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Abstract

A robust VAR-based (vector autoregressive) model is in-
troduced for motion prediction in 3D hand tracking. This
dynamic VAR motion model is learned in an online man-
ner. The kinematic structure of the hand is accounted for in
the form of constraints when solving for the parameters of
the VAR model. Also integrated into the motion prediction
model are adaptive weights that are optimised according to
the reliability of past predictions. Experiments on synthetic
and real video sequences show a substantial improvement
in tracking performance when the robust VAR motion model
is used. In fact, utilising the robust VAR model allows the
tracker to handle fast out-of-plane hand movement with se-
vere self-occlusion.

1. Introduction
Recent research into human motion tracking is mainly

motivated by HCI (human computer interaction) applica-
tions and markerless motion capture. Tracking the 3D pose
of the hand (and in fact any articulated structure, such as
the human body) is a challenging problem. The high di-
mensionality of the hand, frequent self-occlusion and fast
finger movements make tracking an ill-posed problem.

Motion prediction is an important aspect in tracking and
often improves tracking performance. For particle filter
based trackers, motion prediction plays a significant role in
a smart redistribution of particles for the next frame, given
the past motion history [6]. Analogously, motion predic-
tion can be used to find the initial value for the optimisation
routine in the next frame for gradient based trackers.

A variety of motion models have been proposed, ranging
from anatomically correct dynamic models [13] to learned
motion models derived from offline training on motion cap-
ture data [14, 11, 6, 1, 8, 12]. Learned motion models are
popular and are generally described in a lower dimensional
space [6, 14, 1, 11, 8, 12]. The rationale is that typical
human motion lies in a subspace of the high dimensional
angle-parameter space. In [1], PCA is used to reduce di-

mensionality, and an autoregressive motion model is trained
on this reduced subspace. For applications where the set of
motions being tracked is restricted, such a framework has
been shown to be robust. However, a motion model learned
this way does not generalise well to motions not observed
in the training data. This is even more so if dimensional-
ity reduction is used, since it is entirely possible that the
new motion does not lie in the subspace the motion model
is trained for. For a motion model learned offline to gen-
eralise well, one needs to ensure that the motion data used
for training is not biased. This often means training over a
large dataset that is rich enough, which can be impractical
at times.

In this paper we introduce an online adaptive vector au-
toregressive (VAR) model for motion prediction. This is an
attractive alternative in the sense that it is efficient to evalu-
ate and does not require offline training. The VAR predic-
tion model is highly adaptative via trust factors and, as an
online algorithm, potentially generalises better to different
hand movements.

The tracking system used to test the VAR prediction
model is a gradient based tracker that works in the stochas-
tic approximation framework [5]. The tracker is simple to
implement and has the additional property of theoretical lo-
cal convergence. Note that the proposed VAR prediction
model is independent of the tracking system used and could
for example be applied to particle filter based systems.

In section 2, the base tracking system is described. The
VAR model is formulated in section 3. Section 4 details
the initial tracking results for a synthetic sequence when the
VAR prediction model is applied. The results are compared
against the no-motion and the decelerating motion predic-
tion model. In section 5, we introduce a robust adaptive
version of the VAR motion prediction model. Experimen-
tal results for the real hand sequences are presented in 6.
Concluding remarks are given in section 7.

2. The Tracking System
A stereo pair of cameras is used for tracking. The cam-

eras point towards the hand being tracked in a convergent
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Figure 1. Diagram of the tracking system setup. A pair of cameras
(square boxes) is placed in a convergent setup facing the hand. A
strong light source (yellow arrow), that points towards the hand
from above and behind one of the cameras, illuminates the scene.

setup as shown in figure 1.
A model-based approach is used where sample points

taken from the tracker’s hand model surface are projected
onto the camera model image planes. At the correspond-
ing pixel coordinates of the real images, a cost is evaluated
based on the visual cues in the images. Mismatch errors are
backpropagated as gradients to the model parameter space.
An optimisation algorithm uses these gradients to refine the
hand pose estimate. This is repeated for successive frames.
A detailed deformable hand model with 26 degrees of free-
dom is used by the tracking system. This model is obtained
from the 3D scanning of a real hand. Further details of the
tracking system can be found in [5].

