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Abstract

Although homography estimation from correspondences of mixed-type features, namely points and lines, has been relatively
well studied with algebraic approaches by the computer vision community, this problem has never been addressed with nonlinear
observer paradigms. In this paper, a novel nonlinear observer on the Special Linear group SL(3) applied to homography
estimation is developed. The key advance with respect to similar works on the topic is the formulation of observer innovation
that exploits directly point and line correspondences as input without requiring prior algebraic reconstruction of individual
homographies. Rigourous observability and stability analysis is provided. A potential application to image stabilization in
presence of very fast camera motion, severe occlusion, specular reflection, image blur, and light saturation is demonstrated
with very encouraging results.

1 Introduction

Nonlinear observer design for systems endowed with
symmetry properties (and on Lie groups in particu-
lar) is a relatively new discipline, starting with Sal-
cudean’s attitude observer on the unit quaternion
group (Salcudean 1991) and subsequent contribu-
tions over the last two decades (see (Nijmeijer &
(Eds.) 1999, Rehbinder & Ghosh 2003, Mahony, Hamel
& Pflimlin 2008, Bonnabel, Martin & Rouchon 2008,
Bonnabel, Martin & Rouchon 2009, Mahony, Trumpf
& Hamel 2013) and the reference therein). Since then
the interest on this research topic has never ceased
to expand. Owning to their algorithmic simplicity,
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(provable) large domain of convergence and stabil-
ity, and strong robustness, nonlinear observers have
increasingly become alternative solutions to classical
filtering techniques, such as extended Kalman filters,
unscented Kalman filters or particle filters, for state
estimation (see, e.g., (Bonnabel et al. 2009, Lageman,
Trumpf & Mahony 2010, Mahony et al. 2008, Mahony
et al. 2013, Barrau & Bonnabel 2017)). The classical at-
titude estimation problem has been addressed in early
nonlinear observers on the basis of Lyapunov analy-
sis. This problem has also been a source of inspiration
for the development of recent theories on invariant or
equivariant observer design for systems with symmetry
(Mahony et al. 2008, Bonnabel et al. 2008, Bonnabel
et al. 2009, Lageman et al. 2010, Mahony et al. 2013).
For instance, complementary nonlinear attitude ob-
servers exploiting the underlying Lie group structure
of the Special Orthogonal group SO(3) are derived in
(Mahony et al. 2008) with proofs of almost global stabil-
ity of the error system. A symmetry-preserving nonlin-
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ear observer design based on the Cartan moving-frame
method is proposed in (Bonnabel et al. 2008, Bonnabel
et al. 2009), which is locally valid for arbitrary Lie
groups. A gradient observer design technique for in-
variant systems on Lie groups is proposed in (Lageman
et al. 2010), leading to almost global convergence pro-
vided that a non-degenerate Morse-Bott cost function
is used. An equivariant observer design method directly
on the homogeneous output space for the kinematics of
mechanical systems is proposed in (Mahony et al. 2013),
leading to autonomous error evolution and strong con-
vergence properties.

A large body of works on nonlinear observers has been
devoted to attitude observer design on the Special Or-
thogonal group SO(3) (see (Mahony et al. 2008, Berkane,
Abdessameud & Tayebi 2017, Trumpf, Mahony, Hamel
& Lageman 2012, Khosravian, Trumpf, Mahony &
Hamel 2016, Zlotnik & Forbes 2017, Batista, Sil-
vestre & Oliveira 2014) and the references therein)
and to pose observer design on the Special Eu-
clidean group SE(3) (see (Baldwin, Mahony, Trumpf,
Hamel & Cheviron 2007, Izadi & Sanyal 2016, Hua,
Zamani, Trumpf, Mahony & Hamel 2011, Wang
& Tayebi 2017, Vasconcelos, Cunha, Silvestre &
Oliveira 2010) and the references therein). Various
refinements have been carried out to take particular-
ities of the considered system and available sensors
into account. For instance, some attitude observers
posed on SO(3) and based on measurements of a sin-
gle time-varying direction are proposed in (Trumpf
et al. 2012, Lee, Leok, McClamroch & Sanyal 2007).
In particular, (Trumpf et al. 2012) exhibits some ex-
plicit persistence of excitation conditions guaranteeing
the observability and asymptotic convergence of the
proposed observer. Velocity-aided attitude observers
developed in (Hua 2010, Martin & Salaün 2008, Roberts
& Tayebi 2011) no longer rely on the assumption of
weak accelerations commonly used in conventional al-
gorithms that involve only measurements of an Inertial
Measurement Unit (IMU) and a magnetometer (e.g.,
(Mahony et al. 2008)). Time delay in output measure-
ments is considered in (Khosravian et al. 2016) for
velocity-aided attitude observer design. Hybrid nonlin-
ear attitude and pose observers are proposed in (Berkane
et al. 2017, Wang & Tayebi 2019) to overcome topo-
logical obstructions of Lie groups containing rotations
(Bhat & Bernstein 2000) so that global asymptotical
stability can be achieved. These are just a very non-
exhaustive list of examples. On the other hand, other
less explored research directions involve the Special
Linear group SL(3) for homography estimation problem
(Malis, Hamel, Mahony & Morin 2009, Mahony, Hamel,
Morin & Malis 2012, Hamel, Mahony, Trumpf, Morin &
Hua 2011, Hua, Hamel, Mahony & Allibert 2017, Hua,
Trumpf, Hamel, Mahony & Morin 2019) and some newly
introduced Lie groups for the Simultaneous Localization
and Mapping (SLAM) problem such as the SLAMn(3)
group (Mahony & Hamel 2017), the VSLAMn(3) group

(van Goor, Mahony, Hamel & Trumpf 2019), and the
SEn+1(2) group (Barrau & Bonnabel 2015).

The present paper addresses the problem of nonlin-
ear observer design on SL(3) with application to ho-
mography estimation and image stabilization. To our
knowledge, most existing works on the topic have
been proposed by the authors of this paper (Malis
et al. 2009, Mahony et al. 2012, Hamel et al. 2011, Hua,
Hamel, Mahony & Allibert 2017, Hua et al. 2019). Be-
fore providing further discussions, let us first recall on
the homography and its importance in practice. Origi-
nated from the field of Computer Vision, the so-called
homography is an invertible mapping that relates two
camera views of the same planar scene by encoding in
a single matrix the camera pose, the distance between
the camera and the scene, along with the normal direc-
tion to the scene (e.g., (Hartley & Zisserman 2003)). It
plays an important role in numerous computer vision
and robotic applications where the scenarios involve
man-made environments composed of (near) planar sur-
faces. The homography has been exploited to estimate
the rigid-body pose of a robot equipped with a cam-
era (Scaramuzza & Siegwart 2008). The navigation of
robotic vehicles has been developed using homography
sequences (de Plinval, Morin & Mouyon 2017) and one
of the most successful visual servo control paradigms
makes use of homographies (Malis, Chaumette &
Boudet 1999). Homography-based navigation meth-
ods are also particularly well suited to applications
where the camera is sufficiently far from the observed
scene, such as situations where ground images are taken
from an aerial vehicle (Caballero, Merino, Ferruz &
Ollero 2007, de Plinval et al. 2017).

