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Abstract— This paper proposes an attitude estimation
methodology for the case where attitude sensors provide
discrete-time samples of vector measurements at different
sample rates and with time delays. The proposed methodology
is based on a cascade combination of an output predictor
and an attitude observer or filter. The predictor compensates
for the effect of sampling and delays in vector measurements
and provides continuous-time predictions of outputs. These
predictions are then used in an observer or filter to estimate
the current attitude. The primary contribution of the paper is
to exploit the underlying symmetry of the attitude kinematics
to design a recursive predictor that is computationally simple
and generic, in the sense that it can be combined with any
asymptotically stable observer or filter. We prove that the
predictor is able to reproduce the continuous time delay-free
vector measurements. In a simulation example, we demonstrate
good performance of the combined predictor-observer even in
presence of measurement noise and delay uncertainties.

I. INTRODUCTION

Attitude sensors mounted on a vehicle measure partial
information about its attitude in the form of vector direc-
tion measurements. The goal of an attitude estimator is to
compute the orientation of the vehicle by processing those
vector measurements. There is a large body of research
on both stochastic attitude estimation methods (such as
extended Kalman filters [1], [2], unscented filters [3], etc.) as
well as deterministic attitude observers [4]–[16]. In satellite
attitude estimation applications, high accuracy sensors such
as star trackers or earth sensors provide measurements at low
sampling rates (0.5 to 10 Hz) [17]. In contrast, the onboard
gyroscope can easily provide high bandwidth measurements
at kHz rates, potentially two orders of magnitude faster than
the direction information is obtained. The image processing
inside a star-tracker sensor can cause significant delays in
the order of tens of milliseconds, leading to the star-tracker
measurement being delayed with respect to the gyroscope
measurements. Similar sampling and delay problems also
occur in attitude estimation for aerial robots when vision
based sensors such as cameras and landmarks are employed.
Also, in indoor flight environments, the attitude data from
devices such as VICON or OptiTrack are delayed by the
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communication channel from these sensors to the onboard
attitude estimation system of the vehicle.

Sampling and delays can negatively affect the stability
and robustness of any observer or filter and degrade their
performance if they are not compensated for properly [18]–
[24]. Typical estimator design methodologies to tackle the
measurement sampling and delay problem are; estimator
design with Lyapunov-Krasovskii modification, stochastic
filtering with Out-Of-Sequence Measurements (OOSM), and
compound observer-predictor design. The classical approach
to tackle the sensor delay is to take an estimator that has the
desired performance for delay free measurements, and mod-
ify its innovation term such that it compares each delayed
measurement with its corresponding backward time-shifted
estimate. If the delay-free estimator has a Lyapunov stability
proof, the stability analysis for the modified estimator can be
undertaken using Lyapunov-Krasovskii functions [25], [26].
Although these modified estimators are commonly used in
practice (see e.g. [27], [28]), they require complicated stabil-
ity analyses and careful and conservative gain tuning, lead-
ing to poor transient responses of the resulting estimators.
Stochastic filtering with OOSM has been extensively studied
[29]–[33], albeit most of this literature focuses on target
tracking applications. Although OOSM filtering approaches
are flexible, easily dealing with sampled and delayed data
as well as out-of-sequence measurements, they usually have
significant memory and processing requirements that are
unrealistic for most embedded observer design applications,
except for linear system models where simpler OOSM filters
are available [20], [29]. For the specific problem of atti-
tude estimation with sampled and delayed measurements,
a modified extended Kalman filter with a novel real time
implementation architecture is proposed in [34]. Despite its
good performance in practice, this algorithm suffers from
major drawbacks such as unclear convergence properties and
high computational load due to the required propagation
stages associated with sensor delay compensation. Combined
observer-predictor design methods for nonlinear systems on
Rn have been developed in [19], [24], [35]. These methods
take observers that have the desired stability properties for
continuous delay-free measurements and combine them with
appropriate predictors that compensate for the effects of
sensor sampling and delays, such that the combined observer-
predictor maintains the stability properties of the observer.
The authors of this paper have recently proposed a cascade
observer-predictor combination to handle sensor delay in
the attitude estimation problem [36]. Although the result-
ing observer-predictor combination is stable, this method



requires continuous availability of sensor outputs and is not
applicable to the sampled measurement case. To the authors’
knowledge, there is no attitude estimation methodology with
stability proof available that considers sampled and delay
measurements.

