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Feature-based Recursive Observer Design for Homography Estimation

and its Application to Image Stabilization

Minh-Duc Hua, Jochen Trumpf, Tarek Hamel, Robert Mahony, and Pascal Morin

ABSTRACT

This paper presents a new algorithm for online estimation of a sequence
of homographies applicable to image sequences obtained from robotic vehicles
equipped with vision sensors. The approach taken exploits the underlying
Special Linear group structure of the set of homographies along with gyroscope
measurements and direct point-feature correspondences between images to
develop temporal filter for the homography estimate. Theoretical analysis
and experimental results are provided to demonstrate the robustness of the
proposed algorithm. The experimental results show excellent performance and
robustness even in the case of very fast camera motions (relative to frame rate)
and severe occlusions.

Key Words: Homography estimation, Nonlinear observer, M-estimator-like
observer, Image stabilization

I. Introduction

When a robotic vehicle equipped with a vision sen-
sor is manoeuvering in a built environment, consisting
primarily of planar or near planar surfaces, then the
nature of the environment can be exploited in the vision
processing algorithms. Different images of the same
planar surface are related by homography mappings,
and homographies have been used extensively in robotic
applications as a vision primitive. Homography based
algorithms have been used for estimation of the rigid-
body pose of a vehicle equipped with a camera [22,
25, 26, 27]. Navigation of robotic vehicles has been
developed based on homography sequences [6, 7, 9, 13,
23] and one of the most successful visual servo control
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paradigms uses homographies [17, 18]. Homography
based methods are particularly well suited to navigation
of unmanned aerial vehicles [1, 4, 5, 21, 24] where
the ground terrain is viewed from a distance and the
relief of surface features is negligible compared to the
vehicles distance from the scene.

Computing homographies from point correspon-
dences has been extensively studied in the last fifteen
years [11]. The quality of the homography estimate
obtained depends heavily on the number and quality
of the data points used in the estimation as well as
the algorithm employed. For a well textured scene,
the state-of-the-art methods can provide high quality
homography estimates at the cost of significant com-
putational effort (see [20] and references therein). For a
scene with poor texture and consequently few reliable
point-feature correspondences, existing homography
estimation algorithms perform poorly. Robotic vehicle
applications, however, provide temporal sequences of
images and it seems natural to exploit the temporal
correlation rather than try to compute individual raw
homographies for each pair of frames. In [28] image
flow computed from a pair of images is used to compute
the relative homography, although this method still only
considers isolated pairs of images. In recent work by
the authors [18, 15] a nonlinear observer [3, 14] for
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homography estimation was proposed based on the
group structure of the set of homographies, the Special
Linear group SL(3) [2]. This observer uses velocity
information to interpolate across a sequence of images
and improve the individual homography estimates. The
observer proposed in [18, 15] still requires individual
image homographies to be algebraically computed for
each image, which are then smoothed using filtering
techniques. Although this approach [18, 15] provides
improved homography estimates, it comes at the cost
of running both a classical homography algorithm as
well as the temporal filter algorithm, and only functions
if each pair of images has sufficient data available to
compute a raw homography.

In this paper the question of deriving an observer
for a sequence of image homographies that takes
image point-feature correspondences directly as input
is considered. The proposed approach takes a sequence
of images associated with a continuous variation of
the reference image, the most common case being a
moving camera viewing a planar scene, a situation
typical of robotic applications. The proposed nonlinear
observer is posed on the Special Linear group SL(3),
that is in one-to-one correspondence with the group
of homographies [2], and uses velocity measurements
to propagate the homography estimate and fuse this
with new data as it becomes available [18, 15]. A key
advance on prior work by the authors is the formulation
of a point feature innovation for the observer that incor-
porates point correspondences directly in the observer
without requiring reconstruction of individual image
homographies. This saves considerable computational
resources and makes the proposed algorithm suitable
for embedded systems with simple point detection and
matching software. In addition, the algorithm is well
posed even when there is insufficient data for full
reconstruction of a homography. For example, if the
number of corresponding points between two images
drops below four it is impossible to algebraically
reconstruct an image homography and the existing
algorithms fail [11]. In such situations, the proposed
observer will continue to operate by incorporating
available information and relying on propagation
of prior estimates. Finally, even if a homography
can be reconstructed from a small set of feature
correspondences, the estimate is often unreliable and
the associated error is difficult to characterize. The
proposed algorithm integrates information from a
sequence of images, and noise in the individual feature
correspondences is filtered through the natural low-
pass response of the observer, resulting in a highly
robust estimate. As a result, the authors believe that

the proposed observer is ideally suited for homography
estimation based on small windows of image data
associated with specific planar objects in a scene,
poorly textured scenes, and real-time implementation;
all of which are characteristic of requirements for
homography estimation in robotic vehicle applications.

The paper is organized into seven sections
including the introduction and the concluding sections.
Section II presents a brief recap of the Lie group
structure of the set of homographies. In Section III,
based on a recent advanced theory for nonlinear
observer design [16], a nonlinear observer on SL(3) is
proposed using direct measurements of known inertial
directions and the knowledge of the group velocity.
A rigourous stability analyses is provided in this
section. In Section IV, the homography and associated
homography velocity are related to rigid-body motion
of the camera and two observers are derived for the
case where only the angular velocity of the camera
is known, a typical scenario in robotic applications.
Simulation results are provided in Section V. Section VI
provides an application of the proposed approach to
a real world problem of image stabilization. In this
section, offline and real-time experimental validations
are presented together with some useful practical
implementation aspects. Four video links, showing
the results of Sections VI, are also provided as
supplementary material. The results show excellent
performance and robustness even in the case of very
fast camera motions (relative to frame rate) and severe
occlusions.

A preliminary version of the theoretical results
in this paper was presented at a conference [10]. The
present version provides a more formal derivation of
the observer based on a recent theory [16]. Moreover,
the M-estimator-like observer design proposed in
Subsection 4.3 is a new result that improves signifi-
cantly the robustness of the proposed approach with
respect to unavoidable feature correspondence outliers
encountered in practice. Finally, extensive experimental
validations for the image stabilization application as
reported in Section VI have also been recently carried
out. Some materials of this paper were reported in our
technical reports [12].

