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Abstract This paper presents a method for finding an Lq-
closest-point to a set of affine subspaces, that is a point for
which the sum of the q-th power of orthogonal distances to
all the subspaces is minimized, where 1 ≤ q < 2. We give
a theoretical proof for the convergence of the proposed al-
gorithm to a unique Lq minimum. The proposed method is
motivated by the Lq Weiszfeld algorithm, an extremely sim-
ple and rapid averaging algorithm, that finds the Lq mean of
a set of given points in a Euclidean space. The proposed al-
gorithm is applied to the triangulation problem in computer
vision by finding the Lq-closest-point to a set of lines in 3D.
Our experimental results for the triangulation problem con-
firm that the Lq-closest-point method, for 1 ≤ q < 2, is
more robust to outliers than the L2-closest-point method.

Keywords Lq Weiszfeld algorithm · affine subspaces ·
triangulation · Lq mean

1 Introduction / Literature Review

We propose a method, based on the Lq Weiszfeld algorithm
[1], for finding an Lq-closest-point to a set of affine sub-
spaces in IRN , where 1 ≤ q < 2 and the Lq-closest-point
to subspaces is defined as a point for which the sum of the
q-th power of orthogonal distances to the subspaces is mini-
mized. In addition to a theoretical proof for the convergence
of the proposed algorithm to a unique Lq minimum, we
show that the proposed algorithm can be used to solve the
triangulation problem by finding the Lq-closest-point to a
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set of lines in 3D. Our experimental results for the Dinosaur
set show that in the presence of outliers the proposed Lq

method gives superior results to the L2 method and an L2

bundle-adjustment algorithm.
A d-dimensional affine subspace of IRN is a set S =

{
∑d+1

i=1 aixi |
∑d+1

i=1 ai = 1} for some points {xi}. Given a
set of affine subspaces {S1,S2, . . . ,Sk}, possibly of differ-
ent dimensions. We seek a point X for which the sum of the
q-th power of orthogonal distances to the subspaces achieves
its minimum. The minimization function is,

min
X∈IRN

k∑
i=1

d(X,Si)q ,

where 1 ≤ q < 2 and d(X,Si) is the orthogonal distance of
a point X from the i-th subspace Si. We refer to the mini-
mum of the above function as the Lq-closest-point to sub-
spaces or simply the Lq minimum. The distance function
d(X,Si) is always the minimum Euclidean-distance from
the point to the subspace, equal to miny∈Si ‖X−y‖. where
‖·‖ represents the Euclidean 2-norm. Thus, the q in Lq indi-
cates that we are minimizing the q-norm of the error-vector
formed by the distances to all the subspaces; we are not con-
sidering the q-norm in IRN .

In considering the q-norm, we are most interested in the
case q = 1, which gives a high degree of robustness to out-
liers. However, considering the case 1 ≤ q < 2 presents no
additional difficulty in theory or implementation. It does in
fact have an additional advantage, since the distance func-
tion d(X,S)q is differentiable for q > 1, but not for q = 1.
Thus, one can avoid difficulties by considering values of q
close to but not equal to 1, with no significant difference in
numerical results.

Weiszfeld Algorithms. The problem of finding the Lq-
closest-point to a set of subspaces is closely related to the
problem of finding theLq mean of a set of points in IRN . For
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points {y1,y2, . . . ,yk} in some metric space, the Lq-mean
is a point for which the sum of the q-th power of distances
to the yi is minimized. The Lq cost-function in this case is
defined as

Cq(x) =

k∑
i=1

d(x,yi)
q , (1)

where d(·, ·) is a distance function. The problem of find-
ing the Lq mean of a set of points in IRN goes back to
the Fermat-Weber problem, where a point in IRN is desired
for which the sum of distances to a given set of points in a
plane is minimized. A classic algorithm that solves for the
L1 mean of a set of points in IRN is the Weiszfeld algorithm
[34]. This is a form of gradient descent with a specifically
defined step size, not requiring either line search or compu-
tation of gradients. A generalization of the Weiszfeld algo-
rithm to solve for the Lq solution, for 1 ≤ q < 2, of the
problem is proposed in [1].

A Weiszfeld-inspired solution strategy to solve for the
minimum of the Lq norm of the problem has also been pro-
posed in [5,4,3]. Note that in [5] the sum of Lq norm is
minimized, that is minx

∑k
i=1 wi‖x− yi‖q. That is differ-

ent from the type of problems solved in [1], or here, where
the sum of the q-th power of distances is minimized.

The Weiszfeld algorithm has been generalized to L1-
closest-point problems in Banach spaces [10], rotation space
SO(3) [15,16] and general Riemannian manifolds [12,37].

The problem of finding the Lq-closest-point to affine
subspaces and its solution by using the Lq Weiszfeld algo-
rithm must not be confused with the Iterative Re-weighted
Least Squares (IRLS) technique in compressed sensing (CS)
[8,6,11]. In compressive sensing the problem is to find a
point on an affine constraint subspace closest to a union
of linear subspaces (defined by all possible permutations
of the k non-zero element positions for k-sparse vectors).
On the other hand, we have solved quite a different prob-
lem of finding a point for which the sum of the q-th power
of distances to all the given affine subspaces is the mini-
mum. Furthermore, the convergence of the IRLS algorithms
(in compressed sensing) to the Lq solution is only guaran-
teed when the solution is sparse. This assumption of spar-
sity limits the applicability of the IRLS algorithms only to
the class of problems having sparse solutions. On the con-
trary, a more general class of problems can be solved using
the proposed algorithm. In other words, in our problems of
interest it is robustness, and not sparsity, that is the goal.

Nearest subspace problems. In many computer vision ap-
plications, data is represented by linear subspaces in some
Euclidean space. For example, subspaces are often used to
represent multibody structure and motion, objects under dif-
ferent illumination settings, etc. The problem of finding an
optimal point of intersection of higher dimensional affine

Fig. 1 Triangulation: Due to noise in image point measurements lines
through the center of cameras and yi do not intersect at point X.

subspaces has become an important component in a wide
range of computer vision and pattern recognition applica-
tions. The proposed algorithm can be used to solve the prob-
lem of triangulation [17,32], corner detection through the
intersection of planes [13], etc.

The problem of finding theL2-closest-point to subspaces
can be solved in closed form. Clearly, theL2 method is more
efficient than the proposed iterative Lq technique but it is
known that L2 methods are not as robust to outliers as the
Lq methods, for some values of q. In this paper, we are in-
terested in finding a robust solution of the problem. Thus,
we propose an Lq Weiszfeld-inspired [1] approach.

In this paper, we show that the Lq Weiszfeld algorithm
[1] for points, that is zero dimensional subspaces in IRN ,
can be generalized to find a closest-point to a set of higher
dimensional subspaces, for example lines, planes, subspaces
or a mixture of these. Just like the Lq Weiszfeld algorithm,
the proposed algorithm is an iterative optimization technique
where updates are computed analytically. Moreover, the pro-
posed algorithm is simple to understand and easy to code
because an existing closed-form L2 method can be modified
to give a more robust Lq solution. In short, the proposed al-
gorithm inherits all features of the Lq Weiszfeld algorithm.

