed frame B with respect to the

global reference frame A. The matrix
[

Ω
V

]∧
∈ se(3) is

the twist and embodies the angular velocity Ω ∈ R3 and
translational velocity V ∈ R3 of the body fixed frame B
with respect to the global reference frame A.

B. Interoceptive Velocity Measurements

The measured twist is comprised of angular and trans-
lational velocity measured in the body fixed frame B as
represented by the following equations

U :=

[
Ω
V

]∧
+ (Bδ)∧, B :=

[
Bω 03×3

03×3 Bv

]
, δ :=

[
δω
δv

]
,

Uω = Ω +Bωδω, Uv = V +Bvδv,
(18)

where Bω, Bv ∈ R3×3 are measurement error coefficient ma-
trices determined from the sensor properties while δω, δv ∈
R3 are the unknown (here assumed zero mean) angular
and translational velocity errors incurred in the measurement
process.

C. Exteroceptive Landmark Measurements

One can indirectly obtain further information on the pose
of a moving body by measuring the position of a known
landmark in the body fixed frame and by comparing the
measurement against the a priori known position of that
landmark in the global reference frame.

ȳ = X−1 l̄ + D̃ε̊, D̃ :=

[
D 03×1

01×3 1

]
. (19)

Here the mappings (̄.), (̊.) : R3 −→ R4 are defines as x̄ :=
[x, 1]> and x̊ := [x, 0]>, respectively. The vector y ∈ R3 is
the measured landmark coordinates in B, l ∈ R3 is the known
true coordinates of the landmark in the global reference
frame A, ε ∈ R3 is the measurement error incurred in B
and where D ∈ R3×3 is the measurement error coefficient
matrix determined based on the sensor properties.

Equation (19) is alternatively expressed as

y = R>(l − p) +Dε. (20)

Note that well-posedness of the full six degree of freedom
pose filtering problem typically relies on at least three non-
collinear fixed landmark measurements of the type intro-
duced in (20) [23].

D. The Filtering Problem

The interoceptive velocity measurements (18) are often
available with a high update rate (relative to exteroceptive
measurements) and can approximately be accounted for as
continuous signals. Following the deterministic minimum-
energy filtering formalism, that was first introduced by
Mortensen [19] and later refined in [20], let us consider the
continuous-time filtering cost

Jt(X, δ) :=
1

2
‖X(0)− X̂0‖2P0

+
1

2

∫ t

0

‖δ‖2dτ. (21)

The first term in (21) is the squared Euclidean distance
initialization error between the true pose X(0) and a priori
known estimate of it X̂0 ∈ SE(3) defined according to (5)
with the positive definite weight matrix P0 ∈ R6×6. The
second integral term in (21) is the accumulated squared
Euclidean norm of the velocity measurement error discussed
in (18).



Problem 1 (Dead-Reckoning): Given the velocity mea-
surement data sequence U∨|[0,t] obtained according to the
model (18) in the period [0, t] find the pose estimate X̂(t) ∈
SE(3) for the current true pose state X(t) of system (17)
such that the cost Jt(X, δ) defined in (21) is minimized.
In other words, given the data U∨|[0,t], the a priori known
entities B, X̂0 and P0 and the models (17), (18) and (21)
find the current minimum-energy estimate X̂(t) defined as
the end point of the minimizing pose trajectory X∗t |[0,t],
i.e. X̂(t) := X∗t (t). Moreover, the estimate X̂(t) is to be
calculated recursively, that is, ˙̂

X(t) is to be calculated based
on the current time solution X̂(t) and the current velocity
measurement U∨(t).
Minimizing the cost (21) can in fact be broken into two steps.
The first step is to minimize (21) over the measurement error
trajectory δ|[0,t] and the second step is to minimize (21) over
the pose trajectory X|[0,t]. The latter step can equivalently be
simplified to minimizing (21) over a single point of the pose
trajectory, e.g. the start point X(0), the end point X(t) or any
other point in between. This is because, the first minimization
step already yields a minimizing error trajectory δ∗|[0,t] and
that trajectory together with measurement data U∨|[0,t] and
any single point of the pose trajectory X|[0,t] will yield the
full minimizing pose trajectory X∗|[0,t].