2.1. The Overall Cost Function

Our overall cost function is a modified version of that
given in [5], in that a silhouette filling component has been
added to improve tracking performance.

The filling cost function Cf penalises the tracker when
the projection of the hand model does not completely fill the
actual hand silhouette extracted from the camera images.
A dense set of sample pixels is randomly chosen from the
actual hand silhouette to evaluate Cf . Let x ∈ R26 be the
set of hand model parameters. Also, let ŝi,j be the pixel
coordinate of the ith sample pixel chosen inside the actual
hand silhouette in the jth camera view. Let hi,j(x) be the
pixel coordinate of the point on the hand model projection
that is closest to ŝi,j . Then the filling cost function over two
camera views is given as

Cf (x) =
1
M

M∑
i=1

2∑
j=1

1
2
||ŝi,j − hi,j(x)||2, (1)

whereM is the cardinality of the dense set of sample points.
Note from (1) that sample pixels which are covered by the

projection of the hand model do not contribute to the filling
cost since ŝi,j = hi,j(x) in such a situation.

Although beyond the scope of this paper, the modified
overall cost function can be shown to inherit the theoretical
local convergence property described in [5].

3. Motion Prediction Using a VAR Model

The tracker’s local convergence property suggests that
tracking performance depends heavily on the initial value
used at each frame for the optimisation routine. Ideally, the
starting set of model parameters x̂t for the tth video frame
should be initialised as close as possible to the optimal value
x∗t , such that the tracker starts within the basin of attraction.

In a data-driven approach, we treat the evolution of x∗t ,
(x∗1, ..., x

∗
T ), over T video frames as a 26-dimensional mul-

tiple time series. Given this multiple time series (x∗1, ..., x
∗
T )

at time T , a VAR (Vector Autoregressive) model can be
used to predict a suitable initial value x̂T+1 for the next
frame T + 1.

3.1. VAR Model Formulation

Consider a multivariate weakly stationary process Yt
and its realisation, a 26-dimensional multiple time series
(y1, ..., yT ), up to time T . The weakly stationary prop-
erty of Yt requires the expectation E(Yt) and autocovari-
ance E[(Yt−µY )(Yt−µY )] to be time invariant. Let Ut be
a 26-dimensional vector of white noise. The VAR(p) model
[9] of this process is given as

Yt = A1Yt−1 + ...+ApYt−p + Ut, (2)

where p denotes the order of the VAR model and A1, ..., Ap
are R26×26 parameter matrices.

Let X∗t be the process that generates (x∗1, ..., x
∗
T ). X∗t

is not weakly stationary. If it were, it would imply that the
hand pose in the video sequence is more or less stationary
for all time twhich is false. Hence one cannot directly apply
a VAR model of X∗t for motion prediction. Instead, differ-
encing [4] is used to generate a weakly stationary process,
Y ∗t , from X∗t . Let Y ∗t be the process that generates model
parameter ‘accelerations’ derived from X∗t , i.e.,

Y ∗t = X∗t − 2X∗t−1 +X∗t−2. (3)

We assume Y ∗t to be a weakly stationary process. This is a
reasonable assumption since a statistical analysis of Y ∗t for
the video sequences reveals that the model parameter ac-
celerations consistently fluctuate around zero, with E(Y ∗t )
being time invariant. The autocovariance of Y ∗t is also at
least locally constant.

Thus, we model Y ∗t as a VAR process and use the VAR
model to make a one-step ahead prediction ŷT+1 for frame



T + 1 of the model parameter accelerations. This is done
using the realisation-equivalent form of equation (2), i.e.