Let us now discuss about the homography estimation
problem. Classical algorithms for homography estima-
tion taken from the computer vision community consist
in computing the homography on a frame-by-frame
basis by solving algebraic constraints related to cor-
respondences of image features (points, lines, conics,
contours, etc.) (Hartley & Zisserman 2003, Agarwal,
Jawahar & Narayanan 2005, Jain 2006, Kaminski &
Shashua 2004, Conomis 2006). These algorithms, how-
ever, only consider the homography as an incidental
variable and are not focused on improving (or filter-
ing) the homography over time. This yields an obvious
interest in developing alternative homography estima-
tion algorithms that exploit the temporal correlation
of data across a video sequence rather than computing
algebraically individual raw homography for each im-
age. Nonlinear observers provide a relevant answer to
that preoccupation. In recent work by the co-authors of
this paper (Mahony et al. 2012), a nonlinear observer
has been proposed based on the underlying structure of
the Special Linear group SL(3), which is isomorphic to
the group of homographies (Benhimane & Malis 2007).
Velocity information is exploited to interpolate across a
sequence of images and improve the individual homog-
raphy estimates. That observer, however, still requires
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individual image homographies (previously computed
using an algebraic technique) as feedback information.
It thus necessitates both a classical homography algo-
rithm and a temporal filter algorithm, and only func-
tions if each pair of images provides sufficient features
to algebraically compute a raw homography. In order
to overcome these drawbacks, in our prior work (Hamel
et al. 2011, Hua et al. 2019) the question of deriving
an observer for a sequence of image homographies that
takes image point-feature correspondences directly as
input has been considered. In this paper, the previous
observer is extended by also incorporating image line-
feature correspondences (in addition to point-feature
correspondences) directly as input in the design of ob-
server innovation. In line with this effort, in another
work (Hua, Hamel, Mahony & Allibert 2017) of the co-
authors of this paper, conic-feature correspondences are
considered for the construction of observer innovation,
but the association of all these 3 types of features (i.e.
points, lines, and conics) in direct observer design will
require a careful investigation and is thus out of the
scope of the present paper.

In this paper the proposed observer is derived based
on an advanced theory for nonlinear observer design
directly on the homogeneous output space (Mahony
et al. 2013). Sharing the same filtering advantage with
the observer in (Mahony et al. 2012), the advanced fea-
ture of both the observer of (Hamel et al. 2011, Hua
et al. 2019) and the observer of this paper is the for-
mulation of observer innovation that exploits directly
point and line correspondences without requiring recon-
struction of individual image homographies. This may
save considerable computational resources, making the
proposed algorithm suitable for embedded systems with
simple feature tracking software. In contrast with alge-
braic techniques, the proposed algorithm is well posed
even when there is insufficient data for full reconstruc-
tion of a homography. In such situations, the proposed
observer continues to operate by incorporating avail-
able information and relying on propagation of prior
estimates. Beyond the above practical advantages of the
proposed observer, we believe that the present work is
the first to address the problem of nonlinear observer de-
sign on the Special Linear group SL(3) for homography
estimation by directly exploiting both point and line
correspondences as input. It thereby constitutes an ap-
pealing application to the “school” of nonlinear observer
design on Lie groups. Finally, technical rigourousness
of the proposed observer is supported by comprehen-
sive observability and stability analysis, which is also
accompanied by a non-trivial analysis for a particular
unobservable case often overlooked in the literature.

The present paper is organized as follows. Section 2
provides technical background. In Section 3 a nonlinear
observer on SL(3) is proposed using direct point and
line correspondences and the knowledge of the group
velocity. In Section 4 the homography and associated
homography velocity are related to rigid-body motion

of the camera and two observers are derived for the case
where only the angular velocity of the camera is known,
a typical scenario in robotic applications. In Section 5,
as a complement contribution, an application of the
proposed approach to a real world problem in image
stabilization is presented. Some video links, showing the
experiment results, are provided as supplementary ma-
terial. A preliminary version of this paper was reported
in a technical report (Hua, Trumpf, Hamel, Mahony &
Morin 2017).

2 Technical background

2.1 Notation and mathematical identities

• The Special Linear group SL(3) and its algebra sl(3)
are given by SL(3) := {H ∈ R3×3 | detH = 1}
and sl(3) := {U ∈ R3×3 | tr(U) = 0}. The adjoint
operator Ad : SL(3) × sl(3) → sl(3) is defined by
AdHU := HUH−1, ∀H ∈ SL(3), U ∈ sl(3).

• Let 〈·, ·〉 : sl(3) × sl(3) −→ R be an inner product on
sl(3), chosen to be the Euclidean matrix inner product
on R3×3. Then, a right-invariant Riemannian metric
on SL(3) induced by the inner product 〈·, ·〉 is defined
by 〈U1H,U2H〉H := 〈U1, U2〉, ∀H ∈ SL(3), U1, U2 ∈
sl(3).

• grad1f and Hess1f denote the gradient and Hessian
in the first variable of f , respectively.

• {e1, e2, e3} denote the canonical basis of R3.
• [·]× is the skew-symmetric matrix associated with the

vector cross-product, i.e. [x]×y = x× y, ∀x, y ∈ R3.

2.2 Preliminaries about homographies

Fig. 1. The pose of the camera (R, ξ) determines a rigid body

transformation from {A} to {Å}. The Euclidean homogra-
phy H :∼= R + (1/d)ξη> maps Euclidean coordinates of the

scene’s points from {A} to {Å}. Arrow notation ~(·) is used
for Euclidean vectors.

Let Å (resp. A) denote projective coordinates for the

image plane of a camera Å (resp. A), and let {Å}
(resp. {A}) denote its reference (resp. current) frame.
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Let ξ ∈ R3 denote the position of the frame {A} with

respect to {Å} expressed in {Å}. The orientation of

the frame {A} with respect to {Å} is represented by a
rotation matrix R ∈ SO(3) (see Fig. 1).