An important point to note here is that the proposed al-
gorithm finds the Lq minimum even if the given subspaces
have different dimensions. For example, the algorithm can
be used to find the Lq minimum distance to a set of lines
and planes in IRN . In this paper, we give a proof of conver-
gence of the proposed algorithm to the Lq minimum.

A similar problem known as the Heron problem is named
after the Heron of Alexandria. The Heron problem is to find
a point on a line in a plane where the sum of distances to two
given points is minimized. The Heron problem is a special
case of the Lq-closest-point to subspaces problem, where
the minimum is constrained to be on a subspace (a line).
The Heron problem has been generalized to find a point in
a closed convex set that minimizes the sum of distances to
given convex sets. This problem is referred as the general-
ized Heron problem and several iterative techniques have
been proposed recently in [24,25,7] to solve it.
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In order to show the applicability of the proposed algo-
rithm we consider the problem of triangulation [17,18]. In
triangulation we seek a point in 3D space that best repre-
sents a point of intersection of lines, where each line is pass-
ing through the center of camera and intersecting the im-
age plane at the corresponding image point. Due to various
types of noise in image point measurements these lines are a
skewed form of the original lines, as shown in fig. 1. There-
fore, these lines normally do not intersect at a single point
in 3D space, possibly these lines may not intersect at all.
So the triangulation problem is then reduced to the problem
of finding the optimal point of intersection of 1-dimensional
subspaces and can be solved using the proposed algorithm.

One can also find the vertices of the objects in the scenes
that have dominant planar structure, for example architec-
tural scenes [29,31,9], indoor scenes [14,26,36], aerial im-
ages [2,28], Manhattan world [33,35,13], building recon-
struction from laser scanning data [23,19,27] and others, by
finding the point of intersection of planes, each representing
an adjacent planar face of the object, shown as red points in
fig 2.

Ideally, we should be able to find the vertices of a pla-
nar object as the point of intersection of planes of the ad-
jacent faces. But in practice, due to texture-poor surfaces,
low resolution of images, lens distortion and various types
of noise, the estimated planes may not be a good represen-
tation of planar faces. Clearly, when the point is defined by
three planes then they intersect at a single point, possibly
different from the ground truth point. On the other hand,
if a corner point lies at the intersection of more than three
planes, indicated as red points in fig 2, then the estimated
planes may not intersect at a single point and may not even
generate a single corner point.

The problem, then, is to find an optimal point of intersec-
tion of skewed planes, each representing a planar face. Thus,
we can apply the proposed algorithm to find the Lq-closest-
point to these planes. In order to improve the accuracy of
results one can take several estimates for each of the planar
faces and then find the intersection of these planes by using
the proposed algorithm.

In this paper we have shown that the Lq Wesizfeld al-
gorithm can be used to find the Lq-closest-point of affine
subspaces of any dimension, for 1 ≤ q < 2. The simplicity
of the Lq Weiszfeld algorithm and the rapidity with which
its iterative update may be computed makes the proposed
method attractive.

2 Lq Optimization for Points

As mentioned before, the problem of finding the Lq-closest-
point, for 1 ≤ q < 2, to a set of affine subspaces is related to
the problem of finding the Lq mean of a set of points. In this

Fig. 2 Corner point estimation: The object in the figure has a strong
geometric structure and corner points, in red, are at the intersection
of more than 3 planar faces, though some may actually be coplanar.
A segmentation algorithm will find these planar segments individually
without the knowledge that they are in fact coplanar. Due to noise,
extracted planes representing these faces may be skewed. Since these
points are at the intersection of more than 3 planes, these skewed
planes may not intersect at a single point. Thus, the problem then is
to find an optimal point of intersection of these planes. Image taken
from http://russta.wordpress.com/category/sketch-up

section we start by reviewing the technique for Lq averaging
for points. Given a set of points {y1,y2, . . . ,yk} in some
metric space, the Lq mean is a point x̄ that minimizes the
sum of the q-th power of distances to all given points. Thus,

x̄ = argmin
x

k∑
i=1

d(x,yi)
q , (2)

where d(x,yi) is the distance between x and yi.
Starting from some initial point, the current estimate of

the Lq minimum is updated using an update function W , as

xt+1 = W (xt) =

∑k
i=1 w

t
i yi∑k

i=1 w
t
i

if xt /∈ {yi}

= yj if xt = yj

, (3)

where wt
i = ‖xt − yi‖q−2.

It is shown in [1] that this update function results in a
cost decrease, and that starting from a random point x0 ∈
IRN , the sequence of points (xt) obtained using (3) will ei-
ther converge to the Lq minimum, or it will stop at some
point with xt = yi.

The algorithm is a form of gradient descent with explic-
itly defined step size; it may alternatively be seen as an iter-
atively reweighted least-squares algorithm.

The characteristic of the Weiszfeld algorithm and its gen-
eralizations is that they are provably convergent iterative
optimization algorithms that do not require computation of
gradients or line-search. As such, they are very easy to un-
derstand, and code. The iterative update is very quick to
compute and in practice, the algorithms are quick to con-
verge.
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(a) Iteration 1 (b) Iteration 2

Fig. 3 Weiszfeld Algorithm (Gradient Descent Form): (a) shows three
fixed points (green) and a starting point (red) from which the sum of
distances to fixed points (green) is to be minimized. (b) shows an up-
dated point (red) after one iteration of the Weiszfeld algorithm in the
descent direction.

3 Lq-Closest-Point to Subspaces

In this section we formulate the problem of finding the Lq-
closest-point to subspaces and define notation that is used in
the rest of the paper. The Lq-closest-point, for 1 ≤ q < 2, to
a set of subspaces is defined as a point for which the sum of
the q-th powers of orthogonal distances to all the subspaces
is the minimum, as shown in fig 4. We refer to this point as
the Lq minimum or Lq-closest-point.

Given a set of affine subspaces {S1,S2, . . . ,Sk}, the Lq

cost-function is defined as

Cq(X) =

k∑
i=1

d(X,Si)q =

k∑
i=1

‖X− PSi(X)‖q , (4)

where 1 ≤ q < 2 and d(X,Si) is the orthogonal distance of
a point X from Si. Let PSi(X) be the orthogonal projection
of a point X onto Si, then the distance d(X,Si) is simply
the Euclidean distance between X and PSi(X), that is ‖X−
PSi(X)‖.

The gradient of the Cq cost function is

∇Cq(X) = q

k∑
i=1

X− PSi(X)

‖X− PSi(X)‖2−q
. (5)

Orthogonal Projection: We can write PSi(X) as

PSi(X) = Ci + Ai (X−Ci) , (6)

where Ai is a matrix representing orthogonal projection and
Ci ∈ Si is taken to be the origin of an orthonormal basis
of Si. Let {e1, e2, . . . , ed} be the orthonormal basis of a
d-dimensional subspace S, the projection matrix A can be
computed as A =

∑d
i=1 eie

T
i .

By substituting the value of PSi(X) in d(X,Si), the dis-
tance function can be explicitly written as,

d(X,Si) = ‖X− (Ci + Ai (X−Ci))‖ = ‖Mi (X−Ci))‖ ,

where Mi = I− Ai.

