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Abstract— In this paper, we consider the problem of state
estimation for nonlinear systems when the output measurements
are delayed. We assume an observer is available that takes the
delayed outputs and estimates the delayed states of the system.
We propose a novel predictor that takes the delayed estimates
from the observer and fuses them with the current input mea-
surements of the system to compensate for the delay. We provide
a rigorous stability analysis for globally Lipschitz systems
demonstrating that the prediction of the system state converges
(asymptotically/exponentially) to the current system trajectory
if the observer state converges (asymptotically/exponentially)
to the delayed system state. The predictor is computationally
simple as it is recursively implementable with a set of delay
differential equations. We demonstrate the performance of the
proposed predictor via simulation studies.

I. INTRODUCTION

State observers use measurements of the physical outputs
of systems to estimate their internal states. A practical chal-
lenge arising in state estimation in real world applications is
that the sensor measurements are usually delayed in time
with respect to the actual physical output of the system.
Measurement delays can occur due to various reasons such
as physical properties (e.g. slow transients) of sensors or the
environment, internal signal processing of sensors, extensive
filtering of sensor measurements for noise reduction, and
communication delays from sensors to processing units.
These delays can degrade the performance of observers and
negatively affect their stability and robustness if they are not
compensated for properly [1]–[8].

For linear systems, there exist a vast literature for state
estimation in the presence of time delays (see for instance
[9]–[12] and the references therein) and further extends
to classes of nonlinear systems that are linearizable by
output injection [13]. Also, for closed loop control of LTI
systems with delayed measurement, methods based on Smith
predictor [14] and other predictive control approaches have
been proposed (see [15] and the references therein).

For nonlinear systems, a classical method to tackle the
output delay problem is to employ an observer that has
the desired performance for delay free measurements, and
modify its innovation term such that it compares each de-
layed output measurement with its corresponding backward
time-shifted estimate. The stability of the modified observer
can sometimes be proven using Lyapunov-Krasovskii or
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Lyapunov-Razumikhin approaches if the delay-free observer
has a Lyapunov stability proof (see e.g. [16]–[20]). Although
these modified estimators are commonly used in practice (see
e.g. [21], [22]), they usually involve complicated stability
analysis that require careful and conservative gain tuning
and may lead to poor transient behavior of the resulting
estimators in practice.

Cascade observer-predictor design is an alternative ap-
proach to handle the delay problem for nonlinear systems
[1], [6], [23]–[26]. Assuming that an observer is avail-
able which has desired stability properties in the presence
of delay-free measurements, the observer is fed with the
delayed measurements to obtain estimates of the delayed
state trajectory. These delayed estimates are then used in
predictors to compensate for the effects of the delays such
that the prediction of the state converges to the current system
trajectory. A crucial challenge is to design the predictors
such that they preserve the desired stability properties of
their corresponding observer while they compensate for the
delays. Such predictors have been proposed in [1], [6], [16],
[23] for classes of nonlinear systems on Rn. In addition, [1],
[23], [24], [26] cascaded multiple copies of the predictors in
which each predictor block only compensates for a portion
of the delay increasing the maximum delay that can be
compensated for by the whole predictor chain. The authors
of this paper have recently proposed a predictor for the
particular problem of attitude estimation on the Lie group
SO(3) and proved that it is capable of compensating for
arbitrary large delays [7], [8].

All of the above mentioned predictor design method-
ologies on Rn build the predictor dynamics such that its
internal state directly represents predictions of the current
system state. In this paper, we present a new predictor design
approach that indirectly predicts the current system state.
The proposed approach consist of a dynamics part and a
static map. The dynamics part is built to compute a virtual
variable that indirectly predicts the difference between the
current and the delayed state. This virtual variable together
with the delayed estimate of the system state (provided by
the observer) are then used in the static map to obtain a
prediction of the current state. The predictor dynamics can
be implemented recursively using simple delay differential
equations. Hence, its computational complexity is low and it
is ideal for embedded implementation in practical scenarios.
We provide a rigorous co-stability analysis for the case of
globally Lipschitz systems demonstrating that the state pre-
dictions converge asymptotically/exponentially to the current
system trajectories if the estimates provided by the corre-
sponding observer converge asymptotically/exponentially to
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the delayed system state. Moreover, we provide a lower
bound for the convergence rate of the predictor as a function
of the Lipschitz constant of the system and the amount of
delay. We demonstrate the superior performance of the pro-
posed methodology over a Lyapunov-Krasovskii approach
via numerical simulations.