Let us denote by d̊ (resp. d) and η̊ (resp. η) respectively

the distance from the origin of {Å} (resp. {A}) to the
observed planar scene and the normal vector pointing
towards the scene expressed in {Å} (resp. {A}). One

verifies that η = R>η̊ and d = d̊− η̊>ξ.

From the relation
~̊
Pi = ~Pi+ ~ξ, the coordinates P̊i ∈ {Å}

and Pi ∈ {A} of the same point of index i ∈ {1, · · · , n}
on the scene are related by

P̊i = RPi + ξ. (1)

Since the considered points belong to the observed pla-
nar scene Π := {Pi ∈ R3 : η>Pi − d = 0}, one deduces

from the plane constraint η>Pi

d = 1 and Eq. (1) that

P̊i =

(
R+

ξη>

d

)
Pi. (2)

Let p̊im
i ∈ Å (resp. pim

i ∈ A) denote the image of the
considered point of index i when the camera is aligned
with the frame {Å} (resp. frame {A}) 2 . Note that p̊im

i

and pim
i have the form (u, v, 1)> using the homogeneous

coordinate representation and they are related to the 3D
coordinates of that point by 3 :

p̊im
i
∼= KP̊i, pim

i
∼= KPi, (3)

with K ∈ R3×3 the camera calibration matrix that con-
tains the intrinsic parameters of the camera such as the
focal length, the pixel aspect ratio, the principal point,
etc (Ma et al. 2003). Assume that the camera is well cal-
ibrated (i.e. K is known) so that all quantities can be
appropriately re-normalized onto the unit sphere S2 as

p̊i :=
P̊i

|P̊i|
=

K−1p̊im
i

|K−1p̊im
i |

, pi :=
Pi
|Pi|

=
K−1pim

i

|K−1pim
i |

. (4)

Using (2) and (4) the projected points satisfy

p̊i ∼=
(
R+

ξη>

d

)
pi ∼= Hpi ⇒ pi =

H−1p̊i
|H−1p̊i|

, (5)

where the projective mappingH :A→Å, H :∼= R+ ξη>

d
is the Euclidean homography that maps Euclidean co-
ordinates of the scene’s points from {A} to {Å}.

2 The superscript im is used for “image”.
3 Most statements in projective geometry involve equality
up to a multiplicative constant denoted by ∼= or ∼ (Ma,
Soatto, Kosecka & Sastry 2003). Relation (3) implies a well-
known fact of monocular vision that the 3D coordinates of
any observed point can only be retrieved from its correspond-
ing image coordinates up to a scale factor.

Since a homography matrix H is only defined up to a
scale factor, any homography matrix is associated with a
unique matrix H̄ ∈ SL(3) by re-scaling H̄ = det(H)−

1
3H

such that det(H̄) = 1. Therefore, without loss of gener-
ality it is assumed that H is an element of SL(3). Re-

call that the scale factor γ such that H = γ
(
R+ ξη>

d

)
is equal (d/d̊)

1
3 and corresponds to the second singu-

lar value of H (Ma et al. 2003). The so-called “image”
homography matrix G ∈ SL(3) that maps pixel coor-

dinates from A to Å (i.e. p̊im
i
∼= Gpim

i ) then satisfies
G = KHK−1.

Any line on the observed scene can be represented by the

unit vector ~l normal to the plane that contains the given
line and the camera focal point. Picking arbitrarily two
different points on the line of index j ∈ {1, · · · ,m}, one
obtains

lj =
p1j × p2j

|p1j × p2j |
∈ {A}, l̊j =

p̊1j × p̊2j

|p̊1j × p̊2j |
∈ {Å}.

Using (5) and the propertyM(a×b) = det(M)(M−>a×
M−>b) for any invertible matrix M ∈ R3×3 and a, b ∈
R3 one then deduces

lj=
H−1p̊1j×H−1p̊2j

|H−1p̊1j×H−1p̊2j |
=
H>(p̊1j×p̊2j)

|H>(p̊1j×p̊2j)|
=
H> l̊j

|H> l̊j |
. (6)

In the sequel, expressions (5) and (6) of point and line
correspondences will be used as measurements for ho-
mography observer design.

3 Basic ideas of observer design on SL(3) based
on direct point and line correspondences

3.1 Homography kinematics and measurements

To expose the underlying ideas of observer design, in
this section we consider the simplified case where the
kinematics of H ∈ SL(3) are given by

Ḣ = F (H,U) := HU, H(0) ∈ SL(3), (7)

with known group velocity U ∈ sl(3). Section 4 will deal
with a more applicative (and realistic) case where U is
only partly measured.

Assume that a set of n (≥ 0) point measurements pi ∈ S2

and/or a set of m (≥ 0) line measurements lj ∈ S2 are
at our disposal. All these measurements are expressed in
the camera current frame {A}:

pi = hp(H, p̊i) :=
H−1p̊i
|H−1p̊i|

, i = {1, . . . , n}, (8)

lj = hl(H, l̊j) :=
H> l̊j

|H> l̊j |
, j = {1, . . . ,m}, (9)
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where p̊i ∈ S2 and l̊j ∈ S2 are constant and known in

the reference frame {Å}. For future reference, define

p̊ := (p̊1, · · · , p̊n), p := (p1, · · · , pn),

l̊ := (̊l1, · · · , l̊m), l := (l1, · · · , lm).

For stability analysis purposes, the following observabil-
ity assumption is introduced and will be discussed there-
after.

Assumption 1 (Observability conditions) Assume
that the union set S := Snp

⋃
Sml , with Snp the set of

n (≥ 0) observed constant points p̊i ∈ S2 and Sml the set

ofm (≥ 0) observed constant lines l̊j ∈ S2, is consistent
in the sense that S satisfies one of the four following
cases 4 :
• Case 1 (at least 4 points): There exists a subset
S4
p ⊂ Snp of 4 points such that all vector triplets in S4

p are
linearly independent.
• Case 2 (at least 4 lines): There exists a subset S4

l ⊂
Snl of 4 lines such that all vector triplets in S4

l are linearly
independent.
• Case 3 (at least 3 points and 1 line): There exist

1 line l̊j and a subset S3
p ⊂ Snp of 3 linearly independent

points that do not lie on the line l̊j, i.e. l̊>j p̊i 6= 0, ∀p̊i ∈
S3
p .
• Case 4 (at least 1 point and 3 lines): There exist
a subset S3

l ⊂ Sml of 3 linearly independent lines and 1

point p̊i that does not lie on any line of S3
l , i.e. l̊>j p̊i 6= 0,

∀̊lj ∈ S3
l .

