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A B S T R A C T
Simultaneous Localisation and Mapping (SLAM) is the archetypal chicken and egg problem:
Localisation of a robot with respect to a map requires an estimate of the map, while mapping
an environment from data acquired by a robot requires an estimate of the robot localisation.
The nonlinearity and co-dependence of the SLAM problem has made it an ongoing research
problem for more than thirty years. The present paper details recent advances in understanding
the SLAM problem, specifically the existence of an underlying geometry and symmetry structure
that provides significant insight into the difficulties that have plagued many SLAM algorithms.
To demonstrate the power of the geometric insight we derive a constant gain observer for the
SLAM problem that; that does not depend on linearisation, has globally asymptotically stable
error dynamics, is very robust, and operates in dynamic environments (estimating the landmark
velocities as states in the observer).
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1. Introduction
Simultaneous Localisation and Mapping (SLAM) has been a core problem in robotics for the last thirty years

(Stachniss, Thrun and Leonard (2016); Cadena, Carlone, Carrillo, Latif, Scaramuzza, Neira, Reid and Leonard (2016))
and remains one of the key technologies for automation in the 21st century. The problem involves estimation of
an environment “map” (consisting of landmark feature point positions) while simultaneously estimating robot pose.
The co-dependence of the map/pose estimation processes make the problem non-linear, difficult, and of considerable
theoretical interest (Durrant-Whyte and Bailey (2006); Bailey and Durrant-Whyte (2006)). In comparison, if a robot’s
pose is known a-priori then estimating the map is straightforward (Thrun (2002)). If a map is available a-priori, the
problem of pose-estimation is well understood in the robotics community (Scaramuzza and Fraundorfer (2011)), and
has attracted attention in the non-linear observer community (Vasconcelos, Cunha, Silvestre and Oliveira (2010); Hua,
Zamani, Trumpf, Mahony and Hamel (2011); Guerreiro, Batista, Silvestre and Oliveira (2013)).

The term Simultaneous Localisation and Mapping (SLAM) was coined in the “classical” period of SLAM re-
search – lasting from the late 90’s through to around 2010-2012 (Cadena et al. (2016)). This period was characterised
by applications of extended Kalman and particle filtering techniques (Durrant-Whyte and Bailey (2006); Bailey and
Durrant-Whyte (2006); Aulinas, Petillot, Salvi and Lladó. (2008)). Filtering approaches exploit the temporal nature of
the problem to fuse measurements sequentially into an “information” state which is then updated as new data is obtained
(Strasdat, Montiel and Davison (2012)). A key advantage is that only recent measurements are considered, minimizing
the complexity of maintaining large data sets of measurements. Information from old measurements is captured in an
information state, typically in the form of a covariance matrix associated with a Gaussian approximation of the infor-
mation state distribution, that propagates according to a Ricatti equation. Classical filtering techniques suffer from a
number of weaknesses: For large maps the computational complexity of the covariance update can become an issue
(Durrant-Whyte and Bailey (2006); Bailey and Durrant-Whyte (2006); Aulinas et al. (2008); Strasdat et al. (2012)).
More importantly, classical SLAM EKF filters encountered issues with stochastic consistency (Dissanayake, Huang,
Wang and Ranasinghe. (2011)). In particular, when the linearisation point of the EKF is incorrect (as is always the
case when the true state is unknown), the Ricatti equation does not correctly propagate the information state covariance
estimate, introducing errors that degrade the filter performance. State-of-the-art EKF algorithms address these issues
by using sliding windows of data, carefully choosing linearisation points, and working in sub-maps (Huang, Mourikis
and Roumeliotis (2010, 2011); andJ.A. Hesch, Bowman and Roumeliotis. (2012); Hesch, Kottas, Bowman and Roume-
liotis (2014)). These algorithms remain highly competitive in dynamic environments and for odometry problems but
are less competitive for pure mapping problems. The modern era of SLAM – dating from around 2011 (Cadena et al.
(2016)) – is based on optimization principles and was heavily influenced by bundle adjustment techniques drawn from
the computer vision literature (Triggs, McLauchlan, Hartley and Fitzgibbon (2000)). This approach maintains ‘all’ the
data and then optimizes a nonlinear least squares cost over the full time sequence to find the best estimates of landmark
positions and robot pose trajectory (Grisetti, Kummerle, Stachniss and Burgard (2010)). The cost is linearised and
graph factorization methods are exploited to guarantee sparsity of the Hessian in order that the resulting optimization
problem is tractable (Ila, Porta and Andrade-Cetto (2010); Dellaert (2012); Kaess, Johannsson, Roberts, Ila, Leonard
and Dellaert (2012)). Modern SLAM methods overcome the fundamental consistency problem that plagues classical
SLAM by updating the linearisation point during the optimization. However, this additional performance comes at a
cost. Every time the linearisation point is updated, all the (relevant) Hessians in the cost must be recomputed using
all the relevant data. State-of-the-art optimization based methods (Kaess et al. (2012); Mur-Artal, Montiel and Tardós
(2015); Engel J. (2014)) depend heavily on sparsity of data and this encodes a number of restrictions on scenarios that
can easily be considered. For example, they are ill-suited to dynamic environments (Dayoub, Cielniak and Duckett
(2011); Walcott-Bryant, Kaess, Johannsson and Leonard (2012); Krajn/’iık, Fentanes, Mozos, Duckett, Ekekrantz and
Hanheide (2014)) although recent work has been undertaken in this direction (Yang and Scherer (2019); Judd and
Gammell (2019); Zhang, Henein, Mahony and Ila (2020)).