The structure of the paper is as follows. Background and
problem formulation is given in Section II. We discuss the
predictor-observer approach in Section III where we propose
the predictor and prove its co-stability. Performance of the
proposed methodology is demonstrated via simulations in
Section IV and a brief conclusion is given in Section V.

II. PROBLEM FORMULATION

Consider the system

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

where x ∈ Rn is the internal state and u ∈ Rm is the input.
Denote the outputs of the system by y(t) = h(x(t)) ∈ Rm.
The problem that we consider in this paper is to estimate
the current state x(t) when the measurements of the output
are delayed such that the output measurement at time t is
y(t − τ) = h(x(t − τ)) for some known constant delay
τ ≥ 0, but delay-free measurements of the input u(t) are
available. We impose the following assumption.

Assumption 1: If the current output measurements y(t) =
h(x(t)) are available without any delay, a time-invariant1

state observer with the desired performance is available that
provides estimates of x(t). �

Using Assumption 1, we can re-interpret the problem
formulation as follows. Assuming that an observer with the
desired performance is available when output measurements
are delay-free, we aim to propose an estimation algorithm
that exhibits the same desired performance when the output
measurements are delayed.

III. OBSERVER-PREDICTOR APPROACH

The approach that we take to solve the problem discussed
in Section II is to combine the observer of Assumption 1
with a predictor in an observer-predictor arrangement (see
Fig. 1). We inject the delayed output measurements y(t− τ)
together with the delayed input measurements u(t− τ) into
the observer in order to obtain estimates x̂τ (t) of x(t− τ),
noting that the convergence of x̂τ (t) to x(t − τ) with the
desired performance is ensured due to the assumed time-
invariance property of the observer. We inject x̂τ (t) into
the predictor, whose role is to use the information of the
input signal u(t) in order to compute how much the state
has changed in the period t−τ to t and use the result of
this computation together with the estimate x̂τ (t) to provide
a prediction of the current state, denoted by xp(t) ∈ Rn. In
this paper, we focus only on the predictor part as the observer
is assumed to be known a priori.

1Time-invariant is in the sense of considering the system inputs and
outputs altogether as the input of the observer and considering the state
estimate as the output of the observer.

Observer Predictor 
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u t
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Fig. 1. Illustration of observer-predictor arrangment.

We propose the following predictor

δ̇(t) = f(x̂τ (t) + δ(t)− δ(t− τ), u(t)), t ≥ τ (2)
xp(t) = x̂τ (t) + δ(t)− δ(t− τ), t ≥ τ (3)

where δ(t) ∈ Rn is the internal state of the predictor which
is obtained using the delay differential equation (2) with
an arbitrary initial condition δ|[0,τ [ = δ0|[0,τ [. Although
the dynamics of the predictor (2)-(3) is a delay differential
equation, it can be easily implemented recursively using a
memory buffer that stores the trajectory of δ(t) at least for
τ seconds. This makes the predictor ideal for embedded
applications where computational load is important.

In the observer-predictor arrangement, the trajectory of the
predicted state xp(t) inherently depends on the trajectory of
the observer x̂τ (t). Hence, rather than discussing the predic-
tion error |xp(t) − x(t)| independently, we need to discuss
how the prediction error depends on the delayed estimation
error of the corresponding observer, i.e. on x̂τ (t)−x(t− τ).
The next theorem shows that the state prediction error can
be bounded in terms of the delayed estimation error of the
observer. We need the following assumption to present the
Theorem.