One verifies that SL(3) is a symmetry group with group
actions

φ(Q,H):=HQ,

ψ(Q,U):=AdQ−1U = Q−1UQ,

ρ(Q, p) :=
Q−1p

|Q−1p|
,

µ(Q, l) :=
Q>l

|Q>l|
,

which are right group actions in the sense that
φ(Q2, φ(Q1, H)) = φ(Q1Q2, H), ψ(Q2, ψ(Q1, U)) =
ψ(Q1Q2, U), ρ(Q2, ρ(Q1, p)) = ρ(Q1Q2, p), and
µ(Q2, µ(Q1, p)) = µ(Q1Q2, p) whatever Q1, Q2, H ∈
SL(3), U ∈ sl(3), and p, l ∈ S2.

The kinematics are right equivariant since it can be
verified that

dHφ(Q,H)[F (H,U)] = F (φ(Q,H), ψ(Q,U))

ρ(Q, hp(H, p̊i)) = hp(φ(Q,H), p̊i)

µ(Q, hl(H, l̊i)) = hl(φ(Q,H), l̊i)

4 The homography for case of 2 points and 2 lines is not ob-
servable and cannot be algebraically reconstructed (Hartley
& Zisserman 2003).

which have the same forms as the system equation (7)
and the output equations (8), (9). The fact that the kine-
matics are right equivariant allows for applying the non-
linear observer design framework developed in (Mahony
et al. 2013).

3.2 Equivariant observer design on SL(3) based on
point and line correspondences

Let Ĥ ∈ SL(3) denote the estimate of H. Define the

right group error E := ĤH−1 ∈ SL(3) and the output
errors epi ∈ S2, with i ∈ {1, · · · , n}, and elj ∈ S2, with
j ∈ {1, · · · ,m}, as:

epi := ρ(Ĥ−1, pi) =
Ĥpi

|Ĥpi|
=

Ep̊i
|Ep̊i|

, (10)

elj := µ(Ĥ−1, lj) =
Ĥ−>lj

|Ĥ−>lj |
=

E−> l̊j

|E−> l̊j |
. (11)

The general form of the proposed observer is given by

˙̂
H = ĤU −∆(Ĥ, p, l)Ĥ, Ĥ(0) ∈ SL(3) (12)

with ∆(Ĥ, p, l) ∈ sl(3) the innovation term to be de-
signed.
According to (Mahony et al. 2013, Th. 1), if the innova-

tion term ∆(Ĥ, p, l) is right equivariant in the sense that

∆(φ(Q, Ĥ), ρ(Q, p1),· · ·, ρ(Q, pn), µ(Q, l1),· · ·, µ(Q, lm))

= ∆(Ĥ, p1, · · · , pn, l1, · · · , lm), ∀Q ∈ SL(3),

then the dynamics of the group errorE are autonomous:

Ė = −∆(E, p̊, l̊)E. (13)

To determine the right-equivariant innovation ∆(Ĥ, p, l),

a right-invariant cost function C(Ĥ, p, l) should be de-
fined. To this purpose, we first define individual right-

invariant cost functions at p̊i or l̊j on the output space
S2 as follows:

Cp̊i(Ĥ, pi) := ki
2

∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣2 ,
C̊lj (Ĥ, lj) :=

κj

2

∣∣∣ Ĥ−>lj|Ĥ−>lj |
− l̊j

∣∣∣2 ,
with ki, κj > 0. These cost functions are right in-

variant since Cp̊i(φ(Q, Ĥ), ρ(Q, pi)) = Cp̊i(Ĥ, pi) and

C̊lj (φ(Q, Ĥ), µ(Q, pi)) = C̊lj (Ĥ, lj), ∀Q ∈ SL(3). Then,

the aggregate cost C(Ĥ, p, l) defined as the sum of all
the individual cost functions

C(Ĥ, p, l) :=

n∑
i=1

ki
2

∣∣∣∣∣ Ĥpi|Ĥpi|
−p̊i

∣∣∣∣∣
2

+

m∑
j=1

κj
2

∣∣∣∣∣ Ĥ−>lj|Ĥ−>lj |
− l̊j

∣∣∣∣∣
2

(14)

is also right invariant.
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From there the innovation term ∆(Ĥ, p, l) can be com-
puted as (Mahony et al. 2013, Eq. (40))

∆(Ĥ, p, l) = (grad1C(Ĥ, p, l))Ĥ−1, (15)

with grad1 the gradient using a right-invariant Rieman-
nian metric on SL(3).

Using the fact that the considered Riemannian metric is
right invariant, one obtains

dĤC(Ĥ, p, l)[UĤ] = 〈grad1C(Ĥ, p, l), UĤ〉H
= 〈grad1C(Ĥ, p, l)Ĥ−1Ĥ, UĤ〉H
= 〈grad1C(Ĥ, p, l)Ĥ−1, U〉
= 〈∆(Ĥ, p, l), U〉,

(16)

with any U ∈ sl(3). On the other hand, using (14) one
has

dĤC(Ĥ, p, l)[UĤ]

=
∑n
i=1 ki

(
Ĥpi
|Ĥpi|

− p̊i
)>(

I − (Ĥpi)(Ĥpi)
>

|Ĥpi|2

)
(UĤ)pi
|Ĥpi|

+
∑m
j=1κj

(
Ĥ−>lj

|Ĥ−>lj |
− l̊j
)>(

I− (Ĥ−>lj)(Ĥ−>lj)>

|Ĥ−>lj |2

)
(−U>Ĥ−>)lj

|Ĥ−>lj |

=
∑n
i=1 ki(epi − p̊i)>(I − epie>pi)Uepi

−
∑m
j=1 κi(elj − l̊j)>(I − elje>lj)U>elj

= −tr
(∑n

i=1 kiπepi p̊ie
>
piU
>)+ tr

(∑m
j=1 κjelj l̊

>
j πeljU

>
)

=
〈
−
∑n
i=1 kiπepi p̊ie

>
pi +

∑m
j=1 κjelj l̊

>
j πelj , U

〉
,

(17)
with πx := (I − xx>), ∀x ∈ S2. One directly deduces
from (16) and (17) the expression of the innovation term

∆(Ĥ, p, l) as

∆(Ĥ, p, l)=−
n∑
i=1

kiπepi p̊ie
>
pi +

m∑
j=1

κjelj l̊
>
j πelj . (18)

One deduces from (18) that ∆(E, p̊, l̊) = ∆(Ĥ, p, l) and,
consequently, from (13) that

Ė =
( n∑
i=1

kiπepi p̊ie
>
pi −

m∑
j=1

κjelj l̊
>
j πelj

)
E. (19)

Theorem 1 Consider the kinematics (7) and assume
that the group velocity U ∈ sl(3) is known. Consider Ob-

server (12) with the innovation term ∆(Ĥ, p, l) ∈ sl(3)
defined by (18). Assume that Assumption 1 holds. Then,
the equilibrium E = I of the error system (19) is locally
exponentially stable.

