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Abstract— This paper provides a nonlinear attitude estima-
tion method for vehicles performing high acceleration maneu-
vers when measurements of linear velocity and the ambient
magnetic field are delayed. Linear velocity is measured using
the Global Positioning System (GPS) and the delays of GPS
and magnetometer measurements are assumed to be known
constants. Our proposed method consists of a delayed observer
coupled with a dynamic predictor. The delayed observer uses
delayed measurements and provides estimates of delayed atti-
tude and velocity states that are in turn used in the predictor
to generate estimates of the current attitude and velocity. A
key contribution of the paper is effective use of the underlying
symmetries of the system in order to design a generic predictor
that can be coupled to different observers. We prove exponential
convergence of the predicted attitude and velocity for a specific
observer choice drawn from the literature.

I. INTRODUCTION

The orientation of a vehicle with respect to a known
reference frame is called its attitude. The attitude estimation
problem has been the subject of a large body of research
during the past decades (see [2] and the references therein).
Interest in this research topic is continuing to be driven by
the growing field of unmanned vehicles applications and
the requirement for low-cost sensors along with robust and
accurate low-computation algorithms.

The Kalman filter and its variants are the most popular
attitude estimation methods [3], [10], [17]. While they ex-
hibit good performance when properly designed and tuned,
extended Kalman filters suffer from difficulty in tuning
numerous parameters, high computational load, and unclear
convergence properties in the nonlinear case [12].

Various representations of attitude are available, each of
which has its own advantages [18]. The representation of
attitude as an element of the special orthogonal group SO(3)
is globally well defined, avoiding singularities that arise in
Euler angle representations. The Lie-group representation
of SO(3) encodes the complexity of the nonlinear attitude
kinematics into the structure of the underlying group rep-
resentation. This enables effective use of symmetries of the
attitude kinematics system in order to design deterministic
attitude observers that ensure (almost global) asymptotic
stability of the estimation error and demonstrate excellent
performance in practice [4], [7], [8], [11], [15], [19], [21],
[22]. These observers rely on fusing two sets of sensor
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information to obtain a robust estimate of attitude. The first
set is low frequency information obtained from vectorial
measurements of known directions in the inertial frame.
The second set is high frequency information obtained from
measurements of angular velocity.

The typical sensors employed in practice to provide the
required vectorial measurements are magnetometers and ac-
celerometers. Employing only magnetometers is not enough
to uniquely determine the attitude when the magnetic field
is constant in the inertial frame [7], [12], [20]. When the
vehicle performs low-acceleration maneuvers, the accelerom-
eter output has been used as an approximate measurement
of the direction of gravity that yields an additional vectorial
measurement to uniquely estimate the attitude [5], [11],
[21]. Although these schemes have a demonstrated track
record in many applications, the underlying assumptions
are not formally correct [13] and the algorithms fail when
the vehicle is subjected to significant acceleration [6]. One
way of addressing this problem is to use measurements
of the linear velocity of the vehicle, obtained from GPS,
and to modify the attitude observer to take into account
the effect of the vehicle’s acceleration on the actual output
of the accelerometer. This is the core idea behind velocity
aided attitude estimation methods [1], [6], [12], [16], [21].
These methods ensure (almost global) asymptotic or even
exponential stability of the attitude estimation error during
high acceleration maneuvers, are computationally cheap, and
demonstrate good performance in practice [6], [12].

Velocity measurements provided by commercial GPS units
are usually delayed with respect to the actual velocity of
the vehicle. The delay can be several hundred milliseconds
(and even up to half a second) long due to various environ-
mental effects and in-sensor processing delays [9]. Low cost
commercial magnetometers may also exhibit measurement
delays in the order of tens of milliseconds [14]. These
delays, if not compensated for properly, can significantly
degrade the performance of attitude estimators and even lead
to instability issues due to the nonlinear nature of attitude
kinematics. This is particularly true of GPS delays. Attitude
estimation with GPS measurement delay has been considered
in [9] using a modified extended Kalman filtering approach.
Despite its good performance in practice, this algorithm
suffers from the common drawbacks associated with Kalman
filters mentioned before. In particular, the required computa-
tional load is very high in [9] due to the propagation stages
associated with delay compensation. The authors are unaware
of any work prior to the present contribution that considers
deterministic attitude observer design with sensor delays.