In this paper, we consider the attitude estimation prob-
lem when sampled and delayed vector measurements are
available. We propose a cascade combination of a predictor
with an attitude observer or filter in which the predictor
compensates for the effect of sampling as well as delays
in vector measurements and the filter or observer processes
the predicted outputs and estimates the attitude. Our design
is based on the exact continuous time nonlinear attitude
kinematics on the Lie group SO(3) without resorting to
parameterization, linearization, or discretization. The main
contribution of the paper is to effectively employ the sym-
metries of the attitude kinematics and vector measurement
models to design a simple generic predictor that is inde-
pendent of the choice of observer or filter. That is, our
proposed predictor can be combined with any observer
or filter that has asymptotically stable estimation error in
ideal conditions (i.e. when it is fed with continuous time
delay-free vector measurements) and the predictor-observer
combination maintains those stability properties in the non-
ideal conditions (i.e. sampled and delayed measurements).
The proposed predictor is recursive and requires only very
small computational power, making it ideal for embedded
implementation in real-world applications. We assume that
the delay in each sensor measurement is known, that is we
require accurate time-stamping of data, however, this is the
only condition on the data. Given this assumption, the gain
tuning process and the stability of the observer is independent
of the size of the delay and valid even for time varying
delays or OOSM measurements although we do not explicitly
consider the latter in this paper. The proposed approach
directly extends to the multi-rate measurement case without
further modification. Via a simulation example, we show that
our predictor-observer method performs significantly better
than Lyapunov-Krasowskii approach.

The structure of the paper is as follows. Background and
problem formulation is given in section II. The proposed
predictor-observer approach is described in section III where
the main result of the paper is given by Theorem 1. The
performance of our method is demonstrated via simulations
in section IV.

II. PROBLEM FORMULATION

Attitude determination sensors aim to measure physical
quantities that are usually continuous time objects by their
nature. Examples of these physical quantities are the light
intensity of stars or the Sun, respectively, sensed by star
sensors or sun sensors, the Infra-Red reflection of the Earth
surface sensed by Earth sensors, or the magnetic field of the
Earth sensed by magnetometers, all of which are continuous
time objects. In practice, however, attitude sensors are only
capable of providing samples of those physical quantities at
specific sampling rates. Moreover, these samples are usually

delayed with respect to the measured physical quantities due
to various reasons such as slow response rates of the physical
parts of the sensors, internal processing time of sensors, and
communication delays. In the following two subsections, we
present a general discussion about modeling sampling and
delays in sensors. This discussion will then be applied to the
specific case of attitude sensors and vector measurements in
Section II-C.

A. Physically inspired modeling of sampling and delays

We propose the model illustrated in Fig. 1 to include
the effect of sampling and delays on the output of sensors.
This model is inspired by the physical process that takes
place in sensors during measuring a physical quantity. This
model consists of a zero-order-hold (ZOH) block that models
the effect of sampling and two delay blocks before and
after the ZOH that, respectively, model the pre-sampling
and post-sampling delays. The pre-sampling delay on the
left side of Fig. 1 models ρi seconds of delay from when
the physical quantity yi(t) occurs to when it is observed
by the i-th sensor. We have yρi (t) = yi(t − ρi) for all
t. In practice, this delay is usually due to the physical
properties of the environment or the sensors. For instance,
a star tracker requires that its imaging sensor is exposed to
light from stars for a specific amount of time so that it can
produce an image of the stars. This is known as exposure
time and can be as large as hundreds of milliseconds [37].
The ZOH block in Fig. 1 takes the delayed signal and
produces a sample at time tki . This sample is latched at
the output of ZOH until the next sample is taken at time
tki+1. Hence we have zρi (t) = yρi (tki) = yi(tki − ρi)
for t ∈ [tki , tki+1). For clarity in presentation, we assume
that the sequence (tki)