S3

X S2

S1

PS1
(X) PS2

(X)

PS3
(X)

Fig. 4 Lq-closest-point to Subspaces: The above figure shows three
subspaces (lines), S1, S2 and S3. We seek a point X for which the
sum of the q-th powers of orthogonal distances is minimum, that is∑

i d(X,Si)q . Each grey point represents the orthogonal projection
PSi

(X) of a red point X, onto a corresponding subspace.

Note that Ai is a projection matrix or a projector, and so
is Mi = (I− Ai). For a projection matrix M2i = Mi. Since it is
a symmetric matrix we have Mi = MTi . Thus, we have,

MTi Mi = MiMi = M2i = Mi . (7)

With this notation, the Lq distance cost-function (4) be-
comes

Cq(X) =

k∑
i=1

‖Mi(X−Ci)‖q

=

k∑
i=1

(
(X−Ci)

T Mi (X−Ci)
)q/2

.

(8)

A few points are to be noted here. The points Ci can be
chosen as any arbitrary points on the subspaces Si, and the
matrices Mi do not depend on this choice. The expression
(8) for the subspace distance differs from the form of the Lq

distance to points Ci only in the presence of the matrix Mi,
which is a matrix of rank ri, the codimension of the space
Si.

3.1 Properties of the Lq Cost Function

In this section we discuss some basic properties of the Lq

cost-function. Let {S1,S2, . . . ,Sk} be a set of affine sub-
spaces of IRN and denote by T (Si) (the tangent-space of Si)
the set of direction vectors parallel to Si; otherwise stated,
T (Si) is the linear space obtained by translating Si to the
origin.

The Lq cost-function, being a sum of individual (con-
vex) distance functions, is a convex function. Moreover, for
q > 1, the Lq cost-function is strictly convex, except when
there exists a vector that is parallel to all the subspaces. If
we assume that such a vector does not exist then the cost-
function has a unique global minimum, as the following
lemma states.

Lemma 1 Given a set of affine subspaces {S1,S2, . . . ,Sk},
the Lq cost-function (4), for q > 1, is strictly convex and
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hence has a single minimum if and only if their tangent
spaces T (Si) have trivial intersection.

A proof of this lemma and comments regarding the case
q = 1 are given in section 6.
Assumption: It will be assumed in this paper that the con-
dition of lemma 1 holds. The tangent spaces have trivial in-
tersection and so (4) has a single minimum.

Since for q > 1 the Lq cost-function is convex and dif-
ferentiable, the minimum of the cost function occurs when
the gradient vanishes.

For the case q = 1, the condition is more complex, since
the minimum may occur on one of the subspaces, at a point
where the cost function is not differentiable. Similar to what
was shown in [34] for the classic Fermat-Weber problem, the
minimum of this cost-function may be classified as follows,
for the case when the subspaces Si are disjoint, as stated
here.

Lemma 2 If the subspaces Si are disjoint, a point X∗ ∈
IRN is a minimum of the cost-function (4) for q = 1 if and
only if it satisfies one of the following conditions:

1. ∇C1(X) vanishes at X∗,
2. X∗ ∈ Sj and the gradient∇Cj

1(X) has norm no greater
than 1 and is orthogonal to Sj , where Cj

1(X) =
∑

i 6=j

d(X,Si) .

The proof of the above lemma is similar to the case
where each Si is a single point, as given in [34], and is there-
fore omitted. It illustrates, however, the advantage of q > 1,
since the identification of the minimum is far simpler.

3.2 Weiszfeld iteration

We wish to find the point X that minimizes the Lq cost-
function (8). There is no closed-form solution to this prob-
lem when q 6= 2. The basic idea of the Weiszfeld approach
is to cast it as an iteratively reweighted least-squared (IRLS)
problem, and minimizing by an iterative procedure.

Consequently, given a vector of weights w, we define a
weighted L2 cost-function

C w
2 (X) =

k∑
i=1

wi ‖Mi(X−Ci)‖2 . (9)

Weiszfeld iteration consists in starting with some initial point
X0 and defining a sequence of iterates Xt, setting weights

wt
i = ‖Mi(Xt −Ci)‖q−2 , (10)

and then minimizing (9) to give the next estimate

Xt+1 = argmin
X∈IRN

k∑
i=1

wt
i ‖ Mi(X−Ci) ‖2 . (11)

The weights wt
i are updated at each step of iteration. This is

the basic Weiszfeld algorithm for subspaces, which we shall
call the IRLS algorithm. Slight refinements of this algorithm
will be proposed in the what follows. However, the essential
result of this paper is that the algorithm will converge to the
optimum from most starting points.

Before considering the issue of convergence, however, it
will be shown how each step of the algorithm may be carried
out.

3.3 Solving the weighted L2 problem

Problem (11) has a very simple structure and its solution can
be computed in closed form. In fact, since the weights wt

i

are fixed at each step, this is nothing more than a simple lin-
ear least-squares problem. Equation (9) can be written more
compactly as C w

2 (X) = ‖MX − c‖2, where M is formed as
the stack of the matrices

√
wi Mi, and c is the stack of vectors√

wi MiCi. The solution is then given using the normal equa-
tion method as X = (MTM)−1MTc. In terms of the individual
Mi and Ci, this solution is

X =

(
k∑

i=1

wi Mi

)−1 ( k∑
i=1

wi Mi Ci

)
, (12)

where we have used the relation MTi Mi = Mi from (7). Thus,
theL2-closest-point to subspaces has a closed form solution.

Numerical stability. If the current estimate Xt lies close
to one of the subspaces Si, then the weight wi given by
(10) can become quite large. If the iterates Xt converge to-
wards one of the subspaces, then the corresponding weight
becomes infinite. One can introduce some degree of stabil-
ity by dividing all the weights wi by the maximum weight
wmax without changing the problem. Thus, each weight is
replaced by wi/wmax.

However, if one of the weights wi = wmax becomes
very large, then the matrix M becomes poorly conditioned.
The matrix in (12) being inverted becomes increasingly close
to singular. The results will be numerically unstable, and
meaningless as Xt approaches Si.

The problem here is the use of the method of normal
equations to solve the least-squares problem. An alternative
(superior) method is to use Singular Value Decomposition
(SVD) to minimize C w

2 = ‖ MX − c ‖2. Let M = UDVT

be the SVD of matrix M where D is an invertible diagonal
matrix. Then the solution X is given by

X = V D−1UT c . (13)

When the weights wi are of very different orders of mag-
nitude, this SVD method works very much better than the
method given by the update (12). For more on this topic, see
Appendix 5 of [18].
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It should be noted that if one of the iterates Xt lands
precisely on one of the subspaces Si, then the update rule is
undefined, because the corresponding weightwt

i is infinite if
q < 2. For practical purposes, this possibility could perhaps
be ignored, as numerically unlikely. It can also be avoided,
as shall be seen, by a suitable choice of an initial point X0.
However, for an investigation of convergence, as well as de-
scribing a more complete update method, it is necessary to
consider the update rule when a point Xt lies on a subspace.
This will be done in the next section.