The non-linear observer community has contributed strongly to state-estimation problems in robotics in the last
ten years. Nonlinear observers for attitude estimation played a key role in aerial robotics (Mahony, Hamel and Pflimlin
(2008); Bonnabel, Martin and Rouchon (2008); Vasconcelos, Silvestre and Oliveira (2008)). Full pose estimation has
been studied (Vik and Fossen (2001); Baldwin, Mahony and Trumpf (2009); Vasconcelos et al. (2010)) and is used in
head tracking systems amongst other applications. The SLAM problem has been considered by a number of authors:
Direct application of geometric non-linear observer methods was undertaken by Zlotnik and Forbes (2018). An alter-
native approach taken by Johansen and Brekke (2016); Bjorne, Johansen and Brekke (2017) is to use other sensors to
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obtain a rotation estimate and then apply Kalman filtering to the linear map-position estimation problem. When the
rotation part of robot pose is assumed known then it is also possible to consider bearing only measurements (Hamel
and Samson (2016); Le Bras, Hamel, Mahony and Samson (2017); Hamel and Samson (2018)). A more complete
approach to the SLAM problem was presented in recent work by Guerreiro et al. (2013) and Lourenço, Guerreiro,
Batista, Oliveira and Silvestre (2016) who consider a “robo-centric” nonlinear observer that estimates environment
points expressed in the body-fixed-frame of the robot. Robo-centric and relative SLAM formulations have been con-
sidered in the robotics community (Castellanos, Martinez-Cantin, Tardós and Neira (2007); Williams and Reid (2010);
Mei, Sibley, Cummins, Newman and Reid (2011)), however, mostly in the context of addressing consistency issues
in EKF based methods rather than studying robustness and asymptotic stability (Guerreiro et al. (2013); Lourenço
et al. (2016)). A robot-centric representation, however, requires propagation of the ego-motion of the landmark points,
introducing additional error into the map particularly in the case of significant rotational motion of the robot, or re-
quires the storing of the map in reference coordinates anyway. Recent work by Barrau and Bonnabel (2016) proposes
a Lie-group structure 𝐒𝐄𝑛+1(3) for the SLAM configuration state. The group structure is used to apply the Invariant
Kalman Filter algorithm (Bonnabel (2007); Bonnabel, Martin and Salaun (2009); Barrau and Bonnabel (2017)) and the
resulting filter overcomes the consistency issues that plagued the EKF algorithms from the classical SLAM era. This
work is starting to have impact back in the robotics community (Zhang, Wu, Song, Huang and Dissanayake (2017)).

In this paper, we present a highly robust, simple, and computationally cheap nonlinear observer for the general
landmark SLAM problem. The approach is based on a novel formulation of the SLAM state-space as a principal (fibre)
bundle of landmark and pose configurations that we term the SLAM manifold. The inherent gauge transform invariance
of the SLAM problem (Kanatani and Morris (2001)) forms the fibres of the quotient manifold structure. The Lie group
𝐒𝐄𝑛+1(3) first proposed by Barrau and Bonnabel (2016, 2017) is shown to act transitively on the SLAM manifold and
the intrinsic kinematics of robot and landmarks are shown to be equivariant with respect to this action. The authors
believe that the SLAM manifold will provide an elegant geometric model in which to formulate and understand robo-
centric coordinates, gauge invariance, as well as issues with consistency of EKF SLAM and indefiniteness of the cost
Hessian in optimisation based methods. The symmetry action of 𝐒𝐄𝑛+1(3) allows direct application of the authors’
previous work (Mahony, Trumpf and Hamel (2013); Mahony, Hamel and Trumpf (2020)) to yield a novel constant gain
observer for continuous-time SLAM. The formulation naturally allows for a dynamic environment and we include a
simple integral estimator in the observer that estimates constant velocities of moving landmark features. The proposed
algorithm is fully non-linear and no linearisation is required. Theorem 5.1 proves global asymptotic stability and local
exponential stability of the error coordinates. The inherent symmetry of the approach ensures high levels of robustness
to non-Gaussian disturbances such as data association errors (mislabeling of feature point correspondences between
image frames). These errors are common in real world systems (Tombari, Salti and Di Stefano (2013)) where feature
detection and data association algorithms that identify and remove outliers (Tombari et al. (2013); Chin, Kee, Eriksson
and Neumann (2016); Bustos and Chin (2017)) consume a major part of the computational resources required for
modern SLAM algorithms. We provide evidence through a simulation study that the proposed algorithm outperforms
classical extended Kalman filter algorithms in both robustness and performance in the presence of data association
errors. Moreover, the computational cost (both CPU and memory requirements) of the algorithm is far lower than for
a classical EKF based SLAM algorithm. The target applications for the proposed algorithm are in IoT (Internet of
Things) applications and small mobile robotic systems that require local spatial awareness and have limited compute
available. In such situations, there is a sweet spot for a low complexity SLAM algorithm that is highly robust and
provides good enough map and pose estimates.

The paper is organised in seven sections including this introduction. In Section 2 we introduce notation and defini-
tions. In Section 3 we introduce the SLAM manifold and develop the necessary theory to define the kinematics of the
system. In Section 4 we define the symmetry group actions and demonstrate that the SLAM kinematics are equivari-
ant. Section 5 introduces the observer design and proves the main result (Theorem 5.1); local exponential and global
asymptotic stability of the observer error. Section 6 provides simulations demonstrating the functionality, robustness
and computational advantages of the proposed algorithm. Concluding remarks are provided in Section 7.

2. Notation
We will make extensive use of smooth Lie-group actions 𝛼, 𝜑, 𝜓 , 𝜌. A ‘right’ action 𝛽 ∶ 𝐆 × M → M of a Lie

group 𝐆 on a smooth manifold M is a smooth mapping with properties
𝛽(𝐴, 𝛽(𝐵, 𝜉)) = 𝛽(𝐵 ⋅ 𝐴, 𝜉), 𝛽(id, 𝜉) = 𝜉
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for all 𝐴,𝐵 ∈ 𝐆 and 𝜉 ∈ M , where id ∈ 𝐆 is the identity element and ‘⋅’ is the group operation. We use the partial
map notation 𝛽𝐴 ∶ M → M and 𝛽𝜉 ∶ 𝐆 → M where

𝛽𝐴(𝜉) ∶= 𝛽(𝐴, 𝜉) =∶ 𝛽𝜉(𝐴)

for 𝐴 ∈ 𝐆 and 𝜉 ∈ M . For a matrix group, left and right actions 𝐿,𝑅 ∶ 𝐆 ×𝐆 → 𝐆 are defined by
𝐿𝐴𝑃 = 𝐴𝑃 , 𝑅𝐴𝑃 = 𝑃𝐴,

where the righthand side of the equations is matrix multiplication. Denote the Lie-algebra of 𝐆 by 𝔤 and identify 𝔤
with 𝑇id𝐆. For a matrix group, 𝔤 is a linear matrix space closed under the matrix Lie-bracket [𝑈, 𝑉 ] = 𝑈𝑉 − 𝑉 𝑈 . In
this case, the identity element id is the identity matrix 𝐼 and the differentials d𝐿𝐴, d𝑅𝐴 ∶ 𝑇𝐆 → 𝑇𝐆 evaluated at the
identity are

d𝐿𝐴(𝐼)𝑉 = 𝐴𝑉 , d𝑅𝐴(𝐼)𝑉 = 𝑉 𝐴.

The adjoint map is Ad𝐴 𝑉 = 𝐴𝑉 𝐴−1.
A point 𝑝 ∈ ℝ3 in Euclidean space has coordinates (𝑝1, 𝑝2, 𝑝3) representing the position of 𝑝 with respect to a

reference frame {0}. We use homogeneous coordinates

𝑝 =

⎛

⎜

⎜

⎜

⎝

𝑝1
𝑝2
𝑝3
1

⎞

⎟

⎟

⎟

⎠

and write 𝑝0 when the reference frame is not clear from context. We abuse notation to write 𝑝 ∈ ℝ3 or 𝑝0 ∈ ℝ3 to
indicate that the underlying point 𝑝 ∈ ℝ3.