∞
ki=1 is an ordered monotonically

increasing sequence, i.e. tki−1 ≤ tki ≤ tki+1. However,
this assumption is not necessary for our proposed method
and our method is also applicable to the case where the
measurements are out-of-sequence, although the necessary
modifications to the notation are rather cumbersome. For
a star tracker, the sequence (tki)

∞
ki=1 corresponds to the

specific times when the star tracker obtains an image of stars.
This sampling frequency can be as low as only 0.5 Hz up
to 10 Hz for practical star trackers. The post-sampling delay
on the right side of Fig. 1 models σi seconds of delay from
when a sample of the physical variable becomes available to
the sensor to the time when the new output zi(t) becomes
available to the user. Hence we have

zi(t) = zρi (t− σi) = yi(tki − ρi), t ∈ [tki + σi, tki+1 + σi)
(1)

In practice, the post-sampling delay models the delay due
to the internal signal processing in the sensor or due to the
communication delay for transmitting information from the
sensor to the user. For a star tracker, the post-sampling delay
is mainly due to the processing time associated with image
processing algorithms that analyze the images taken by the
star tracker to recognize stars in the image and associate each
recognized star with its corresponding star in the on-board
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Fig. 1. Modelling the effect of sampling and delays in attitude sensors
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Fig. 2. Simple model that is input-to-output equivalent to Fig. 1

star catalog. The post-sampling delay can also model the lag
due to the communication delay from VICON or OptiTrack
systems to the onboard attitude estimation system of flying
vehicles in indoor flight environments. It also can model
the measurement delay associated with internal processing
in GPS modules.

B. An input-to-output equivalent model

Although the model illustrated in Fig. 1 is suitable at the
modeling stage to carefully describe the effect of sampling
and various delays, it might not be convenient to be employed
for compensation of delays and sampling effects at the design
stage. The main disadvantage of this model is that even if the
user knows the value of σi, the value of tki is only available
from the time tki + σi onwards. That is, the sensors usually
do not inform the user when exactly they obtain samples
of measurements. Instead, they inform the user when they
finish processing the samples and the processing result (i.e.
the sensor output) is ready to be collected by the user. This
is why we discuss a simpler model here which is input-to-
output equivalent to Fig. 1, but is more convenient to use for
compensation of the effect of sampling and delays. Later on
in this section, we discuss the condition under which these
two models are equivalent.

Assume that at time t′ki , ki = 1, 2, . . ., we receive the
most recent output of the i-th sensor denoted by zi(t′ki). We
assume that this output is delayed τi seconds with respect
to the measured physical quantity yi(t

′
ki

). This output is
latched until the next output arrives at t′ki+1. This procedure
is equivalent to a cascade combination of a delay operator
and a ZOH, as sketched in Fig. 2. We have

zi(t) = zi(t
′
ki) = yi(t

′
ki − τi), t ∈ [t′ki , t

′
ki+1). (2)

Each sequence (t′ki)
∞
ki=1 is ordered monotonically increasing

(again, this assumption is not necessary for our method but it
is imposed for clarity in presentation). The main difference
compared to the model discussed in Section II-A is that here
the sequence (t′ki) is known to the user and can be used for
compensating the effect of sampling and delays. It is obvious
that the outputs of Fig. 1 and Fig. 2 can be different in
general. However, simple calculations provided in Appendix
A show that both models are input-to-output equivalent (i.e.
the output zi(t) of both models are equal for all t when both
models measure the same physical quantity yi(t)) if and only
if τi = ρi+σi and (t′ki)