Assumption 2: f is globally Lipschitz with respect to x,
that is there exists a constant 0 < L ∈ R such that
|f(x1, u) − f(x2, u)| ≤ L|x1 − x2| for all x1, x2 ∈ Rn

and all u ∈ Rm where |.| denotes the Euclidean norm on
Rn. �

Theorem 1: Consider the predictor (2)-(3) for system (1)
and suppose that Assumption 2 holds. Suppose moreover that
a constant σ > 0 exists such that

L
exp(στ)− 1

σ
< 1. (4)

Then, for all t ≥ τ we have

|xp(t)− x(t)| ≤ (5)

A sup
τ≤s≤t

(
exp(σ(s− t))|x̂τ (s)− x(s− τ)|

)
+B exp(−σt)

where the constants A and B are A = σ
σ−L(exp(στ)−1) and

B = sup
0≤s<τ

(
exp(σs)|xp(s)− x(s)|

)
. �

Proof of Theorem 1 is given in the appendix. Note that, us-
ing Assumption 2, it is straight-forward to show the solutions
of the delay differential equation (2) are unique and exist
for all t ≥ τ [27]. Inequality (4) imposes an upper bound
on the amount of delay for which the proposed observer-
predictor methodology works. This upper bound is reversely
related to the Lipschitz constant L of the system. According
to the inequality (5), the total prediction error |xp(t) −
x(t) comprises two terms. The term A sup

τ≤s≤t

(
exp(σ(s −
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t))|x̂τ (s) − x(s − τ)|
)

represents the effect of the observer
error and the term B exp(−σt) represents the error due to the
mismatch between the initial condition of the predictor and
the system. The error due to the initial condition vanishes as
time goes to infinity. Ideally, we would like that |xp(t)−x(t)|
remains bounded and converges asymptotically/exponentially
to zero if |x̂τ (t) − x(t − τ)| is bounded and converges
asymptotically/exponentially to zero. The following defini-
tions formalize this notion.

Definition 1: A predictor is called co-stable if |xp(t) −
x(t)| is bounded provided that |x̂τ (t)−x(t−τ)| is bounded.
The predictor is called asymptotically (resp. exponentially)
co-stable if it is co-stable and |xp(t) − x(t)| converges
asymptotically (resp. exponentially) to zero provided that
|x̂τ (t)− x(t− τ)| converges asymptotically (resp. exponen-
tially) to zero. �

Note that exponential co-stability of a predictor does not
generally imply its asymptotic co-stability. The following
corollary shows that the predictor (2)-(3) satisfies the above
defined co-stability properties.

Corollary 1: Under the assumptions of Theorem 1, the
predictor (2)-(3) is both asymptotically and exponentially co-
stable. Moreover, if x̂τ (t) converges to x(t−τ) exponentially
with convergence rate α > 0, then a lower bound for the
convergence rate of xp(t) to x(t) is given by min(σ, α)
where σ is given in Theorem 1. �

Proof of Corollary 1 is given in the appendix. The conver-
gence rate of xp(t) to x(t) depends on both the convergence
rate of the observer and also on the variable σ defined in
Theorem 1. The variable σ roughly represents the conver-
gence rate due to the predictor part in the observer-predictor
arrangement. Using (4), one obtains τ ≤ 1

σ ln(1 + σ
L ).

Given a system with a Lipschitz constant L, this inequality
provides a lower bound for the maximum delay for which
the convergence rate σ can be achieved. Defining τ̄ :=
1
σ ln(1 + σ

L ), τ̄ versus σ is illustrated in Fig. 2 for different
values of the Lipschitz constant L. According to Fig. 2, larger
delays yield slower convergence rates of the predictor. For
τ̄ → 0 we have σ → ∞. This is because for zero delay
the term δ(t) − δ(t − τ) in (3) equals to zero and hence
the predictor does not contribute to the trajectory of xp(t).
The maximum amount of delay (determined by Theorem
1) for which the predictor remains co-stable is obtained by
computing τ̄ for σ close to zero. This maximum delay is
given by τ̄max = lim

σ→0+
ln(1 + σ

L ) = 1
L . In practice, this is

a lower bound for the maximum delay since the inequality
(4) is just a sufficient condition for the co-stability of the
predictor (see Section IV).