We use the notation 𝐑3 to denote elements of the real 3-dimensional additive group and we distinguish between
𝐑3 and Euclidean space ℝ3. Elements 𝑎 ∈ 𝐑3 are used to represent translations of Euclidean space. We use the
homogeneous “free” vector notation1

𝑎◦𝑎 =

⎛

⎜

⎜

⎜

⎝

𝑎1
𝑎2
𝑎3
0

⎞

⎟

⎟

⎟

⎠

and allow ourselves to write 𝑎◦𝑎 ∈ 𝐑3 to indicate that the underlying 𝑎 ∈ 𝐑3. The “bar-circle” notation (𝑎◦𝑎) is similar to the
homogeneous coordinates “bar” notation (𝑝) except that the fourth entry of the vector is zero rather than one. Exploiting
this notation, we express the action of the additive group 𝐑3 in translating Euclidean space ℝ3 as a coordinate addition

𝑝 + 𝑎◦𝑎 =

⎛

⎜

⎜

⎜

⎝

𝑝1
𝑝2
𝑝3
1

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝑎1
𝑎2
𝑎3
0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑝1 + 𝑎1
𝑝2 + 𝑎2
𝑝3 + 𝑎3

1

⎞

⎟

⎟

⎟

⎠

= (𝑝 + 𝑎). (1)

This action is a commutative (both left and right) group action of 𝐑3 on ℝ3:
(𝑝 + 𝑎◦𝑎) + 𝑏

◦
𝑏 = 𝑝 + (𝑎◦𝑎 + 𝑏

◦
𝑏) = (𝑝 + 𝑏

◦
𝑏) + 𝑎◦𝑎, (2a)

𝑝 + 0
◦
0 = 𝑝. (2b)

Note that the group 𝐑3 is not ‘physical’ and hence there is no concept of reference frame or coordinates for elements
𝑎 ∈ 𝐑3. Elements of the additive group 𝐑3 can be added and subtracted in the natural manner corresponding to
Abelian vector addition. One may never add two elements of ℝ3, 𝑝 + 𝑞 ≠ (𝑝 + 𝑞), however, the difference between

1We will use the homogeneous “free” vector notation for both additive group elements and linear velocities of points in ℝ3.
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two elements of ℝ3, 𝑝− 𝑞 = (𝑝 − 𝑞)
◦

(𝑝 − 𝑞) is well defined as the unique element (𝑝− 𝑞) ∈ 𝐑3 of the additive group such that
𝑝 = 𝑞 + (𝑝 − 𝑞)

◦
(𝑝 − 𝑞).

The special Euclidean group 𝐒𝐄(3) is the set of rigid-body transformations of ℝ3. For 𝐴 ∈ 𝐒𝐄(3) we use the
notation 𝑅𝐴 ∈ 𝐒𝐎(3) and 𝑥𝐴 ∈ 𝐑3 to denote the rotation and translation components respectively. The classical
(homogeneous) matrix representation of 𝐴 is

𝐴 =
(

𝑅𝐴 𝑥𝐴
0 1

)

, (3)

and the rigid-body transformation on homogeneous coordinates is matrix multiplication 𝑞 = 𝐴𝑝 = 𝑅𝐴𝑝 + 𝑥𝐴. One
has 𝑅𝐴𝐵 = 𝑅𝐴𝑅𝐵 , and 𝑅𝐴−1 = 𝑅−1

𝐴 = 𝑅⊤𝐴. A key property of the action (2) that we exploit is
𝐴(𝑝 + 𝑎◦𝑎) = 𝐴𝑝 + 𝐴𝑎◦𝑎 = 𝐴𝑝 + 𝑅𝐴𝑎

◦
𝑅𝐴𝑎. (4)

The pose of a vehicle moving in Euclidean space is represented by a moving frame: that is, a location in space and
a set of orthonormal axes directions. We use the frame bundle notation F (Tℝ3) to denote the set of all poses2 and
distinguish strongly between poses in the frame bundle and elements of the special Euclidean transformation group.
Coordinates for a pose are given by the location 𝑥𝑃 ∈ ℝ3 of the frame with coordinates relative to a reference frame
and an orthonormal matrix 𝑅𝑃 that encodes the relative orientation of the frame axes relative to the same reference
frame. We use the notation 𝑃 ∈ F (Tℝ3) to denote the homogeneous matrix constructed according to (3) from 𝑥𝑃 and
𝑅𝑃 and thought of as coordinates for a robot pose. For a reference frame {0} and a moving frame {𝑃 } we write the
homogeneous coordinates of the same physical point 𝑝 ∈ ℝ3 in Euclidean space as 𝑝0 and 𝑝𝑃 , respectively, where the
top left index indicates the coordinates used. The coordinate transform that preserves the physical location of a point
in Euclidean space ℝ3 is given by the homogeneous matrix coordinates of the pose 𝑃 ∈ F (Tℝ3), that is

𝑃 𝑝𝑃 = 𝑅𝑃 𝑝𝑃 + 𝑥𝑃 = 𝑝0 .

The velocity of a moving point 𝑝 ∈ ℝ3, relative to a (stationary) reference frame (𝑝 = 𝑝0 ), can be written as a
homogeneous free vector

d
d𝑡
𝑝 =

(

𝑝̇
0

)

= ( d
d𝑡
𝑝)

◦

( d
d𝑡
𝑝). (5)

Consider a landmark point 𝑝𝑖 = 𝑝0 𝑖 ∈ ℝ3 written in homogeneous reference frame coordinates. We denote its velocity,
with respect to the (stationary) reference frame, but expressed in the body-fixed frame {𝑃 } by 𝑣𝑖 ∈ ℝ3. The coordinate
transform 𝑃 operates as a rotation on free homogeneous vectors and thus the homogeneous reference frame coordinates
for the landmark velocity are given by 𝑣◦𝑣0 𝑖 = 𝑃𝑣◦𝑣𝑖 = 𝑅𝑃 𝑣𝑖

◦
𝑅𝑃 𝑣𝑖. Thus,

d
d𝑡
𝑝𝑖 = 𝑃𝑣◦𝑣𝑖. (6)

For a static environment then 𝑣◦𝑣𝑖 = 0.
The velocity of the robot used is the relative motion of the robot frame with respect to the reference frame expressed

in the body-fixed frame. This formulation is the most common encountered in the SLAM literature and is associated
with robots using onboard velocity sensors. The linear velocity of 𝑥𝑃 is denoted 𝑣 ∈ ℝ3 and the angular velocity of
𝑅𝑃 is denoted Ω ∈ ℝ3.