∞
ki=1 = (tki +σi)

∞
ki=1. That is, when

both models are equivalent, the delay τi in Fig. 2 represents

the combination of the delays ρi and σi of Fig. 1 and the
sampling sequence (t′ki)

∞
ki=1 in Fig. 1 is equivalent to the

sequence of times by which the user receives the outputs
zi(t) of Fig. 2. Given a model in the form of Fig. 1, we are
always able to simplify that model to the form of Fig. 2 by
proper choice of the delay and sampling sequence in Fig. 2.
This in particular means that, as far as the input-to-output
characteristics of the sensors are concerned, there is no need
to separately know the value of the pre-sampling and post-
sampling delays. In fact, as we show in Section III, only the
knowledge of the total delay τi between the physical value
yi(t) and the sensor output suffice to reproduce the physical
quantity yi(t) from the sampled and delayed sensor output.

C. Attitude kinematics and sensor models for vector mea-
surements

Consider a rigid body with a body-fixed reference frame
{B} and an inertial reference frame {A}. Denote the attitude
matrix of the rigid body by R ∈ SO(3) that corresponds
to the rotation from {B} to {A}. The rigid body attitude
kinematics is given by

Ṙ(t) = R(t)Ω(t)×, R(0) = R0 (3)

where Ω is the angular velocity vector of {B} with respect
to {A} expressed in {B}. The linear operator (.)× maps any
vector in R3 to its corresponding skew-symmetric matrix in
so(3) such that (a)×b is equal to the cross product a× b for
all a, b ∈ R3. We assume that delay-free measurements of
Ω(t) are available in continuous time. This is a reasonable
assumption since in practice Ω(t) is measured at a high
sampling rate using 3-axis gyros.

Ideal attitude sensors attached to the rigid body provide
partial measurements of attitude in the form of vector mea-
surements given by

yi(t) = R(t)>ẙi, i = 1, 2, . . . , n (4)

where yi ∈ S2 denotes the measured vector in {B} and
ẙi ∈ S2 denotes the corresponding reference vector of yi
in {A}. One can replace yi(t) from (4) into (1) and (2)
to obtain attitude sensor models with sampling and delays
corresponding to Fig. 1 and Fig. 2, respectively.

The problem at hand is to design an estimation methodol-
ogy that uses the continuous measurement of Ω(t) together
with the sampled and delayed vector measurements zi(t) to
provide continuous estimates of the attitude matrix R(t).

III. PREDICTOR-OBSERVER APPROACH

Due to the reasons discussed in Section II-B, we opt
to work with the simplified sensor model (2) to design an
algorithm that compensates for the effects of sampling and
both pre and post-sampling delays and estimates the attitude.
The approach that we propose here to tackle the problem
formulated in Section II is illustrated in Fig. 3. We first
propose a predictor that takes the sampled and delayed mea-
surements zi(t) and provides continuous time predictions of
yi(t) denoted by ypi (t). The predictor relies on the knowledge
of Ω(t) in continuous time (or practically at high frequency)



Predictor 

Observer 

( ),  1,...,p
iy t i n

ˆ( )R t

( ),  ( ),  ,  1,...,
ii k it z t i n

( )t

Fig. 3. Illustration of the proposed predictor-observer approach (5)-(7)

and the total delay τi = ρi+σi to compensate for the effect of
sampling and delay in the outputs and to predict the outputs
such that ypi (t) = yi(t) for all t ≥ t′1i in noise-free conditions
(i.e. when there is no measurement noise in zi(t′ki) or Ω(t)
and the integration procedure within the predictor is also
exact). The predicted outputs ypi (t), i = 1, . . . , n together
with the angular velocity measurement are then fed into
an observer to compute an estimate of attitude denoted by
R̂(t). Our proposed predictor is generic in the sense that
it is independent of the employed observer algorithm, i.e.,
the predictor can be coupled with any asymptotically stable
attitude observer or filter to estimate the attitude.