3.4 Lq cost-function on intersections of subspaces

The cost-function (8) may be restricted to points lying on
an intersection of the subspaces Si. We introduce some new
notation. If I is a subset of the integers 1, . . . , k indexing
the subspaces Si, we denote ∩i∈I Si by SI . The intersection
may, of course, be empty. Further, define S◦I by

S◦I = SI\
⋃
i 6∈I

Si ,

the set of points that lie in SI but not the intersection of any
larger set of subspaces.

For consistency, if I = ∅, then SI is defined as the whole
of IRN and S◦I is the complement of the union of subspaces.
Note that a point X lies in exactly one non-empty set S◦I .
Since every point lies on some maximal set (maybe empty)
of subspaces, Si, the S◦I form a decomposition of IRN into
disjoint sets.

If X ∈ SI , then its distance to any Sj with j ∈ I van-
ishes, and the Lq cost-function takes the form

CI
q (X) =

∑
i 6∈I

d(X,Si)q , (14)

for points X ∈ SI . This cost-function may be minimized to
find the point of smallest cost lying in the subspace SI . The
solution to this problem can also not be solved in closed
form, unless q = 2. To solve it one makes use of a weighted
L2 cost-function

CIw
2 (X) =

∑
i 6∈I

wi d(X,Si)2 . (15)

This leads to an update procedure that can be applied at any
point X in IRN as follows. If Xt ∈ S◦I , set

wt
i = d(Xt,Si)q−2 for i 6∈ I,

Xt+1 = argmin
X∈SI

∑
i 6∈I

wt
i d(X,Si)2 .

(16)

This is the update rule that will be used in the rest of the
paper. The mapping Xt 7→ Xt+1 defined here will be re-
ferred to as an update function W defined such that Xt+1 =

W (Xt). In the case when Xt does not lie on any of the sub-
spaces Sj , it corresponds exactly with the update rule given
by (10) and (11).

Continuity: An important point for investigating the con-
vergence of the sequence of updates is the way the update
mappings fit together for the different spaces S◦I .

Lemma 3 The update mappingW defined in (16) is contin-
uous on IRN .

Proof. It is assumed (the blanket assumption in this paper)
that there is no direction tangential to all the Si. Conse-
quently, the cost function (4) is strictly convex, and all the
argmin operations in this proof yield a single point. More-
over, the function W (X) defined above is well-defined.

Consider an arbitrary sequence of points Xj converging
to a point X∗. Continuity ofW will follow from proving that
W (Xj) converges to W (X∗).

The sequence can be broken up into subsequences, each
one consisting of those points in some fixed S◦J , where J is
a subset of {1, 2, . . . , k}. It will be sufficient to show that
W (Xj) converges to W (X∗) for Xj in each infinite subse-
quence separately. Thus, we assume that all Xj lie in some
fixed S◦J and converge to a point X∗ ∈ S◦I for some S◦I ,
necessarily satisfying J ⊂ I and hence SI ⊂ SJ . If I = J ,
the required result is immediate, since the update mapping
is continuous at points in S◦J .

Since Xj converges to SI the distances d(Xj ,Si) con-
verge to zero for all i ∈ I . We break up the sequence further
into subsequences indexed by i ∈ I\J , such that a point Xj

is assigned to subsequence i if d(Xj ,Si) is the maximum
of these distances over all i ∈ I\J . Once again, each such
subsequence, if infinite, must converge to X∗, and again it is
sufficient to consider each one separately.

Without loss of generality, therefore, we assume that J  
I , that Xj is a sequence of points in S◦J converging to a
point X∗ in S◦I and that there is an index (chosen without
loss of generality to be 1) in I\J , such that d(Xj ,S1) ≥
d(Xj ,Si) for all i ∈ I\J . The update Yj = W (Xj) is
defined by

Yj = argmin
X∈SJ

∑
i 6∈J

wij d(X,Si)2 (17)

with wij = d(Xj ,Si)q−2. Continuity is proved by showing
that Yj converges to Y∗ = W (X∗), given by

Y∗ = argmin
X∈SI

∑
i 6∈I

w∗i d(X,Si)2 (18)

where w∗i = d(X∗,Si)q−2. Define the function f(X) =∑
i 6∈I w

∗
i d(X,Si)2, and observe that f is continuous ev-

erywhere and Y∗ = argminX∈SI
f(X).
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The first step is to show that the points Yj converge to
the set SI . Observe that the weights w1j increase to infin-
ity as Xj approaches S1. At the same time, weights wij for
i 6∈ I converge to d(X∗,Si)q−2, and hence remain bounded.
We define weights w′ij = wij/w1j and observe that w′ij ≥ 1

for i ∈ I\J , whereas limj→∞ w′ij = 0 for i 6∈ I . In addi-
tion, weights wij may be replaced in (17) by w′ij without
changing Yj . From (17) it follows that for any X∗ ∈ SI ,∑
i∈I\J

w′ij d(Yj ,Si)2 +
∑
i 6∈I

w′ij d(Yj ,Si)2

≤
∑

i∈I\J

w′ij d(X∗,Si)2 +
∑
i6∈I

w′ij d(X∗,Si)2

=
∑
i 6∈I

w′ij d(X∗,Si)2

(19)

since d(X∗,Si) = 0 for i ∈ I . This sum converges to
zero, since w′ij converges to zero for i 6∈ I . It follows that∑

i∈I\J w
′
ij d(Yj ,Si)2 converges to zero.

Next, let ηj =
∑

i∈I\J w
′
ij d(Yj ,Si)2 and define the set

Tj = {X ∈ SJ |
∑

i∈I\J

w′ij d(X,Si)2 = ηj} . (20)

Since w′ij ≥ 1 and ηj → 0, the Tj converge to SI in the
sense that the sets get closer and closer to SI , and further-
more, any point in SI is approached arbitrarily closely by
points in the sequence of sets Tj . Furthermore, since Yj lies
in Tj , it follows that the Yj converge to the set SI . However,
the location of Yj in Tj can be more explicitly determined
by observing that

Yj = argmin
X∈Tj

∑
i∈I\J

w′ij d(X,Si)2 +
∑
i6∈I

w′ij d(X,Si)2

= argmin
X∈Tj

∑
i 6∈I

wij d(X,Si)2

(21)

since the first sum is a constant (ηj) for points X ∈ Tj and
we may replace the w′ij by wij in the second line. Now we
define further points

Y′j = argmin
X∈Tj

∑
i 6∈I

w∗i d(X,Si)2 = argmin
X∈Tj

f(X) (22)

and observe that since the weights wij converge to w∗i for
each i 6∈ I , by continuity of the update with respect to the
weights, limj→∞Y′j = limj→∞Yj .

Now define further points Y′′j ∈ Tj such that Y′′j con-
verges to Y∗. Then, by definition of Y′j we have f(Y′j) ≤
f(Y′′j ). Therefore

f(Y∗) = lim
j→∞

f(Y′′j ) ≥ lim
j→∞

f(Y′j) = f( lim
j→∞

Yj) .