Remark 1: Defining η(t) := δ(t)− δ(t− τ), the predictor
dynamics (2)-(3) can be rewritten as

η̇(t) = f(x̂τ (t) + η(t), u(t)), (6)
− f(x̂τ (t− τ) + η(t− τ), u(t− τ)), t ≥ τ

xp(t) = x̂τ (t) + η(t), t ≥ τ. (7)

In an ideal condition where there is no input noise, there is
no important difference between implementing the predictor
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Fig. 2. Maximum delay (τ̄ ) versus the convergence rate of predictor (σ).

either based on (2)-(3) or (6)-(7). However, when the input
u(t) is disturbed with measurements noise, this noise is
accumulated in the variable η(t) as we continue integrating
the dynamics (6). A practical advantage of (2)-(3) is that
the effect of the measurement noise is canceled via the term
δ(t)− δ(t− τ) and does not accumulate in the variable δ(t)
during the integration of dynamics (2). Hence, the quality
of the prediction xp(t) of (2)-(3) degrades less than the
corresponding prediction provided by (6)-(7) in the presence
of input noise.

The above discussion can be repeated by differentiating
xp(t) of (2) to obtain the following predictor.

ẋp(t) = ˙̂xτ (t) + f(xp(t), u(t))− f(xp(t− τ), u(t− τ)),
(8)

for all t ≥ τ . The difference here is that this dynamics
depends on ˙̂xτ (t) (rather than x̂τ (t) directly) and hence the
information of the initial condition of the dynamics is lost
during differentiation. One can add an innovation term to
the dynamics (8) in order to stabilize it to the trajectory
xp(t) of (2)-(3). This is in fact what the predictor of [1, Eq.
(3.8)] does. Consequently, it is evident that the predictions
of the current state by [1, Eq. (3.8)] exponentially converge
to the predictions provided by our proposed predictor (2)-
(3). Note that [1, Eq. (3.8)] uses an integral innovation term
that is not immediately implementable recursively unless one
implements this term based on a differential equation. Similar
to the discussions provided earlier, the noise characteristics
of the predictor (2)-(3) is superior to [1, Eq. (3.8)] because of
the noise cancellation effect due to the term δ(t)− δ(t− τ).
�

Remark 2: In ideal conditions where the input measure-
ments are noise-free, it is possible to show that the solution
δ(t) of the delay differential equation (2) is bounded for
all t ≥ τ . In practice, when measurement noise exists, the
amplitude of δ(t) might grow larger and larger due to the
integration of the input noise. This might cause numerical
errors when computing the prediction xp(t) using (3) since
the term δ(t) − δ(t − τ) might remain bounded while δ(t)
and δ(t − τ) both grow very large. For the particular case
where the system dynamics is invariant, a periodic resetting
technique has been proposed in [8, Lemma 1] to keep
the trajectories of δ(t) bounded while maintaining the co-
stability of the predictor. An alternative method is to use
feedback in the predictor dynamics (2) to keep its trajectories
bounded in the presence of input noise. In the general case
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where the underlying system does not have any particular
invariance, this remains an open question for future research.
Note that a similar boundedness issue also occurs in the
predictor proposed in [1, Eq. (3.8)] if the corresponding
integral terms are recursively computed using differential
equations. �

IV. SIMULATIONS

In this section, we provide numerical simulations to com-
pare the performance of the proposed observer-predictor
approach with the Lyapunov-Krasovskii method proposed in
[18]. As in [18, Section 4], we consider the following system.