ŷT+1 = A1y
∗
T + ...+Apy

∗
T−p + uT . (4)

In practice, uT is taken to be the expectation E(Ut) = 0,
since it is usually unknown. ŷT+1 is then mapped back to
x̂T+1 via

x̂T+1 = ŷT+1 + 2x∗T − x∗T−1. (5)

In general, the tracking system does not know (x∗1, ..., x
∗
T )

as they are the ground truth values of the hand model pa-
rameters. The best that one can do is to use the correspond-
ing tracker estimates (x1, ..., xT ) in place of (x∗1, ..., x

∗
T ) for

motion prediction. Hence a more accurate model would be

Y ∗t = A1Y
∗
t−1 + ...+ApY

∗
t−p + Ut (6)

Yt = Y ∗t + CVt, (7)

which can be rewritten as

Y ∗t = A1Yt−1 + ...+ApYt−p + (8)
(Ut − (A1CVt−1 + ...+ApCVt−p)), (9)

where Vt is assumed to be a noise vector and C a noise-
mixing matrix. However this ARMA-type model is difficult
to solve as the statistics of Vt is unknown. We opt instead
to use the VAR(p) model described in (2) for motion pre-
diction. This is equivalent to treating the Ut− (A1CVt−1 +
...+ApCVt−p) term in (9) as white noise.

Doing this will obviously produce a less accurate pre-
diction ŷT+1 and the corresponding prediction x̂T+1 for the
next frame T + 1. But it is important to reiterate again that
we are not trying to find x∗T+1 using a VAR motion predic-
tion model. Our prediction x̂T+1 merely provides a better
initial value for the stochastic optimisation routine, which is
set to find x∗T+1. It is sufficient for our prediction x̂T+1 to
be close enough to x∗T+1 such that starting the optimisation
routine at x̂T+1 for frame T +1 is better than starting at xT
i.e. without motion prediction. In fact, as we will see later
in the experimental results, using this simplified model is
already enough to improve tracking performance.

3.2. Estimation of VAR Parameters

Given the past observations (y1, ..., yT ) up to time T , the
VAR parameters A1, ..., Ap are estimated via least squares
estimation [9]. Note that the least squares estimator has the
additional interpretation of being a maximum likelihood es-
timator if one assumes Ut to be gaussian. Let

Y := (y1, ..., yT ) (10)
B := (A1, ..., Ap) (11)

Wt :=

 yt
...

yt−p+1

 (12)

W := (W0, ...,WT−1) (13)

Then the least squares estimate, B̂, of B is given as

B̂ = YW′(WW′)−1. (14)

In our case, we solve for B̂ online. That is, B̂ is re-evaluated
with each new yt obtained as the tracking system completes
another frame in the video sequence. Therefore our predic-
tion ŷT+1 of the accelerations of the hand model parameters
for the next frame T + 1 is

ŷT+1 = B̂TWT . (15)

An issue that is problematic in practice is that the compu-
tational cost for B̂T increases as new yt’s are obtained. To
address this, we adopt a limited memory version of the least
squares estimator by setting Y := (yT−N , ..., yT ) for a rea-
sonably sized N . In other words, we drop the oldest sam-
ple yT−N upon receiving a new sample yT+1. Testing on
video sequences shows that having a limited memory ac-
tually improves the prediction results. This is because a
limited memory implementation caters better for instances
of volatility clustering where the autocovariance is locally
constant, but can be observed to vary over longer time peri-
ods. Using a limited memory least squares estimator essen-
tially means we are only using a local portion of the time
series, which is more likely to have a constant autocovari-
ance, thereby more likely to satisfy the weak stationarity
assumption for a VAR model.

3.3. Performance Evaluation

A measure R̃2 is introduced to quantify the improve-
ment in tracking peformance when a VAR motion predic-
tion model has been added to the tracking system. R̃2 is
loosely based on the R2 measure used in regression analy-
sis [2].