In this paper, we assume that the measurements of linear



velocity and the magnetic field are delayed and we propose a
method to estimate both the current attitude and the current
linear velocity. The amount of delay in velocity and magne-
tometer readings is assumed to be constant and known. Our
proposed method employs an observer that uses the delayed
measurements and estimates the delayed attitude and velocity
of the vehicle. We propose a dynamic predictor that uses the
delayed estimates from the observer together with the current
measurements of gyroscope and accelerometer in order to
predict the current attitude and linear velocity of the vehicle
(see Fig. 1). A key contribution of the paper is effective use
of the underlying symmetries of the system in order to design
the predictor such that the proposed observer-predictor pair
guarantees exponential convergence of the predicted attitude
and velocity to their current actual values. The proposed
predictor is computationally cheap and it is generic in the
sense that it can be combined with any asymptotic (ex-
ponential) attitude observer and still guarantees asymptotic
(exponential) convergence of predicted attitude and velocity
to their actual values. Numerical simulations are provided in
the paper, showing the advantage of the proposed observer-
predictor over the pure observers available in the literature
in the presence of sensor delays. Via simulation, we also
demonstrate the robustness of our proposed method against
various sources of uncertainty, including sensor noise and
bias.

The structure of the paper is as follows. Background and
problem formulation is given in section II. The proposed
observer-predictor approach is described in section III and
its stability is proved by Theorem 1. Performance of our
method is demonstrated via simulations in section IV.

II. PROBLEM FORMULATION

Motion of a rigid body moving in the Earth’s gravitational
field satisfies the following equations [6], [12], [16].

Ṙ(t) = R(t)Ω(t)×, R(0) = R0 (1)
v̇(t) = ge3 +R(t)a(t), v(0) = v0 (2)

where the attitude matrix R ∈ SO(3) is the rotation matrix
describing the rotation of the body-fixed frame B with respect
to the inertial frame I, Ω ∈ R3 is the angular velocity vector
of B with respect to I expressed in B, v ∈ R3 is the linear
velocity of B with respect to I expressed in I, a ∈ R3 is
the so-called specific acceleration of the rigid body which
represents the sum of all non-gravitational forces applied to
the body divided by its mass and is expressed in B, and ge3

is the (constant) gravitational acceleration vector expressed
in I. The linear operator (.)× maps any vector in R3 to
its corresponding skew-symmetric matrix in so(3) such that
(x)×y is equal to the cross product x × y for all x, y ∈
R3. The internal states of the dynamical system (1)-(2) are
the attitude matrix R(t) and the velocity vector v(t) and its
inputs are the angular velocity vector Ω(t) and the specific
acceleration a(t).

We assume that the following sensors are attached to the
rigid-body frame.

• A 3-axis gyro: measures the angular velocity Ω(t).
• A 3-axis accelerometer: measures the specific accelera-

tion a(t).
• A GPS unit: measures the linear velocity v(t). Here, we

assume that the GPS velocity measurement is available
with a constant known delay τv . Denoting the GPS
velocity measurement by vτv (t) we have vτv (t) =
v(t− τv).

• A 3-axis magnetometer: measures the magnetic field of
the earth in the body-fixed frame. The magnetometer
output m(t) is related to the attitude matrix via m(t) =
R(t)>m̊(t) where m̊(t) is the vector of the Earth’s
magnetic field at the position of the rigid body expressed
in I and is assumed known for all t > 0. Here, we
assume that the magnetometer measurement is available
with a constant known delay τm. Denoting this delayed
measurement by mτm(t) we have mτm(t) = R(t −
τm)>m̊(t− τm).

The problem considered is to employ the measurements
Ω(t), a(t) and the delayed measurements vτv (t) and mτm(t)
in order to obtain estimates of the current attitude matrix
R(t) and the current linear velocity v(t). This particular
problem setup is motivated by the typical scenario encoun-
tered in small scale unmanned aerial vehicle systems where
the measurement delays of gyros and accelerometers can be
ignored since they are very small compared to the GPS and
magnetometer delays. We ignore measurement noise here to
reduce the complexity at the design stage. We do, however,
consider the effect of noise in the simulation section IV.