However, since Y∗ and limj→∞Yj are in SI , by the defini-
tion of Y∗ it follows that f(limj→∞Yj) ≥ f(Y∗) , so

f( lim
j→∞

Yj) = f(Y∗) = min
X∈SI

f(X) .

However, by the uniqueness of the minimum (the definition
of W (X∗)) it follows finally that Y∗ = limj→∞Yj . This
completes the proof. ut

Computing the update: When the point Xt lies in S◦I , the
minimum in the update step (16) is taken over points X in
SI . As has been seen, this is a linear least-squares problem,
but in this case, the minimum is to be restricted to an affine
subspace. It is no surprise that the solution to this problem
my be computed directly and non-iteratively. One way to
do this is to cast the problem using Lagrange multipliers, in
which case a closed-form solution can be found. However,
for numerical reasons, a solution using SVD is preferred, as
follows.

Guided by the approach of section 3.3 the problem may
be cast in the following way.

Minimize ‖MX− c‖ (23)

subject to MI(X−CI) = 0 , (24)

where MI is the stack of the individual Mj corresponding to
the subspaces Sj intersecting in SI , and CI is a point on SI .

Let the SVD of MI be MI = UDVT, where D has rank r,
the codimension of the subspace SI . The condition MI(X−
CI) = 0 is equivalent (after cancelling U) to DVTX = DVTCI .

Now, write X′ = VTX and C′I = VTCI . Further, define
M′ = MV, so that MX = M′X′. The optimization problem then
becomes

Minimize ‖M′X′ − c‖ (25)

subject to DX′ = DC′I . (26)

The condition DX′ = DC′I means that X′ and C′I agree
in their first r components. Hence, X′ can be written as
X′ = (C′; X̃) (the vector obtained by stacking C′ and X̃),
where C′ consists of the first r components of C′I and X̃ is
at present unknown.

Let M′L represent the first r columns of M′ and M′R the re-
maining columns. Then, the optimization problem becomes

minimize ‖M′RX̃ + M′LC
′ − c‖ , (27)

where the minimization is to take place over all choices of
X̃ This is now a linear least-squares problem, which can be
solved for X̃ using the SVD method given in section 3.3.
Once X̃ is found in this way, X′ is calculated as X′ = (C′; X̃).
Finally, X is given by X = VX′, and the problem is solved.
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4 Convergence

In this section, the following important questions will be
answered: does the sequence of iterates given by (16) con-
verge, and if so, what does it converge to? One hopes that
the sequence will converge to the minimum of the Lq cost-
function (8). It will be seen that this is almost true, but it
is possible also for the sequence to converge to some other
points, as will be seen.

As has been remarked, the algorithm that generates this
sequence of iterates is an example of iterative reweighted
least squares (IRLS). The following theorem shows that for
a wide class of Lq minimization problems, the IRLS step
results in a decrease in the cost-function.

Theorem 1 For i = 1, . . . , k let fi : D → IR+ be a posi-
tive valued function defined on an arbitrary domain D and
let Xt and Xt+1 be two points in D. Let 0 < q < n and
define wt

i = fi(X
t)q−n. If

k∑
i=1

wifi(X
t+1)n ≤

k∑
i=1

wifi(X
t)n ,

then

k∑
i=1

fi(X
t+1)q ≤

k∑
i=1

fi(X
t)q ,

with equality if and only if fi(Xt+1) = fi(X
t) for all i.

This theorem was proved in [1]. The most important case
for our purposes is where n = 2 and 1 ≤ q < 2. Then, the
theorem states that if the transition Xt 7→ Xt+1 results in a
decrease of the weighted squared cost, then the Lq cost will
also be decreased. In other words a sequence of IRLS itera-
tions applied to an Lq cost-function of this very general type
will always result in a decrease of cost at each iteration, un-
less it hits a fixed point. In particular, when (as in this paper)
Xt+1 is chosen as the minimizer of the weighted L2 cost,
then it will always result in a decrease in the Lq cost, un-
less fi(Xt+1) = fi(X

t) for all i, in which case Xt already
minimizes the weighted cost-function. Applied to the cur-
rent subspace problem, this is true both for the case where
the point Xt lies on a subspace Si or not, according to the
update rule (16).

So the Weiszfeld (IRLS) iteration always decreases the
cost. It does not follow that the sequence of iterations con-
verges, or that it converges to a point that minimizes the Lq

cost. To prove convergence, we make use of the following
theorem.

Theorem 2 LetD be a compact metric space and C : D →
IR be a continuous function defined on D. Let W : D →
D be a continuous function with the property C(W (x)) <

C(x) unless W (x) = x.

Let x0 ∈ D, and xk = W k(x) for k = 1, 2, . . . . Then
the sequence (xk) converges to S = {x | W (x) = x}, in
the sense that if O is an open set containing S, then there
exists an N such that xk ∈ O for all k > N .

If in addition S is a finite or countable set, then the se-
quence (xk) converges (to a point in S).

Informally stated, if W is a continuous update function
with fixed point set S, strictly decreasing a continuous cost-
function C(x) (except at fixed points x ∈ S), then the se-
quence of iterates generated by W will converge to S, and
moreover to a single fixed point if S is countable or finite.
This is a minimal set of conditions for convergence. If D is
not compact, W or C is not continuous, or S is uncount-
able, then there exist counterexamples where convergence
does not hold.

The first part of the theorem also follows from the well
known Global Convergence Theorem [22, section 6.6] ap-
plied to the special case of a single valued, continuous algo-
rithm map. Theorem 2 gives a simple but widely useful con-
ditions for convergence of a descent algorithm. For a slightly
more general statement and detailed proofs see [1].

To prove convergence of the set of iterates generated by
the update rule (16) it is enough to check the conditions of
Theorem 2.

1. Continuity. The cost-function (8) is continuous by in-
spection. The update function defined by (16) is contin-
uous, according to lemma 3.

2. Decreasing cost. The update step always decreases the
cost, unless the point Xt already represents a minimum
of the weighted L2 cost function, according to Theo-
rem 1.

3. Compactness. The cost and update functions are de-
fined on the whole of RN , which is not a compact set.
However, if X0 is a starting point and D is defined as
{X ∈ IRN | Cq(X) ≤ Cq(X0)}, then D is closed, since
Cq is continuous. The update function W maps D into
D, since it results in non-increasing cost. Finally, since
by assumption there is no direction vector that is parallel
to all subspaces, Cq is bounded since Cq(X) tends to in-
finity as X does. Hence, the setD is closed and bounded,
and hence compact.

According to Theorem 2 the sequence of updates W :

Xt 7→ Xt+1 given by (16) will converge from any initial
point X0 to the set of fixed points of W . It is therefore ap-
propriate to determine this fixed-point set. The set of fixed
points of W contains one point of every non-empty inter-
section of SI , namely the minimum of Cq restricted to SI .
By assumption there is no direction vector that is parallel to
subspaces therefore the Lq cost function is strictly convex.
Since Cq is strictly convex, there is exactly one minimum of
Cq restricted to each SI including a minimum of the unre-
stricted Cq on the whole of IRN , (which may be one of the
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minima lying on a subspace SI ). There are therefore a finite
number of fixed points of W , and hence, according to The-
orem 2 the sequence will converge to one of these points.