Let y∗t (i) be the ground truth time series for the ith hand
model parameter in the acceleration domain. Also, let y0

t (i)
be the times series produced by the tracking system without
motion prediction, i.e. where the motion prediction for the
next time step t+ 1 is

x̂0
t+1(i) = x0

t (i), (16)

and thus the corresponding ŷ0
t+1 is

ŷ0
t+1(i) = −x0

t + x0
t−1. (17)

Similarly, let yVAR
t (i) be the corresponding time series es-

timated by the tracking system with motion prediction via
a VAR model. Given a video sequence of length τ in total,
the R̃2

y(τ, i) measure for the ith hand model parameter in
the acceleration domain is defined as

R̃2
y(τ, i) := 1−

∑τ
t=1(y

∗
t (i)− yVAR

t (i))2∑τ
t=1(y

∗
t (i)− y0

t (i))2
, (18)



evaluated over the entire sequence, from t = 1, ..., τ .
R̃2
y(τ, i) rates the improvement in tracking accuracy by

comparing the squared sum of residuals between yVAR
t (i)

and the ground truth against the residuals between the no-
prediction time series y0

t (i) and the ground truth.
Measuring these residual errors in the acceleration do-

main of the hand model parameters is less indicative of
tracking performance than measuring residual errors of the
hand’s joint and fingertip positions in 3D space. Hence, let
G be the function that maps the hand model parameters xt
to hand joint/fingertip positions of the hand zt. Specifically,

G : R26 → R3×21 (19)
zt = G(xt). (20)

The columns of zt are the joint/fingertip positions in 3D
space (there are16 joints and 5 fingertips in total). Let zt(j)
be the 3D position of the jth joint/fingertip at frame t. Then
R̃2(τ, j) is defined as

R̃2(τ, j) := 1−
∑τ
t=1 ||z∗t (j)− zVAR

t (j)||2∑τ
t=1 ||z∗t (j)− z0

t (j)||2
. (21)

As a guideline, R̃2(τ, j) > 0 indicates that the track-
ing estimate with the help of motion prediction is more
accurate than that without motion prediction, for the jth
joint/fingertip. The converse is true if R̃2(τ, j) < 0.

4. Initial Experiments
All the different types of VAR models examined in

this paper are tested on a synthetic sequence (175 frames,
640×480 pixels) generated from real hand movements. The
synthetic sequence provides ground truth values for a quan-
titative analysis of tracking performance. It contains ele-
ments of typical hand movements such as palm rotations
and finger articulation.

Each experiment is repeated over 50 trials. As mentioned
previously, the VAR parameters B̂t are evaluated online for
each frame t; no offline training is involved. The tracker
is manually initialised to a good starting position for the
first frame of the video sequence. About 600 sample points
are used to track the moving hand. Following [5], SMD
(stochastic meta-descent) [10, 3] is the optimisation algo-
rithm used, with the parameters µ = 0.1, λ = 0 and the ini-
tial step sizes p = 0.2 for the parameters of the finger/thumb
joints, p = 0.4 for the palm’s rotation parameters, p = 2.5
for the palm’s translation parameters. The weight on Cf ,
the filling cost function, is 0.4 while the weight on Cs,
the silhouette cost function, is 1.7. Optimisation for each
frame terminates when either the overall cost reaches be-
low a threshold of 0.006 or a maximum of 50 iterations is
reached.

On average, 3.7 seconds are required to track each frame
on a P4 3.4 GHz machine, of which 2.5 seconds are spent on

Figure 2. R̃2(τ) of zD
t for each hand joint/fingertip over the 50

trials. Outliers that lie between 1-3 times interquartile range are
marked as ’+’ while those that lie over 3 times the interquartile
range are marked as ’o’.

the optimisation routine and the remaining 1.2 seconds are
spent on the image pre-processing procedures. Additional
computation time for motion prediction evaluation is com-
paratively neglegible, varying between 2-3 orders of mag-
nitude below the time taken by the optimisation routine.

The results of two control experiments are used as bench-
marks. The first control experiment is tracking without mo-
tion prediction. We denote the multiple time series of the
resulting joint/fingertip positions from this experiment as
z0
t . The other control experiment uses the popular decel-

erating motion prediction model; let zD
t = G(xD

t ) be the
corresponding multiple time series. The predictor x̂D

t+1 is
defined as

x̂D
t+1 = xD

t + ρ(xD
t − xD

t−1), (22)

where ρ ∈ [0, 1]. Thus the corresponding ŷD
t+1 is

ŷD
t+1 = (ρ− 1)(xD

t − xD
t−1). (23)

Note that ρ = 1 gives the constant velocity model. How-
ever, tracking with the constant velocity model is found to
be unstable. Testing on a range of ρ values show that setting
ρ = 0.4 produces the best tracking performance. This will
be used in our comparison with the VAR models.