Notations and definitions:

Throughout the paper, |.| denotes the Euclidean norm of
a vector in R3 and ‖.‖ denotes the Frobenius norm of a
matrix in R3×3. We say a(t) ∈ R3 converges exponentially
to b(t) ∈ R3 (resp. A(t) ∈ R3×3 converges exponentially to
B(t) ∈ R3×3) if there exist positive constants γ and λ and
a time t0 such that |a(t) − b(t)| ≤ γexp(−λ(t − t0)) (resp.
‖A(t)−B(t)‖ ≤ γexp(−λ(t− t0))) for all t ≥ t0.

III. OBSERVER-PREDICTOR APPROACH

Defining τ := max(τv, τm), the values of v(t − τ)
and m(t − τ) are available at time t by time-shifting the
magnetometer or the GPS output. The approach that we take
here to tackle the problem described in the previous section
is illustrated in Fig. 1. First, we employ an observer that uses
the shifted measurements to obtain an estimate of the delayed
state (R(t− τ), v(t− τ)). Then we propose a predictor that
uses the delayed estimate of the state together with the inputs
of the system (i.e. Ω(t) and a(t)) and predicts the current
state (R(t), v(t)).

Denoting the estimates of R(t− τ) and v(t− τ), respec-
tively, by R̂τ (t) ∈ SO(3) and v̂τ (t) ∈ R3, we time-shift
the observer proposed in [6, equation (6)] for the case of
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Fig. 1. Illustration of the proposed observer-predictor (3)-(9)

delay-free measurements to obtain the following observer.

˙̂
Rτ (t) = R̂τ (t) (Ω(t− τ) + σ)× , (3)

σ = k1m(t− τ)× R̂τ (t)>m̊(t− τ)

+ k2a(t− τ)× R̂τ (t)>(v(t− τ)− v̂τ (t)), (4)
˙̂vτ (t) = ge3 + R̂τ (t)a(t− τ) + k3(v(t− τ)− v̂τ (t)) (5)

for t ≥ τ with the initial values R̂τ (τ) = R̂τ0 and v̂τ (τ) =
v̂τ0 , and constant positive gains k1, k2, and k3. Note that
Ω(t− τ), a(t− τ), v(t− τ), and m(t− τ) are all available
at time t.

We combine the observer (3)-(5) with the following pre-
dictor.

∆̇(t) = ∆(t)Ω×(t), t ≥ 0 (6)

R̂(t) = R̂τ (t)∆(t− τ)>∆(t), t ≥ τ (7)

δ̇(t) = ge3 + R̂(t)a(t), t ≥ τ (8)
v̂(t) = v̂τ (t) + δ(t)− δ(t− τ), t ≥ 2τ (9)

with the initial conditions ∆(0) = ∆0 ∈ SO(3) and δ(τ) =
δ0 ∈ R3. The variables ∆(t) ∈ SO(3) and δ(t) ∈ R3 are
internal states of the predictor and the variables R̂(t) and v̂(t)
are predictions of R(t) and v(t), respectively. The actual role
of the internal predictor dynamics (6) and (8) is to use the
information contained in the inputs Ω(t) and a(t) from time
t− τ to time t to predict the increment of attitude and linear
velocity during that time period. These predictions of the
increments of the states are given by the term ∆(t−τ)>∆(t)
in (7) and the term δ(t)− δ(t− τ) in (8).

We define the following errors.

R̃τ (t) = R̂τ (t)R(t− τ)>, t ≥ τ (10)
ṽτ (t) = v̂τ (t)− v(t− τ), t ≥ τ (11)

R̃(t) = R̂(t)R(t)>, t ≥ τ (12)
ṽ(t) = v̂(t)− v(t) t ≥ 2τ (13)

R̃τ and ṽτ evaluate the estimation error of the observer (3)-
(5) while R̃ and ṽ evaluate the total error of the observer-
predictor combination (3)-(9).

We require the following mild assumptions to derive the
convergence properties of the proposed observer-predictor.

Assumption 1: There exist positive constants
ca, ca, cΩ, cv, cv̈ such that for all t ≥ 0 we have
ca ≤ |a(t)| ≤ ca, |Ω(t)| ≤ cΩ, |v(t)| ≤ cv , and |v̈(t)| ≤ cv̈ .

Assumption 2 (Observability condition): There exists a
positive constant cobs such that for all t > 0 we have
|m̊(t)× (v̇(t)− ge3)| ≥ cobs.
Assumptions 1 and 2 are similar to those imposed in [6] and
are required to ensure the stability of estimation errors (10)-
(11). The following Theorem summarizes the properties of
the proposed observer-predictor.