II. Preliminary material

2.1. Camera projections

Visual data is obtained via a projection of an
observed scene onto the camera image surface. The
projection is parameterized by two sets of parameters:
intrinsic (“internal” parameters of the camera such as
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the focal length, the pixel aspect ratio, the principal
point, etc.) and extrinsic (the pose, i.e. the position
and orientation of the camera). Let Å (resp. A) denote
projective coordinates for the image plane of a camera
Å (resp. A), and let {Å} (resp. {A}) denote its
(right-hand) frame of reference. Let ξ ∈ R3 denote
the position of the frame {A} with respect to {Å}
expressed in {Å}. The orientation of the frame {A}
with respect to {Å} is represented by a rotation matrix
R ∈ SO(3). The pose of the camera determines a rigid
body transformation from {A} to {Å} (and visa-versa).
One has

P̊ = RP + ξ (1)

as a relation between the coordinates of the same point
in the reference frame (P̊ ∈ {Å}) and in the current
frame (P ∈ {A}). The camera internal parameters, in
the commonly used approximation [11], define a 3× 3
matrix K so that one can write∗:

p̊im ∼= KP̊ , pim ∼= KP, (2)

where pim ∈ A is the image of a point when the
camera is aligned with the frame {A}, and can be
written as (u, v, 1)> using the homogeneous coordinate
representation for that 2D image point. Likewise, p̊im ∈
Å is the image of the same point viewed when the
camera is aligned with the frame {Å}.

If the camera is calibrated (i.e. the intrinsic
parameters are known), then all quantities can be
appropriately scaled so that:

p̊ :=
P̊

|P̊ |
=

K−1p̊im

|K−1p̊im|
, p :=

P

|P |
=

K−1pim

|K−1pim|
. (3)

2.2. Homographies

Since homographies describe image transforma-
tions of planar scenes, we begin by fixing a plane that
contains the points of interest (target points).

Assumption 1 Assume that the camera is calibrated
and the observed planar scene Π contains a set of n
target points (n ≥ 4) so that

Π =
{
P̊ ∈ R3 : η̊>P̊ − d̊ = 0

}
,

where η̊ is the unit normal to the plane expressed in {Å}
and d̊ is the distance of the plane to the origin of {Å}.

∗Most statements in projective geometry involve equality up to a
multiplicative constant denoted by ∼=.

From the rigid-body relationship (1) one deduces
P = R>P̊ −R>ξ. Define ζ := −R>ξ. Since all target
points lie in a single planar surface, one has

Pi = R>P̊i +
ζη̊>

d̊
P̊i, i = {1, . . . , n}, (4)

and thus, using (3) the projected points obey

pi ∼=
(
R> +

ζη̊>

d̊

)
p̊i, i = {1, . . . , n}. (5)

The projective mapping H : A → Å, H :∼=(
R> + ζη̊>

d̊

)−1

is termed homography and it relates
the images of points on the plane Π when viewed from
two poses defined by the coordinate systems A and
Å, respectively. It is straightforward to verify that the
homography H can be written as follows:

H ∼=
(
R+

ξη>

d

)
, (6)

where η is the normal to the observed planar scence
expressed in the frame {A} and d is the orthogonal
distance of the plane to the origin of {A}. One verifies
that [2]:

η = R>η̊ (7)

d = d̊− η̊>ξ = d̊+ η>ζ. (8)

The homography matrix encodes the pose information
(R, ξ) of the camera from the frame {A} (termed
current frame) to the frame {Å} (termed reference
frame). However, since the relationship between the
image points and the homography is a projective
relationship, it is only possible to determine H up to a
scale factor (using the image points relationships alone).

2.3. Homographies as elements of the Special
Linear Group SL(3)

Recall that the Special Linear group SL(3) is
defined as the set of all real valued 3× 3 matrices with
unit determinant:

SL(3) := {H ∈ R3×3 | detH = 1}.

The Lie-algebra sl(3) of SL(3) is the set of matrices
with trace equal to zero:

sl(3) := {X ∈ R3×3 | tr(X) = 0}.

The adjoint operator is a mapping Ad : SL(3)×
sl(3)→ sl(3) defined by:

AdHX := HXH−1, H ∈ SL(3), X ∈ sl(3).
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Since a homography matrix H is only defined
up to scale then any homography matrix is associated
with a unique matrix H̄ ∈ SL(3) by re-scaling H̄ =

det(H)−
1
3H such that det(H̄) = 1 and hence H̄ ∈

SL(3) occurs as a homography. Moreover, the map

w : SL(3)× P2 −→ P2,

(H, p) 7→ w(H, p) ∼= Hp
|Hp|

is a group action of SL(3) on the projective space P2

since

w(H1, w(H2, p)) = w(H1H2, p), w(I, p) = p,

where H1, H2 and H1H2 ∈ SL(3) and I is the identity
matrix, the unit element of SL(3). The geometrical
meaning of the above property is that the 3D motion
of the camera between views A0 and A1, followed
by the 3D motion between views A1 and A2 is the
same as the 3D motion between views A0 and A2.
As a consequence, one can think of homographies as
described by elements of SL(3).

Since any homography is defined up to a scale
factor, it is assumed from now on that H ∈ SL(3):

H = γ

(
R+

ξη>

d

)
. (9)

There are numerous approaches for determining H , up
to this scale factor, cf. for example [19]. Note that direct
computation of the determinant of H in combination
with the expression (8) of d and using the fact that
det(H) = 1 shows that γ = (d/d̊)

1
3 .

Extracting R and ξ/d from H is in general quite
complex [2, 8, 19, 30] and is beyond the scope of this
paper.

III. Nonlinear observer design on SL(3) based
on direct measurements

In this section the design of an observer for H ∈
SL(3) is based on the theory for nonlinear observer
design directly on the output space proposed in [16].

3.1. Kinematics and measurements

Consider the kinematics of SL(3) given by

Ḣ = F (H,U) := HU, (10)

with U ∈ sl(3) the group velocity. Assume that U is
measured. Furthermore, a set of n measurements pi ∈
P2 in the body-fixed frame is available:

pi = h(H, p̊i) :=
H−1p̊i
|H−1p̊i|

, i = {1 . . . n}, (11)

where p̊i ∈ P2 are constant and known. For later use,
define

p̊ := (p̊1, · · · , p̊n), p := (p1, · · · , pn).