Figure 4 shows the overall mean error, taken to be the av-
erage of all joint/fingertip errors over all 50 trials (see [5] for
details of the measure) for both the standalone tracker and
the tracker with the deceleration predictor. There are three
noticeable error peaks in the video sequence. The first peak
(frame 73) represents the tracking inaccuracy due a misfit of
the little finger (see figure 6). The second peak (frame 100)
corresponds to the part where the hand undergoes a global
rotation. The third peak (frame 150) occurs as the thumb



move across the palm, partially occluding the fingers and
the palm.

One can already see the improvement with the naive pre-
diction model, especially between frames 100 to 130. This
improvement is reflected in the R̃2 value of the entire se-
quence for zD

t in figure 2. Excluding several outliers for the
thumb, there is a noted improvement over tracking without
motion prediction.

The following subsections describe our results for the
different variations of the VAR (vector autoregressive)
model tested, namely the traditional full-VAR model and
a structured-VAR model where the kinematic relations of
the hand are accounted for.

4.1. VAR Model Order Selection

VAR model order selection based on the AIC or BIC
measure is a standard procedure [9]. This is meaningful
when the training time series xt is fixed while the various
VAR models are fitted during the criterion evaluation pro-
cess. A complication in our situation is that the time series
is dependent on the VAR model used. Different VAR mod-
els produce different predictions of the initial value for the
finite-length optimisation routine, which leads to different
evolutions of xt.

At best, the AIC and BIC criteria can only give a rough
initial value for order selection. Initial AIC and BIC tests
evaluated on the static ground truth sequence tend to favor
VAR models of higher orders (> 5). However, the tracking
performances of the tracker with these motion predictors
of higher order are substantially worse. Only the results
of the 1st order variants of the VAR model are shown; the
results of the higher order models are omitted as they are
consistently worse for each case.

4.2. Full-VAR model

Recall that the VAR(1) predictor ŷT+1 for the hand
model parameters in the acceleration domain is given as

ŷT+1 = Â1yT , (24)

where Â1 is obtained directly by solving (14). We denote
the multiple time series generated by the tracking system us-
ing this motion predictor in the hand joint/fingertip domain
as zFV

t . Initial tests reveal that all the VAR-based prediction
models tend to give large error deviations when the change
in acceleration is abrupt, leading to gross tracking inaccu-
racies. To mitigate this, a hard threshold has been set such
that the difference between x̂T+1 and xT cannot be more
than 10 degrees.

The tracking result zFV
t is in general worse than z0

t . To
understand why this is so, one should note that Â1 quan-
tifies the correlations not the causation (i.e. tendon forces
controlling the hand) in the joint movements. The limited-
memory sample set (memory size N = 150) used to refine

Â1 online is simply not rich enough and represents a biased
sample of all possible hand movements. This leads to in-
accurate predictions. Additional prior information, in the
form of constraints, is needed for solving Â1 sensibly.

4.3. Structured-VAR model

In this situation, Â1 is solved under the constraints in-
duced by the hand’s kinematic structure. We observe that
the movements of joints along the kinematic chain of each
digit are correlated, and that their dependency on each other
allows for the flexion of each digit. We then assume that the
movement of each digit is independent of other digits. In
addition we assume that the rotation and translation move-
ments of the palm are independent of each other and are
also independent of the movement of each digit.1 Applying
these priors constrains Â1 to a block diagonal form

Â1 =


G6×6 0 0 · · · 0

0 RY
5×5 0 · · · 0

0 0 R1
3×3 0

...
... 0 0

. . . 0
0 0 0 0 R5

3×3

 , (25)

where G6×6 is a diagonal matrix that relates to the transla-
tion and rotation parameters of the palm. RY

5×5 is a diago-
nal matrix that relates to the rotation parameter of each digit
that models the abduction/adduction of each digit. Lastly,
Rk

3x3 relates to the rotation parameters of the kth digit re-
sponsible for the flexion of the digit.