Theorem 1: Consider the system (1)-(2), with the observer
(3)-(5) and the predictor (6)-(9). Suppose that assumptions
1 and 2 are satisfied. Then

(a) for any values of the gains k1 > 0, k2 > 0 and k3 > 0,
the dynamics of the estimation error (R̃τ (t), ṽτ (t))
is locally exponentially stable at (I, 0). Moreover,
the total error (R̃(t), ṽ(t)) converges exponentially to
(I, 0) for all initial values (∆0, δ0) and (R̂τ (τ), v̂τ (τ))
that ensure the exponential stability of (R̃τ (t), ṽτ (t)).

(b) (Basin of attraction) for any closed neighborhood N
of (I, 0) with N ⊂ {(R, v) ∈ SO(3) ×R3 : tr(R) 6=
−1}, there exists a constant K > 0 such that for
all k3 > K, all k1 > 0 and k2 > 0, and all
initial errors (R̃τ (τ), ṽτ (τ)) ∈ N , the estimation
error (R̃τ (t), ṽτ (t)) converges exponentially to (I, 0).
Moreover, the total error (R̃(t), ṽ(t)) converges expo-
nentially to (I, 0) for all initial values of (∆0, δ0) and
all (R̃τ (τ), ṽτ (τ)) ∈ N .

(c) For both parts (a) and (b), δ(t) is bounded for all t ≥ τ .
�

Proof of Theorem 1 is given in the appendix.
Under ideal conditions, boundedness of δ(t) is guaranteed

by part (c) of Theorem 1. Nevertheless, in practical situations
δ(t) can potentially grow unbounded due to sensor noise or
inaccuracy of the numerical integration procedure used to
implement (8). One way of addressing this problem is to add
a Lyapunov-Krasovskii feedback term to (8) to stabilize the
dynamics of δ. However, this significantly complicates the
proof of convergence of the total error. An alternative method
is to employ two copies of (8) and use a simple switching
technique which bounds the trajectory of their internal states
while maintaining the convergence of the total error.

Lemma 1: Consider deterministic noise n(t) that models
the measurement noise and the inaccuracy of numerical
integration. Assume that positive constants n and ca exist
such that |n(t)| ≤ n and |a(t)| ≤ ca for all t ≥ 0. Consider
the following systems.

δ̇1(t) = ge3 + R̂(t)a(t) + n(t), t ≥ τ (14)

δ̇2(t) = ge3 + R̂(t)a(t) + n(t), t ≥ 2τ (15)

where the initial condition of (14) is reset to the value δ0 at
times t = (2i − 1)τ, i = 1, 2, . . . and the initial condition
of (15) is reset to δ0 at times t = 2iτ . Define the following
trajectory for t ≥ 2τ and i = 1, 2, . . ..

δ(t) =

{
δ1(t)− δ1(t− τ), 2iτ ≤ t < (2i+ 1)τ

δ2(t)− δ2(t− τ), (2i+ 1)τ ≤ t < 2(i+ 1)τ



Then the following statements hold true.
(a) If n(t) = 0 then we have δ̄(t) = δ(t) − δ(t − τ) for

all t ≥ τ .
(b) The trajectories of δ1(t) (for t ≥ τ ) and δ2(t) (for

t ≥ 2τ ) are bounded. Moreover, the error |δ̄(t)−(δ(t)−
δ(t− τ))| is bounded by τn for all t ≥ τ .

�
Proof of Lemma 1 is given in the appendix. Using this

Lemma, the dynamics (14)-(15) can be employed instead of
(8) and the predictor (9) can be replaced by v̂(t) = v(t −
τ)+ δ̄(t). The advantage of using Lemma 1 is that δ1(t) and
δ2(t) remain bounded for all times due to the resetting of
the initial conditions of (14)-(15) every 2τ seconds.

