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Abstract— This paper proposes a modular nonlinear mini-
mum energy filtering approach for concurrent estimation of
the 3D pose of a mobile robot in the Special Euclidean
Group SE(3) and the unknown 3D position of a stationary
landmark for the common situation where relative position
measurements to the landmark are obtained in discrete time
and are too infrequent or too irregular to allow modeling
of the measurement process in continuous time. Building on
previous work by the authors that treated the case of 3D
robot pose estimation on SE(3) with known 3D landmark
positions using the Geometric Approximate Minimum Energy
(GAME) filtering framework, we show how to incorporate
an additional nonlinear filter for concurrent estimation of the
unknown 3D position of a stationary landmark. The proposed
approach is fully modular in the sense that either filter could
be swapped out for an alternative design without impacting the
functionality of the remaining filter. In particular, the approach
does not require tracking of error cross-covariance information
between both filters and instead uses a nonlinear version of
Covariance Intersection (CI) to perform safe information fusion
at each filter node. We demonstrate the performance of the
proposed modular filter in a numerical simulation showing that
it achieves comparable results to the filter that requires all
landmark positions to be known.

I. INTRODUCTION

With increasing complexity of modern robotic applica-
tions, modular designs for filters that estimate the system
state are of increasing interest. Simultaneous Localization
and Mapping (SLAM) [1], [2], target tracking [3], col-
laborative localization [4], self-driving cars [5], and aug-
mented/virtual reality headsets [6] are examples of robotic
applications where multiple separate subsystems receive and
process measurement data and contribute to the decision
making in the overall system. In a monolithic filter design,
the subsystem states are concatenated into a joint system state
and a single filtering algorithm updates the full state estimate
based on all measurement data. In practice, the development
of complex systems proceeds iteratively and benefits from
modular approaches to the measurement and fusion of sensor
data. Modularity helps to manage storage and computational
complexity of filtering algorithms by avoiding large state
vector representations and error covariance matrices, it helps
to separate concerns in the sense that a software bug or bad
performance in one filtering module does not immediately
affect other modules, it simplifies debugging and change
management and improves interoperability.
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In this paper we build on previous work by the authors [7]
that treated the case of 3D robot pose estimation on SE(3)
given interoceptive velocity measurements and relative posi-
tion measurements to known 3D landmark positions using
the nonlinear Geometric Approximate Minimum Energy
(GAME) filtering framework [8]. The filter proposed in [7]
is a continuous-discrete version of the GAME filter in which
high frequency and regular interoceptive measurements are
applied in a continuous-time design for the propagation step,
while exteroceptive measurements which may arrive irregu-
larly or infrequently are incorporated through a discrete-time
update step. We show how to augment this design with an
additional filter for concurrent estimation of the unknown
3D position of a stationary landmark while at the same
time using the relative measurement to the position of that
landmark as one of the inputs to the robot pose filter. In this
situation, information exchanged between both filters is not
statistically independent and does not contain tracked cross
correlations [9], [10] to enable a fully modular design. To
avoid double counting of information we provide a nonlinear
version of the Covariance Intersection (CI) algorithm [11]
based on least squares filtering techniques to safely fuse
estimates with unknown correlation caused by loops in the
information flow graph that describes how the two subsys-
tems exchange information. We demonstrate the performance
of the proposed modular filter in a numerical simulation.

The remainder of the paper is organized as follows.
Section II introduces our notation and recalls the standard
matrix representation of the Special Euclidean group SE(3)
and its matrix calculus as well as related relevant notions
from differential geometry. Section III introduces the mod-
ular concurrent 3D robot pose and 3D landmark position
estimation problem. Section IV contains our main result,
the proposed modular GAME filter for this problem. In
Section V we demonstrate the performance of the proposed
filter in a numerical simulation and Section VI concludes the