The multiple time series in the hand joint/fingertip do-
main generated by the tracking system using this motion
predictor shall be denoted zSV

t . A limited memory size of
N = 30 has been used for the structured-VAR model.

Enforcing kinematic constraints on Âi results in bet-
ter tracking performance than when the full-VAR model
is used. The first two error peaks that have been ob-
served in both control experiments are dampened when the
structured-VAR motion predictor is applied (see figure 4).
The dampened errors are reflected in the R̂2 values for zSV

t ,
where the tracking accuracy of the palm joint (joint/finger
no. 1) and the joints on the little finger (joint/fingertip
no. 18-21) has drastically improved. Errors for the middle
finger have worsened, in particular the fingertip (no. 13),
resulting in the enlarged third peak in figure 4.

Compared to the deceleration predictor, adding the
structured-VAR predictor to the tracker increases the vari-
ance of the tracking performance. This is generally unde-
sirable. Then again, having a larger variance does mean

1These assumptions are rough at best, e.g., it is well known that the
flexion of the little finger and the ring finger are not completely indepen-
dent. [13] would be a more realistic (and sophisticated) model. For our
application however, we find that our simple model already works well.



the tracker has a better chance of escaping from local min-
ima. The extended upper tails of the R̂2 distributions for the
thumb’s PIP joint (no. 4) and the thumb tip (no. 5) attest to
this.

Figure 3. R̃2(τ) of zSV
t shows a large improvement for the base

joint and the little finger.

5. Robust VAR

An ideal motion predictor should have the high perfor-
mances of the structured-VAR model observed for certain
joints, augmented with the general consistency and low
variance of the deceleration predictor.

To achieve this, we combine the structured-VAR predic-
tor and the deceleration predictor (with ρ = 1), tempered
with adaptive trust factors. We shall refer to this adaptive
scheme as the RVAR (Robust Vector Autoregressive) pre-
diction model.

The RVAR model interpolates online a weighted com-
bination of x̂SV

T+1, x̂D
T+1 and x̂0

T+1 predictions. The inter-
polation is based on the reliability of the past predictions
for each predictor when compared against the past history
xT−N ...xT of tracking results. The RVAR predictor for the
ith hand model parameter x̂T+1(i) is defined as

x̂RVAR
T+1 (i) = (1− γ)x̂0

T+1(i) + γ(αix̂SV
T+1(i) + βix̂

D
T+1(i)),

(26)
where γ ∈ [0, 1], αi + βi ≤ 1, and αi, βi ≥ 0.2 Using mo-
tion prediction to find a good initial value for the optimisa-
tion routine can be tricky in that there is always an inherent
danger of overshooting. Hence we introduce γ, an upper
bound on how much one should trust the motion predic-
tions. γ is fixed throughout the tracking sequence. αi and

2Note again that the no-motion predictor x̂0
T+1(i) = xT (i).

βi are adaptive weights that minimise the following sum

Ei(T, α, β, i) =
T∑

t=T−c
kt[xt(i)− (αx̂SVt (i) + βx̂D

t (i))]2,

(27)
where c is a cut-off constant and kt is a decaying factor
defined as

kt =
1

2T−t
. (28)

Minimising Ei(T ) gives the optimal αi and βi for xt(i) at
frames t ∈ [T − c, T ]. These weights are then used in (26)
when the prediction x̂RVAR

T+1 (i) for the next unknown frame
T + 1 is made. Ei(T ) is minimised separately for each
hand model parameter i to obtain separate sets of αi and βi
weights.

The absolute interpolation of the predicted model param-
eters in (27) is just one of many interpolation approaches.
For example, one could instead choose to interpolate the
changes in predicted model parameters relative to the posi-
tion in the last frame i.e. x̂SV

t (i) − xt−1(i). Note that the
update equation (26) will change according to the interpo-
lation approach.