Definition 1 A setMn of n ≥ 4 vector directions p̊i ∈
P2, with i = {1 . . . n}, is called consistent, if it contains
a subsetM4 ⊂Mn of 4 constant vector directions such
that all vector triplets inM4 are linearly independent.

This definition implies that if the setMn is consistent,
then for all p̊i ∈M4 there exists a unique set of three
non vanishing scalars bj 6= 0 (j 6= i) such that p̊i =

ẙi/|̊yi|, with ẙi :=
∑4

j=1(j 6=i) bj p̊j .
We verify that SL(3) is a symmetry group

with group actions φ : SL(3)× SL(3) −→ SL(3),
ψ : SL(3)× sl(3) −→ sl(3) and ρ : SL(3)× P2 −→ P2

defined by

φ(Q,H) := HQ,
ψ(Q,U) := AdQ−1U = Q−1UQ,

ρ(Q, p) := Q−1p
|Q−1p| .

It is straightforward to verify that φ, ψ, and
ρ are right group actions in the sense that
φ(Q2, φ(Q1, H)) = φ(Q1Q2, H), ψ(Q2, ψ(Q1, U)) =
ψ(Q1Q2, U), and ρ(Q2, ρ(Q1, p)) = ρ(Q1Q2, p), for
all Q1, Q2, H ∈ SL(3), U ∈ sl(3) and p ∈ P2. One also
verifies that

ρ(Q, h(H, p̊i)) = h(φ(Q,H), p̊i)
dφQ(H)[F (H,U)] = F (φ(Q,H), ψ(Q,U)).

Thus, the kinematics are right equivariant (see [16]),
which is an important property, allowing us to apply the
observer design framework proposed in [16].

3.2. Nonlinear observer design

Let Ĥ ∈ SL(3) denote the estimate of H . Define
the right group error E := ĤH−1 ∈ SL(3) and the
output errors ei ∈ P2:

ei := ρ(Ĥ−1, pi) =
Ĥpi

|Ĥpi|
=

Ep̊i
|Ep̊i|

. (12)

The proposed observer takes the form

˙̂
H = ĤU −∆(Ĥ, p)Ĥ, (13)

where ∆(Ĥ, p) ∈ sl(3) is the innovation term to be
designed so that it is right equivariant in the sense that
for all Q ∈ SL(3):

∆(φ(Q, Ĥ), ρ(Q, p1), · · · , ρ(Q, pn))

= ∆(Ĥ, p1, · · · , pn).
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Interestingly, if ∆(Ĥ, p) is right equivariant, one can
verify that the dynamics of the canonical error E is
autonomous and given by [16, Th. 1]:

Ė = −∆(E, p̊)E. (14)
In order to determine the innovation term ∆(Ĥ, p),

a non-degenerate right-invariant cost function Cp̊(Ĥ, p)
is required so that ∆(Ĥ, p) can be computed as

∆(Ĥ, p) := (grad1Cp̊(Ĥ, p))Ĥ−1, (15)
where grad1 is the gradient in the first variable, using
a right-invariant Riemannian metric on SL(3). As
a consequence of [16], if the chosen cost function
Cp̊(Ĥ, p) is non-degenerate, meaning that (I, p̊) is
its global minimum, then the equilibrium E = I of
the autonomous system (14) is locally asymptotically
stable.

Let us first define individual degenerate right-
invariant costs at p̊i on the output space P2 as follows:
Cip̊i : SL(3)× P2 −→ R+,

(Ĥ, pi) 7→ Cip̊i(Ĥ, pi) := ki
2

∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣2
with ki positive gains, chosen depending on the
relative confidence in the measurements. One verifies
that Cip̊i(Ĥ, pi) are right-invariant in the sense that
Cip̊i(φ(Q, Ĥ), ρ(Q, pi)) = Cip̊i(Ĥ, pi) for all Q ∈ SL(3).
The costs Cip̊i(Ĥ, pi) are degenerate since by taking
pi = p̊i there exists an infinity of Ĥ such that
Cip̊i(Ĥ, p̊i) = 0.

The aggregate cost function Cp̊(Ĥ, p) is then
defined as the sum of all the individual costs as follows:
Cp̊ : SL(3)×(P2 × · · · × P2)−→ R+,

(Ĥ, p) 7→ Cp̊(Ĥ, p) :=

n∑
i=1

ki
2

∣∣∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣∣∣
2

(16)

It is straightforward that Cp̊(Ĥ, p) is also right-invariant.
According to [16, Lem. 3], the aggregate cost is
non-degenerate if

⋂n
i=1 stabρ(p̊i) = {I}, where the

stabilizer stabρ(p) of an element p ∈ P2 is defined
by stabρ(p) := {Q ∈ SL(3) | ρ(Q, p) = p}. In fact,⋂n
i=1 stabρ(p̊i) = {I} is equivalent to

⋂n
i=1 si = {0},

where si = ker(dρp̊i(I)) is the Lie-algebra associated
with stabρ(p̊i).

The following lemma establishes a sufficient
condition ensuring that the aggregate cost Cp̊(Ĥ, p) is
non-degenerate.

Lemma 1 Assume that the set Mn of the measured
directions p̊i is consistent. Then, the aggregate cost
Cp̊(Ĥ, p) defined by (16) is non-degenerate and,
consequently, (I, p̊) is a global minimum of the
aggregate cost Cp̊(Ĥ, p).

Proof: One computes the derivative

dρp̊i(H)[HU ] = d
(
H−1p̊i
|H−1p̊i|

)
[HU ]

=
(
I − (H−1p̊i)(H

−1p̊i)
>

|H−1p̊i|2

)
UH−1p̊i
|H−1p̊i|

(17)

with some U ∈ sl(3). From (17) one deduces that

si = ker(dρp̊i(I)) = {U ∈ sl(3) | πp̊iUp̊i = 0}

with πx := (I − xx>) for all x ∈ S2. Thus,
n⋂
i=1

si = {U ∈ sl(3) | πp̊iUp̊i = 0,∀i = 1, · · · , n}

Let us now determine U ∈ sl(3) such that πp̊iUp̊i = 0,
for all i = 1, · · · , n. The relation πp̊iUp̊i = 0 can be
equivalently written as Up̊i = λip̊i, with λi := p̊>i Up̊i.
From there one deduces that λi are eigenvalues ofU and
p̊i are the associated eigenvectors. Since the setMn of
the measured directions p̊i is consistent, without loss
of generality it can be assumed that the subset M4 =
{p̊1, p̊2, p̊3, p̊4} is consistent. Thus, there exist 3 non-
null numbers b1, b2, and b3 such that p̊4 =

∑3
i=1 bip̊i.