paper.
II. PRELIMINARIES

Let A denote the global reference frame and let B denote
a frame fixed to a moving rigid body in 3D space. The
translation of B with respect to A, expressed in A, is
denoted as p € R3. The attitude (orientation) of B relative
to the reference frame A, expressed in A, is represented
by a rotation matrix R € SO(3) = {R € R*>3|R"R =
I,det(R) = 1}, where (.)" is the transpose map, I is the
3 by 3 identity matrix and det(.) is the matrix determinant.
The Lie algebra s0(3) associated with the matrix Lie group
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SO(3) is the set of skew-symmetric matrices, s0(3) =
{wx € R¥3 |wy = —w] }. Forw = [wy,ws,ws] " € R3, the
lower index operator (.)y: R3 — s0(3) yields the skew-
symmetric matrix

0 —Ws w2
wx = | ws 0 —w
) w1 0

This skew-symmetric matrix is associated with the cross
product by w, i.e. wxv = w x v for all v € R®. Inversely, the
operator vex: s0(3) — R? extracts the skew coordinates,
vex(wy ) == w.

A pose matrix consisting of attitude R and translation p of

the body fixed frame B with respect to the global reference
R p

frame A can be represented as X = € SE(3)
O1x3 1

where

SE@) =4 | F Pl er™* | ReSO®), peR®
O1><3 1
denotes the Special Euclidean group represented in homoge-
neous coordinates. The inverse pose X ~! is given by
x1-[B" —RTp|
01x3 1

The Lie algebra associated with the matrix Lie group SE(3)
is the set of twist matrices

se(3) =< = (To)x Dol o gaxa | T, T, R .
01x3 0

The map (.)": RS — se(3) and its inverse (.)V: se(3) —

RS are defined as

\%
0 o P e I L) A R )
Fv ’ O1><3 0]’ Fv ’ 1ﬂ'u '
For two SE(3) elements X1, X5 such that X{le € Diog
and a positive definite matrix P € R%%6 > 0, the weighted

Euclidean distance is defined as
X1 = Xo|p-r =

V(P log(X; 1 X1)¥)", log (X5 ' X1)).

Here, log(.): Diog C SE(3) — se(3) is the matrix
logarithm defined on the maximal domain Dy, such that
I € Doy C SE(3).

Given any matrix M € R™*", its symmetric and skew-
symmetric projections are defined as P;(M) = 1/2(M +
MT) and P, (M) := 1/2(M — M), respectively. Note that
for all Q, € s0(3), M € R3*3 and S = ST € R3*3,

trace(2Ps(M)) = 0, trace(P;(SQx))=0. (3)

(@)

Here, trace(.): R"*™ — R is the matrix trace function.
We will draw on the following identities in the paper. Let
v, € R3, then

Yxx =y — 9l

@
Pa(pcthe) = Baltn ) = 500 X ¥ = 5 (1t

A. Differential Geometric Notions

Let Tx SE(3) denote the tangent space to the manifold
SE(3) at X. Note that the Lie algebra se(3) is identified
with T; SE(3). For all T € se(3) then XT € T SE(3). Let
(.,.): TSE(3) xT SE(3) — R denote the standard left-
invariant Riemannian metric on SE(3), i.e.

(XT, XQ)x = (T, Q) = trace(%FTQ) —m)Tav. ()

Here,
1 1Isa 0 21 0
2. |243%x3 Usx1 d 2= 3x3 Usx1|
2 {01x3 1 an O1x3 1

Let P: R**4 — 5¢(3) denote the unique orthogonal projec-
tion of R**% onto se(3) with respect to the inner product

1
(A,B)y = trace(EATB),
i.e. for all T € 5¢(3), M € R**4, one has
(T, M), = (I, P(M)) 1 = (P(M),I)1.