ẋ1(t) = c1x2(t)− l1x1(t), (9a)
ẋ2(t) = c2 sin(x2(t)) + c3 cos(x2(t)) + c4u(t), (9b)

y(t− τ) = x1(t− τ) (9c)

When the output measurement delay τ is zero, the system
(9) belongs to a class of uniformly observable systems for
which various observer design methods are available in the
literature (see e.g. [28]–[31]). We employ the observer design
methodology of [28]2 to obtain an observer and then feed the
resulting observer with the delayed measurement (9c) and
the delayed input to estimate the delayed state x(t − τ) =
[x1(t− τ), x2(t− τ)]> as follows.[

˙̂xτ
1(t)
˙̂xτ
2(t)

]
=

[
c1x̂

τ
2(t)− lx̂τ

1(t)
c2 sin(x̂

τ
2(t)) + c3 cos(x̂

τ
2(t)) + c4u(t− τ)

]
− diag(θ, θ2)S−1C>(x̂τ

1(t)− y(t− τ))
(10)

where θ > 1 and R2×2 3 S = S> > 0 are observer gains
and C = [1, 0]. With appropriate choices of observer gains,
globally exponential convergence of x̂τ (t) to x(t − τ) is
proved in [28]. We feed the estimate x̂τ (t) into the predictor
(2)-(3) to obtain the prediction of the current state x(t). For
the simulation, we choose the same system parameters and
observer gains as [18, Section 4], that is c1 = 1, c2 = c3 =
0.02, c4 = 8, l = 0.04, θ = 1.55, and

S =

[
1 −1
−1 2

]
.

Using these system parameters, one can show that a lower
bound for the Lipschitz constant of the system is L = 1.
According to Fig. 2, the proposed predictor (2)-(3) is proven
to be co-stable for delays smaller than τ̄max = 1

L = 1
(s). On the other hand, as reported in [18, Section 4], the
observer of [18, Eq. (7)] is stable for delays smaller than 0.01
(s). Hence, the predictor presented in this paper is provably
able to compensate for much larger delays. We chose the
initial condition x(0) = [−50,−50]> for the system (9) and
we initialize both the observer (10), the predictor dynamics
(2), and the observer of [18, Eq. (7)] with zero initial
conditions. For the small delay of τ = 0.01 (s), Fig. 3
shows the system trajectory x(t) along with the prediction

2We have used a slightly different notation from [28] to be more
compatible with the notations used in [18].
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Fig. 3. Comparison of the estimation methode of this paper vs [18] for
τ = 0.01 (s).

xp(t) provided by (2)-(3) and the estimate x̂(t) provided by
[18, Eq. (7)]. As demonstrated by Fig. 3, estimates of the
current state provided by either the method proposed in this
paper or the approach presented in [18] converge to the true
system trajectory with similar convergence rates (note that
the estimated trajectories are not available for t < τ since
y(t−τ) is unavailable for that period). Fig. 4 shows the plot
of the same variables when the delay is increased to τ = 0.45
(s). According to Fig. 4, the approach presented in this
paper still provides exponentially convergent predictions of
the current state while the observer of [18] becomes unstable.
Even though the co-stability of the proposed predictor is only
proved for delays of up to τ̄max = 1 (s), our simulations
show that the observer-predictor approach remains stable for
much larger delays. Fig. 5 shows the state predictions for the
very large delay of τ = 10 (s). As is evident from Fig. 5, the
state predictions still converge to the true system trajectories,
though their convergence rate is decreased compared to when
the delay is small. This observation is compatible with Fig.
2 which suggests that the convergence rate decreases as the
delay becomes larger.