From there one deduces that∑3
i=1 biλip̊i =

∑3
i=1 biλ4p̊i, (18)

using the fact that

Up̊4 = U
∑3

i=1 b1p̊1 =
∑3

i=1 b1Up̊1 =
∑3

i=1 biλip̊i

and

Up̊4 = λ4p̊4 = λ4

∑3
i=1 bip̊i =

∑3
i=1 biλ4p̊i.

Since bi (with i = 1, 2, 3) are non-null and the 3 unit
vectors p̊i (with i = 1, 2, 3) are linearly independent,
(18) directly yields λ1 = λ2 = λ3 = λ4. Let λ denote
the value of these four identical eigenvalues.

One easily deduces that the geometric multiplicity
of the eigenvalue λ (defined as the dimension of the
eigenspace associated with λ) is equal to 3, since the 3
eigenvectors p̊i (with i = 1, 2, 3) associated with λ are
linearly independent. Since the algebraic multiplicity
of the eigenvalue λ is no less than the corresponding
geometric multiplicity, one deduces that it is also equal
to 3. This means that U has a triple eigenvalue λ. Since
the number of linearly independent eigenvectors of U
is equal to 3, the matrix U is diagonalizable. Then,
the diagonalizability of U along with the fact that it
has a triple eigenvalue implies that U = λI . One thus
obtains tr(U) = 3λ, which is null since U is an element
of sl(3). Consequently, λ = 0 and U = 0. One then
deduces

⋂n
i=1 si = {0}, which concludes the proof.
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Remark 1 The consistency of the set Mn of the mea-
sured directions p̊i ∈ P2, with i = {1 . . . n}, provides an
observability condition that is coherent with the well-
known fact that the homography can only be computed
from the correspondences of at least 4 non-aligned
points on the same plane [11].

Lemma 2 The innovation term ∆(Ĥ, p) defined by (15)
is right equivariant and explicitly given by

∆(Ĥ, p) = −
n∑
i=1

kiπei p̊ie
>
i , with ei =

Ĥpi

|Ĥpi|
. (19)

Proof: The proof for ∆(Ĥ, p) to be equivariant is a
direct result of [16]. Let 〈·, ·〉 : sl(3)× sl(3) −→ R be
a positive definite inner product on sl(3), chosen to be
the Euclidean matrix inner product on R3×3. Then, a
right-invariant Riemannian metric on SL(3) induced by
the inner product 〈·, ·〉 is defined by 〈U1H,U2H〉H :=
〈U1, U2〉.

Using standard rules for transformations of
Riemannian gradients and the fact that the Riemannian
metric is right invariant, one obtains

D1Cp̊(Ĥ, p)[UĤ] = 〈grad1Cp̊(Ĥ, p), UĤ〉H
= 〈grad1Cp̊(Ĥ, p)Ĥ−1Ĥ, UĤ〉H
= 〈grad1Cp̊(Ĥ, p)Ĥ−1, U〉
= 〈∆(Ĥ, p), U〉,

(20)

with some U ∈ sl(3). On the other hand, in view of (16)
one has
D1Cp̊(Ĥ, p)[UĤ] = dĤCp̊(Ĥ, p)[UĤ]

=
∑n

i=1 ki

(
Ĥpi
|Ĥpi|

− p̊i
)>(

I − (Ĥpi)(Ĥpi)
>

|Ĥpi|2

)
(UĤ)pi
|Ĥpi|

=
∑n

i=1 ki(ei − p̊i)>(I − eie>i )Uei

= tr
(∑n

i=1 kiei(ei − p̊i)>(I − eie>i )U
)

= −tr
(∑n

i=1 kieip̊
>
i πeiU

)
=
〈
−
∑n

i=1 kiπei p̊ie
>
i , U

〉
.

(21)
Finally, the explicit expression of ∆(Ĥ, p) given by (19)
is directly obtained from (20) and (21).

One deduces from (19) that

∆(E, p̊) = −
n∑
i=1

kiπei p̊ie
>
i , with ei =

Ep̊i
|Ep̊i|

,

and, consequently, from (14) that

Ė =

(
n∑
i=1

kiπei p̊ie
>
i

)
E = −grad1Cp̊(E, p̊). (22)

From there the main result of this paper can be stated.

Theorem 1 Consider the kinematics (10) and assume
that the velocity groupU ∈ sl(3) is known. Consider the
nonlinear observer defined by (13), with the innovation
term ∆(Ĥ, p) ∈ sl(3) defined by (19). If the set Mn

of the measured directions p̊i is consistent, then the
equilibrium E = I of the autonomous system (22) is
locally asymptotically stable.

Proof: This theorem can be seen as a direct result of
Theorem 2 in [16], but it can also be proved using
classical Lyapunov theory. The candidate Lyapunov
function under consideration is L0 := Cp̊(E, p̊). Using
the consistency of the set Mn, one can ensure that L0

is locally a positive definite function of E. The time-
derivative of L0 along the error flow (22) verifies

L̇0 = d
dt

∑n
i=1

ki
2

∣∣∣ Ep̊i|Ep̊i| − p̊i
∣∣∣2

=
∑n

i=1 ki(
Ep̊i
|Ep̊i| − p̊i)

>(I − (Ep̊i)(Ep̊i)
>

|Ep̊i|2 ) Ėp̊i
|Ep̊i|

= −
∑n

i=1 ki(ei − p̊i)>πei∆ei
= tr(

∑n
i=1 kieip̊

>
i πei∆)

= −||∆(E, p̊)||2,

where || · || is the Frobenius norm defined by ||A|| =√
〈A,A〉 for any real valued square matrix A. From

there one ensures that E is locally bounded. Moreover,
by application of LaSalle’s theorem, one deduces that
∆(E, p̊) converges to zero. From the definitions of ∆
(19) and ei (12), one deduces

∆E−> =

n∑
i=1

(
I − Ep̊ip̊

>
i E
>

|Ep̊i|2

)
p̊ip̊
>
i

|Ep̊i|
.