Our proposed predictor takes the form

∆̇(t) = ∆(t)Ω(t)×, ∆(0) = ∆0, (5)

ypi (t) = ∆(t)>∆(t′ki − τi)zi(t), t ∈ [t′ki , t
′
ki+1), (6)

where ∆ ∈ SO(3) is the internal state of the predictor and
∆0 ∈ SO(3) is an arbitrary initial condition. The trajectory
∆(t) of the predictor dynamics (5) needs to be stored in a
buffer for the previous t′ki+1 − t′ki + τi seconds in order to
compute the prediction ypi (t) (6) at each time.

The following theorem summarizes the properties of the
proposed predictor.

Theorem 1: Consider the predictor (5)-(6) for the attitude
dynamics (3) and the sensor measurements (2) with (4).
The predicted output ypi (t) is equal to the ideal vector
measurement yi(t) for all t > t1i and all choices of ∆0 ∈
SO(3). �
Proof of Theorem 1 is given in Appendix B.

Even though the proposed predictor is independent of the
choice of observer, for the sake of concreteness, here we
couple the predictor with the following geometric attitude
observer [10].

˙̂
R(t) = R̂(t)

(
Ω(t)− P (t)

n∑
i=1

(
Li(ŷi(t)− ypi (t))

)
×ŷi(t)

)
×
,

(7)

with R̂(0) = R̂0 ∈ SO(3) and t ≥ max
i=1,...,n

t1i , where R̂(t)

is the estimate of R(t), ŷi(t) := R̂(t)>ẙi, and P (t) and
Li, i = 1, . . . , n are positive definite gain matrices. Stability

of the pure observer (7) is shown in [38] for general positive
definite gain matrices P (t) and Li, i = 1, . . . , n. These gains
are chosen to obtain the desired observer performance. For
instance, P (t) can be recursively updated using Riccati dif-
ferential equations as in extended Kalman filters [1], [2], or it
can be obtained using modified Riccati differential equations
as in geometric approximate minimum-energy filters [10].
Choosing constant positive definite gain matrices simplifies
(7) to the well-known geometric attitude observer proposed
in [4], [7], [11], [39]. In any case, assuming that the observer
(7) fed with the ideal vector measurements yi(t) rather than
the predicted outputs ypi (t) (i.e. replacing ypi (t) with yi(t) in
(7)) yields stable estimation error dynamics, then Theorem
1 implies that the combined predictor-observer (5),(6), and
(7) retains those stability properties of the observer for all
choices of ∆0 ∈ SO(3). In particular, if the constant gain
observer of [4] is employed as (7), then the estimated attitude
R̂(t) converges almost globally asymptotically and locally
exponentially to the true attitude R(t) for all choices of
∆0 ∈ SO(3).

Note that in order to implement the proposed predictor-
observer methodology, it is only required to implement one
copy of the predictor dynamics (5) and one copy of the
observer dynamics (7) even though we have several vector
measurements zi(t), i = 1, . . . , n with possibly different de-
lays τi and possibly different sampling sequences (t′ki)

∞
ki=1.

Only a fixed duration buffer for the predictor state ∆(t) is
needed.

Remark 1: Our proposed method is also applicable to
the case where the delay τi is time-varying and out-of-
sequence measurements do potentially occur. In this case, we
should replace the notation τi with τki (forming the sequence
(τki)

∞
ki=1) and each measurement delay τki should be known

to the user at time t′ki . �
Remark 2: Although the predictor-observer idea presented

in this paper focuses on the attitude kinematic system on
SO(3), this idea can be generalized to kinematic systems
on general Lie groups. For the very special case where the
underlying Lie group is Rn, the kinematic system is simply
the linear integrator ẋ(t) = u(t) where x(t) ∈ Rn is the
state and u(t) ∈ Rn is the input. The output is given by
y(t) = Cx(t) ∈ Rm where C ∈ Rm×n, and the sensors
provide the delayed measurement z(t) = y(t− τ). It is easy
to adapt the predictor proposed in this paper and obtain the
following simple predictor