Proof: The proof of this theorem is based on Theorem 2
in (Mahony et al. 2013) according to which the equilib-
rium E = I of system (19) is locally exponentially stable

if the right-invariant cost function C(Ĥ, p, l) defined by

(14) is non-degenerate (i.e. (I, p̊, l̊) is a global minimum

of C(Ĥ, p, l)). According to (Mahony et al. 2013, Lem.

3), C(Ĥ, p, l) is non-degenerate if(⋂n
i=1 stabρ(p̊i)

) ⋂ (⋂m
j=1 stabµ(̊lj)

)
= {I}, (20)

where the stabilizer stabf (y) (here f stands for either ρ
or µ) of an element y ∈ S2 is defined by

stabf (y) :=
{
Q ∈ SL(3) | f(Q, y) = y

}
.

Condition (20) is, in fact, equivalent to

s :=
(⋂n

i=1 sρi
) ⋂ (⋂m

j=1 sµj
)

= {0}, (21)

with
sρi := ker(dHρ(H, p̊i)|H=I),

sµj := ker(dHµ(H, l̊j)|H=I),

the Lie-algebra associated with stabρ(p̊i) and stabµ(̊lj),
respectively. In fact, condition (20) or, equivalently, (21)

ensures that the Hessian Hess1C(I, p̊, l̊) is positive defi-
nite (Mahony et al. 2013).

Therefore, the remainder of the proof consists in proving
that condition (21) is satisfied subject to Assumption 1.
To this purpose, one first computes the derivatives

dHρ(H, p̊i)[HU ] = d
(
H−1p̊i
|H−1p̊i|

)
[HU ]

= −
(
I − (H−1p̊i)(H

−1p̊i)
>

|H−1p̊i|2

)
UH−1p̊i
|H−1p̊i| ,

dHµ(H, l̊j)[HU ] = d
(
H> l̊j

|H> l̊j |

)
[HU ]

=
(
I − (H> l̊j)(H> l̊j)>

|H> l̊j |2

)
U>H> l̊j

|H−1̊lj |
,

with any U ∈ sl(3). From there one deduces

sρi = ker(dHρ(H, p̊i)|H=I) = {U ∈sl(3) | πp̊iUp̊i = 0},

sµj = ker(dHµ(H, l̊j)|H=I) = {U ∈sl(3) | π̊ljU
> l̊j = 0},

and, subsequently,

s = (⋂n
i=1 sρi

) ⋂ (⋂m
j=1 sµj

) ={
U ∈sl(3) |πp̊iUp̊i = 0, π̊ljU

>̊lj = 0,∀p̊i∈Snp , l̊j ∈Sml
}
.

(22)
We will determine U ∈ sl(3) such that πp̊iUp̊i = 0 and

π̊ljU
>̊lj = 0, for all i = 1, · · · , n and j = 1, · · · ,m. The

relations πp̊iUp̊i = 0 and π̊ljU
>̊lj = 0 can be equiva-

lently written as Up̊i = λpip̊i and U> l̊j = λlj l̊j , with

λpi := p̊>i Up̊i and λlj := l̊>j Ul̊j . From there one deduces

that λpi (resp. λlj) are eigenvalues of U (resp. U>) and

p̊i (resp. l̊j ) are the associated eigenvectors. Consider
the 4 cases of Assumption 1.
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• Case 1 (at least 4 points): Without loss of general-
ity, assume that the subset S4

p = {p̊1, p̊2, p̊3, p̊4} is con-
sistent. Thus, there exist 3 non-zero numbers b1, b2, and
b3 such that p̊4 =

∑3
i=1 bip̊i. From there using the fact

that

Up̊4 = U
∑3
i=1 bip̊i =

∑3
i=1 biUp̊i =

∑3
i=1 biλpip̊i,

Up̊4 = λp4p̊4 = λp4
∑3
i=1 bip̊i =

∑3
i=1 biλp4p̊i,

one deduces
3∑
i=1

biλpip̊i =

3∑
i=1

biλp4p̊i. (23)

Since bi (i = 1, 2, 3) are not null and the 3 unit vectors p̊i
(i = 1, 2, 3) are linearly independent, (23) directly yields
λp1 = λp2 = λp3 = λp4. Let λ denote the value of these
identical eigenvalues. One deduces that U has a triple
eigenvalue λ. Since the number of linearly independent
eigenvectors of U is equal to 3, the matrix U is diagonal-
izable. Then, the diagonalizability of U along with the
fact that it has a triple eigenvalue implies that U = λI.
This in turn yields tr(U) = 3λ, which is zero since U
is an element of sl(3). Consequently, λ = 0 and U = 0.
One then deduces s = {0}.
•Case 2 (at least 4 lines): By proceeding analogously
to the proof for Case 1, one deduces that U> has a triple
eigenvalue λ and U> = λI. Since tr(U>) = 0, one de-
duces λ = 0, U = 0 and, consequently, s = {0}.
• Case 3 (at least 3 points and 1 line): Without loss
of generality, assume that the subset S3

p = {p̊1, p̊2, p̊3}
contains 3 linearly independent points that do not lie

on the line l̊1, i.e. l̊>1 p̊i 6= 0,∀p̊i ∈ S3
p . Using the rela-

tions Up̊i = λpip̊i, one obtains l̊>1 (Up̊i) = λpi̊l
>
1 p̊i. On

the other hand, using the relation U> l̊1 = λl1̊l1, one has

l̊>1 (Up̊i) = p̊>i (U> l̊1) = λl1p̊
>
i l̊1. Consequently, one de-

duces λp1 = λp2 = λp3 = λl1. This means that U has a
triple eigenvalue associated with 3 linearly independent
eigenvectors p̊1,2,3. One then deduces that U = 0 and,
consequently, s = {0}.
• Case 4 (at least 1 point and 3 lines): Without loss

of generality, assume that the subset S3
l = {̊l1, l̊2, l̊3}

contains 3 linearly independent lines and that the point

p̊1 does not lie on any line of S3
l , i.e. l̊>j p̊1 6= 0, ∀̊lj ∈ S3

l .
Then, by proceeding analogously to the proof for Case
3, one deduces that λl1 = λl2 = λl3 = λp1, which means
that U> has a triple eigenvalue associated with 3 lin-

early independent eigenvectors l̊1,2,3. One then deduces
that U = 0 and, consequently, s = {0} (end of proof).