Computing the trace of ∆E−> one obtains

tr(∆E−>) =

n∑
i=1

1

|Ep̊i|3
(
|Ep̊i|2|p̊i|2 − ((Ep̊i)

>p̊i)
2
)
.

Define Xi := Ep̊i and Yi := p̊i. It is straightforward to
verify that

tr(∆E−>) =

n∑
i=1

1

|Xi|3
(
|Xi|2|Yi|2 − (X>i Yi)

2
)
≥ 0

Using the fact that ∆ = 0 at the equilibrium and
therefore tr(∆E−>) = 0, as well as the Cauchy-
Schwarz inequality, it follows that X>i Yi = ±|Xi||Yi|
and consequently one has:

(Ep̊i)
>p̊i = ±|Ep̊i||p̊i|, ∀i = {1, · · · , n},

which in turn implies the existence of some scalars
λi = ±|Ep̊i| such that

Ep̊i = λip̊i. (23)
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Using (23) and exploiting the consistency of the set
Mn, one can proceed analogously to the proof of
Lemma 1 to deduce that E has a triple eigenvalue λ
and E = λI . Then, evoking the fact that det(E) = 1,
one deduces that λ = 1 and E = I . Consequently, E
converges asymptotically to the identity I .

Remark 2 The boundaries of the stability domain
associated with Theorem 1 are extremely difficult,
and probably impossible, to analytically characterise.
The nature of the Lyapunov function L0 is always
well conditioned in the neighbourhood of the correct
homography matrix, but the global geometry of SL(3)
is complex and there will be critical points and non-
convex cost structure when the rotation component
of the homography matrix has errors approaching
π rads from the true homography. The authors believe,
based on extensive simulation and experimental studies
(cf. Sections V and VI) and our intuition for such
problems, that the stability domain is very large in
practice, encompassing all realistic scenarios where the
camera actually observes the desired scene (rotations of
less than π/2 rads and moderate displacements).

IV. Application to robotic systems

4.1. Homography kinematics from a camera
moving with rigid-body motion

In this section the case where a sequence of
homographies is generated by a moving camera viewing
a stationary planar surface is considered. The goal is
to develop a nonlinear filter for the image homography
sequence using the velocity associated with the rigid-
body motion of the camera rather than the group
velocity of the homography sequence, as was assumed
in Section III. In fact, any group velocity (infinitesimal
variation of the homography) must be associated
with an instantaneous variation in measurement of
the current image A and not with a variation in
the reference image Å. This imposes constraints on
two degrees of freedom in the homography velocity,
namely those associated with variation of the normal
to the reference image, and leaves the remaining six
degrees of freedom in the homography group velocity
depending on the rigid-body velocities of the camera.

Denote the rigid-body angular velocity and linear
velocity of {A} with respect to {Å} expressed in {A}
by Ω and V , respectively. The rigid body kinematics of
(R, ξ) are given by:

Ṙ = RΩ× (24)

ξ̇ = RV (25)

where Ω× is the skew symmetric matrix associated
with the vector cross-product, i.e. Ω×y = Ω× y, for all
y ∈ R3.

Recalling (8) one easily verifies that:

ḋ = −η>V, d

dt
d̊ = 0.

This constraint on the variation of η and d̊ is precisely
the velocity constraint associated with the fact that the
reference image is stationary.

Consider a camera attached to the moving frame
{A} moving with kinematics (24) and (25) viewing a
stationary planar scene. The group velocity U ∈ sl(3)
induced by the rigid-body motion, and such that the
dynamics of H satisfies (10), is given by [15, Lem. 5.3]

U = Ω× +
V η>

d
− η>V

3d
I.

Note that the group velocity U induced by camera
motion depends on the additional variables η and d that
define the scene geometry at time t as well as the scale
factor γ. Since these variables are unmeasurable and
cannot be extracted directly from the measurements, in
the sequel, let us rewrite:

U := Ω× + Γ, with Γ =
V η>

d
− η>V

3d
I. (26)

Since {Å} is stationary by assumption, the vector
Ω can be directly obtained from the set of embedded
gyroscopes. The term Γ is related to the translational
motion expressed in the current frame {A}. If we
assume that ξ̇d is constant (e.g. the situation in which the
camera moves with a constant velocity parallel to the
scene or converges exponentially toward it), and using
the fact that V = R>ξ̇, it is straightforward to verify
that

Γ̇ = [Γ,Ω×], (27)

where [Γ,Ω×] = ΓΩ× − Ω×Γ is the Lie bracket.
However, if we assume that V

d is constant (the
situation in which the camera follows a circular
trajectory over the scene or performs an exponential
convergence towards it), it follows that

Γ̇1 = Γ1Ω×, with Γ1 =
V

d
η>. (28)

4.2. Observer with partially known velocity of the
rigid body

In this section it is assumed that, instead of
the group velocity U , only the angular velocity Ω is
measured. The goal is to provide an estimate Ĥ ∈ SL(3)
for H ∈ SL(3) to drive the group error E (= ĤH−1)
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to the identity matrix I and the error term Γ̃ := Γ− Γ̂
(resp. Γ̃1 := Γ1 − Γ̂1) to 0 if Γ (resp. Γ1) is constant or
slowly time varying. The observer when ξ̇

d is constant is
chosen as follows (compare to (13)):

˙̂
H = Ĥ(Ω× + Γ̂)−∆(Ĥ, p)Ĥ, (29)
˙̂
Γ = [Γ̂,Ω×]− kIAdĤ>∆(Ĥ, p). (30)

and the observer when V
d is constant is defined as

follows:
˙̂
H = Ĥ(Ω× + Γ̂1 −

1

3
tr(Γ̂1)I)−∆(Ĥ, p)Ĥ, (31)

˙̂
Γ1 = Γ̂1Ω× − kIAdĤ>∆(Ĥ, p). (32)

with some positive gain kI and ∆(Ĥ, p) given by (19).

Proposition 1 Consider a camera moving with kine-
matics (24) and (25) viewing a planar scene. Assume
that Å is stationary and that the orientation velocity
Ω ∈ {A} is measured and bounded. Let H : A → Å
denote the calibrated homography (9) and consider
the kinematics (10) along with (26). Assume that H is
bounded and that Γ (resp. Γ1) is such that it obeys (27)
(resp. (28)).
Consider the nonlinear observer defined by (29–30),
(resp. (31–32)) along with the innovation ∆(Ĥ, p) ∈
sl(3) given by (19). Then, if the setMn of the measured
directions p̊i is consistent, the equilibrium (E, Γ̃) =
(I, 0) (resp. (E, Γ̃1) = (I, 0)) is locally asymptotically
stable.