The value of the first step minimization explained above,
can be encoded using a value function defined next.

V (X, t) := min
δ|[0,t]

Jt(X, δ), V (X(0), 0) =
1

2
‖X(0)− X̂0‖2P0

.

(22)
The value function (22) provides an alternative definition for
the minimum-energy estimate solution of Problem 1, i.e.

X̂(t) := arg min
X

V (X, t)(t), (23)

where X is any point of the true pose trajectory X|[0,t].
Interpreted differently, the value function (22) is an error

energy or uncertainty measure for the true pose trajectory
X|[0,t] at the time instance t. Accordingly, the estimate X̂(t)
emerges as the minimizing point of this error energy measure
and hence is called the minimum-energy estimate [19].

So far, Problem 1 is not concerned with the possibility
of improving the estimated pose X̂(t) based on the extero-
ceptive measurements of the type introduced in (19). The
following problem, assumes that a landmark measurement
ȳ(t) sporadically becomes available at time t and asks how
to update the current estimate X̂(t) to a new estimate X̂+(t)
based on this new information. Upon close inspection, the
unknown signal ε̊(t) can in fact be equally expressed in terms
of the data ȳ(t) and the unknown true pose X(t). Therefore,
we can introduce the following updated error energy measure
for the true pose trajectory.

V +(X, t) := V (X, t) +
1

2
‖ȳ(t)−X−1(t)l̄‖2

(D̃D̃>)−1 . (24)

Problem 2 (Discrete Update): Given a current estimate
X̂(t) of the true pose X(t), i.e. a dead-reckoning solution of
Problem 1, and a landmark measurement ȳ(t) of the known

landmark coordinates l̄, obtained according to (19), find the
minimum-energy estimate X̂+(t) that minimizes the error
energy cost (24). In other words, the task is to find

X̂+(t) := arg min
X

V +(X, t)(t). (25)

IV. MAIN RESULTS

In this section we address the problems introduced in
Section III and provide two distinct solutions based on
the two choices of connections that were introduced in
equations (8) and (9). Following our original work in [17],
note the following assumptions and definition regarding
the derivatives of the value function. We will utilize them
throughout our subsequent results.

Assumption 1: The gradient and the Hessian with respect
to X of the value function V (X, t) (22) exist at the minimum
point X = X̂(t). In other words, the value function is twice
differentiable when evaluated at X = X̂(t).

Assumption 2: The value function V (X, t) (22) is
quadratic in X when evaluated at the minimum point X =
X̂(t). In other words, the higher order derivatives of V (X, t)
vanish at X = X̂(t).
Note that the initial condition of the value function given
in (22) is in agreement with these assumptions but in
general no theoretical proof for these assumptions exist in
the literature, that we are aware of.

Definition 1: Given any two tangent directions
XΓ, XΨ ∈ TX SE(3), the Hessian HessX V (X, t)|X=X̂(t)

acting as a symmetric mapping with respect to the inner
product

〈HessX V (X, t) ◦XΨ, XΓ〉X=X̂(t)

, as defined in (7), is equivalently represented with a positive
definite matrix P ∈ R6×6 operating on vectors Γ∨,Ψ∨ ∈ R6.

〈PΨ∨,Γ∨〉 := 〈HessX V (X, t) ◦XΨ, XΓ〉X=X̂(t). (26)
Following the classical optimal control/filtering literature

and adapting the theory to our Lie group setup [17], let us
define the Hamiltonian function associated with (21).

H(X,Xµ∧, δ, t) :=
1

2
‖δ‖2 − 〈Xµ∧, X(U − (Bδ)∧)〉X .

(27)
Here Xµ∧ ∈ TX SE(3) is the co-state variable with µ∧ ∈
se(3).

Lemma 1: The optimal Hamiltonian (27) when minimized
over δ(t) is given from

H∗(X,Xµ∧, t) := min
δ(t)
H(X,Xµ∧, δ, t)

= −1

2
‖µ‖2BB> − 〈Xµ∧, XU〉X .

(28)

The proof follows from the algebraic notions introduced in
Section II and by checking that the minimizing argument is
obtained as δ∗(t) = −B>µ.