Now some discussions on Assumption 1 are in order.

• The four cases of Assumption 1 correspond to the
ones discussed by Hartley and Zisserman in (Hartley &
Zisserman 2003, p. 93) where algebraic reconstruction
of the homography is possible from the correspondences
of mixed-type features, namely points and lines. Here

instead of using geometric constraint arguments to fully
cover the 8 degrees of freedom of the homography like
in (Hartley & Zisserman 2003), we have followed a more
“Automatic Control” approach so as to tackle (see the
proof of Theorem 1) the observability conditions (given
in Assumption 1) in a more explicit manner.

• Regarding the “unobservable” case with 2 point and
2 line correspondences also discussed in (Hartley &
Zisserman 2003, p. 93), it can be proved that this case
does not ensure the satisfaction of the observability
condition (20) (or equivalently (21)). In fact, similarly
to the proof of Theorem 1 and in view of (22), it suf-
fices to prove that there exists some non-null matrix

U ∈ sl(3) such that πp̊iUp̊i = 0 and π̊ljU
>̊lj = 0, for

all i = 1, 2 and j = 1, 2. Assume that the two consid-
ered points do not coincide (i.e. p̊>1 p̊2 6= 1) and do not

lie on any of the two considered lines (i.e. p̊>i l̊j 6= 0,
∀i, j ∈ {1, 2}). Then by proceeding analogously to the
proof for Cases 3 and 4 in Theorem 1, one deduces that
λp1 = λp2 = λl1 = λl2 = λ and, thus,

Up̊1 = λp̊1, Up̊2 = λp̊2, U
> l̊1 = λ̊l1, U

> l̊2 = λ̊l2. (24)

In order to determine U ∈ sl(3) solution to (24), let
us first define α := acos(p̊>1 p̊2) 6= 0. One then verifies
that there exists a unique rotation matrix Rp ∈ SO(3)
such that Rpp̊1 = e3 and Rpp̊2 = sinα e1 + cosα e3.
In fact, Rp can be easily determined using the TRIAD
algorithm (Shuster 1978). Then, via the following change
of variables:

Ū := RpUR
>
p ,

¯̊
l1 := Rp̊l1,

¯̊
l2 := Rp̊l2,

the equalities in (24) can be rewritten as

Ūe3 = λe3,

Ū(sinα e1 + cosα e3) = λ(sinα e1 + cosα e3),

Ū>
¯̊
l1 = λ

¯̊
l1, Ū

>¯̊
l2 = λ

¯̊
l2,

from which, and using the fact that tr(Ū) = tr(U) = 0
and sinα 6= 0, one easily deduces that Ū = λŪ0, with

Ū0 :=


1 3(

¯̊
l12

¯̊
l23−¯̊

l13
¯̊
l22)

¯̊
l11

¯̊
l23−¯̊

l13
¯̊
l21

0

0 −2 0

0 3(
¯̊
l12

¯̊
l21−¯̊

l11
¯̊
l22)

¯̊
l11

¯̊
l23−¯̊

l13
¯̊
l21

1


and, thus, s = {λR>p Ū0Rp,∀λ ∈ R} 6= {0}, meaning
that (21) is not satisfied.

4 Application to camera-IMU systems observ-
ing a stationary planar scene

4.1 Homography kinematics from a camera moving with
rigid-body motion

In this section the situation where a sequence of homo-
graphies is generated by a moving camera viewing a sta-
tionary planar scene (i.e. {Å} is stationary) is consid-
ered. The objective consists in developing a nonlinear
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filter for the image homography sequence using the ve-
locity associated with the rigid-body motion of the cam-
era rather than the group velocity U as was assumed in
Section 3.

The kinematics of the camera’s pose (R, ξ) are given by{
Ṙ=R[Ω]×

ξ̇ =RV
(25)

with Ω ∈ R3 and V ∈ R3 denoting the angular velocity
and linear velocity of {A} with respect to {Å} expressed
in {A}, respectively.

The group velocity U ∈ sl(3) induced by the rigid-body
motion and involved in the dynamics (7) of H satisfies
(Mahony et al. 2012)

U = [Ω]× +
V η>

d
− η>V

3d
I. (26)

Note that the variables η and d involved in U are not
measurable and cannot be extracted directly from the
measurements. In the sequel, one rewrites (26) as

U = [Ω]× + Γ = [Ω]× + Γ1 −
1

3
tr(Γ1)I, (27)

with Γ := V η>

d − η>V
3d I and Γ1 := V η>

d .

Since {Å} is stationary by assumption, the angular ve-
locity Ω can be directly measured from the set of embed-
ded gyrometers. The term Γ related to the translational
motion expressed in the current frame {A} is more in-

volved. If it is assumed that ξ̇
d is constant (e.g., the cam-

era moving with a constant velocity parallel to the scene
or converging exponentially towards it), and using the

fact that V = R>ξ̇ and η̇ = η × Ω, one verifies that

Γ̇ = [Γ, [Ω]×], (28)

with [Γ, [Ω]×] = Γ[Ω]× − [Ω]×Γ the Lie bracket.

On the other hand, if it is assumed that V
d is constant

(e.g., the camera following a circular trajectory over the
scene or performing an exponential convergence towards
it), it follows that

Γ̇1 = Γ1[Ω]×. (29)

4.2 Observer design with measured angular velocity of
the rigid body

Consider the case where the part Γ (resp. Γ1) of the
group velocity U in (27) is not available to measurement.

Let Γ̂ (resp. Γ̂1) denote the estimate of Γ (resp. Γ1) and
define the error term

Γ̃ := Γ− Γ̂, (resp. Γ̃1 := Γ1 − Γ̂1).

The goal is to provide an estimate Ĥ ∈ SL(3) of H to

drive the group errorE (= ĤH−1) to the identity matrix

I and the error term Γ̃ (resp. Γ̃1) to 0 if Γ (resp. Γ1) is
assumed to be constant.
The observer when ξ̇

d is constant is proposed as follows
(compare to (12)):

˙̂
H = Ĥ([Ω]× + Γ̂)−∆(Ĥ, p, l)Ĥ
˙̂
Γ = [Γ̂, [Ω]×]− kIAdĤ>∆(Ĥ, p, l)

Ĥ(0) ∈ SL(3), Γ̂(0) ∈ sl(3)

(30)

and the observer when V
d is constant is proposed as fol-

lows:
˙̂
H = Ĥ([Ω]× +Γ̂1 − 1

3 tr(Γ̂1)I)−∆(Ĥ, p, l)Ĥ
˙̂
Γ1 = Γ̂1[Ω]× − kIAdĤ>∆(Ĥ, p, l)

Ĥ(0) ∈ SL(3), Γ̂1(0) ∈ sl(3)

(31)

with some positive gain kI and ∆(Ĥ, p, l) given by (18).