The kinematics of the robot pose are then given by
𝑥̇𝑃 = 𝑅𝑃 𝑣, 𝑅̇𝑃 = 𝑅𝑃Ω× (7)

where

Ω× =
⎛

⎜

⎜

⎝

0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

⎞

⎟

⎟

⎠

.

2The notation F (Tℝ3) denotes the oriented orthonormal frame bundle associated with the tangent bundle Tℝ3. That is the set of all possible
frames located at any point in ℝ3 and oriented arbitrarily corresponding to arbitrary pose of a vehicle.
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One has that Ω×𝑤 = Ω×𝑤 for any𝑤 ∈ ℝ3, where × denotes the vector product. Equation (7) can be written compactly
in homogeneous matrix notation

𝑃̇ = 𝑃𝑉 , (8)
where

𝑉 = (Ω, 𝑣)∧ ∶=
(

Ω× 𝑣
0 0

)

. (9)

The velocity 𝑉 can be thought of as an element of the matrix Lie algebra 𝔰𝔢(3) associated with the special Euclidean
group, although only the vector space structure of 𝔰𝔢(3) is used in modeling the instantaneous velocity of a pose. The
tangent space of the frame bundle F (Tℝ3) at a point 𝑃 is given by

𝑇𝑃F (Tℝ3) = {𝑃𝑉 | 𝑉 = (Ω, 𝑣)∧ ∈ 𝔰𝔢(3)}.

Let ℙ𝔰𝔢 ∶ ℝ4×4 → 𝔰𝔢(3) denote the unique orthogonal projection of ℝ4×4 onto 𝔰𝔢(3) with respect to the Frobenius
inner product ⟨⟨𝐴,𝐵⟩⟩ = tr

(

𝐴⊤𝐵
) on ℝ4×4. That is for all 𝑉 ∈ 𝔰𝔢(3), 𝑀 ∈ ℝ4×4, one has
⟨⟨𝑉 ,𝑀⟩⟩ = ⟨⟨𝑉 ,ℙ𝔰𝔢(𝑀)⟩⟩ = ⟨⟨ℙ𝔰𝔢(𝑀), 𝑉 ⟩⟩ .

One has that for all 𝑀1 ∈ ℝ3×3, 𝑚2, 𝑚3 ∈ ℝ3, and 𝑚4 ∈ ℝ,

ℙ𝔰𝔢

([

𝑀1 𝑚2
𝑚⊤3 𝑚4

])

=
[ 1
2 (𝑀1 −𝑀⊤

1 ) 𝑚2
0 0

]

. (10)

3. SLAM Manifold
A key geometric structure in SLAM problems is a principal (fibre) bundle that we term the SLAM manifold. This

manifold provides a geometric model for the configuration state associated with simultaneous estimation of landmarks
and robot pose.
3.1. Problem formulation

We begin by defining raw or total space coordinates for the SLAM problem using an unknown but fixed reference
frame {0}. Let 𝑃 ∈ F (Tℝ3) represent the body-fixed frame coordinates of the robot with respect to this reference
frame. Let

𝑝𝑖 ∈ ℝ3, 𝑖 = 1,… , 𝑛,

be the positions of sparse point features in the environment expressed with respect to the reference frame {0}. The
total space of the SLAM problem is the product space

T𝑛(3) = F (Tℝ3) ×ℝ3 ×⋯ ×ℝ3 (11)
made up of elements with raw homogeneous coordinates (𝑃 , 𝑝1,… , 𝑝𝑛). The subscript 𝑛 denotes the number of land-
marks while the number in parentheses denotes the dimension of Euclidean space with which the total space is asso-
ciated. The total space is the usual state-space used in classical SLAM algorithms. We emphasise that unlike other
recent work (Barrau and Bonnabel (2016); Zlotnik and Forbes (2018)) we do not try to model the state of the SLAM
problem as a Lie-group.

The tangent space of T𝑛(3) at a point Ξ = (𝑃 , 𝑝1,… , 𝑝𝑛) can be identified with the matrix subspace
𝑇ΞT𝑛(3) = {(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛) 𝑉 ∈ 𝔰𝔢(3), 𝑣𝑖 ∈ ℝ3}.

That is we use the embedded nature of the total coordinates to define 𝑇ΞT𝑛(3) ⊂ ℝ4×4 × ℝ4 × ⋯ × ℝ4 as a matrix
vector subspace.
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Figure 1: The raw coordinates 𝑃 ∈ F (Tℝ3) and 𝑝𝑖 ∈ ℝ3 are measured relative to a reference frame {0}. An arbitrary 𝐒𝐄(3)
gauge transformation 𝑆 transforms {0} to a new reference {1} and new coordinates 𝑃 ′ ∈ F (Tℝ3) and 𝑝′𝑖 ∈ ℝ3 describe the

robot and environment. Note that the output 𝑦𝑖 does not change and refers to the same physical location as 𝑝𝑖 and 𝑝
′
𝑖.

3.2. Total space kinematics
Recalling (8) and (6) the velocity measurements of the SLAM problem consist of a rigid-body velocity 𝑉 ∈ 𝔰𝔢(3)

and 𝑛 landmark velocities 𝑣𝑖 ∈ ℝ3. These velocities are expressed in coordinates of the body-fixed frame {𝑃 }, and
represent the relative motion of the robot and landmarks with respect to a reference frame {0}. Define

𝕍 = {(𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛) | 𝑉 ∈ 𝔰𝔢(3), 𝑣𝑖 ∈ ℝ3} (12)
and note that 𝕍 inherits a natural linear vector space structure from the product of the underlying structures on 𝔰𝔢(3)
and ℝ3.

Define a function f ∶ T𝑛(3) × 𝕍 → 𝑇T𝑛(3):
f ((𝑃 , 𝑝1,… , 𝑝𝑛), (𝑉 , 𝑣

◦𝑣1,… , 𝑣◦𝑣𝑛)) ∶= (𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛), (13)
where the matrix multiplication notation 𝑃𝑣◦𝑣𝑖 transforms 𝑣◦𝑣𝑖 from body-fixed frame coordinates to reference frame
coordinates analogously to (6). The function f encodes the natural kinematics of the SLAM problem in the raw
coordinates. That is for time-varying coordinates Ξ(𝑡) = (𝑃 (𝑡), 𝑝1(𝑡),… , 𝑝𝑛(𝑡)) ∈ T𝑛(3) then the ODE

d
d𝑡
Ξ = f (Ξ, (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛)) = (𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛) (14)

evolves according to the physical structure described in Section 2. Stationary landmarks will have zero velocity, 𝑣◦𝑣𝑖 ≡ 0.
3.3. Gauge transform invariance

The raw coordinates of the SLAM problem are not intrinsic since they depend on the arbitrary choice of reference
frame {0}. Indeed, one may consider any gauge (Kanatani and Morris (2001)) transformation 𝑆 ∈ 𝐒𝐄(3) of frame {0}
to a new reference frame {1} (as shown in Figure 1) and generate new ‘raw’ coordinates (𝑆−1𝑃 , 𝑆−1𝑝1,… , 𝑆−1𝑝𝑛)with respect to frame {1} that represent the same SLAM configuration.
Lemma 3.1. Consider the map 𝛼 ∶ 𝐒𝐄(3) × T𝑛(3) → T𝑛(3) defined by

𝛼(𝑆, (𝑃 , 𝑝1,… , 𝑝𝑛)) ∶= (𝑆−1𝑃 , 𝑆−1𝑝1,… , 𝑆−1𝑝𝑛). (15)
xxxx: Preprint submitted to Elsevier Page 7 of 24
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This map defines a smooth, proper and free right group action of 𝐒𝐄(3) on T𝑛(3). The quotient (see Definition 3.3)

M𝑛(3) = T𝑛(3)∕𝛼 (16)
is a smooth manifold of dimension 3𝑛.