Proof: We will consider only the situation where the
estimate of Γ is used. The same arguments can also be
used for the case where the estimate of Γ1 is considered.
Differentiating ei given by (12) and using (29) one
obtains

ėi = −πei(∆ + AdĤ Γ̃)ei.

Consider the following candidate Lyapunov function:

L = L0 + 1
2kI
||Γ̃‖2

=
∑n

i=1
ki
2 |ei − p̊i|

2
+ 1

2kI
||Γ̃‖2.

(33)

Differentiating L and using the fact that
tr
(
Γ̃>
([

Γ̃,Ω
]))

= 0, it follows:

L̇ =

n∑
i=1

ki(ei − p̊i)>ėi + tr
(
Γ̃>AdĤT ∆

)
=−

n∑
i=1

ki(ei−p̊i)>πei(∆+AdĤ Γ̃)ei+tr
(
AdĤ−1∆>Γ̃

)
.

Using the fact that tr(AB) = tr(B>A>) one deduces

L̇ =

n∑
i=1

kip̊
>
i πei(∆ + AdĤ Γ̃)ei + tr

(
AdĤ−1∆>Γ̃

)
=tr
( n∑
i=1

kieip̊
>
i πei(∆ + AdĤ Γ̃) + AdĤ−1∆>Γ̃

)
=tr
( n∑
i=1

kieip̊
>
i πei∆+AdĤ−1(∆>+

n∑
i=1

kieip̊
>
i πei)Γ̃

)
Finally, using the expression (19) of ∆ one obtains
L̇ = −‖∆‖2. The derivative of the Lyapunov function is
negative semi-definite, and equal to zero when ∆ = 0.
Given that Ω is bounded, one easily verifies that L̇
is uniformly continuous and Barbalat’s lemma can be
used to prove the asymptotic convergence of ∆ to zero.
Using the same arguments as in the proof of Theorem
1, it is straightforward to verify that E converges to
I . Consequently, the left-hand side of the Lyapunov
expression (33) converges to zero and ‖Γ̃‖2 converges
to a constant.

Computing the time derivative of E and using the
fact that ∆ converges to zero and E converges to I , it is
straightforward to show that limt→∞ Ė = −AdĤ Γ̃ = 0.
Using boundedness of H one ensures limt→∞ Γ̃ = 0.

4.3. Outlier rejection with M-estimator-like
nonlinear observer

The cost function (16) previously used for observer
design is the sum of individual squared residuals
r2
i , with ri :=

∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣. This function is, however,
extremely unstable when outliers are present in the
measurements. In practice outliers are a result of wrong
feature matching, which is almost unavoidable. Inspired
by the robust M-estimator techniques (see, e.g., [29] and
the references therein), we consider the following cost
function [instead of (16)]:

Cp̊(Ĥ, p) :=

n∑
i=1

kiρ(ri), (34)

where ρ(·) is a symmetric, positive-definite function
with a unique minimum at zero, and is chosen less
increasing than the square. From there, the proposed
observer is still given by the general form (13) and the
innovation term ∆(Ĥ, p) is still derived from (15). From
(34) and analogously to (21), one deduces
D1Cp̊(Ĥ, p)[UĤ] = dĤCp̊(Ĥ, p)[UĤ]

=

n∑
i=1

kiw(ri)
(
Ĥpi
|Ĥpi|

− p̊i
)>(

I − (Ĥpi)(Ĥpi)
>

|Ĥpi|2

)
(UĤ)pi
|Ĥpi|

=
〈
−

n∑
i=1

kiw(ri)πei p̊ie
>
i , U

〉
,

(35)
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where w(·) is the weight function defined by

w(x) :=
1

x

dρ(x)

dx
.

Several possible choices of ρ and its associated w
function are discussed in [29]. For instance, the Tukey ρ
function, which is chosen for the experimental Section
VI, is given by

ρ(x) =

{
(c2/6)(1− [1− (x/c)2]3) if |x| ≤ c
c2/6 if |x| > c

and, thus,

w(x) =

{
[1− (x/c)2]2 if |x| ≤ c
0 if |x| > c

(36)

with c a tuning parameter. From (20) and (35) one
obtains [instead of (19)]

∆(Ĥ, p) = −
n∑
i=1

kiw(ri)πei p̊ie
>
i . (37)

From there, the same results as in Theorem 1 and
Proposition 1 can be stated but with the innovation
term ∆(Ĥ, p) given by (37) instead of (19). The proofs
proceed identically to the proofs of Theorem 1 and
Proposition 1 where the function L0 is chosen equal to
Cp̊(Ĥ, p) defined in (34) instead of (16).

By definition, an observer is robust to outliers
if the influence of any outlier is small enough to
create any important offset. Therefore, the weight
function w should reduce the effect of large residuals.
For instance, the Tukey weight function (36) even
suppresses residuals larger than the tuning parameter
c. In [29], a quantitative analysis on the influence of
the associated tuning parameter of some ρ functions is
summarized in the case where the residuals ri belong
to R. However, in the proposed work the residuals ri
evolve in a compact set [0, 2]. Quantitatively analyzing
the improvement of precision and robustness of the
homography estimation when using the proposed M-
estimator-like observer thus remains an open subject
which by its own right needs to be carefully addressed
in our future works. Nevertheless, based on extensive
experimental tests (e.g. as reported in Section VI) we
have observed that the precision and robustness of
the homography estimate are greatly enhanced with
the proposed M-estimator-like observer. For instance,
the latter is very robust even in presence of extreme
occlusions (see Sections 6.2.2 and 6.3) while the basic
version of the proposed observer tends to diverge in
such situations.