Remark 1: When delay-free measurements are available,
several observers for velocity aided attitude estimation have
been proposed in the literature each of which has its own
advantages [6], [12], [16]. We opt to employ the observer
proposed in [6, equation (6)] since it ensures exponential
stability of the estimation error (R̃τ (t), ṽτ (t)) which in
turn simplifies the proof of convergence for the total error
(R̃(t), ṽ(t)). Nevertheless, the proposed predictor (6)-(9) is
generic in the sense that it can be combined with any other
observer as well. In this case, the total error (R̃(t), ṽ(t))
converges asymptotically (exponentially) to (I, 0) if the esti-
mation error (R̃τ (t), ṽτ (t)) is asymptotically (exponentially)
stable at (I, 0) (this is a consequence of Lemma 2 in the
appendix). If the stability of the employed observer is only
asymptotic, then δ(t) is bounded if there exists a constant c
such that

∫ t
τ
‖I − R̃τ (s)‖2ds ≤ c for all t ≥ τ , i.e. if the

attitude observer error converges with finite energy. In any
case, we can bound the trajectory of δ(t) using the basic
switching technique explained in Lemma 1. The proposed
predictor (6)-(7) can also be combined with the pure attitude
observer of [4], [7], [11], [15], [20]–[22] to encounter delays
in the vector measurements or their corresponding reference
vectors. �

Remark 2: In practice, usually the GPS delay τv is much
larger than the magnetometer delay τm and hence τ = τv . In
this case, the construction of the observer (3)-(5) is such that
it does not use the most current magnetometer measurement
mτm(t) but instead it only uses the delayed magnetometer
measurement mτm(t−τv+τm) = m(t−τ). It is possible to
extend the method presented in this paper to employ the most
current magnetometer measurement as well. To this end,
one can consider multiple copies of the observer-predictor
approach presented here in a serial cascade combination such
that each observer-predictor pair uses the measurements at
t− τ1 and provides the prediction of the state at t− τ2 with
τ2 < τ1. More precisely, the approach that we can take is
to combine the observer (3)-(5) with a predictor that takes
the estimate of (R(t − τv), v(t − τv)) from the observer
and predicts the delayed states (R(t − τm), v(t − τm)).
Then we can use the prediction of (R(t − τm), v(t − τm))
together with the current measurement of the magnetometer
mτm(t) = m(t−τm) in a time-shifted observer that estimates
the delayed states (R(t − τm), v(t − τm)). Finally, we can
use the estimate of (R(t − τm), v(t − τm)) in a predictor

to obtain a prediction of the current state (R(t), v(t)). In
practice, if there is no constraint in computational load, the
decision about whether or not to use the multi-stage observer-
predictor comes down to the accuracy of the employed
magnetometer compared to the accuracy of the employed
gyro and accelerometer. If the accuracy of the measurement
of the magnetic field is high, and its delay is significantly
smaller than the GPS delay, then it is worth using the multi-
stage observer-predictor to include the extra measurement
m(t − τm) in estimating the current states. Otherwise, it is
better to employ the simple observer-predictor (3)-(9). �

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the pro-
posed observer-predictor. We provide two sets of simulations.
In simulation 1, we compare the performance of the observer-
predictor (3)-(9) with the pure observer proposed in [6]. In
simulation 2, we investigate the robustness of our proposed
observer-predictor against various sources of noise that are
encountered in practice.

To generate the trajectories of R(t) and v(t), we as-
sumed that the vehicle performs circular manoeuvres in
the horizontal plane such that its angular velocity is Ω =
[0, 0, ω0]> with ω0 = π

4 (rad/s) and its linear velocity
is v(t) = [−5ω0 sin(ω0t), 5ω0 cos(ω0t), 0]> (m/s). The
initial attitude of the vehicle corresponds to an orientation
of roll 80 (deg), pitch 10 (deg), and yaw 0 (deg). The initial
value of the observer (3)-(5) is set to (R̂τ (0), v̂τ (0)) = (I, 0)
corresponding to a large initial estimation error. The observer
gains are chosen as k1 = 3, k2 = 0.03 and k3 = 3. The
normalized magnetic field is taken as m̊ = 1√

2
[1, 1, 0]> and

the initial value of the predictor (6)-(9) is set to (∆0, δ0) =
(I, 0).