Proof 3.2. One computes

𝛼(𝑆1, 𝛼(𝑆2, (𝑃 , 𝑝1,… , 𝑝𝑛))) = 𝛼(𝑆1, (𝑆−1
2 𝑃 , 𝑆−1

2 𝑝1,… , 𝑆−1
2 𝑝𝑛))

= (𝑆−1
1 𝑆−1

2 𝑃 , 𝑆−1
1 𝑆−1

2 𝑝1,… , 𝑆−1
1 𝑆−1

2 𝑝𝑛)
= 𝛼(𝑆2𝑆1, (𝑃 , 𝑝1,… , 𝑝𝑛))

to demonstrate the right action property. The identity relationship 𝛼(𝐼4, (𝑃 , 𝑝1,… , 𝑝𝑛)) = (𝑃 , 𝑝1,… , 𝑝𝑛) is straight-
forward to verify and it follows that 𝛼 is a group action.

The action 𝛼 is smooth by construction. To see that 𝛼 is free, note that the stabiliser of any point is the trivial group.
To see that 𝛼 is proper we note that it is an algebraic map and is both open and continuous. The quotient M𝑛(3) is a well
defined smooth manifold since the group action is both free and proper (Steenrod (1951)). Indeed, M is a principal
𝐒𝐄(3)-bundle. The dimension of M𝑛(3) is obtained by a dimension count, dimM𝑛(3) = dimT𝑛(3) − dim𝐒𝐄(3) =
3𝑛 + 6 − 6 = 3𝑛.

Definition 3.3. The group action 𝛼 (15) is termed the gauge action and an element (𝑃 , 𝑝1,… , 𝑝𝑛) ∈ T𝑛(3) defines a
gauge equivalence class

[𝑃 , 𝑝1,… , 𝑝𝑛] =
{

(𝑆−1𝑃 , 𝑆−1𝑝1,… , 𝑆−1𝑝𝑛) 𝑆 ∈ 𝐒𝐄(3)
} (17)

obtained by applying 𝛼(𝑆, ⋅) to (𝑃 , 𝑝1,… , 𝑝𝑛) for all elements 𝑆 ∈ 𝐒𝐄(3). An equivalence class [𝑃 , 𝑝1,… , 𝑝𝑛] is
termed a (SLAM) configuration. The quotient manifold (16) M𝑛(3) = T𝑛(3)∕𝛼 consists of the set of all configurations

M𝑛(3) =
{

[𝑃 , 𝑝1,… , 𝑝𝑛] (𝑃 , 𝑝1,… , 𝑝𝑛) ∈ T𝑛(3)
}

.

This manifold is termed the SLAM manifold. We will use 𝜉 = [𝑃 , 𝑝1,… , 𝑝𝑛] ∈ M𝑛(3) where compressed notation is
appropriate. We will also use the notation 𝜋 ∶ T𝑛(3) → M𝑛(3),

𝜋(𝑃 , 𝑝1,… , 𝑝𝑛) ∶= [𝑃 , 𝑝1,… , 𝑝𝑛] (18)
for the intrinsic projection associated with the quotient structure of M𝑛(3). □

The key advantage of this formulation is that the ambiguity associated with specification of the reference frame
is not present for configurations in the SLAM manifold. In particular, since a configuration is an equivalence class
𝜉 = [𝑃 , 𝑝1,… , 𝑝𝑛], then for any choice of raw coordinates (𝑃 ′, 𝑝′1,… , 𝑝′𝑛) = (𝑆−1𝑃 , 𝑆−1𝑝1,… , 𝑆−1𝑝𝑛) related by
rigid-body transformation of the reference frame, the associated configuration 𝜉 = [𝑆−1𝑃 , 𝑆−1𝑝1,… , 𝑆−1𝑝𝑛] is the
same element of M𝑛(3).
Remark 3.4. (Robo-centric coordinates) It is possible to globally define a coordinate chart ℎ ∶ M𝑛(3) → ℝ3𝑛 by

ℎ([𝑃 , 𝑝1,… , 𝑝𝑛]) ∶= (𝑃−1𝑝1,… , 𝑃−1𝑝𝑛).

It is straightforward to verify that this map is well defined on M𝑛(3) since for any 𝑆 ∈ 𝐒𝐄(3)

ℎ([𝛼(𝑆, (𝑃 , 𝑝1,… , 𝑝𝑛))] = (𝑃−1𝑆𝑆−1𝑝1,… , 𝑃−1𝑆𝑆−1𝑝𝑛)

= (𝑃−1𝑝1,… , 𝑃−1𝑝𝑛)
= ℎ([𝑃 , 𝑝1,… , 𝑝𝑛]). (19)

Furthermore, ℎ is full rank and defines a coordinate chart into ℝ3𝑛. The coordinates defined in this manner correspond
to the landmark positions expressed in the body-fixed-frame. These coordinates are the robo-centric coordinates that
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have been considered in prior work (Castellanos et al. (2007); Williams and Reid (2010); Guerreiro et al. (2013);
Lourenço et al. (2016)).

In practice, robocentric local coordinates are quite nonlinear with respect to the underlying SLAM optimisation
and although classical EKF solutions have been developed (Castellanos et al. (2007); Williams and Reid (2010))
they were not found to be competitive with an EKF formulated explicitly on the total space coordinates. The quotient
structure of the SLAM manifold provides a geometric link between robo-centric coordinates (a nonlinear coordinate
chart for M𝑛(3)) and the raw coordinates (total space coordinates for M𝑛(3)). The authors believe that algorithms
developed in the SLAM manifold geometry but implemented in total space coordinates will inherit the advantages of
the robo-centric and relative formulations (Castellanos et al. (2007); Williams and Reid (2010); Mei et al. (2011))
while retaining the advantages of classical SLAM formulation.