Fixed points of W . Determination of the fixed points of W
will rely on the following fact, easily verified by calculation:
if weights wi are defined at a fixed point X∗ of W by wi =

d(X∗,Si)q−2, then

∇C w
2 (X∗) = K∇Cq(X∗) ,

where K is a constant (equal to q/2). Here, ∇C(X∗) de-
notes the gradient of C evaluated at X∗. Now, suppose that
W (X∗) = X∗ and X∗ lies on SI . Recall the definitions of
CI

q from (14) and C Iw
2 from (15). Then

W (X∗) = X∗ =⇒ X∗ is the minimum of CIw
2 on SI

=⇒ ∇CIw
2 (X∗) is perpendicular (⊥) to SI

=⇒ ∇CI
q (X∗) ⊥ SI

=⇒ X∗ is the minimum of CI
q on SI

=⇒ X∗ is the minimum of Cq on SI .

In the case when I = ∅ and hence SI = IRN , the condi-
tion that ∇C(X) ⊥ SI is to be interpreted as meaning that
∇C(X) = 0, and the proof holds equally well in this case.

This result completes the proof that the set of iterates de-
fined by (16) will converge to the minimum of Cq on one of
the subspaces SI from an arbitrary starting point X0. This
is not exactly what is required; we would like the set of it-
erates to converge to the minimum of the cost-function Cq .
It is, in fact, possible for a set of iterates to converge to a
point on one of the subspaces which is not the Lq minimum.
If one of the iterates Xt lands on one of the subspaces Si,
then one may verify from the update rule (16) that further
iterations will remain on that subspace. This is the common
issue with the Weiszfeld algorithm. In reality, this eventual-
ity is not likely to happen, but it must be taken into account
if the algorithm is to be proved to converge to the optimal
point.

In the next section, two strategies will be discussed to
make sure that the iterates converge to the Lq minimum.

4.1 Algorithm

Given a set of affine subspaces {S1,S2, . . . ,Sk} ∈ IRN ,
k ≥ 2, we consider algorithms to find the Lq closest point.
If there is no direction vector parallel to all the subspaces,
the cost-function is strictly convex (for the case q > 1) and
so has a single minimum. If the cost-function is not strictly
convex, then the optimization can take place in a subspace
perpendicular to this degenerate direction. Hence, we may
assume a single minimum of the cost-function.

The overall algorithm in simplest terms is as follows.

Algorithm 1. Practical algorithm (Weiszfeld-IRLS).

1. Start from an initial point X0 not lying on any of the
subspaces Si.

2. Compute iterates Xt+1 according to the rule (16) until
convergence.

As a practical algorithm this is usually adequate, since
the likelihood of one of the iterates landing on a subspace Si
(in which case subsequent iterates will stay on Si) is slight.

Gradient descent: The algorithm may be modified to guar-
antee convergence to the optimum point by adding a gradient-
descent step. The gradient of the Cq cost function is given
by (5). If the point X is on one of the subspaces SI , then
the gradient of CI

q (X) should be used. By a line search in
the downhill gradient direction (if the gradient is non-zero),
with backtracking if necessary, one can find a step resulting
in a decrease in cost.

This motivates a modification to the basic algorithm, as
follows. We suppose that q > 0 so that the gradient is de-
fined on any Si.

Algorithm 2. Weiszfeld with gradient descent.

1. Apply algorithm (1).
2. If the limit lies on a subspace SI , but the cost is not min-

imized (gradient is nonzero), apply one step of gradient
descent with backtracking 1, and restart algorithm (1)
from the new point.

This algorithm must, after a finite number of restarts,
converge to the Lq optimum for the following reason. Algo-
rithm (1) will converge to the point with minimum Cq cost
on a subspace SI . After gradient descent the cost will be less
than the cost at this point. Since further iterations decrease
the cost, the algorithm can never converge to the same point
again. Since there are are a finite number of SI , the algo-
rithm will eventually reach the global minimum.

Initialization: A final version of the algorithm relies on a
smarter initialization to avoid convergence to any of the sub-
spaces Si. This algorithm is convenient if each of the sub-
spaces Si are disjoint; otherwise the cost of the initialization
may not be justified. Observe that by starting the algorithm
with a point X0 on one of the subspaces Si successive itera-
tions must remain on Si, and the algorithm will converge to
the minimum on Si (assuming they are disjoint).

This suggests the following algorithm.

Algorithm 3. Weiszfeld with initialization.

1. By starting at a point X0 on each subspace Sj in turn
find the minimum cost on each subspace Sj , achieved at
a point X∗j .

1 Gradient descent with backtracking means head in the descent
downhill gradient direction. If this does not result in a decreased cost,
then back up by making a smaller step, until the cost decreases.
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2. Among the X∗j select the one with minimum Cq cost and
test whether it represents a minimum of the Cq cost-
function; if so, then stop.

3. If not at a minimum, perform one step of gradient de-
scent with backtracking to find a point X00 with lesser
cost.

4. Run algorithm 1 from the point X00 until convergence.

Since the final run of algorithm 1 starts at a point with
cost less than that at any point on any of the subspaces, the
only possible convergence point is the global optimum of
the cost function. Thus, this algorithm is guaranteed to find
this global optimum.

Practicalities: In reality, it is unnecessary to use the ini-
tialization procedure of algorithm 3, which is given only to
supply a provably convergent algorithm. Instead, one may
start with an arbitrary point X0, as is standard in the original
Weiszfeld algorithm. The likelihood of meeting one of the
subspaces is small. If iterations appear to converge towards
a given subspace SI , then one may apply a step of gradient
descent as in algorithm 2.

An alternative approach that has been suggested in the
literature for other problems is to use a heuristic by adding
a small value ε to the distance function so that the weight
wi = dq−2i (·, ·) is defined (and finite) everywhere. It is not,
however, clear exactly what cost-function is then minimized,
and questions of convergence are obscured.

5 Gradient-descent Weiszfeld

The original Weiszfeld algorithm [34] for finding the clos-
est point to points in IRN can be regarded either as an IRLS
algorithm, or alternatively as a gradient-descent algorithm
with specified step size. The algorithm given here, although
an IRLS algorithm, is not a gradient descent algorithm, since
each update, although decreasing, is not in the gradient di-
rection.

One may propose a slightly different Weiszfeld-style al-
gorithm in the present subspace problem that does make an
update in the gradient direction at each step. Instead of using
the weighted cost-function (9), equal to

C w
2 (X) =

k∑
i=1

wi ‖d(X,PSi(X))‖2 ,

the weighted cost

C̃ w
2 (X) =

k∑
i=1

wi ‖d(X,PSi(Xt))‖2 , (28)

is used. In this case, the update step minimizes the distance
to the points PSi(Xt), the closest points to Xt on the sub-
spaces from the previous iteration, as shown in fig 5. This is

S3

PS2
(X t)

X
t X

t+1

S2

S1

PS3
(Xt)

PS1
(Xt)

Fig. 5 Lq-closest-point to Subspaces (Gradient-descent Approach):
The above figure shows three subspaces (lines) S1, S2 and S3; and
and a current estimate of the Lq minimum Xt. In the gradient descent
approach an updated point St+1 is computed by keeping the projec-
tions PSi

(Xt) fixed.

then identical to the update step in the original Weiszfeld al-
gorithm, [34] except that the points PSi(Xt) change at each
iteration. The weights are the same as before, in (16) but the
update step is given instead by

Xt+1 =

∑k
i=1 wiPSi(Xt)∑k

i=1 wi

. (29)

Then Xt+1 is the point that minimizes the weighted L2 cost
(28). Comparison of this update formula with the gradient
of Cq , given in (5) shows that the update is in the downhill
gradient direction of the cost function.