δ̇(t) = u(t), (8)
yp(t) = C(δ(t)− δ(t− τ)) + z(t). (9)

In this case, the predictor (8)-(9) corresponds to the well-
known Smith predictor [40] originally designed for output
feedback control of linear systems with delayed measure-
ments. Note, however, that in the context of observers this
predictor does not seem to suffer from the Smith predictor’s
well documented stability issues in the presence of delay
uncertainty (see section IV). �



IV. SIMULATION RESULTS

In this section, we provide a set of simulations to il-
lustrate the performance of our proposed predictor-observer
methodology. To generate the trajectory of R(t), we im-
plement (3) with Ω(t) = [0; 0; 8] (deg/s) and the initial
attitude R0 corresponding to the initial roll 14 (deg), pitch
0 (deg), and yaw 0 (deg). We suppose that the attitude
sensors provide the vector measurements corresponding to
the reference directions ẙ1 = [1 0 0]> and ẙ1 = [0 1 0]>.
Although in practice the number of vector measurements
can be high and their directions are not necessarily pairwise
perpendicular (e.g. for star trackers), here we consider only
two vector measurements with perpendicular directions to
avoid unnecessary discussions on gain tuning and focus only
on the sampling and delay effects. To model z1(t) and z2(t),
the ideal vector measurements y1(t) and y2(t) are obtained
by (4) and then fed to the block diagram of Fig. 1 with
pre and post-sampling delays of ρ1 = ρ2 = 0.1 (s) and
σ1 = σ2 = 0.3 (s), respectively, yielding a total delay of
τ1 = τ2 = 0.4 (s), and a sampling rate of 5 (Hz). Zero
mean Gaussian noises with a standard deviation of 0.01
are added to each axis of the vector measurements z1(t)
and z2(t) which approximately add perturbations with the
standard deviation of 1 (deg) to the directions of z1(t) and
z2(t). The angular velocity Ω(t) is sampled at 100 (Hz) and
perturbed by an additive noise of 0.05 (deg/s) in each axis.

For the simulation, we combine the predictor (5)-(6) with
the geometric observer of [4]. This observer corresponds to
choosing scalar constant observer gains in (7) yielding

˙̂
R(t) = R̂(t)

(
Ω(t) + l1y

p
1(t)×ŷ1(t) + l2y

p
2(t)×ŷ2(t)

)
×
(10)

with ŷi(t) := R̂(t)>ẙi(t) and li > 0, i = 1, 2. We compare
the performance of this combined predictor-observer with
an ad-hoc adaptation of the constant gain observer of [4]
to the case of sampled and delayed vector measurements.
The dynamics of the ad-hoc observer is given by ˙̂

Rad(t) =
R̂ad(t)

(
Ω(t) + α(t))× where R̂ad(t) is the estimate of R(t)

and α(t) is the innovation term. When the attitude sensor
provides the measured sample z1(t′k1) at time t = t′k1 , the
innovation term of the ad-hoc observer is inspired by the
constant gain observer as α(t′k1) = l̄1z1(t′k1)×R̂ad(t′k1 −
τ1)>ẙ1 with l̄1 > 0. This innovation term compares
the newly received measurement z1(t′k1) with its estimate
R̂ad(t′k1 − τ1)>ẙ1 in which the effect of the measurement
delay τ1 is considered1. Similarly, at time t = t′k2 when
the measurement z2(t′k2) is delivered by attitude sensors, the
innovation term is α(t′k2) = l̄2z2(t′k2)×R̂ad(t′k2 − τ2)>ẙ2
with l̄2 > 0. If t′k2 happens to be equal to t′k1 for some
pair (k1, k2), then the innovation term is simply the sum
l̄1z1(t′k1)×R̂ad(t′k1 − τ1)>ẙ1 + l̄2z2(t′k2)×R̂ad(t′k2 − τ2)>ẙ2.
For the times where no sample of any vector measurement
is available (i.e. for all t /∈ (tk1)∞ki=1 ∪ (tk2)∞ki=1), the

1Due to the consideration of the effect of delay in the innovation term,
it can be thought of as a Lyapunov-Krasovskii term [25], [26], [35].