3.4. Tangent Space of M𝑛(3)The tangent space of M𝑛(3) at a point 𝜉 = 𝜋(Ξ) is formally a quotient of the tangent space of the total space
𝑇𝜋(Ξ)M𝑛(3) ∶= 𝑇ΞT𝑛(3)∕ ker d𝜋Ξ

where d𝜋Ξ ∶ 𝑇ΞT𝑛(3) → 𝑇𝜉M𝑛(3) is the differential of 𝜋 at the point Ξ and ker d𝜋Ξ is the kernel of the linear map d𝜋Ξ(Absil, Mahony and Sepulchre (2008)).
To make this explicit, fix Ξ0 = (𝑃 , 𝑝1,… , 𝑝𝑛) ∈ T𝑛(3) constant and consider a curve in T𝑛(3) constructed by only

allowing variation in the fibre,
Ξ(𝑡) = 𝛼(𝑆(𝑡),Ξ0) = (𝑆−1(𝑡)𝑃 , 𝑆−1(𝑡)𝑝1,… , 𝑆−1(𝑡)𝑝𝑛),

where 𝑆(𝑡) ∈ 𝐒𝐄(3) is a curve with 𝑆(0) = 𝐼4 and d
d𝑡𝑆|𝑆=𝐼4 = 𝑊 ∈ 𝔰𝔢(3). By construction Ξ(0) = Ξ0. Taking the

derivative of Ξ(𝑡) at 𝑡 = 0 we get
(−𝑊𝑃,−𝑊 𝑝1,… ,−𝑊 𝑝𝑛) ∈ ker d𝜋Ξ0

⊂ 𝑇Ξ0
T𝑛(3), (20)

that is, varying 𝑊 ∈ 𝔰𝔢(3) fully characterises the kernel of d𝜋 at Ξ0.
Returning to the generic notation Ξ = (𝑃 , 𝑝1,… , 𝑝𝑛) ∈ T𝑛(3), define an equivalence relation on tangent vectors

Ξ̇ = (𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛) ∈ 𝑇ΞT𝑛(3) of the total space by
⌊Ξ̇⌋Ξ = {(𝑃𝑉 −𝑊𝑃, 𝑃𝑣◦𝑣1 −𝑊 𝑝1,… ,𝑃 𝑣◦𝑣𝑛 −𝑊 𝑝𝑛) | 𝑊 ∈ 𝔰𝔢(3)}.

A representation of the tangent space 𝑇𝜉M𝑛(3) at 𝜉 = 𝜋(Ξ) is now given by the quotient 𝑇ΞT𝑛(3)∕ ker d𝜋Ξ, that is
𝑇𝜉M𝑛(3) = {⌊Ξ̇⌋Ξ | Ξ̇ ∈ 𝑇ΞT𝑛(3)}.

This representation of 𝑇𝜉M𝑛(3) depends on the particular choice of Ξ ∈ T𝑛(3) (where 𝜋(Ξ) = 𝜉) used in the con-
struction. It is, however, straightforward to map between different representations of the same tangent space associated
with different points in the fibre. In particular, for a given Ξ, consider the point 𝛼(𝑆,Ξ) ∈ T𝑛(3) for 𝑆 ∈ 𝐒𝐄(3). Then
for a time varying trajectory Ξ(𝑡) with Ξ(0) = Ξ

d
d𝑡
𝛼(𝑆,Ξ)|𝑡=0 = d𝛼𝑆 (Ξ̇) = (𝑆−1𝑃𝑉 , 𝑆−1𝑃𝑣◦𝑣1,… , 𝑆−1𝑣◦𝑣𝑛) ∈ 𝑇𝛼(𝑆,Ξ)T𝑛(3).

By construction 𝜋(𝛼(𝑆,Ξ(𝑡))) = 𝜋(Ξ(𝑡)) and thus ⌊

d
d𝑡𝛼(𝑆,Ξ)|𝑡=0⌋𝛼(𝑆,Ξ) and ⌊

d
d𝑡Ξ|𝑡=0⌋Ξ are the same element of

𝑇𝜋(Ξ)M𝑛(3) expressed in different representations of the tangent space. Thus, given a tangent vector ⌊Ξ̇⌋Ξ, the equiv-
alent algebraic representation of the same tangent vector at a different point 𝛼(𝑆,Ξ) in the fibre is ⌊d𝛼𝑆 Ξ̇⌋𝛼(𝑆,Ξ). In
explicit coordinates

⌊(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛)⌋Ξ = ⌊(𝑆−1𝑃𝑉 , 𝑆−1𝑃𝑣◦𝑣1,… , 𝑆−1𝑣◦𝑣𝑛)⌋𝛼(𝑆,Ξ).

Note that d𝜋 ∶ 𝑇ΞT𝑛(3) → 𝑇𝜉M𝑛(3). This map is given by d𝜋(Ξ̇) = ⌊Ξ̇⌋Ξ, which can be written as
d𝜋(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛) = ⌊(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛)⌋Ξ (21)

with respect to the natural representation.
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3.5. SLAM manifold kinematics
The natural kinematics of the SLAM problem on the SLAM manifold are given by the projection of the total space

kinematics onto the quotient SLAM manifold.
In particular, define a map
𝑓 ∶ M𝑛(3) × 𝕍 → 𝑇M𝑛(3),
𝑓 (𝜉, (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛)) ∶= ⌊(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛)⌋Ξ (22)

for any Ξ = (𝑃 , 𝑝1,… , 𝑝𝑛) ∈ T𝑛(3) such that 𝜋(Ξ) = 𝜉. To see that this map is well defined compute
𝑓 (𝜋(𝛼(𝑆,Ξ)), (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛)) = ⌊(𝑆−1𝑃𝑉 , 𝑆−1𝑃𝑣◦𝑣1,… , 𝑆−1𝑃𝑣◦𝑣𝑛)⌋𝛼(𝑆,Ξ)

= ⌊d𝛼𝑆 (𝑃𝑉 , 𝑃𝑣
◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛)⌋𝛼(𝑆,Ξ)

= ⌊(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛)⌋Ξ
= 𝑓 (𝜋(Ξ), (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛)).

That is, the value of 𝑓 is independent of the choice of element Ξ of the equivalence class [Ξ] used in its definition.
The kinematics

d
d𝑡
𝜉 = 𝑓 (𝜉, (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛)), 𝜉(0) = 𝜉0, (23)

are the kinematics of the SLAM problem, expressed on the SLAM manifold, for physical velocities (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛) ∈ 𝕍 .
3.6. Outputs

In the following development we will not model noise in the sensors. Real measurements are of course corrupted
by noise and generative noise models are an important part of stochastic filter formulations. The present development,
however, draws its inspiration from the nonlinear observer community and focuses on global analysis of the geometric
and non-linear structure of the system. We mark the distinction by using the term outputs rather than measurements
in the following development.