V. Simulation results

In this section the performance and robustness
of the proposed approach are illustrated through
simulation results. The camera is attached to an aerial
vehicle moving in a circular trajectory belonging to
a plane parallel to the ground. The reference camera
frame {Å} is chosen as the North-East-Down frame
situated above four observed points on the ground.
The four observed points form a square whose center
lies on the Z-axis of the frame {Å}. The vehicle’s
trajectory is chosen such that the term Γ1 defined
by (28) remains constant, and the observer (31-32)
is applied with the following gains: kP = 4, kI = 1.
Distributed noise of variance 0.01 is added to the
angular velocity measurements. The chosen initial
estimated homography Ĥ(0) corresponds to i) an error
of π/2 in both pitch and yaw angles of the attitude, and
ii) an estimated translation equal to zero. The initial
value of Γ̂1 is set to zero. From 40s to 45s, it is
assumed that the measurements of two observed points
are lost. Then, from 45s the measurements of all four
points are regained as previously. The results reported
in Fig. 1 show a good convergence rate of the estimated
homography to the real homography (see from 0 to
40s and from 45s). The loss of point measurements
marginally affects the global performance of the
proposed observed. Note that in this situation, no
existing method for extracting the homography from
measurements of only two points is available.

VI. Application to image stabilization with
real-time implementation

6.1. Experimental implementation aspects

Feature detection and matching: Code has
been implemented in C++ with OpenCV library.
Due to real-time constraints, feature detection and
descriptor extraction in images are carried out using the
FAST Feature Detector and ORB Descriptor Extractor
algorithms already implemented in the OpenCV library.
Then, feature matching is performed using OpenCV’s
brute-force matcher routine with L2-norm. We have
purposefully avoided using more sophisticated image
processing routines in order to demonstrate the raw
performance of our observer.

It is quite unrealistic to track one and the same
set of point-features through a long image sequence.
We have hence opted to match point-features between
the reference image and each subsequent image frame
separately. To do this, we first compute a predicted
homography estimate Ĥ+

k that will be used to transform
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Fig. 1. Estimated homography components (solid line) and true
homography ones (dashed line) vs. time.

the current image Ik (i.e. warp the current image using
Ĥ+
k to obtain a prediction of the reference image)

using the OpenCV’s warpPerspective function

before applying feature extraction and matching. More
precisely, in the case where the angular velocity
measurements are available, Ĥ+

k is obtained by forward
integrating the observer equations (29)–(30) during
the time period [tk−1, tk] using only the gyrometer
measurements (i.e. setting the observer gains ki (i =
1, · · · , n) and kI to zero) and using (Ĥk−1, Γ̂k−1) as
initial conditions. Note that the brute-force matching
algorithm is well suited to this approach since it favors
translational motion over rotational motion, and most
of the rotational motion has already been compensated
for by forward integrating the angular velocity. On the
other hand, in the case of absence of angular velocity
measurements, Ĥ+

k is simply set equal to Ĥk−1.
Note that the procedure described above does not

satisfy the assumptions of our theoretical convergence
results because different point features are selected
for each video frame. However, it is intuitively clear
that such a procedure will still work as long as the
selected features provides a consistent set. Indeed, our
experimental results strongly support this claim.

Outlier removal: To remove matched point-
feature outliers, we first compute the standard deviation
(sdu, sdv) and mean values (mu,mv) of the differences
of coordinates in pixel (duk, dvk) of the point
correspondences and then keep only those satisfying mu −max(sdu, S) ≤ duk ≤ mu + max(sdu, S)

mv −max(sdv, S) ≤ dvk ≤ mv + max(sdv, S)
|duk| ≤ D, |dvk| ≤ D

with S,D pre-defined positive thresholds (S = 30, D =
80 in our experiments). Again, we have purposefully
avoided the use of more sophisticated (and much more
computationally expensive) alternative algorithms for
outlier removal, such as RANSAC. Our simple and
fast outlier removal method has yielded quite good
matching results (see, e.g., Fig. 2). However, outliers
cannot be completely removed especially in case of
occlusions. This in turn justifies the usefulness of our
M-estimator-like observer for outlier rejection.

Correction step of the observer: After the steps
of feature detection and matching, we use the observer
gains of ki = 80 (i = 1, · · · , n), kI = ki/10 and the
Tukey ρ function (see [29]) with parameter c = 0.05
to rapidly iterate the observer equations 200 times per
video frame†. The computational effort for this last step
is negligible compared to the previous image processing
steps.

†Note that the observer gains used for each iteration are divided by
the number of iteration, i.e. k̄i = ki/Niter and k̄I = kI/Niter with
Niter = 200.
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Fig. 2. Good quality of feature matching between the warped image
frame ]420 (Top-Right) and the reference frame (Top-Left) of
the video sequence ]1 and between the warped image frame
]2200 (Bottom-Right) and the reference frame (Bottom-Left)
of the video sequence ]2 when applying our outlier removal
procedure despite severe occlusions by fishes or a manipulator
arm.

6.2. Offline validations using Youtube videos

Two video sequences (downloaded from Youtube)
filmed from a camera mounted on an underwater
robotic vehicle are used to test our algorithm for
the classical image stabilization problem. Since the
camera parameters are not known, we just make
use of very rough (and certainly very erroneous)
estimates of these parameters. The reported results
presented hereafter indicate that, as long as the image
homography estimate (used to warp the current image)
is concerned, the stabilization performance of the
proposed observer is very robust with respect to these
parameter uncertainties.

These two video sequences show some realistic
scenarios of inspection of underwater infrastructures
using underwater vehicles. Some challenging issues
such as occlusions (due to moving fishes or a robotic
manipulator), low-light and low-textured scene, large
translation motions, poor image quality, etc. allow us
to test the robustness and performance of the proposed
approach. Moreover, the absence of the angular velocity
measurements in association with each image frame
also renders the feature matching procedure more
challenging.

The full validation videos of these two video
sequences are available at:
• Video sequence ]1: https://youtu.be/-eMjWSWVm2A
• Video sequence ]2: https://youtu.be/XqZkOC01eys

6.2.1. Video sequence ]1

In this video sequence (30fps, 632× 480px of
resolution, 680 frames), the underwater vehicle that

carries the camera approaches a 3D complex structure
composed of several roughly planar surfaces. The
proposed homography observer is tested using the
image frame ]180 as the reference image. Feature
detection is carried out within a small region of
interest (yellow rectangle depicted in Fig. 2) that
corresponds to one of the planar surfaces of the
“box” structure. The initial homography estimate
is set equal to the identity matrix, but the initial
homography error is quite large since the camera’s
initial position is relatively far from the reference one
(corresponding to the reference image). However, as
shown in Fig. 3 and in view of the location of the yellow
quadrangle (i.e. warped reference rectangle using the
image homography estimate) in the reported images
(i.e. frames ]0, 2, 4, 6, 8, 10, 12, 14, 16, 18), a very fast
convergence of the image homography estimate to
the real one can be observed. From the warped
images in Fig. 4, very good and robust quality of
image stabilization can be appreciated despite poor
image quality, large motions of the camera (frames
]20, 275, 678) and large occlusions due to fishes (frames
]127, 422, 465) which in turn highlights the excellent
performance of our approach. A complete video
showing this offline experiment can be viewed at https:
//youtu.be/-eMjWSWVm2A where the second part of the
video (starting from second 23) shows a comparison
between our approach with the classical algebraic least-
square homography algorithm using the OpenCV’s
findHomography function with RANSAC option
activated for outlier removal. One easily observes that,
by contrast with our algorithm, the performance and
robustness of the classical least-square algorithm are
very poor even when combined with the sophisticated
RANSAC outlier removal procedure.