One verifies that for all M; € R3*3,my 3 € R® my € R,

p( M ma|\ _ Po(M1) mo
7’7’L3T my 01 %3 0 ’
Let f: SE(3) — R denote a differentiable map. Then

Dx f(X): Tx SE(3) — R denotes the differential of f at
the point X € SE(3). We have

Dx f(X) o (XT) = (Vx f(X), XT)x (©)

forall T' € se(3) where Vx f(X) € Tx SE(3) is the gradient
of f at the point X € SE(3). Similarly, the second order
differential D% f(X): Tx SE(3) xT'x SE(3) — R fulfils

D3 (X) o (XT, XZ) = (Hessx f(X) o XU, XT)x

= (Hessx f(X) o XT', X¥)x

for all T,V € s¢(3) where the Hessian
Hessx f(X): TxSE(3) — Tx SE(3) is a symmetric
mapping with respect to the left invariant metric. In another
form,

D3 £(X) o (XT, X) =

Dx (Dx f(X) o (XT)) o XU — (Vx f(X), X Ag(T))x.
Here, Ag(.): se(3) — se(3) is the connection function.

In this paper we will use the symmetric Cartan-Schouten
0-connection on SE(3) given by

1 1
Ay(T) = 5[¥,I] = S (U - T'7) ®)
for all T', U € se(3). Here, [.,.]: se(3) x s¢e(3) — se(3) is
the Lie bracket of se(3). One verifies that
1 v, x Ty,
(Aw(1)" =5 ©)

2 |W, xTy =Ty x W, |~
I1I. PROBLEM FORMULATION

In this section we state the left invariant kinematics on

SE(3), introduce models for interoceptive and exteroceptive

measurements and formalize the filtering problem using these
models.
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A. Pose Kinematics

R P
Let X =
¢ O1><3 1

moving body in 3D space. The left invariant pose kinematics
on SE(3) is given by

denote the pose matrix of a

Q

v (10)

A
X:X[ ] , X(0) = Xo.
Recall that R € SO(3) is the attitude and p € R3 the
translation of the body fixed frame B with rAG:spect to the

global reference frame .A. The matrix € se(3) is

v
the twist and embodies the angular velocity 2 € R® and
translational velocity V' € R® of the body fixed frame B

with respect to the global reference frame A, expressed in
B.

B. Velocity Measurements

The measured twist is comprised of angular and trans-
lational velocity measured in the body fixed frame B as
represented by the following equations

_[o1" n o [Bs 0Osxs] - [6
U= {V} +(Bd)", B:= [ngg B, , 0= 5|

Uw:Q+Bw6w7 Uv:V‘l'Bv(svy (ll)

where B,,, B, € R3*3 are measurement error coefficient ma-
trices determined from the sensor properties while d,,,d, €
R3 are the unknown (here assumed zero mean) angular and
translational velocity measurement errors.

C. Landmark Measurements

One can indirectly obtain further information on the pose
of a moving body by measuring the relative position of an
identifiable (e.g. via visually unique characteristics) land-
mark with respect to the body fixed frame,

7=X "'+ De (12)
Here the mappings (%), (1): R® — R* and (7): R3*% —
R**4 are defined as 7 := [z,1]" and & = [z,0]" and
D = { D 03“}, respectively. The vector y € R? is

O1><3 1

the measured landmark position in 3, I € R? is the position
of the landmark in the global reference frame A, ¢ € R?
is the measurement error incurred in B where D € R3*3 is
the measurement error coefficient matrix determined based
on the sensor properties.

Equation (12) is alternatively expressed as

y=R"(l—p)+ De. (13)
Note that well-posedness of the full six degree of freedom
pose filtering problem typically relies on at least three non-
collinear fixed landmark measurements [12].

Relative
Measurement

Y

Velocity
Measurement

! (L, R) :

} Robot filter Landmark filter |

} for X - for [ 1

! (X ) P ) :
Fig. 1. Modular Filter Architecture

D. Modular Robot Pose and Landmark Position Estimation

We wish to recursively estimate the robot pose X based
on the available velocity and landmark measurements using a
nonlinear filtering algorithm to produce an estimate X . In the
case where a landmark position [ is unknown in the global
reference frame A (think for example of a visually distinctive
feature in the environment that has not been referenced
to a global map), we wish to concurrently and recursively
estimate [ using an additional nonlinear filtering algorithm to
produce an estimate [. Both algorithms exchange their current
estimates in every update step to enable incorporation of the
relative landmark position measurement y by substituting X
for the unknown X and [ for the unknown /. Figure 1 depicts
the information flow between the two algorithm modules.