Figure 4. Overall mean error for RVAR model (red) with γ = 0.80,
and cut-off constant c = 8. Tracking performance without motion
prediction (green), with the deceleration predictor (blue) and with
a structured-VAR model (yellow) is shown for comparison.

Results for the RVAR predictor (with γ = 0.8, c = 8)
show a marked improvement over both the deceleration and
the structured-VAR predictor (see figure 4). From figure
5, one can appreciate that the RVAR predictor has inherited
the desired low variance property of the deceleration predic-
tor while retaining the high performances of the structured-
VAR model.

The R̃2 values for most joints/fingertips reside around
0.5. With the exception of the middle finger’s PIP joint
(no. 12) and possibly the thumb joints/tip (no. 3-5), the



Figure 5. R̃2(τ) for the RVAR model

Figure 6. Selected frames where the overall mean error peaks. Top
row are tracking results with no motion prediction, middle row
corresponds to tracking with the deceleration predictor, and the
last row corresponds to tracking with RVAR motion prediction.

RVAR model gives better performance over the decelera-
tion model. Although the variance of the thumb joints are
comparatively larger, the median of R̃2 for the RVAR model
is actually slightly higher. Tuning γ = 0.7 results in a vari-
ance (for the thumb joints) that is similar to the variance
of the deceleration case, without noticeable change to the
statistics of the other joints/fingertips. We prefer keeping
the higher variance for the thumb (i.e. with γ = 0.8) since
it gives the tracker a better chance to escape from local min-
ima. Frame 150 in figure 6 illustrates where using a RVAR
model sometimes allows the tracker to escape from a local
minimum whereas this is impossible with the deceleration
model.

6. Experiments on Real Sequences
A pair of firewire cameras with a resolution of 640×480

pixels is used to capture video sequences of a moving hand
at 25 frames per second. The silhouette of the hand is ex-
tracted via a learned skin colour model [7]. The initial pose
for the starting frame is crudely fitted by eye. Tracking per-
formances with the x̂RVAR

T+1 , x̂D
T+1 and x̂0

T+1 motion predic-
tors are examined.

The first sequence is 280 frames long and starts with in-
dividual flexion of fingers followed by simultaneous fin-
ger flexions. A visual inspection of the tracking results
indicates that tracking without motion prediction performs
worst. Figure 7 contains excerpts of the video sequence and
compares the performances of the tracker using the three
different motion predictors. The tracker with the no-motion
predictor temporarily loses tracking accuracy during fast
motion sequences, e.g., frames 86, 111, as expected. The
tracking performance of RVAR (with γ = 0.8, c = 8)
is also more accurate than the deceleration predictor (see
frames 111, 203, 236 and 242).

To verify that the RVAR motion predictor is indeed better
than the deceleration predictor, we use a more challenging
sequence (80 frames), where the hand undergoes an out-
of-plane movement as the palm face completely flips away
from the camera and back (see figure 8). The tracker with
the RVAR motion predictor is able to follow through with
the movement whereas the deceleration predictor is unable
to do this, despite repeated trials.

7. Conclusion
An online adaptive VAR prediction model has been pre-

sented. The results clearly indicate that using an online
VAR motion predictor naively to find a good initial start-
ing point for the optimisation routine of the tracking system
will degrade tracking performance. Applying kinematic-
based constraints when solving for the VAR parameters is
required for more sensible predictions. The addition of a
trust factor and adaptive weights based on the past predic-
tion accuracy has improved results. Experimental results on
real sequences support these findings and demonstrate the
flexibility of the RVAR model in handling different hand
motions. Future work will include a comparison of the
RVAR model against motion models derived from offline
training on motion capture data.
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Figure 7. Tracking results for the real sequence. Top row: No-motion predictor. Middle row: Deceleration predictor. Bottom row: RVAR
predictor. Frames 86 and 111 illustrate the advantage of the RVAR predictor for fast flexion of the fingers. In general, the tracking results
are cleaner with the RVAR predictor.

Figure 8. Difficult out of plane twist motion that involves severe self-occlusion. Top row: Tracker with the deceleration predictor consis-
tently fails. Botton row: Tracker with the RVAR predictor is able to track through the gesture correctly.
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