6.2.2. Video sequence ]2

This video sequence (25fps, 640× 360px of
resolution, 3220 frames) shows a scenario where an
underwater vehicle is stabilized in front of an artificial
panel and a mounted manipulator arm is teleoperated
to turn valves on this panel. We apply our homography
observer to this sequence using the image frame ]530 as
the reference image. The region of interest for feature
detection is the whole image. Similarly to the first
video sequence, we initially set (Ĥ0, Γ̂0) = (I, 0). As
the initial homography error is not very large like
in the first test and the feature quality is good, the
challenge is here essentially related to: 1) extreme
and permanent occlusions due to the manipulator arm
and/or camera rotation, and 2) the fact that some parts
of the observed scene are modified throughout the video
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Fig. 3. Video sequence ]1 (offline validation). Fast convergence of the image homography estimates to the real ones (less than 0.3s), which can be
appreciated by the positions of the yellow quadrangle (i.e. warped reference rectangle using the image homography estimate) in the reported
image frames ]0, 2, 4, 6, 8, 10, 12, 14, 16, 18.

Fig. 4. Warped and current image frames ]20, 127, 275, 422, 465, 678 of the video sequence ]1 (offline validation). Excellent and robust performance
of the proposed approach can be appreciated from either the warped images (Right) or the yellow quadrangle in the current images (Left) despite
image low resolution, large camera motions (e.g. frames ]20, 275, 678) and important occlusions due to fishes (e.g. frames ]127, 422, 465). A
complete video showing this experiment is available at https://youtu.be/-eMjWSWVm2A.

sequence (i.e. valves are turned by the manipulator

arm). Analogously to the first test, Fig. 5 shows

an excellent and extremely robust performance of

our approach despite the above-mentioned challenges

related to occlusions and changes inside the target. A

complete video showing this experiment is available at

https://youtu.be/XqZkOC01eys

6.3. Real-time experimental validations using an
IMU-Camera system

In this section we show that real-time imple-
mentation of the proposed algorithm is possible. We
make use of a Visual-Inertial (VI) sensor developed
by the Autonomous Systems Lab (ETH Zurich) and
the company Skybotix. This VI-sensor is composed
of two cameras (Aptina MT9V034 CMOS) and an
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Fig. 5. Warped and current image frames ]70, 1158, 1732, 2195, 2220, 2300, 2640, 3025 of the video sequence ]2 (offline validation). Excellent
and robust performance of the proposed approach is illustrated by stable warped images (Right) and the correct location of the red quadrangle
(that warps the interested red rectangle in the reference image using the estimated homography) in the current images (Left) despite extreme
occlusions due to the manipulator arm (e.g. frames ]1158, 1732, 2195, 2300, 2640, 3025) and changes in the target due to turned valves (e.g.
frames ]1158, 1731, 3025). A complete video showing this experiment is available at https://youtu.be/XqZkOC01eys

IMU (Analog Devices ADIS16375 MEMS). However,
only the left camera is used to validate the proposed
algorithm. The main reason for using the VI-sensor in
this experimental setup is the possibility of obtaining
perfectly time-synchronized images and IMU readings
(20Hz for the camera and 200Hz for the IMU). The
implementation has been carried out on an Intel Core
i7-6400 CPU running at 3.40Ghz. The transmission of
data from the camera to the PC is carried out through
a high speed ethernet cable. The PC has a Linux based
operating system and is responsible for two major tasks:
1) interfacing with the camera hardware and acquisition
of images and IMU data from the VI-sensor; and 2) real-
time estimation of the homography at 20Hz using the
proposed algorithm.

Real-time implementation of the proposed
observer has been performed successfully, as illustrated
by the two following videos (as depicted in Fig. 6) that
show the excellent performance and robustness of our
algorithm:
• Fast motion: https://youtu.be/PeoaUzDkyUo
• Very fast motion: https://youtu.be/cctG_jKelXo

As shown in Fig. 7, our algorithm is robust
with respect to very fast translational and rotational

Fig. 6. Real-time experimental setup and validation.

motions, poor image quality, severe image blurs due
to fast motions and extreme occlusions. Even when
our algorithm selects wrong feature matches (e.g. from
frame ]1140 to frame ]1190 of the first video), the
observer continues to track the region of interest well
and quickly recovers from any tracking errors.

VII. Conclusions

In this paper we developed nonlinear observers for
a sequence of homographies represented as elements of
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Fig. 7. Current (Left) and warped (Right) image frames ]114, 200, 482, 844, 964, 975 of the real-time experiment video reported in https:
//youtu.be/PeoaUzDkyUo that show the excellent performance and robustness of the proposed observer despite severe occlusions (e.g.
frames ]482, 844, 964, 975) and fast rotational motions (e.g. frames ]114, 200, 482).

the Special Linear group SL(3). The observers directly
use point-feature correspondences from an image
sequence without requiring explicit computation of the
individual homographies between any two given images
and fuses these measurements with measurements
of angular velocity from onboard gyroscopes using
the correct Lie group geometry. The stability of the
proposed algorithms has been proved for both cases of
known full group velocity and partially known rigid-
body velocities. Even if the characterization of the
stability domain still remains an open issue, simulation
and experimental results have been provided as a
complement to the theoretical approach to demonstrate
a large domain of stability. A potential application to
image stabilization in the presence of very fast camera
motions and severe occlusions has been demonstrated
with very encouraging results even for a relatively low
video frame rate.
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