The same analysis as before shows convergence of the
iterates to the fixed points of W . However, there is a signif-
icant difference. As before, the update given by (29) is not
defined for Xt on a subspace Sj . If the update function W
is extended by continuity to the subspaces Sj , it can be veri-
fied that the update is defined by Xt+1 = Xt when Xt is on
a subspace Sj .

The consequence of this is that the fixed point set of the
update function consists of the global cost minimum X∗,
plus all points on all the subspaces Sj . This is an uncount-
able set. Therefore, one cannot conclude, using Theorem 2
that the sequence converges to a point, and furthermore the
convergence set is large.

Nevertheless, with appropriate initialization as in algo-
rithm 3 the sequence of iterates is guaranteed to converge to
the optimum of the Cq cost-function. This is the method for
our final algorithm.

Algorithm 4. Weiszfeld gradient-descent.

1. Find an initial point as in algorithm 3.
2. Compute iterates Xt+1 according to the rule (29) until

convergence.

The algorithm is guaranteed to find the global minimum
of Cq since convergence to any of the subspaces cannot oc-
cur, and the only possible convergence point is the global
minimum.
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6 Convexity and uniqueness of solution

In this section we consider the convexity of the Lq cost-
function (4). This analysis was deferred from earlier in the
paper.

A function is convex if its Hessian is positive semi-definite
and strictly convex if the Hessian is positive-definite. We be-
gin by considering the distance of a point X from a single
subspace Si. For simplicity, in terms of a coordinate sys-
tem (x1, . . . , xN ) for IRN , let the subspace Si be defined
by x1 = x2 = . . . = xr = 0, where r = N − di is the codi-
mension of subspace Si. The term of the Lq cost function
for that subspace is given by

d(X,S)q =

(√
x21 + x22 + . . .+ x2r

)q

. (30)

Taking the Hessian of this term, and evaluating at the point
X = (d, 0, . . . , 0) at distance d from S gives, by a simple
computation,

Hi = q dq−2 diag(q − 1, 1, . . . , 1, 0, . . . , 0) ,

where there are r − 1 entries equal to 1. This represents
the general case, since any subspace and point can be repre-
sented in this way in a suitable local rectangular coordinate
system. For 1 ≤ q ≤ 2, the Hessian is positive semi-definite.
Note that there is a difference between the cases q = 1 and
q > 1.

Case q > 1. The case q > 1 is simpler; the null space of
the Hessian is independent of the point X where the Hessian
is evaluated. It is the tangent space of Si, namely the linear
subspace T (Si) of IRN , passing through the origin, parallel
to Si.

Now, given several subspaces Si, the Hessian of the Lq

cost-function is the sum of the individual Hessians, and con-
sequently, the null-space is equal to the intersection of the
tangent spaces T (Si). This gives the result

Lemma 4 The cost-function (4) is strictly convex for q > 1

if and only if the tangent spaces T (Si) have trivial intersec-
tion.

This condition can be alternatively expressed by saying
that the cost is strictly convex unless there is a direction vec-
tor lying parallel to all the subspaces Si. Generically, the
cost-function is strictly positive-definite as long as the codi-
mensions of the subspaces Si sum to at least N , thus

k∑
i=1

ri ≥ N . (31)

Note that if V is such a direction and X∗ is a global mini-
mum of (4) then so is X∗+λV, since the cost does not vary
in the direction V. Therefore, the trivial intersection of the

tangent spaces T (Si) in lemma 4 is a necessary and suffi-
cient condition for there to be a single minimum of the Lq

cost when q > 1.
This observation also suggests a procedure to apply in

the contrary case, when there does exist a direction V paral-
lel to all the Si. By selecting a hyperplane S⊥ perpendicular
to the direction V, taking a slice along S⊥ and replacing
each Si by Si ∩ S⊥, drops the dimension by 1. Solution of
the new reduced problem yields one of a family of solutions
to the original problem.

Case q = 1. In the case q = 1 the null-space of the Hessian
Hi has one extra dimension, which varies as X moves. The
extra dimension consists of the vector from X normal to the
subspace Si. Geometrically, the null-space of the Hessian at
the point X is the space spanned by vectors parallel to Si,
plus the normal direction from X to Si. Otherwise stated,
this is the set of all direction vectors through X that meet
the subspace Si (including at infinity).

For several subspaces Si the Hessian will be non-definite
at X (have non-trivial null-space) exactly when there exists
a line through X that meets all the subspaces Si.

As an example, for four lines Si in IR3, there always ex-
ist 2 other lines that meet all four Si. At any point X on either
of these two lines, the Hessian will be non-definite. If there
are three lines Si, then the set of points X at which the Hes-
sian is non-definite consists of a ruled quadric containing
the three lines as generators from one of the two generator
classes. A generator from the other class, passing through
X, will meet all of the three lines (see [18,30]).

For k subspaces Si of codimension ri in general posi-
tion, the dimension of the set of lines that meet all of the Si
is equal to

2(N − 1)−
k∑

i=1

(ri − 1) ,

because the set of all lines in IRN forms a family of dimen-
sion 2(N−1) and each subspace of codimension ri provides
ri − 1 constraints on this set of lines. Thus, there will be no
line that intersects all subspaces (generically) as long as

k∑
i=1

ri > 2N + k − 2 . (32)

Counting the number of possible subspaces that inter-
sect a given set of subspaces nontrivially is the subject of
Enumerative Geometry or Schubert Calculus, involving the
cohomology ring of a Grassmann manifold [20]. However,
this is far beyond the scope of this paper.

The positive-definiteness of the Hessian is a sufficient,
though not necessary condition for the L1 cost-function to
have a single minimum. However, there are many examples
where there is not a single minimum. For instance, for lines
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in the plane forming the sides of a regular polygon, the sum
of distances from any point in the interior of the polygon to
the lines is constant and minimum.

In summary, (32) with (31) shows that the condition for
a single minimum under the Lq cost (for q > 1) is much
weaker and much simpler than for q = 1.

For simplicity, we make the assumption that in either
case there exists a single minimum for the cost-function.