Again, following the classical optimal control/filtering
literature adapted to Lie groups [17] we obtain the Hamilton-
Jacobi-Bellman (HJB) equation

∂

∂t
V (X, t) = H∗(X,∇XV (X, t), t). (29)



Here, ∂
∂tV (X, t) denotes the partial derivative of V (X, t)

with respect to its second argument t. It should be noted
that the co-state Xµ∧ is replaced in the optimal Hamiltonian
with ∇XV (X, t) which denotes the gradient of the value
function with respect to X according to definition (6). Using
Xµ∧ = ∇XV (X, t) and the definitions given in (4), the
minimum Hamiltonian (28) yields

H∗(X,∇XV (X, t), t) = −〈∇XV (X, t), XU)〉X

− 1

2
〈∇XV (X, t), X

(
BB>

(
X−1∇XV (X, t)

)∨)∧〉X .
(30)

Recall assumption 1, then the first order derivative of the
minimum Hamiltonian (30) in a given tangent direction XΓ
yields

DXH∗(X,∇XV (X, t), t) ◦XΓ =

−D2
XV (X, t) ◦

(
X

(
BB>

(
X−1∇XV (X, t)

)∨)∧
, XΓ

)
−D2

XV (X, t) ◦ (XU,XΓ)−DXV (X, t) ◦X Λx
Γ(U).

(31)

Here, the connection Λx
Γ(U) for x ∈ {0, C}, was defined

in (8) and (9).
Theorem 1: Let Assumption 1 hold. Then the following

equation recursively computes the minimum-energy estimate
X̂(t) and solves Problem 1.

˙̂
X(t) = X̂(t)U(t), X̂(0) = X̂0. (32)

Proof: Recall the definition for X̂(t) as given in (23).
This can be equivalently expressed as ∇XV (X̂(t), t) = 0
and therefore for any tangent direction XΓ ∈ TX SE(3) it
follows that

{DXV (X, t) ◦XΓ = 〈∇XV (X, t), XΓ〉X}X=X̂(t) = 0.
(33)

Following Mortensen’s approach [19], one concludes that the
total time derivative of the gradient ∇XV (X̂(t), t) is equal
to zero too. Using the chain rule and the HJB equation (29)
we obtain

{〈 d
dt

(∇XV (X, t)), XΓ〉X}X=X̂(t) = 0,

⇒{D2
XV (X, t) ◦ (XΓ,

˙̂
X(t))+

DX
∂

∂t
V (X, t) ◦XΓ}X=X̂(t) = 0,

⇒{D2
XV (X, t) ◦ (XΓ,

˙̂
X(t))+

DXH∗(X,∇XV (X, t), t) ◦XΓ}X=X̂(t) = 0.

(34)

Next, replace the equality (31) into above, note that the first
and the last terms in (31) when evaluated at X = X̂(t)
yield zero due to (33), and note that Definition 1 is used.
Equation (32) follows. The initial condition X̂(0) is derived
directly from the initial condition for the value function
in (22).

Even though we are predominantly concerned with a
recursive minimum-energy estimate X̂(t) it is often useful
to also recursively calculate matrix P (t), introduced in
Definition 1, as it encodes the covariance or a measure of
uncertainty of the estimate X̂(t).

Theorem 2: Let assumptions 1 and 2 hold. Then the
Hessian of the value function (Definition 1) is recursively
obtained from the following two equations depending on the
choice of SE(3) connection defined in (7). Let P 0(0) = P0,
the zero connection (8) yields

Ṗ 0(t) = −P 0BB>P 0 + 2Ps(P 0

[
0.5(Uω)× 03×3

(Uv)× 03×3

]
). (35)

Alternatively, let PC(0) = P0, the Cartan connection (9)
yields

ṖC(t) = −PCBB>PC + Ps(PC

[
(Uω)× 03×3

(Uv)× (Uω)×

]
). (36)

Proof: The time evolution of the Hessian can be
calculated by performing a total time derivative of (26) and
taking into account either of the zero or Cartan connections.
For x ∈ {0, C} and any two tangent directions XΓ, XΨ ∈
TX SE(3) we obtain