The following proposition establishes stability result for
Observer (30). The same result for Observer (31) can be
directly stated.

Proposition 1 Consider a camera moving with kine-
matics (25) viewing a static planar scene. Assume that
Ω is measured and bounded. Consider the kinematics (7)
along with (27). Assume that H is bounded and that
Γ obeys (28). Consider Observer (30) along with the

innovation ∆(Ĥ, p, l) ∈ sl(3) defined by (18). Assume

that Assumption 1 holds. Then, the equilibrium (E, Γ̃) =
(I, 0) of the error system is locally asymptotically stable.

Proof: One verifies that the error dynamics satisfy{
Ė=−(∆ + AdĤ Γ̃)E
˙̃Γ =[Γ̃, [Ω]×] + kIAdĤ>∆

(32)

with ∆ the shortened notation of ∆(Ĥ, p, l). From (10),
(11) and (32) one deduces{

ėpi = −πepi (∆ + AdĤ Γ̃)epi

ėlj = πelj (∆ + AdĤ Γ̃)>elj
(33)

Consider the following Lyapunov function candidate:

L :=

n∑
i=1

ki
2
|epi−p̊i|

2
+

m∑
j=1

κj
2

∣∣∣elj− l̊j∣∣∣2+
1

2kI
||Γ̃‖2

= C(E, p̊, l̊) +
1

2kI
||Γ̃‖2.

(34)

with C(·, ·, ·) defined by (14) (Note that C(Ĥ, p, l) =

C(E, p̊, l̊)). Differentiating L and using (33) and the fact

that tr(Γ̃>([Γ̃,Ω])) = 0, one obtains

L̇ =
∑n
i=1kip̊

>
i πepi (∆+AdĤ Γ̃)epi

−
∑m
j=1κj l̊

>
j πelj(∆+AdĤ Γ̃)>elj +tr(AdĤ−1∆>Γ̃)

= −‖∆‖2 ≤ 0,

(35)
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which is negative semi-definite and equal to zero when
∆ = 0. From there we will show next that there exists a
local domain of initial conditions of (E(0), Γ̃(0)) so that

∆ converges to zero and (E(t), Γ̃(t)) converge to (I, 0).

Since the cost C(E, p̊, l̊) involved in definition (34) of L
is non-degenerate (see proof of Theorem 1) there exists
an open neighbourhood of I in SL(3) where the cost

C(E, p̊, l̊) has compact connected sub-level sets contain-
ing the global minimum and no other critical point of
the cost. Let BE ⊂ SL(3) be such a sub-level set of

the cost C(E, p̊, l̊) on which the cost function C(E, p̊, l̊)
is proper with respect to E. Note that such a sub-level

set BE exists since the Hessian Hess1C(I, p̊, l̊) is pos-
itive definite. Note also that ∆ = 0 (or equivalently

grad1C(E, p̊, l̊) = 0) on BE implies that E = I. Since
L is non-increasing as a consequence of (35), there ex-
ists a smaller subset BE

1 ⊂ BE and an open neigh-

bourhood of the origin BΓ̃ ⊆ sl(3) such that for all

(E(0), Γ̃(0)) ∈ BE
1 ×BΓ̃ one ensures that E(t) remains

in BE for all time.
Since Ω and H are bounded, one verifies that L̈ remains
bounded (i.e. L̇ is uniformly continuous) provided that

(E(0), Γ̃(0)) ∈ BE
1 × BΓ̃. Direct application of Bar-

balat’s lemma to (35) then ensures the asymptotic con-
vergence of ∆ to zero. This in turn implies that E con-
verges to I since E remains in BE for all time.
From the expression (32) of Ė one deduces that Ë is
bounded. Then, using the fact that ∆ converges to zero
and E converges to I, it follows from Barbalat’s lemma
that limt→∞ Ė = −AdĤ Γ̃ = 0. Using the boundedness

of H, one ensures the boundedness of Ĥ and Ĥ−1 and
consequently the convergence of Γ̃ to zero. Finally the
stability of the equilibrium (E, Γ̃) = (I, 0) is a direct
consequence of (34) and (35).

Remark 1 One verifies from (30) that (Ĥ, Γ̂) always

evolve in SL(3)× sl(3) using the fact that (Ĥ(0), Γ̂(0)) ∈
SL(3) × sl(3) and the property det(eA) = etr(A), ∀A ∈
R3×3. In practice, however, to avoid numerical drift it
is often desirable to enforce this constraint by frequently
re-normalizing Ĥ and Γ̂ onto SL(3) and sl(3), respec-

tively, using the projections PSL(3)(Ĥ) = det(Ĥ)−
1
3 Ĥ

and Psl(3)(Γ̂) = Γ̂− 1
3 tr(Γ̂)I.

5 Experimental results – Image stabilization

In this section we present an application of the proposed
approach to image stabilization in presence of very fast
camera motion, severe occlusion, specular reflections,
image blurring, and light saturation. The reported ex-
periments have been conducted (using an Intel Core
i7-6400 CPU running at 3.40Ghz) on datasets recorded
by a prototype synchronized camera-IMU combination
with an Aptina MT9V034 CMOS sensor and an Analog
Devices ADIS16375 MEMS IMU. The IMU runs at 100

Hz, providing angular velocity measurements to the ob-
server. The camera provides 20 frames per second at a
resolution of 752× 480 pixels.