Fig. 4. Attitude estimation error of combined predictor-observer (5)-(7).
The red plot is the enlarged steady state estimation error.

Fig. 5. Attitude estimation error of the ad-hoc observer. The red plot is
the enlarged steady state estimation error.

innovation term is zero which simplifies the observer to a
forward integration of attitude kinematics. This innovation
term is mathematically formulated as follows.

α(t) =


l̄1z1(t′k1)×R̂ad(t′k1 − τ1)>ẙ1, t = t′k1 6= t′k2
l̄2z2(t′k2)×R̂ad(t′k2 − τ2)>ẙ2, t = t′k2 6= t′k1∑2
i=1 l̄izi(t

′
ki

)×R̂ad(t′ki − τi)
>ẙi, t = t′k1 = t′k2

0 t 6= t′ki

This ad-hoc method adaptation of observers is commonly
used in engineering applications to handle sensor sampling
and delay effects (see e.g. [27], [28] for an EKF example).

The initial conditions of the combined predictor-observer
(i.e. R̂(0.4) and ∆(0)) and the initial condition of the
ad-hoc observer (i.e. R̂ad(t), t ∈ [0, 0.4]) are set to the
identity matrix. The attitude estimation error of the combined
predictor-observer is illustrated in Fig. 4, where the observer
gains are chosen as l1 = l2 = 0.5. In this figure, the error
θ̃ is the angle of rotation in the angle-axis representation
of the attitude estimate error R̂(t)R(t)> and is given by
θ̃(t) = 180

π arccos(1− 0.5tr(I − R̂(t)R(t)>)). Note that the
observer trajectories are available after the first sample of
the vector measurements have been provided by the attitude
sensors. The red plot shows the steady state estimation error
which illustrates the good performance of our proposed
method even with high sensor delay, low sampling rate,
and high noise. Fig. 5 shows the estimation error θ̃ad(t) =
180
π arccos(1 − 0.5tr(I − R̂ad(t)R(t)>)) of the ad-hoc ob-

server when its gains are chosen as l̄1 = l̄2 = 42.5 such that
the error trajectory of this observer has approximately the
same transient convergence rate as Fig. 4. Comparing Fig. 4
and Fig. 5, the steady state error of our predictor-observer
is almost an order of magnitude less than the steady state
error of the ad-hoc observer. Next, we increase the sensor
delays to ρ1 = ρ2 = 0.5 (s) and σ1 = σ2 = 1.5 (s)
yielding a total sensor delay of 2 (s). With the same gains



Fig. 6. Attitude estimation error of combined predictor-observer (5)-(7)
with large sensor delay. The red plot is the enlarged steady state estimation
error.

Fig. 7. Attitude estimation error of the ad-hoc observer with large sensor
delay.

and initial conditions as in the previous simulation, the error
trajectories of the predictor-observer and the ad-hoc observer
are illustrated in Fig. 6 and Fig. 7, respectively. These plots
show the convergence of the estimation error of our proposed
predictor-observer while the estimation error of the ad-hoc
observer diverges. The small degradation of the steady state
estimation error of Fig. 6 compared to Fig. 4 is due to the
fact that the predictor relies on noisy gyro measurements to
compensate for the delay in vector measurements. Hence, a
larger delay means longer integration of gyro noise which
increases the estimation error. Nevertheless, the steady state
estimation error of Fig. 6 is less than twice the corresponding
error in Fig. 4 even though the sensor delay is increased by
a factor of five.