The outputs considered are body-fixed frame observations of points in the environment. Associated sensing modal-
ities include RGBD cameras, stereo cameras, LIDAR, etc. The output equation is the map ℎ ∶ M𝑛(3) → N 1×⋯×N 𝑛,given by

ℎ([𝑃 , 𝑝1,… , 𝑝𝑛]) ∶= (𝑃−1𝑝1,… , 𝑃−1𝑝𝑛) (24)
that was shown to be well defined earlier (19). The combined output space is N 𝑛(3) = ℝ3 × ⋯ × ℝ3 and we write
𝑦 = (𝑦1,… , 𝑦𝑛) where appropriate.

We will assume that the robot velocities 𝑉 ∈ 𝔰𝔢(3) are measured using odometry or inertial sensors. This is a
standard assumption in SLAM algorithms and there are established sensor suites that provide this information in the
body-fixed-frame coordinates. If the landmarks are moving then velocity measurements (𝑣◦𝑣1,… , 𝑣◦𝑣𝑛) are also required.
Such measurements can be provided by doppler radar, high frequency LIDAR, and some vision systems. In practice,
many SLAM systems simply avoid choosing moving points as part of the environment map and use a static world
assumption 𝑣𝑖 = 0.

4. Symmetry of the SLAM problem
In this section we show that the SLAM problem is equivariant. The full symmetry consists of four parts, firstly a

group, secondly a transitive group action 𝜑 on the state space M𝑛(3), thirdly a group action on the velocity space 𝕍
such that the SLAM kinematics are equivariant, and finally a group action on the output space N 𝑛(3). The Lie group
we consider 𝐒𝐄𝑛+1(3) was first proposed in the work of Barrau and Bonnabel (Barrau and Bonnabel (2016)) and was
separately developed in the authors’ preliminary work (Mahony and Hamel (2017)) as the 𝐒𝐋𝐀𝐌𝑛(3) group.
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4.1. The Lie group 𝐒𝐄𝑛+1(3)The following development draws from Barrau and Bonnabel (2016) and the parallel work Mahony and Hamel
(2017). The group 𝐒𝐄𝑛+1(3) can be parameterised by elements

𝐒𝐄𝑛+1(3) ={(𝐴, 𝑎
◦𝑎1,… , 𝑎◦𝑎𝑛) | 𝐴 ∈ 𝐒𝐄(3), 𝑎◦𝑎𝑖 ∈ 𝐑3, 𝑖 = 1,… , 𝑛}.

with group multiplication
(𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛) ⋅ (𝐵, 𝑏

◦
𝑏1,… , 𝑏

◦
𝑏𝑛) = (𝐴𝐵, 𝑎◦𝑎1 + 𝐴𝑏

◦
𝑏1,… , 𝑎◦𝑎𝑛 + 𝐴𝑏

◦
𝑏𝑛),

= (𝐴𝐵, 𝑎◦𝑎1 + 𝑅𝐴𝑏1
◦

𝑅𝐴𝑏1,… , 𝑎◦𝑎𝑛 + 𝑅𝐴𝑏𝑛
◦

𝑅𝐴𝑏𝑛), (25)
identity id = (𝐼, 0

◦
0,… , 0

◦
0) and inverse

(𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛)−1 = (𝐴−1,−𝑅𝐴−1𝑎1
◦

𝑅𝐴−1𝑎1,… ,−𝑅𝐴−1𝑎𝑛
◦

𝑅𝐴−1𝑎𝑛).

We will commonly use 𝑋 = (𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛) ∈ 𝐒𝐄𝑛+1(3) to denote elements of this group.
4.2. State Symmetry
Lemma 4.1. The mapping 𝜑 ∶ 𝐒𝐄𝑛+1(3) × M𝑛(3) → M𝑛(3) defined by

𝜑((𝐴, 𝑎1,… , 𝑎𝑛), [𝑃 , 𝑝1,… , 𝑝𝑛]) = [𝑃𝐴, 𝑝1 + 𝑃𝑎
◦𝑎1,… , 𝑝𝑛 + 𝑃𝑎

◦𝑎𝑛] (26)
is a transitive right group action of 𝐒𝐄𝑛+1(3) on M𝑛(3).

Proof 4.2. Firstly, it is necessary to verify that the action is well defined on M𝑛(3). In particular, for any 𝑆 ∈ 𝐒𝐄(3)

𝜑((𝐴, 𝑎1,… , 𝑎𝑛), [𝛼(𝑆, (𝑃 , 𝑝1,… , 𝑝𝑛))]) = 𝜑((𝐴, 𝑎1,… , 𝑎𝑛), [𝑆−1𝑃 , 𝑆−1𝑝1,… , 𝑆−1𝑝𝑛])
= [𝑆−1𝑃𝐴, 𝑆−1𝑝1 + 𝑆−1𝑃𝑎◦𝑎1,… , 𝑆−1𝑝𝑛 + 𝑆−1𝑃𝑎◦𝑎𝑛]
= [𝛼

(

𝑆, (𝑃𝐴, 𝑝1 + 𝑃𝑎
◦𝑎1,… , 𝑝𝑛 + 𝑃𝑎

◦𝑎𝑛)
)

]
= [𝑃𝐴, 𝑝1 + 𝑃𝑎

◦𝑎1,… , 𝑝𝑛 + 𝑃𝑎
◦𝑎𝑛]

= 𝜑
(

(𝐴, 𝑎1,… , 𝑎𝑛), [𝑃 , 𝑝1,… , 𝑝𝑛]
)

. (27)
To verify the group action property:

𝜑
(

(𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), 𝜑((𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛), [𝑃 , 𝑝1,… , 𝑝𝑛)]

)

= 𝜑
(

(𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), [𝑃𝐵, 𝑝1 + 𝑃𝑏
◦
𝑏1,… , 𝑝𝑛 + 𝑃𝑏

◦
𝑏𝑛]

)

=
[

𝑃𝐵𝐴, (𝑝1 + 𝑃𝑏
◦
𝑏1) + 𝑃𝐵𝑎1

◦𝑎1,… , (𝑝𝑛 + 𝑃𝑏
◦
𝑏𝑛) + 𝑃𝐵𝑎𝑛

◦𝑎𝑛
]

=
[

𝑃 (𝐵𝐴), 𝑝1 + 𝑃 (𝑏
◦
𝑏1 + 𝐵𝑎1

◦𝑎1),… , 𝑝𝑛 + 𝑃 (𝑏
◦
𝑏𝑛 + 𝐵𝑎𝑛

◦𝑎𝑛)
]

= 𝜑
(

(𝐵𝐴, 𝑏
◦
𝑏1 + 𝐵𝑎

◦𝑎1,… , 𝑏
◦
𝑏𝑛 + 𝐵𝑎𝑛

◦𝑎𝑛),
[

𝑃 , 𝑝1,… , 𝑝𝑛
]

)

= 𝜑
(

(𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛) ⋅ (𝐴, 𝑎

◦𝑎1,… , 𝑎◦𝑎𝑛),
[

𝑃 , 𝑝1,… , 𝑝𝑛
]

)

.