Simulation 1:

We consider a velocity measurement delay of τv = 1 (s)
and zero delay for the magnetometer, i.e. τ = 1 (sec). The
chosen amount of velocity measurement delay ensures that
the direction of the delayed velocity v(t− τv) is always 45
(deg) different from that of the current velocity v(t). We feed
the observer of [6, equation (6)] with the delayed velocity
v(t−τv) rather than with the current velocity v(t). The initial
values and gains of this observer are set to the same values
as for our delayed observer (3)-(5). Fig. 2 shows that the
attitude and velocity estimation errors of the observer [6,
equation (6)] do not converge to zero when it is fed with
delayed velocity measurements. Fig. 3 and Fig. 4 show the
estimation errors ‖I−R̂τ (t)R(t−τ)>‖ and |v̂τ (t)−v(t−τ)|
of the delayed observer (3)-(5) and the total errors ‖I −
R̂(t)R(t)>‖ and |v̂(t)− v(t)| of the observer-predictor (3)-
(9), respectively. Observe that the delayed observer (3)-(5)
starts working at time t = τ , hence its estimate is available
for t ≥ τ . Similarly, the prediction of the attitude R̂(t) and
the velocity v̂(t) from (6)-(9) are available for t ≥ τ and
t ≥ 2τ , respectively. Fig. 3 and Fig. 4 show the convergence
of both estimation errors and both total errors to zero. It is
also clear by comparing the first plots of Fig. 3 and Fig. 4



Fig. 2. Attitude estimation error and velocity estimation error for the
observer [6, equation (6)] when fed with the delayed measurement v(t−τ).

Fig. 3. Attitude estimation error and velocity estimation error for the
observer (3)-(5).

that the total attitude error ‖I − R̃(t)‖ equals the delayed
attitude estimation error ‖I − R̃τ (t)‖ as shown in Lemma 2
in the appendix. Finally, Fig. 5 shows that the internal state
δ(t) of the predictor is bounded for all time, as shown in
part (c) of Theorem 1.

Simulation 2:

In this simulation, various sources of noise are consid-
ered to investigate the robustness of the proposed observer-
predictor. We disturb each axis of measurement of the
angular velocity Ω(t), the linear velocity v(t), the accelera-
tion a(t), and the magnetometer output m(t) by zero-mean
additive Gaussian noise processes with standard deviations
of 1 (deg/s), 0.1 (m/sec), 0.1 (m/s2), and 0.1, respectively.
In addition, we consider a constant bias of [1, − 1, 1]>

(deg/s) for the gyro and a bias of [0.1, − 0.1, 0.1]> (m/s2)
for the accelerometer. Moreover, we consider τ̄ = 1.2 (s)
instead of the actual value τ = 1 (s) in the implementation
of the observer-predictor (3)-(9) while the measurement of
linear velocity that is fed to the observer-predictor is still
delayed by τ = 1 (s). The difference between τ̄ and τ
models the uncertainty in knowledge of the real sensor delay.
The switching method described in Lemma 1 is employed
to implement the predictor. Under these conditions, the

Fig. 4. Total attitude error and total velocity error for the observer-predictor
combination (3)-(9).

Fig. 5. Internal state δ(t) of the predictor (8)-(9).

estimation error of the observer (3)-(5) and the total error
of the observer-predictor (3)-(9) are illustrated in Fig. 6 and
Fig. 7, respectively. These plots show the good performance
of the proposed observer-predictor despite the high amount
of noise, the presence of bias, and the uncertainty in the
delay. The steady state error trajectories have been enlarged
in the figures, showing that the maximum absolute attitude
estimation error of the observer (3)-(5) is less than 0.9
(equivalent to a rotation of 3.7 (deg)) and the maximum
absolute total attitude error of the observer-predictor (3)-(9)
is less than 0.12 (equivalent to a rotation of 4.9 (deg)). The
steady-state maximum absolute velocity estimation error and
total velocity error are respectively about 0.75 (m/s) and 1.4

Fig. 6. Attitude estimation error ‖I − R̃τ̄ (t)‖ = ‖I − R̂τ (t)R(t− τ̄)>‖
and velocity estimation error |ṽτ̄ (t)| = |v̂τ (t)− v(t− τ̄)| for the observer
(3)-(5) (non-ideal measurements). Red plots are steady state errors.



Fig. 7. Total attitude error and total velocity error for the observer-predictor
combination (3)-(9) (non-ideal measurements). Red plots are steady state
errors.

Fig. 8. Amplitude of the internal states of the predictor when it is imple-
mented using the switching dynamics (14)-(15) (non-ideal measurements).