IV. FILTER DESIGN

In this section we provide two algorithms, one for recur-
sive estimation of the robot pose (X € SE(3)) and one for
recursive estimation of the landmark position (I € R3). The
robot pose filter from our previous work [7] assumed that
every landmark position is known in the global reference
frame A. Here, we will extend this filter to the case of an
estimated landmark.

A. Robot Pose Prediction

First we provide the equations for the prediction step of
the robot pose filter based on velocity measurements (11).
Velocity measurements are often available with a reliable
high update rate (compared to landmark measurements) and
can be modeled as continuous-time signals.

Let us consider the continuous-time filtering cost

1 " 1t
Ji(X,5) = §||X(O)—X0||20_1+§/0 18(r) 2. (14)

The first term in (14) is the initialization error between the
true pose X (0) and an a priori known estimate X, € SE(3)
measured as a squared Euclidean distance (2) weighted with
the positive definite error covariance matrix Py € R6*6,
The second integral term in (14) is the accumulated squared
Euclidean norm of the velocity measurement error (11).
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The cost (14) is minimized in two steps. The first step
is to minimize (14) over the measurement error trajectory
6|[O’t] and the second step is to minimize the result over
the pose trajectory X|(o . The latter step can equivalently
be simplified to minimizing over a single point of the pose
trajectory, e.g. the start point X (0), the end point X (¢) or
any other point in between. Refer to [7], [8] for a more in-
depth discussion of the rationale behind the minimum energy
filtering approach.

The value of the first minimization step can be encoded
using the value function

V(X,t) = min J;(X, ),

8o,
1[ ] o (15s)
V(X(0),0) = 5 [1X(0) = Xo[p-1-
Then R
X (t) == argmin V (X, t)(t), (16)
X

where X is any point of the true pose trajectory X|g 4.
Interpreted differently, the value function (15) is an error
energy or uncertainty measure for the true pose trajectory
X|[0,4) at the time instance ¢. Accordingly, the estimate X(t)
emerges as the minimizing point of this error energy measure
and hence is called the minimum-energy estimate [13].
Robot Pose Prediction: The following prediction equa-
tions are from [7]. Note that the second equation in Equa-
tion (18) is written based on the error covariance P while
in [7] this equation was written in terms of the inverse of
the error covariance. Here, the error covariance corresponds
to the inverse of the Hessian of the value function.
Definition 1 (Error Covariance Matrix): Given any two
tangent directions XT', XV € Tx SE(3), the Hessian
Hessx V(X,t)|x_x(, acting as a symmetric mapping as
in (7) is equivalently represented with a positive definite
matrix P~1 € R%*6 operating on vectors TV, UV € RS by

(P710V.TV) := (Hessx V(X, t)oX\II,XF)X:X(t). (17)
The prediction step of the robot pose filter is then
P(t) = BB" — 2P, ([(Uw)x

O3x3

(U.)x (Uw)x} P) |

Note that we have added a factor of 2 for the symmetric
projection term which was missing in [7, Eq. (35)].

Robot Pose Update: So far, we did not consider im-
proving the estimated pose X () based on the landmark
measurements (12). Assume that a landmark measurement
7(t) becomes sporadically available at time ¢. We would like
to update the current estimate X (¢) to a new estimate X *(¢)
based on this new information.

The landmark filter presented further below provides an
estimate (I(¢), P,) of the landmark position and its error
covariance. By minimizing the cost

1 B _ —
T =5 150) = X O 5r

1 .
+ 51U — LB,y

X(t) = XOU®), X(0) = Xo,
(18)

19)

with respect to [ we can obtain a measurement purely
dependent on the unknown X (¢). The optimal cost value
in terms of X is then

JH(X) = S5 - X

5 (20)

2
w-1°

where W 2 DDT + RTBR.