V. CONCLUSION

We propose a novel predictor to compensate for output
measurement delays for state estimation of nonlinear sys-
tems. The predictor is employed in a cascade observer-
predictor arrangement where estimates of the delayed system
state are provided by an observer and the predictor’s role
is to compensate for the delay. We provide rigorous co-
stability results demonstrating that the predictions of the
state asymptotically/exponentially converge to the current
system trajectory if the observer’s state estimates converge
asymptotically/exponentially to the delayed system state.
The computational complexity of the predictor is low as it
is recursively implemented using simple delay differential
equations. Superior performance of the proposed predic-
tor over a Lyapunov-Krasowskii method and its robustness
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Fig. 5. Performance of the estimation methode of this paper for τ = 10
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against large measurement delays are demonstrated using
numerical simulations. Methods to ensure boundedness of
the internal state of the predictor in the presence of input
noise as well as chaining multiple copies of the predictor
to compensate for larger delays potential topics for future
research.

APPENDIX

Proof of Theorem 1:

The proof is inspired by the proof of [1, Lemma 3.3].
Integrating the sides of (1) from t− τ to t yields

x(t) = x(t− τ) +

∫ t

t−τ

f(x(s), u(s))ds. (11)

Similarly, integrating the sides of (2) from t − τ to t and
replacing into (3), it is easy to see that the predictor (2)-(3)

can be rewritten into the following integral formulation

xp(t) = x̂τ (t) +

∫ t

t−τ

f(xp(s), u(s))ds, t ≥ τ (12)

with the initial condition xp|[0,τ [ = x̂p
0|[0,τ [ := x̂τ (τ)+δ(τ)−

δ(0). Using (12) and (11) and resorting to Assumption 2 we
have

|xp(t)− x(t)| = |x̂τ (t)− x(t− τ)|

+

∫ t

t−τ

(
f(xp(s), u(s))− f(x(s), u(s))

)
ds|

≤ |x̂τ (t)− x(t− τ)|

+

∫ t

t−τ

|f(xp(s), u(s))− f(x(s), u(s))|ds

≤ |x̂τ (t)− x(t− τ)|+ L

∫ t

t−τ

|xp(s)− x(s)|ds

Multiplying by exp(σt) on both sides we have

exp(σt)|xp(t)− x(t)| ≤ exp(σt)|x̂τ (t)− x(t− τ)| (13)

+ L exp(σt)

∫ t

t−τ

|xp(s)− x(s)|ds.

On the other hand, we have∫ t

t−τ

|xp(s)− x(s)|ds =
∫ t

t−τ

exp(σ(s− s))|xp(s)− x(s)|ds

≤ sup
t−τ≤s≤t

(
exp(σs)|xp(s)− x(s)|)

) ∫ t

t−τ

exp(−σs)ds

= exp(−σt)
exp(στ)− 1

σ
sup

t−τ≤s≤t

(
exp(σs)|xp(s)− x(s)|)

)
.

(14)

Using (13) and (14) we have

exp(σt)|xp(t)− x(t)| ≤ (15)
exp(σt)|x̂τ (t)− x(t− τ)|

+ L
exp(στ)− 1

σ
sup

t−τ≤s≤t

(
exp(σs)|xp(s)− x(s)|)

)
Assuming t ≥ τ and taking the supremum over t in (15) we
have

sup
τ≤s≤t

(
exp(σs)|xp(s)− x(s)|

)
≤ (16)

sup
τ≤s≤t

(
exp(σs)|x̂τ (s)− x(s− τ)|

)
+ L

exp(στ)− 1

σ
sup

0≤s≤t

(
exp(σs)|xp(s)− x(s)|)

)
Now, we have two cases depending on the time at which the
supremum occurs.

Case 1 (supremum occurs in [0, τ ]): If
sup

0≤s≤t

(
exp(σs)|xp(s) − x(s)|

)
= sup

0≤s≤τ

(
exp(σs)|xp(s) −
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x(s)|
)

then (16) simplifies to

sup
τ≤s≤t

(
exp(σs)|xp(s)− x(s)|

)
≤

sup
τ≤s≤t

(
exp(σs)|x̂τ (s)− x(s− τ)|

)
+ L

exp(στ)− 1

σ
sup

0≤s≤τ

(
exp(σs)|xp(s)− x(s)|)

