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Abstract. Let f be a real-valued function on a Riemannian submanifold
of a Euclidean space, and let f̄ be a local extension of f . We show
that the Riemannian Hessian of f can be conveniently obtained from
the Euclidean gradient and Hessian of f̄ by means of two manifold-
specific objects: the orthogonal projector onto the tangent space and the
Weingarten map. Expressions for the Weingarten map are provided on
various specific submanifolds.
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1 Introduction

This paper concerns optimization methods on Riemannian manifolds that make
explicit use of second-order information. This research area is motivated by var-
ious problems in the sciences and engineering that can be formulated as opti-
mizing a real-valued function defined on a Riemannian manifold (see, e.g., [20,
16, 17, 12, 7] for some recently considered applications), and by the well-known
fact that second-order methods tend to have the edge over first-order methods
in situations where an accurate solution is sought or when the Hessian gets ill
conditioned (see [1] for a recent example).

The archetypical second-order optimization method is Newton’s method, of
which several generalizations have been proposed on manifolds. Most of them
fit in the framework given in [19, 5] and [2, Alg. 5]. Besides a smooth real-
valued function f defined on a Riemannian manifold M, the ingredients of the
Riemannian Newton method [2, Alg. 5] are an affine connection ∇ on M and a
retraction R on M. Turning the Riemannian Newton method into a successful
numerical algorithm relies much on choosing ∇ and R and on computing them
efficiently.

A retraction R on M can be viewed as a tool that turns a tangent update
vector into a new iterate on M. Retractions have been given particular attention
in the recent literature, in general [3] and also specifically for the important
cases where M is the Stiefel manifold of orthonormal matrices [15, 21, 13] or the
manifold of fixed-rank matrices [20, 18].



As for the affine connection ∇, it is instrumental in the definition of the
Hessian operator of f on M. Namely, for all x ∈ M and all z in the tangent
space TxM, one defines

Hess f(x)[z] := ∇zgrad f ∈ TxM. (1)

While the convergence analysis of the Riemannian Newton method in [2, §6.3]
provides for using any affine connection, a natural choice for ∇ is the uniquely
defined Riemannian connection, also termed Levi-Civita connection or canonical
connection.

In this paper, for the case where M is a Riemannian submanifold of a Eu-
clidean space E (examples can be found in Section 4) and where ∇ is chosen to
be the Riemannian connection, we give a formula for the Hessian (1) that relies
solely on four objects: (i) the classical gradient ∂f̄(x) of a smooth extension f̄

of f in a neighborhood of M in E , (ii) the classical Hessian ∂2f̄(x) of f̄ , (iii) the
orthogonal projector Px onto TxM, (iv) the Weingarten map Ax, also called
shape operator. (The symbol A is “A” in Fraktur font.) We provide expressions
for Px and Ax on some important Riemannian submanifolds. These expressions
yield a formula for the Riemannian Hessian where f is involved only through
the classical gradient and Hessian, ∂f̄(x) and ∂2f̄(x). These results can be ex-
ploited in various Riemannian optimization schemes, such as Newton’s method
or trust-region methods, where the knowledge of the Hessian is either mandatory
or potentially beneficial.

The paper is organized as follows. Section 2 recalls in more details the defini-
tion of the Riemannian Hessian on submanifolds of Euclidean spaces. Section 3
lays out the relation between the Riemannian Hessian and the Weingarten map.
Finally, section 4 provides formulas for the Weingarten map on several specific
manifolds.

An early version of Sections 2 and 3 of this paper can be found in section 6
of the technical report [4].

2 The Riemannian Hessian on submanifolds

Let M be a d-dimensional Riemannian submanifold of an n-dimensional Eu-
clidean space E ; see, e.g., [2, §3.6.1] or [9, §2.A.3] for details. Let x0 be a point
of M, let f be a smooth real-valued function on M around x0, and let f̄ be a
smooth extension of f to a neighborhood U of x0 in E .

For all x ∈ M, we let ∂f̄(x) and ∂2f̄(x) denote the (Euclidean) gradient and
(Euclidean) Hessian of f̄ at x. In coordinates, we have

∂f̄(x) =
[

∂1f̄(x) . . . ∂nf̄(x)
]T

and
[∂2f̄(x)]ij = ∂ij f̄(x), i, j = 1, . . . , n.