(m/s). This is still good considering that the chosen trajectory
of the vehicle is such that |v(t) − v(t − τ)| ≈ 3 (m/s) for
all t ≥ τ . A bias in the velocity estimation error is clearly
visible in Fig. 6 and is largely due to the modelled sensor
bias and the uncertainty in the knowledge of τ .

V. CONCLUSIONS

We propose a coupled observer-predictor to obtain esti-
mates of the attitude and velocity of a vehicle when the
magnetometer and linear velocity measurements (the latter
provided by GPS) are delayed by a constant known amount.
We prove that the estimates of the current attitude and
velocity converge to their actual values exponentially fast.
A key contribution of the paper is effective use of the under-
lying symmetries of the system in order to design a generic
predictor that can be combined with any asymptotically
stable observer, as well as the one employed here, and still
guarantees convergence of the predicted attitude and velocity
to their actual values. In future work, estimator design
with time-varying or unknown delays, and also adaptive
compensation of sensor bias can be considered.

APPENDIX

Proof of Theorem 1:

The observer (3)-(5) has exactly the same form as the
observer proposed in [6, equation (6)] for the case of delay-
free measurements. The only difference is that we have
time-shifted the observer to time t− τ . A direct application
of [6, Theorem 1] guarantees that (R̃τ (t), ṽτ (t)) is locally

exponentially stable at (I, 0) and its basin of attraction is
given by N as defined in part (b). Proof of convergence of
the total error (R̃(t), ṽ(t)) to (I, 0) is based on the following
Lemma.

Lemma 2: Consider the attitude kinematics (1) together
with the observer (3)-(5) and the predictor (6)-(7). Then, the
total error R̃(t) defined by (12) equals the estimation error
R̃τ (t) defined by (10) for all t ≥ τ . �

Proof of Lemma 2: Consider the following system

∆̇I(t) = ∆I(t)Ω(t)×, ∆I(0) = I (16)

where ∆I(t) ∈ SO(3). System (16), the attitude kinematics
(1), and the predictor’s internal dynamics (6) are copies of
the same left invariant system with the same input Ω(t) but
with different initial conditions. It is easy to verify that the
solution R(t) of the attitude kinematics (1) and the solution
∆(t) of (6) are related to the solution ∆I(t) of (16) via

R(t) = R0∆I(t), (17)
∆(t) = ∆0∆I(t) (18)

for all t ≥ 0 where R0 and ∆0 are the initial conditions
of (1) and (6), receptively. Combining (17) and (18) yields
R(t)∆(t)> = R0∆>0 for all t ≥ 0. Since the right-hand side
of this equation is constant, it follows that R(t)∆(t)> =
R(t− τ)∆(t− τ)> for all t ≥ τ and hence

R(t) = R(t− τ)∆(t− τ)>∆(t) (19)

for all t ≥ τ . Replacing R(t) and R̂(t) from (19) and (7)
into (12) implies R̃(t) = R̂(t−τ)∆(t−τ)>∆(t)∆(t)>∆(t−
τ)R(t− τ)> = R̂(t− τ)R(t− τ)> = R̃τ (t) for all t ≥ τ .�

Using the proof of Theorem 1 in [6], it is easy to show
that for any initial condition (R̃τ (τ), ṽτ (τ)) ∈ N , there exist
positive constants γ1, γ2, λ1 and λ2 such that

‖I − R̃τ (t)‖ ≤ γ1exp(−λ1(t− τ)), (20)
‖ṽτ (t)‖ ≤ γ2exp(−λ2(t− τ)) (21)

for all t ≥ τ where γ1, γ2, λ1, λ2 depend on the initial
observer error (R̃τ (τ), ṽτ (τ)) as well as on the observer
gains and the constants defined in Assumptions 1 and 2.
Direct application of Lemma 2 and (20) yields ‖I−R̃(t)‖ ≤
γ1exp(−λ1(t − τ)) for all t ≥ τ . This yields exponential
convergence of R̃(t) to I . It remains to show the exponen-
tial convergence of ṽ(t) to zero and boundedness of δ(t).
Integrating both sides of (2) resp. (8) from t − τ to t we
have

v(t)− v(t− τ) =

∫ t

t−τ
(ge3 +R(s)a(s))ds, (22)

δ(t)− δ(t− τ) =

∫ t

t−τ
(ge3 + R̂(s)a(s))ds, (23)

for all t ≥ τ . Using (9) and employing (22) and (23) yields
v̂(t)− v(t) = v̂τ (t)− v(t− τ) +