Next, consider the same condition as the first simulation
scenario, but, assume that there is uncertainty in knowledge
of the amount of delay. To this end, we consider the sensor
model of Fig. 1 with the same parameters as the first
simulation but we consider two examples where the amount
of the total delay that is used in the predictor (5)-(6) is either
10 or 50 percent more than the total delay in the simulated
sensor model (i.e. τ1 = τ2 = 0.44 (s) or τ1 = τ2 = 0.6
(s), respectively). Fig. 8 shows that the estimation error is
practically stable in both cases although the steady state
estimation error is increased comparing to Fig 4. The steady
state estimation errors are less than 0.5 (deg) and 1.8 (deg)
respectively for 10% and 50% delay uncertainties which still
demonstrate a very good performance considering the high
values of noise and delay uncertainties.

V. CONCLUSION

We propose a combined predictor-observer methodology
for the attitude estimation problem in the presence of
sampled and delayed vector measurements. Exploiting the

Fig. 8. Attitude estimation error of combined predictor-observer (5)-(7)
with delay uncertainty. The small plots are the steady state estimation errors.

symmetries of the attitude kinematics and the system output
maps, our proposed predictor is capable of reconstructing
continuous-time delay free predictions of the vector mea-
surements. The proposed predictor is generic and can be
combined with arbitrary observers or filters. When combined
with a geometric attitude observer, our proposed predictor-
observer approach shows improved performance in simula-
tion compared to Lyapunov-Krasovskii methods.
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APPENDIX

A. Equivalency of sensor models:

Setting zi(t) = wi(t) for all t in (1) and (2) yields
yi(tki) = yi(t

′
ki
−τi) and [tki +σi, tki+1+σi) = [t′ki , t

′
ki+1).

These equalities hold if and only if τi = ρi + σi and
(t′ki)

∞
ki=1 = (tki + σi)

∞
ki=1. �

B. Proof of Theorem 1:

The proof is based on application of the following Lemma
that allows time-shifting of the attitude trajectory using the
trajectory of the predictor.

Lemma 1: The trajectory R(t) of the attitude kinematics
(3) and the trajectory ∆(t) of the predictor dynamics (5)
satisfy R(t2) = R(t1)∆(t1)>∆(t2) for all t1, t2 > 0 and all
R0,∆0 ∈ SO(3). Moreover, assuming (4), the trajectory of
yi(t) satisfies yi(t2) = ∆(t2)>∆(t1)yi(t1) for all t1, t2 > 0
and all R0,∆0 ∈ SO(3). �

Proof of Lemma 1: Using (3) and (5) we have
d
dt (R(t)∆(t)>) = R(t)Ω(t)×∆(t)>+R(t)Ω(t)>×∆(t)> = 0
for all t ≥ 0. This means that R(t)∆(t)> is constant
for all t ≥ 0 which in particular implies R(t1)∆(t1)> =
R(t2)∆(t2)> for all t1, t2 ≥ 0 and proves the first
claim of Lemma 1. Using (6) we have yi(t2) =
R(t2)>ẙi = ∆(t2)>∆(t1)R(t1)>ẙi = ∆(t2)>∆(t1)yi(t1)
for all t1, t2 ≥ t1i . This completes the proof. �

Choosing t1 = t′ki − τi and t2 = t and invoking Lemma
1 we have yi(t) = ∆(t)>∆(t′ki − τi)yi(t

′
ki
− τi). Now,

choosing t ∈ [t′ki , t
′
ki+1) and recalling (2) we have yi(t) =

∆(t)>∆(t′ki− τi)zi(t) for all t ∈ [t′ki , t
′
ki+1) which together

with (6) implies ypi (t) = yi(t) for all t ≥ t1i . This completes
the proof of Theorem 1.
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