We also let Px denote the orthogonal projector onto TxM, defined by

Px : TxE ≃ E → TxM : ξ 7→ Px(ξ) (2)



with 〈ξ − Px(ξ), ζ〉 = 0 for all ζ ∈ TxM. Examples will be given in Section 4.
Once an orthonormal basis is chosen for E , Px is represented as a (symmetric)
matrix; hence P can be viewed as a matrix-valued function on M. For any
function F on M into a vector space, and for any z ∈ TxM, we let

DzF = lim
t→0

F (γ(t)),

where γ is any curve on M with γ(0) = x and γ′(0) = z.
We have

grad f(x) = Px∂f̄(x), (3)

where grad f(x) denotes the (Riemannian) gradient of f at x; see [2, §3.6.1] for
details. Moreover, letting ∇ denote the Riemannian connection on M, we have
that Hess f(x), the Riemannian Hessian of f at x, is the linear transformation
of TxM defined, for all z ∈ TxM, by

Hess f(x)[z] = ∇zgrad f (4)

= PxDz (grad f) (5)

= PxDz

(

P∂f̄
)

(6)

= Px∂
2f̄(x)z + PxDzP∂f̄(x). (7)

Equation (4) is the definition (1). Equation (5) comes from the classical expres-
sion of the Riemannian connection on a Riemannian submanifold of a Euclidean
space; see, e.g., [2, §5.3.3] or [9, §2.B.2]. Equation (6) follows from (3). Finally, (7)
is an application of the product rule, observing that P is a matrix-valued func-
tion, ∂f̄ a vector-valued function, and PxPx = Px since Px is a projector.

Expression (7) features the four ingredients alluded to in the introduction,
namely ∂f̄(x), ∂2f̄(x), Px, PxDzP. The rest of this paper is devoted to estab-
lishing the relation of PxDzP with the Weingarten map and to working out
formulas for PxDzP on various specific Riemannian submanifolds.

3 The Riemannian Hessian and the Weingarten map

We are thus concerned with PxDzP, where z ∈ TxM. In this section, we estab-
lish a relation (8) between PxDzP and the Weingarten map, defined next. This
relation does not seem to have been previously pointed out in the literature, but
it is present in the technical report [4].

Definition 1 (Weingarten map). The Weingarten map of the submanifold

M at x is the operator Ax that takes as arguments a tangent vector z ∈ TxM
and a normal vector v ∈ T⊥

x M and returns the tangent vector

Ax(z, v) = −PxDzV,

where V is any local extention of v to a normal vector field on M.



It is known [6, Prop. II.2.1] that PxDzV does not depend on the choice of the
extension V , and this makes the above definition valid. The next result confirms
this fact and gives an alternate expression of Ax(z, v). Let

P⊥

x = I − Px

denote the orthogonal projector onto the normal space to M at x. It is useful
to keep in mind that, in our convention, D applies only to the expression that
directly follows: DzFG = (DzF )G 6= Dz(FG).

Theorem 1. The Weingarten map Ax satisfies

Ax(z,P
⊥

x u) = PxDzPu = PxDzPP⊥

x u, (8)

for all x ∈ M, z ∈ TxM, and u ∈ TxE ≃ E.

Proof. We first show that

PxDzP = PxDzPP⊥

x , (9)

which takes care of the second equality in (8). Since PP⊥ = 0, we have 0 =
DzPP⊥

x +PxDzP
⊥ = DzPP⊥

x −PxDzP. It follows that Px DzP Px = 0. Hence,
since Px + P⊥

x = I, we have PxDzP = PxDzP(Px + P⊥
x ) = Px DzP Px +

Px DzP P⊥
x = Px DzP P⊥

x , and the claim (9) is proven.
For the first equality in (9), we have, for all extension U of u,

−PxDz(P
⊥U) = −PxDzP

⊥U − PxP
⊥

x DzU = −PxDzP
⊥U = PxDzPU.

This concludes the proof.

A consequence of Theorem 1 for the Riemannian Hessian expression (7) is
that PxDzP∂f̄(x) = PxDzPP⊥

x ∂f̄(x) = Ax(z,P
⊥
x ∂f̄(x)). Observe in particu-

lar that Px DzP ∂f̄(x) depends on ∂f̄(x) only through is normal component
P⊥
x ∂f̄(x). In summary we have obtained the expression

Hess f(x)[z] = Px∂
2f̄(x)z + Ax(z,P

⊥

x ∂f̄). (10)

4 Projector and Weingarten map on specific manifolds

We now present formulas for the projector P and the Weingarten map A on
various specific manifolds. All the formulas provided for P and most—but ap-
parently not all—of those provided for A can be found in the literature.

4.1 The Stiefel manifold

The Stiefel manifold of orthonormal p-frames in R
n, denoted by St(p, n), is the

submanifold of the Euclidean space R
n×p defined by

St(p, n) = {X ∈ R
n×p : XTX = Ip},



where Ip stands for the identity matrix of size p. We point out that the Rieman-
nian metric obtained on St(p, n) by making it a Riemannian submanifold of Rn×p

is different from the canonical metric mentioned in [8, §2.3.1]. The orthogonal
projector PX onto TXSt(p, n) is given by

PXU = (I −XXT)U +X
1

2
(XTU − UTX)

= U −X
1

2
(XTU + UTX);

see, e.g., [2, §3.6.1].
Let Z ∈ TXM and V ∈ T⊥

XM. Hence V = XS with S = ST and Z =
X⊥K+XΩ where Ω = −ΩT, K is an arbitary (n−p)×p matrix, and X⊥ is an
orthonormal n× (n− p) matrix such that XTX⊥ = 0; see [2, §3.6.1] for details.
We have

PXDZPV = PX

(

V − Z
1

2
(XTV + V TX)−X

1

2
(ZTV + V TZ)

)

.