〈Ṗ xΓ∨,Ψ∨〉 = 〈 d
dt

(HessX V (X, t)) ◦XΓ, XΨ〉X=X̂(t) =

{D2
XH∗(X,∇XV (X, t), t) ◦ (XΓ, XΨ)}X=X̂(t) =

{−D2
XV (X, t) ◦

(
HessX V (X, t) ◦X

(
BB>Γ∨

)∧
, XΨ

)
−D2

XV (X, t) ◦ (X Λx
Ψ(U), XΓ)

−D2
XV (X, t) ◦ (X Λx

Γ(U), XΨ)}X=X̂(t).
(37)

Note that we used the HJB (29), and the fact that the value
function is assumed to be quadratic to obtain the second
step of the above. The final step of the above is done by
replacing (31). The rest of the proof follows by replacing
the connection with either the zero or the Cartan connection
and by utilizing (33).
Now let us consider Problem 2.

Theorem 3: Consider the landmark measurement ȳ(t) ob-
tained according to (19). Assume that the updated value
function V +(X, t) is quadratic in X when evaluated at
X = X̂+(t). Then the following equations solve problem 2
and yield two sets of discrete update equations for X̂+(t) and
the matrices P 0+(t) and PC+(t), representing the updated
Hessian HessX V +(X, t) evaluated at X̂+(t) and calculated
using the zero connection (8) and the Cartan connection (9),
respectively.

The zero connection (8) yields the discrete update equa-
tions

X̂0+(t) := X̂+(X̂(t), P 0(t), t), Pȳ := D̃D̃>, ˆ̄y := X̂−1 l̄,

X̂0+(t) = X̂ exp

((
− (P 0+)−1P

(
P−1
ȳ (ȳ − ˆ̄y)ˆ̄y>2

)∨)∧)
,

P 0+ = P 0 +Q0, Q0 :=

[
Q0

11 Q0
12

(Q0
12)> Q0

22

]
, Py := DD>,

Q0
11 := ŷ>×P

−1
y ŷ× + Pt

(
Ps(P−1

y (y − ŷ)ŷ>)
)
,

Q0
12 := (P−1

y (y − ŷ))× + ŷ×P
−1
y , Q0

22 := P−1
y .

(38)

The Cartan connection (9) on the other hand yields the



following alternative discrete update equations.

X̂C+(t) := X̂+(X̂(t), PC(t), t), Pȳ := D̃D̃>, ˆ̄y := X̂−1 l̄,

X̂C+(t) = X̂ exp

((
− (PC+)−1P

(
P−1
ȳ (ȳ − ˆ̄y)ˆ̄y>2

)∨)∧)
,

PC+ = P 0 +QC , QC :=

[
QC11 QC12

(QC12)> QC22

]
, Py := DD>,

QC11 := ŷ>×P
−1
y ŷ× + Pt

(
Ps(P−1

y (y − ŷ)ŷ>)
)
,

QC12 :=
1

2
(P−1
y (y − ŷ))× + ŷ×P

−1
y , QC22 := P−1

y .

(39)
Proof: Let us consider a Taylor series expansion of

V +(X, t) around the nominal point X = X̂(t). Recall our
assumption that V +(X, t) is quadratic.

V +(X, t) = V +(X̂(t), t) + 〈∇XV +(X̂(t), t), X̂ log(X̂−1X)〉

+
1

2
〈HessX V +(X̂(t), t) ◦ X̂ log(X̂−1X), X̂ log(X̂−1X)〉.

(40)

From definition (25) and for any tangent direction XΓ one
has

{DXV +(X, t) ◦XΓ}X=X̂+(t) = 0. (41)

Replace V +(X, t) from the RHS of (40).

0 = {〈∇XV +(X̂(t), t), X̂Γ̃〉+
〈HessX V +(X̂(t), t) ◦ X̂Γ̃, X̂ log(X̂−1X)〉}X=X̂+(t).

(42)

Here X̂Γ̃ := DX(X̂ log(X̂−1X))◦XΓ) is a tangent direction
which can be dropped from the two sides of the equation.
The gradient and the Hessian in (42) can be calculated based
on (24) and recalling that ∇XV (X̂(t), t) = 0.