)
≤ σ

σ − L(exp(στ)− 1)
sup

τ≤s≤t

(
exp(σs)|x̂τ (s)− x(s− τ)|

)
+ sup

0≤s≤τ

(
exp(σs)|xp(s)− x(s)|)

)
(17)

where the last inequality is derived using (4) which implies
σ

σ−L(exp(στ)−1) > 1.
Case 2 (supremum occurs in [τ, t]): If

sup
0≤s≤t

(
exp(σs)|xp(s) − x(s)|

)
= sup

τ≤s≤t

(
exp(σs)|xp(s) −

x(s)|
)

then (16) is simplifies to

sup
τ≤s≤t

(
exp(σs)|xp(s)− x(s)|

)
≤

σ

σ − L(exp(στ)− 1)
sup

τ≤s≤t

(
exp(σs)|x̂τ (s)− x(s− τ)|

)
≤ σ

σ − L(exp(στ)− 1)
sup

τ≤s≤t

(
exp(σs)|x̂τ (s)− x(s− τ)|

)
+ sup

0≤s≤τ

(
exp(σs)|xp(s)− x(s)|)

)
(18)

Combining (17) and (18) and noting that exp(σt)|xp(t)−
x(t)| ≤ sup

τ≤s≤t

(
exp(σs)|xp(s)− x(s)|

)
yields

|xp(t)− x(t)| ≤
σ

σ−L(exp(στ)−1)
sup

τ≤s≤t

(
exp(σ(s− t))|x̂τ (s)−x(s− τ)|

)
+ exp(−σt) sup

0≤s≤τ

(
exp(σs)|xp(s)− x(s)|)

)
for all t ≥ τ as claimed in (5). �

Proof of Corollary 1:

Assume that |x̂τ (t) − x(t − τ)| ≤ c for some c ≥ 0 and
all t ≥ τ . By (5) we have |xp(t) − x(t)| ≤ Ac + B for all
t ≥ τ . This proves that the predictor is co-stable.

Assume lim
t→∞

|x̂τ (t)− x(t− τ)| = 0. Then for all ετ >

0, there exists a Tτ such that for all t ≥ Tτ we have
|x̂τ (t) − x(t − τ)| < ετ . By (5) we have |xp(t) −
x(t)| ≤ A sup

τ≤s≤t

(
exp(σ(s − t))|x̂τ (s) − x(s − τ)|

)
+

B exp(−σt) < Aετ sup
τ≤s≤t

(
exp(σ(s− t))

)
+B exp(−σt) <

Aετ + B exp(−σt) for all t ≥ Tτ . For a given ε > 0,
choose ετ small enough and T ∗ large enough such that
Aετ +B exp(−σT ∗) < ε (such ετ and T ∗ always exist). We
have |xp(t)−x(t)| < ε for all t ≥ max(T ∗, Tτ ) which means
that lim

t→∞
|xp(t)− x(t)| = 0. This proves that the predictor

is asymptotically co-stable.
If the estimation error x̂τ (t) − x(t − τ) converges ex-

ponentially to zero then there exist A0, α > 0 such that

|x̂τ (t) − x(t − τ)| ≤ A0|x̂τ (τ) − x(0)| exp(−αt) for all
t ≥ τ . This yields

sup
τ≤s≤t

(
exp(σ(s− t))|x̂τ (s)− x(s− τ)|

)
≤ A0|x̂τ (τ)− x(0)| exp(−(σ + α)t) sup

τ≤s≤t

(
exp(σ(s))

)
≤ A0|x̂τ (τ)− x(0)| exp(−αt). (19)

for all t ≥ τ . Substituting (19) into (5) implies that |xp(t)−
x(t)| ≤ Ā exp(−ᾱt) for all t ≥ τ where ᾱ = min(σ, α) and
Ā = AA0|x̂τ (τ)− x(0)| exp((ᾱ−α)τ) +B exp((ᾱ− σ)τ).
This shows that the predictor is exponentially co-stable and
completes the proof. �
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