7 Experimental Results: Triangulation

In order to show the applicability of the proposed algorithm
we solve the problem of triangulation [17,32]. Given two
or more images of a scene, triangulation is a process of de-
termining a point in 3D space from its image points, that
is projection of 3D point onto multiple images. Each image
point yi corresponds to a line in 3D space, passing through
the center of the camera and intersecting the image plane
at yi. Ideally, all the lines generated by the corresponding
points in different images should intersect at a single 3D

point and that point should the same as the original point
in 3D space. In practice, image points cannot be measured
accurately because of various types of noise, lens distortion,
interest point detection error, etc. As a result, the lines ob-
tained from the image points are skewed form of original
lines and it is very likely that these skewed lines do not even
intersect with each other in 3D space. The problem then is
to find an optimal point of intersection of these skewed lines,
for which the sum of distances from this point to all the lines
is minimum. Hence we can use our algorithm to find a point
in IR3 from which the sum of distances to all the lines that
is 1-dimensional affine subspaces, is minimum.

Dataset and Starting Point of Algorithms: We applied
the proposed algorithm on a well know dinosaur dataset,
available at http://www.robots.ox.ac.uk/˜vgg/
data.html. This dataset contains a collection of 4983 track
points that are tracked over a set total of 36 images. Here we
only consider the track points that are visible in more than
10 images. Thus, a minimum of 10 lines are available to per-
form triangulation. We take theL2-closest-point as a starting
point for the algorithms.

Construction of Lines: A line is uniquely determined by
two points. In our experimental setup these two points are
the camera center and a back projected image point. Thus, if
a camera matrix and an image point is known, a line from the
center of camera and passing through the image point can
easily be constructed. In the dinosaur dataset both the cam-
era matrices and image measurements are provided. Thus,
we can construct lines in IR3 to find their optimal point of
intersection.

Error Measure: The measure of accuracy for reconstructed
3D points is taken to be root mean square (RMS) of the
L1-mean of the re-projection errors, that is, the L1-mean of
the distance between reprojected points and measured image
points for all the views in which that point is visible. For n
reconstructed points Xj , visible in mj views, the RMS error
is computed as follows:

RMS error =
√∑n

j=1 e2j /n ,

where ej =
∑mj

i=1 d(xij ,x
′
ij)/mj , and x′ij is the measured

image point and xij = PiXj is the reprojected point. Note
that the error reported here, that is the re-projection error, is
different from the error that is minimized by the Lq-closest-
point algorithm, that is, the distance between a point and its
projection onto all of the given lines.

7.1 Convergence Behavior

We compare the proposed Lq optimization algorithms, that
is, the gradient descent algorithm (section 5) and the IRLS
algorithm (section 3.2), with the L2-closest-point method
and the bundle adjustment algorithm. The L2-closest-point
method finds a point for which the sum of squared orthog-
onal distances to a set of subspaces is the minimum. This
is a fairly simple problem and can be solve in closed-form.
The bundle adjustment simultaneously refines the 3D point
as well as the camera parameters by minimizing the sum of
squared re-projection errors, that is an error between a repro-
jected 3D point and its corresponding image point measure-
ment [32]. However, in this case we are only interested in
recovering the 3D structure of a scene; thus, we assume that
the camera matrices are known, hence are not optimized.
Bundle adjustment is carried out by using an open source
sparse bundle adjustment package [21].

A comparison of the RMS error over all iterations of
the methods is reported in fig 6. As can be seen, the L1-
closest-point method has error less than both the L2-closest-
point method and bundle adjustment. The L2-closest-point
method and bundle adjustment have roughly the same re-
projection error. The main reason for smaller RMS error for
the proposed algorithm is the greater robustness of L1 meth-
ods to outliers. However, in bundle adjustment and the L2-
closest-point method, a squared error function is minimized
which is comparatively less robust to outliers than an L1

cost-function.
As expected, fig 6 shows that the L1 optimization algo-

rithm by using the IRLS approach converges close to the
minimum quickly than the gradient descent approach. The
reason for quick convergence is that the IRLS approach up-
dates both a current solution and its projections simultane-
ously. On the other hand, in the gradient descent approach
projection points are held fixed during the computation of an
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Fig. 6 Triangulation results for Dinosaur dataset. The above fig-
ure shows re-projection error plots for bundle adjustment, the L2-
averaging method (closed form solution exists) and the proposed L1-
averaging methods. As can be seen, the L1-averaging methods has
smaller re-projection error than both the L2-averaging and bundle ad-
justment methods. Moreover, the L2-averaging and bundle adjustment
methods have roughly the same error. Observe that the L1 algorithms
find the L1-closest-points to the rays. As the graph shows this tends to
minimize L1-reprojection error as well.

.

update. This results in a slow convergence rate of the gradi-
ent descent approach, as shown by fig 6. In summary, both
the Lq optimization approaches give superior results than
the L2 and the bundle adjustment methods. Furthermore, the
IRLS approach has a higher convergence rate than the gra-
dient descent approach.

7.2 Robustness to Outliers

In this experiment we show the robustness of the Lq method
for different values of q, specifically, for q ranging from 1
to 2 with an increment of 0.25. In order to show the robust-
ness of the methods, we add different number of outliers to
the dinosaur dataset, ranging from 0% to 40% with an in-
crement of 10%. We modify some percentage of the image
points corresponding to a 3D point to represent outliers. Fur-
thermore, the RMS re-projection error is computed without
using the modified image point correspondences, that is the
outliers. Here we only consider the IRLS algorithm (sec-
tion 3.2) for Lq optimization because of its higher conver-
gence rate than the gradient descent algorithm. Our exper-
imental results show that the L1 method is the most robust
method than the rest of the methods. Note that the L1 gives
slightly better results even when no outliers are added ex-
plicitly to the dataset. For the Lq Weiszfeld algorithm for
points in IRN the results of the L2 averaging are better than
the Lq algorithm in the absence of outliers. We conjecture
that this behavior is a result of mismatches in the correspon-
dences in the Dinosaur dataset. In summary, the L1 method
gives better results than the rest of the methods and is there-
fore recommended in the presence of outliers.

Fig. 7 Robustness to outliers: The above figure shows re-projection er-
rors of the Lq-averaging method for several values of q ranging from 1
to 2 with an increment of 0.25. We test the algorithms for their robust-
ness by adding different percentage of outliers in the dinosaur dataset,
ranging from 0% to 40% with an increment of 10%. We modify image
point correspondences to represent outliers. The above figure shows
that the results of L1 and Lq for q close to 1 are stable in the presence
of outliers. Note: the RMS re-projection error is computed without us-
ing the modified image point correspondences, that is the outliers.

.

8 Conclusion

This paper presents provably convergent iterative methods,
based on the Lq Weiszfeld algorithm, to solve the problem
of finding an Lq-closest-point to a set of affine subspaces
for 1 ≤ q < 2. Moreover, this paper confirms the fact
that in presence of noise and outliers in data, the minimiza-
tion of an L1 cost-function gives superior results than an L2

cost-function. Our experimental results have shown that the
L1-closest-point methods converge close to the ground truth
than both the L2-closest-point and bundle adjustment meth-
ods. Furthermore, it is also shown that the IRLS approach
of the proposed algorithms converges close to the actual so-
lution in very few iterations than the gradient descent ap-
proach.

Ease of implementation and fast iteration make the pro-
posed algorithms attractive wherever Lq optimization is de-
sired. A question that remained partially unanswered is, which
computer vision problems can be solved using this tech-
nique?
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