• Point-feature detection and matching: The
implemented code has been written in C++ with
OpenCV library. Point-features are extracted using
the SurfFeatureDetector routine with standard rec-
ommended parameter settings and matched using
OpenCV’s brute-force matcher BFMatcher routine with
L2-norm. It is quite unrealistic to track one and the same
set of point-features through the long video sequence, in
particular given the low frame rate and comparatively
rapid motion in our test sequence as well as the presence
of severe occlusion, specular reflections, poor image
quality due to blur or light saturation. We have hence
opted to match point-features between the reference im-
age and each subsequent image frame separately. To do
this, we first forward integrate the observer equations
(30) using only the gyrometer measurements, i.e. setting
the observer gains ki (i = 1, · · · , n), κj (j = 1, · · · ,m),
and kI to zero (i.e. Prediction step using (36)):

Prediction equations :

˙̂
H+(t ∈ [tk−1, tk]) = Ĥ+([Ω]× + Γ̂+)
˙̂
Γ+(t ∈ [tk−1, tk]) = [Γ̂+, [Ω]×]

Ĥ+(tk−1) = Ĥ(tk−1)

Γ̂+(tk−1) = Γ̂(tk−1)

(36)

We then use the resulting predicted homography esti-
mate Ĥ+ to transform the current image (i.e. warp the

current image using the predicted homography Ĥ+ to
obtain a prediction of the reference image) using the
OpenCV’s warpPerspective function before applying
feature extraction and matching. The brute-force match-
ing algorithm is well suited to this approach since it fa-
vors translational motion over rotational motion, and
most of the rotational motion has already been compen-
sated for by forward integrating the angular velocity.

To remove matched point-feature outliers, we first com-
pute the standard deviation (sdu, sdv) and mean val-
ues (mu,mv) of the differences of coordinates in pixel
(duk, dvk) of the point correspondences and then keep
only those satisfying

mu −max(sdu, S) ≤ duk ≤ mu + max(sdu, S)

mv −max(sdv, S) ≤ dvk ≤ mv + max(sdv, S)

|duk| ≤ D, |dvk| ≤ D

with S,D pre-defined positive thresholds (S = 30, D =
80 in our experiments). We have purposefully avoided
the use of more sophisticated (and much more compu-
tationally expensive) alternative algorithms for outlier
removal, such as RANSAC. Our simple and fast outlier
removal method has yielded quite good matching results
as for the test sequence there are either none or very few
outliers (see Fig. 2 and the supplemental video).
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Fig. 2. Matching point correspondences between the warped
image frame 264 (warped by the predicted homography)
and the reference frame. Poor matching (top) and ex-
cellent matching (bottom) before and after applying
our outlier removal procedure. Reference frame (left),
warped current frame (right), current frame (small image on
top right corner).

Fig. 3. Successful line matching between the image frame
169 (right) and the reference frame (left). Colorful points
in both images are point correspondences used for our line
matching algorithm.

• Line-feature detection and matching: Line-
features are extracted using the probabilistic Hough
transform (Matas, Galambos & Kittler 2000) with the
OpenCV’s HoughLinesP routine. Each extracted line in
image coordinates (given by two points pim

1 and pim
2 in

homogeneous coordinates) is then transformed into the
line representation used in this paper (i.e., the normal
to the plane containing the scene’s line and the camera
focal point) as

l =
(K−1pim

1 )× (K−1pim
2 )

|(K−1P1)× (K−1P2)|
∈ S2.

Matching two sets of lines of the reference image and the
current image is more involved and has been scarcely
developed in literature (and in OpenCV) compared to
the point matching problem. We thus developed a sim-
ple line matching procedure which is described in (Hua,
Trumpf, Hamel, Mahony & Morin 2017) but is omitted
here due to space limitation. Excellent line matching re-
sults have been obtained for the reported test sequence
(see Fig. 3 and the supplemental video).

• Correction step of observer (30): After the steps
of feature detection and matching, we use the observer
gains of ki = 80 (i = 1, · · · , n), κj = 40 (j = 1, · · · ,m),
kI = 0.05 to rapidly iterate the observer equations (37)

(i.e. the correction equations of observer (30)) 200 times
per video frame (Note that the observer gains used for
each iteration are divided by the number of iteration, i.e.
using k̄i = ki/Niter, κ̄j = κ/Niter with Niter = 200).

Correction equations :

Ĥk+1= Ĥkexp(−∆̄kT )

Γ̂k+1 = Γ̂k − kIAdĤ>
k

∆̄kT

∆̄k =

− n∑
i=1

k̄iπepi p̊ie
>
pi +

m∑
j=1

κ̄jelj l̊
>
j πelj


Ĥ=Ĥk

Ĥ0 = Ĥ+(tk), Γ̂0 = Γ̂+(tk)

(37)

with T the sampling time of the camera images. The
computational effort for this last step is negligible com-
pared to the previous image processing steps.

• Performance evaluation: The experimental results
(cf. the video in the supplementary material and avail-
able at https://youtu.be/hlTkzjyENhg) show good
and robust performance throughout the entire video
sequence, including the previously mentioned passages
with severe occlusion, specular reflection, poor image
quality due to blur and/or light saturation (see Fig. 4).
Even when temporarily no usable feature correspon-
dence is available (e.g., frames 1148, 1391, 1593), or
when our algorithm selects a wrong feature matching
set (e.g., frames 1474− 1488, 1571− 1581) the observer
continues to track the region of interest well and quickly
recovers from any tracking errors.

To show the good performance and robustness of the
proposed approach, we have carried out some more tests
on datasets recorded on different lightning conditions
and camera motions as shown in the following video
links (1 indoor and 2 outdoor datasets):

• Indoor dataset: https://youtu.be/19lH0SaE-7Y
•Outdoor dataset ]1: https://youtu.be/X-5hUOnesTo
•Outdoor dataset ]2: https://youtu.be/dr_lo4xvuvw

6 Conclusions

The classical problem of homography estimation from
point and line correspondences is the first time addressed
with a nonlinear observer posed on the Special Linear
group SL(3). The key advance of the proposed observer
is the formulation of observer innovation that directly
makes use of point and line correspondences from an
image sequence without requiring explicit computation
of the individual homographies between any two given
images. Explicit observability conditions are established
and the stability of the observer are proved for both cases
of known full group velocity and partially known rigid-
body velocities. A potential application to image stabi-
lization in presence of very fast camera motion, severe
occlusion, specular reflection, image blur, and light sat-
uration is demonstrated with very encouraging results
even for a relatively low video frame rate.
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Fig. 4. Good performance and robustness of our algorithm for a very fast camera motion (relative to frame rate), and in
presence of strong occlusion (e.g., frames 200, 1390, 2044), severe image blur (e.g., frames 1200, 1272, 1394, 1593) and light
saturation (e.g., frame 363, 2044). The observer continues to operate even when temporarily no usable feature match is available
(e.g., frames 1148, 1391, 1593). In each subplot of current frame, colorful points and lines are those successfully matched with
the corresponding features in the reference image; and the green polygon represents a tracked region of interest (i.e., the poster)
using the homography estimate. In the bottom right corner of each subplot, a crop of the warped current image is shown, telling
us if the image is well stabilized or not. The full video of this experiment is available at https://youtu.be/hlTkzjyENhg.
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