Since V and X 1

2
(ZTV +V TZ) belong to the normal space T⊥

XSt(p, n), and since
1

2
(XTV + V TX) = S, we are left with

PXDZPV = −PXZS

= −ZS +X
1

2
(XTZS + SZTX)

= −ZS +
1

2
XΩS −

1

2
XSΩ

= −ZXTV −
1

2
XZTV −

1

2
V XTZ

= −ZXTV −X
1

2
(ZTV + V TZ).

In summary, for all Z ∈ TXM and V ∈ T⊥

XM, we have

AX(Z, V ) = −ZXTV −X
1

2
(ZTV + V TZ).

An equivalent formula can be found in [11, §4.1].

4.2 The sphere

The unit sphere Sn−1 is the Stiefel manifold St(p, n) with p = 1. The orthogonal
projector Px onto the tangent space reduces to

Pxu = (I − xxT)u = u− xxTu,

and the Weingarten map reduces to

Ax(z, v) = −zxTv.



4.3 The orthogonal group

The orthogonal group O(n) is the Stiefel manifold St(p, n) with p = n. The
orthogonal projector PX onto the tangent space reduces to

PXU = X
1

2
(XTU − UTX),

and the Weingarten map reduces to

AX(Z, V ) = −X
1

2
(V TZ − ZTV ).

4.4 The Grassmann manifold

Let Grm,n denote the Grassmann manifold of m-dimensional subspaces of Rn,
viewed as the set of rank-m orthogonal projectors in Rn, i.e.,

Grm,n = {X ∈ R
n×n : XT = X,X2 = X, trX = n}.

Then, from [10, Prop. 2.1], we have that PX = ad2X with adXA := [X,A] :=
XA− AX and ad2X := adX ◦ adX . It follows that, for all Z ∈ TXGrm,n and all
V ∈ T⊥

XGrm,n, it holds that

PX DZP V = ad2X (adZadXV + adXadZV )

= ad2XadZadXV + adXadZV

= adXadZV

= −adXadV Z,

where adAB := [A,B] := AB−BA. One recovers from (10) the Hessian formula
of [10, (2.109)].

4.5 The fixed-rank manifold

Let Mp(m × n) denote the set of all m × n matrices of rank p. This is a sub-
manifold of Rm×n of dimension (m + n − p)p; see [14, Example 8.14]. Let X ∈
Mp(m × n) and, without loss of generality, let X = UΣV T with U ∈ St(p,m)
and V ∈ St(p, n). The projector PX onto TXMp(m× n) is given by [20, §2.1]

PXW = PUWPV + P⊥

UWPV + PUWP⊥

V = WPV + PUW − PUWPV ,

where PU := UUT and P⊥

U := I − PU .
We now turn to the Weingarten map. Let Z ∈ TXMp(m × n). Let U̇ ∈

TUSt(p,m), Σ̇ diagonal, and V̇ ∈ TV St(p, n) be such that Z = DU̇,Σ̇,V̇ (UΣV T) =

U̇ΣV T+UΣ̇V T+UΣV̇ T. We also let ṖU = DU̇PU = U̇UT+UU̇T, and likewise

with ṖV . Let W ∈ T⊥

XMp(m× n). We have

PX DZPW = PX

(

W ṖV + ṖUW − ṖUWPV − PUW ṖV

)

= PX

(

P⊥

UW ṖV + ṖUWP⊥

V

)

= P⊥

UW ṖV PV + PU ṖUWP⊥

V .



Since W ∈ T⊥

XMp(m × n), we have W = U⊥LWV T
⊥

with LW arbitary; this
follows from the expression of TXMp(m × n) in [20, §2.1]. Hence UTW = 0,
P⊥

UW = W , WV = 0, WP⊥

V = W . Using these equations, one obtains

P⊥

UW ṖV PV = W (V̇ V T + V V̇ T)PV = WV̇ TV TPV = WV̇ TV.

Likewise, we obtain
PU ṖUWP⊥

V = UU̇TW.

In summary, we have

PX DZPW = WV̇ TV + UU̇TW.

We now seek an alternate expression where only X, Z, and W appear. To
this end, observe that the pseudo-inverse of X is given by X+ = V Σ−1UT.
Then, recalling that WV = 0, we find that

WZT(X+)T = W (V̇ ΣUT + V (Σ̇UT +ΣU̇T))UΣ−1V T

= WV̇ ΣUTUΣ−1V T

= WV̇ V T.

Similarly, we obtain that

(X+)TZTW = UU̇TW.

In conclusion, we have

PX DZPW = WZT(X+)T + (X+)TZTW.

It is interesting to note that this expession, combined with (10), provides an
expression that allows to recover the Hessian formula found in [20, §2.3].
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