∫ t
t−τ (R̂(s)−R(s))a(s)ds



for all t ≥ 2τ . This together with (21) implies

|ṽ(t)| ≤ |v̂τ (t)− v(t− τ)|+
∫ t

t−τ
‖I − R̃(s)‖|a(s)|ds

≤γ2exp(−λ2(t− τ)) + γ1ca

∫ t

t−τ
exp(−λ1(s− τ))ds

=γ2exp(−λ2(t−τ))+
γca(1−exp(−λ1τ))

λ1
exp(−λ1(t−2τ))

for all t ≥ 2τ . Hence ṽ(t) converges exponentially to zero.
Integrating both sides of (2) resp. (8) from τ to t ≥ τ we

derive δ(t)− v(t) = δ(τ)− v(τ) +
∫ t
τ
(R̂(s)−R(s))a(s)ds

and hence

|δ(t)− v(t)| ≤ |δ(τ)− v(τ)|+
∫ t

τ

‖I − R̃(s)‖|a(s)|ds

≤ |δ(τ)− v(τ)|+ γ1ca

∫ t

τ

exp(−λ1(t− τ))ds

≤ |δ(τ)− v(τ)|+ γ1ca
λ1

(1− exp(−λ1(t− τ))

for all t ≥ τ . Hence, |δ(t)− v(t)| is bounded for all t ≥ τ .
This ensures that δ(t) is bounded since v(t) is bounded (by
assumption 1). This completes the proof of Theorem 1. �

Proof of Lemma 1:

Proof of part (a): Assuming n = 0 and noting that the
initial condition of (14) is not reset in the period (2i−1)τ <
t < (2i+1)τ , we can integrate both sides of (14) from t−τ to
t to obtain δ̄(t) = δ1(t)−δ1(t−τ) =

∫ t
t−τ (ge3+R̂(s)a(s))ds

for 2iτ ≤ t < (2i+ 1)τ . On the other hand, integrating both
sides of (8) we have δ(t)−δ(t−τ) =

∫ t
t−τ (ge3+R̂(s)a(s))ds

for all t ≥ τ . Hence δ̄(t) = δ(t) − δ(t − τ) for 2iτ ≤ t <
(2i + 1)τ . Similarly, we can integrate both sides of (15) to
obtain δ̄(t) = δ(t)− δ(t− τ) for (2i+ 1)τ ≤ t < 2(i+ 1)τ
and together this implies δ̄(t) = δ(t) for all t ≥ τ .

Proof of part (b): Integrating (14) from (2i − 1)τ to t
and noting that δ((2i − 1)τ) = δ0 we have δ1(t) = δ0 +∫ t

(2i−1)τ
(ge3+R̂(s)a(s)+n(s))ds = δ0+g(t−(2i−1)τ)e3+∫ t

(2i−1)τ
(R̂(s)a(s) + n(s))ds for (2i− 1)τ ≤ t < (2i+ 1)τ .

Since |e3| = 1, |a(t)| ≤ ca and |n(t)| ≤ n we have

|δ1(t)| ≤ |δ0|+ g · 2τ + |
∫ t

(2i−1)τ

(R̂(s)a(s) + n(s))ds|

≤ |δ0|+ g · 2τ +

∫ t

(2i−1)τ

(|R̂(s)a(s)|+ |n(s)|)ds

≤ |δ0|+ 2τ(g + ca + n)

for all (2i−1)τ ≤ t < (2i+1)τ . Since this holds for all i =
1, 2, . . ., we conclude that δ1(t) is bounded for all t ≥ τ . The
same argument applied to (15) shows that δ2(t) is bounded
for all t ≥ 2τ . It remains to show that |δ̄(t)−(δ(t)−δ(t−τ))|
is bounded. For 2iτ ≤ t < (2i+ 1) we have

δ̄(t) = δ1(t)− δ1(t− τ) =

∫ t

t−τ
R̂(s)a(s)ds+

∫ t

t−τ
n(s)ds

= δ(t)− δ(t− τ) +

∫ t

t−τ
n(s)ds

and similarly for (2i + 1)τ ≤ t < 2(i + 1)τ , using δ2(t) in
place of δ1(t). The result follows. �
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