When combining this cost with the value function from the
prediction step of the filter, we need to account for the fact
that these two pieces of information are now not statistically
independent as the two filters shared information in previous
filtering steps. This phenomenon is well known and has
given rise to extensive research on safe fusion of correlated
information in the absence of cross covariance information,
see for example [11], [14]. The Covariance Intersection (CI)
algorithm [11] provides the optimal safe solution to this
problem [15]. Let 0 < o« < 1 and consider two possibly
correlated estimates for z, (Z, P) and (', P’). Then the CI
fusion algorithm yields

o+ = pt (a*P_I:i: r(1- a*)P’_lfc’)

=& (1—a*)PTP (& -2,
-1
Pt =(a"P 4 (1=a)P ) @D

~1
o™ = argmin det (aP_l +(1- a)Phl) .
0<a<1

Note that the second formula for 2% given above is not
standard and makes explicit how the prior estimate & is
updated based on a new, possibly correlated estimate Z'.
It is easy to check that the value for ™ given by the CI
algorithm (21) is the minimizer of the convex combination
least squares cost

o™ .
J@) = Sl =2l +

(1-a")

2 (22)

e — &2,
Therefore, we can introduce the following updated error
energy measure for the true pose trajectory,

VT(X,t) = otV (X,t)
23)

— ok = (
0 - x 0l

Given a current estimate (X (¢), P) of the true pose X (),
current landmark estimate (I, P;) and a landmark measure-
ment () of the landmark coordinates [ obtained according
to (12), the safe minimum-energy estimate X * (¢) minimizes
the error energy cost (23). In other words, the task is to find

X*(t) == argmin V* (X, )(t). (24)
X

Denoting 3 == X 17, the resulting update step of the robot
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pose filter is then [7, Eq. (38)]

Xt = Xexp ((-(1 — )Pt {y XV(VV_[T(;@ g)y))DA> :

Pr=(pr-anQ) = g 22

Qu =G W g —Po(W ™ (y — 9))x0x)), 25

1 . . _ _
Q12 = §(W_1(yfy))x + W Qg = WL

B. Landmark Estimation

The filter for the landmark position does not require
a propagation step since the landmark is assumed to be
stationary with respect to the global reference frame .A.
Following the equivalent steps for the derivation of the
update step of the filter as we did for the robot pose filter
above yields the formulas

1 o
J(le) = QHy(t) - X 1(“”‘?[)[”)7’)—1
1 N
+ §||X(t) — X B()-1»
T = Sl — X112
() = 515) O -1 (26)
M2 DD'" + HyPHy.,
(&7 -»)
X

O1><3

_RT
Hx =
01x3

for the combination of the landmark measurement y with the
current robot pose estimate X. Next, we fuse this cost with
the prior cost in a safe way

af -
Ty = S0 .
1—af X .
# Loy BTy,

which yields the following equations for the update step of
the landmark position filter,

=i+ (1= a)BRM T (y— BT (- 5),
- (28)
Pt = (a?‘Pfl (1 a;‘)RM*RT) .

V. SIMULATION STUDY

In this section, we provide a numerical example in order
to demonstrate the performance of the proposed algorithm
from Section IV. We will consider a unicycle robot that is
localising its pose in the plane of operation using linear and
angular velocity measurements and relative measurements
with respect to four landmarks. While all landmarks are
uniquely identifiable to the robot, the position of one of them
with respect to the global reference frame A is unknown
to the robot. The task is to localize the robot as well as
this unknown landmark. We compare the performance of the
proposed algorithm (labeled ‘Safe’ in this section), against
an algorithm based on our previous work [16] for which we
consider all four landmark positions to be known to the robot
(labeled ‘Baseline’ in this section).

10 \\\
] /i . . \\
/1 \
[ 1 \
0 ’ ,' I:'I * I
E \ l‘ ‘I‘ . I
>~ -5 \,",‘ /

AN

-10

S . 14
Robot
Baseline
Safe
Safe

-15

—
——

=20
=20

-15 -5 0 5 10 15 20

Fig. 2. Trajectory of the robot (Orange) and robot position estimate given
by the proposed ‘Safe’ method (Green) and the ‘Baseline’ method (Blue),
respectively. Only the ‘Safe’ method also estimates the position of landmark
l4 (Red), for which the estimation trajectory is shown in (Magenta). The
circles indicate the initial estimates.