∇XV +(X̂(t), t) = X̂P
(
P−1
ȳ (ȳ − ˆ̄y)ˆ̄y>

)
,

HessX V +(X̂(t), t) = HessX V (X̂(t), t)+

{HessX(
1

2
‖ȳ(t)−X−1(t)l̄‖2

(D̃D̃>)−1)}X=X̂(t).

(43)

The two choices of connection (8) and (9) will result in
different Hessian calculations resulting in the two update
equations of the theorem.
Note that Theorem 3 indicates how to optimally update the
estimate and its covariance based on sporadically obtained
landmark measurements. In previous work [23] it was shown
that at least three non-collinear landmarks are required for
well-posedness of the filtering problem and the favorable
performance of filter.

V. SIMULATION STUDY

In this section, we provide a numerical example in order
to demonstrate the performance of the proposed filters in
Section IV.

Note that the implementation of the proposed equations is
using the unit quaternion representation of rotations. The dif-
ferential equations provided in (35) and (36) are numerically
integrated by approximating the derivative from a first order
Euler approximation. The time step of the simulation is dt =

0.001. The differential equations governing the quaternions
however are implemented using the explicit solution of the
exponential map that maintains their unit norm structure
during integration. For more details we refer the reader to
our previous works [17], [23]. The discrete landmark update
steps are performed every ∆ = 1000 steps.

Consider the forward-left-up and the East-North-Up
(ENU) standards for the x-y-z coordinates of the body fixed
frame and the global reference frame, respectively [24].
Angular and translational velocities Ω = [0, 0, 1.5 sin(π9 )]>

and V = [5, 0, 0]> drive a unicycle system trajectory and
are measured in the body-fixed frame B. These quantities
are measured according to (18) with Bω = 0.1I ( rads ) and
Bv = 0.5I (ms ). Note that we model δω = [0, 0, δz]

>, δv =
[δx, 0, 0] where δz, δx ∼ N (0, 1) are random scalars drawn
form the standard normal distribution N (0, 1). Initial system
coordinates is at p(0) = [1, 2, 0]m and initial position esti-
mates at p̂(0) = [3,−2, 0]m. We also simulated 25◦ of initial
rotation error for the filters. Both filters are starting with
P x(0) = 104I, x ∈ {0, C}. Two landmarks are considered
located at l1 = [−10, 15, 0]>m and l2 = [0, 5, 0]>m. Note
that due to reduced degrees of freedom of the unicycle model,
as compared to the full six degree of freedom pose dynamics,
only two landmark measurements are sufficient for well-
posedness of the filtering problem.

The landmark measurements are simulated based on (19)
with ε = [εx, εy, 0]>m, εx, εy ∼ N (0, 1). The error coef-
ficient matrix is set at D = 0.1I m. Figure 1 shows the
trajectories of the system and the two proposed filters in the
x-y plane. Figure 2 compares the estimation error incurred
in the attitude of the two filters, as measured by the angle
of rotation. Figure 3 compares the estimation error incurred
in the translation part of the filters, as Euclidean distance of
estimated positions to the true positions. As can be seen, the
two proposed filters yield reliable pose estimation despite the
large measurement errors and the low frequency of discrete
updates. Although there is no clear difference between the
two filters in steady state, the one based on the symmetric
Cartan connection initially outperforms the the zero connec-
tion based filter. This can be related to a difference observed
in the two covariance forward propagation equations (35)
and (36). Namely, in the latter, the linear term has a nonzero
direct element for the covariance of position estimate while
in the former this is zero.

VI. CONCLUSION

In this paper we extended our previous work on SE(3) and
geometric filtering [17], [18] to allow for discrete time mea-
surement updates. We showed how the two choices of affine
connections on SE(3) result in two different filters. This was
first pointed out in previous work [25] on minimum-energy
filtering on general Lie groups but with no particularized
derivation for SE(3). Our simulation study indicates that both
filters work well in a difficult filtering scenario including
large measurement errors and low frequency of discrete
updates. Moreover, the proposed filter based on the Cartan
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connection outperforms the proposed zero connection filter
in the transient performance observed in the simulation.
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