We implement the proposed equations using the unit
quaternion representation of rotations. The first equation
in (18) is geometrically integrated using the SE(3) exponen-
tial map in a first order Lie group Euler method. The Ricatti
equation in (18) is numerically integrated using a first order
Euler method. For more details we refer the reader to our
previous work [12], [17]. The time step of the simulation is
dt = 1. Angular and linear velocities 2 = [0,0,—5/13]"
and V = [5,0,0] " are applied to the unicycle robot. These
velocities are measured in the body-fixed frame B and are
then used in the pose prediction equations (18). The veloci-
ties are measured according to (11) with B,, = /1801 (%)
and B, = 0.11(2). We set &, = [0,0,0,..]",0, =
[0y,2,0,0] where 6, .,8,, ~ N(0,1) are random scalars
drawn form the standard normal distribution A (0,1). The
robot is initially at coordinates p,(0) = [—13,0,0]m with
a random initial position estimate at p.(0) = p,(0) +
[0r,2,0r,y,0]m where 6, 4,0,, ~ N(0,10). The initial
attitude of the robot has zero roll and pitch but a yaw angle
of /2 (rad) while the initial estimate of the yaw angle
is 957/180 (rad). The initial robot pose error covariance
is P(0) = diag([7/180, /180,257 /180, 100, 100, 1]). Four
landmarks are located at I; = [0,7,0]" m, I = [7,0,0] " m,
I3 = [7,7,0]" m and Iy = [~7,—7,0]T m with respect to
the global reference frame. The position of landmark I, is
only known to the ‘Baseline’ algorithm. The ‘Safe’ algorithm
has the initial estimate I, = I, + (01,2, 01,4, 0] m where
812,01y ~ N(0,10). The initial error covariance of the
landmark position estimate I, is P;(0) = diag([100, 100, 1]).

The landmark measurements are simulated based on (12)
with € = [ez, €,,0]" m, €, €, ~ N(0,1). The error coeffi-
cient matrix is set as D = 0.011 m.

Figure 2 on the previous page shows the trajectory of
the robot conducting an orbiting maneuver around the four
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Fig. 3. Estimation error for robot position
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Fig. 4. Estimation error for the position of landmark l4. The ‘Baseline’
method knows the position of 14 perfectly while the proposed ‘Safe’ method
estimates this.

landmarks as well as the robot position estimates produced
by the two algorithms and the estimate 4(¢) produced by
the ’Safe’ algorithm. Figure 3 compares the robot position
estimation errors incurred by the two methods demonstrating
that the ’Safe’ method achieves comparable performance to
the ’Baseline’ method despite not knowing the position of
landmark [, in the global reference frame .A. For reference,
Figure 4 shows the estimation error for the position of
landmark /4 incurred by the proposed ’Safe’ method.

VI. CONCLUSION

We provide a modular nonlinear continuous-discrete Geo-
metric Approximate Minimum Energy (GAME) filter for the
problem of concurrent estimation of the 3D pose of a mobile
robot and the 3D position of a landmark where reliable
high rate velocity measurements are available but relative
measurements of landmark positions are only available spo-
radically. The proposed algorithm incorporates a nonlinear
version of Covariance Intersection (CI) to avoid double

counting of information when the two filtering modules
exchange correlated information in form of their respective
state estimates and estimates of their error covariances. We
demonstrate through numerical simulation that the proposed
modular filter achieves comparable performance to a baseline
filter that has access to the positions of all landmarks with
respect to the global reference frame inviting further research
to what extent this enables simple modular augmentation of
existing filters for robotic applications to cover unexpected
failure modes where, for example, the robot pose filter
temporarily loses access to some of its measurement inputs.
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