It is straightforward to verify the identity property

𝜑(id, [𝑃 , 𝑝1,… , 𝑝𝑛]) = [𝑃 , 𝑝1,… , 𝑝𝑛],

and transitivity follows from the property that

𝜑((𝑃 , 𝑝◦𝑝1,… , 𝑝◦𝑝𝑛), [𝐼4, 0,… , 0]) = [𝑃 , 𝑝1,… , 𝑝𝑛],

and hence any point in M𝑛(3) can be reached from [𝐼4, 0,… , 0] by suitable construction of an element of 𝐒𝐄𝑛+1(3).

A visualisation of the action of 𝜑 on M𝑛(3) is given in Figure 2. In particular, the robot pose is updated by the rigid
body transformation𝐴 ∈ 𝐒𝐄(3) while the environment points 𝑝𝑖 are updated by the translations 𝑎◦𝑎𝑖 after derotation. We
emphasise that the group elements (𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛) are not physical variables and can only be interpreted as transforming
SLAM configurations.
xxxx: Preprint submitted to Elsevier Page 11 of 24
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Figure 2: Group action 𝜑((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), (𝑃 , 𝑝1,… , 𝑝𝑛)). The pose 𝑃 ↦ 𝑃𝐴, that is the tip point of the pose is updated by

the correction 𝐴 ∈ 𝐒𝐄(3). The environment points 𝑝𝑖 ↦ 𝑝𝑖 +𝑅𝑃 𝑎𝑖
◦

𝑅𝑃 𝑎𝑖, are updated by the corrections 𝑎𝑖 rotated back into the
inertial frame.

4.3. Compatibility of the output
A key property of the geometric SLAM formulation is that there is also a compatible group operation on the output

N 𝑛(3) of the system.
Lemma 4.3. The action 𝜌 ∶ 𝐒𝐄𝑛+1(3) × N 𝑛(3) → N 𝑛(3) defined by

𝜌((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), (𝑦1,… , 𝑦𝑛)) ∶= (𝐴−1(𝑦1 + 𝑎
◦𝑎1),… , 𝐴−1(𝑦𝑛 + 𝑎

◦𝑎𝑛)) (28)
is a transitive right group action on N 𝑛(3). Furthermore, one has that the output map ℎ (24) is equivariant with respect
to 𝜌 and 𝜙. That is

𝜌((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), ℎ([Ξ])) = ℎ(𝜙((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), [Ξ])).

Proof 4.4. It is straightforward to see that 𝜌 is a smooth binary operation. Direct computation shows that

𝜌(id, (𝑦1,… , 𝑦𝑛)) = (𝑦1,… , 𝑦𝑛).

To verify that 𝜌 is an right action:

𝜌((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), 𝜌((𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛), (𝑦1,… , 𝑦𝑛))) = 𝜌((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), (𝐵−1(𝑦1 + 𝑏

◦
𝑏1),… , 𝐵−1(𝑦𝑛 + 𝑏

◦
𝑏𝑛)))

= (𝐴−1(𝐵−1(𝑦1 + 𝑏
◦
𝑏1) + 𝑎

◦𝑎1),… , 𝐴−1(𝐵−1(𝑦𝑛 + 𝑏
◦
𝑏𝑛) + 𝑎

◦𝑎𝑛))

= (𝐴−1𝐵−1((𝑦1 + 𝑏
◦
𝑏1) + 𝐵𝑎

◦𝑎1),… , 𝐴−1𝐵−1((𝑦𝑛 + 𝑏
◦
𝑏𝑛) + 𝐵𝑎

◦𝑎𝑛))

= ((𝐵𝐴)−1(𝑦1 + (𝑏
◦
𝑏1 + 𝐵𝑎

◦𝑎1)),… , (𝐵𝐴)−1(𝑦𝑛 + (𝑏
◦
𝑏𝑛 + 𝐵𝑎

◦𝑎𝑛)))

= 𝜌((𝐵𝐴, 𝑏
◦
𝑏1 + 𝐵𝑎

◦𝑎1,… , 𝑏
◦
𝑏𝑛 + 𝐵𝑎

◦𝑎𝑛), (𝑦1,… , 𝑦𝑛))

= 𝜌((𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛) ⋅ (𝐴, 𝑎

◦𝑎1,… , 𝑎◦𝑎𝑛), (𝑦1,… , 𝑦𝑛)).

To see that ℎ is equivariant with respect to 𝜌 and 𝜑 compute

ℎ(𝜑((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), [𝑃 , 𝑝1,… , 𝑝𝑛])) = ℎ([𝑃𝐴, 𝑝1 + 𝑃𝑎
◦𝑎1,… , 𝑝𝑛 + 𝑃𝑎

◦𝑎𝑛])
=
(

𝐴−1𝑃−1(𝑝1 + 𝑃𝑎
◦𝑎1),… , 𝐴−1𝑃−1(𝑝𝑛 + 𝑃𝑎

◦𝑎𝑛)
)

=
(

𝐴−1(𝑃−1𝑝1 + 𝑎
◦𝑎1),… , 𝐴−1(𝑃−1𝑝𝑛 + 𝑎

◦𝑎𝑛)
)

=
(

𝐴−1(𝑦1 + 𝑎
◦𝑎1),… , 𝐴−1(𝑦𝑛 + 𝑎

◦𝑎𝑛)
)

= 𝜌((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), (𝑦1,… , 𝑦𝑛)).

This completes the proof.
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4.4. Equivariance of the SLAM kinematics
A system 𝜉̇ = 𝑓 (𝜉, 𝑢) for 𝜉 ∈ M and 𝑢 ∈ 𝕍 is termed equivariant if (Mahony et al. (2013, 2020)) there is a group

𝐆 and group actions 𝜑 ∶ 𝐆 × M → M and 𝜓 ∶ 𝐆 × 𝕍 → 𝕍 such that
d𝜑𝑋𝑓 (𝜉, 𝑢) = 𝑓 (𝜑𝑋(𝜉), 𝜓𝑋(𝑢)) (29)

for all 𝑋 ∈ 𝐆, 𝜉 ∈ M and 𝑢 ∈ 𝕍 . In this section we show that the SLAM kinematics (23) are equivariant.
We will continue to use the notation introduced in (6), 𝐴𝑣◦𝑣 = 𝑅𝐴𝑣

◦
𝑅𝐴𝑣, for coordinate change of a landmark velocity

by a rotation 𝑅𝐴 associated with an element 𝐴 ∈ 𝐒𝐄(3). Analogous to that notation, one has that for 𝑉 = (Ω, 𝑣)∧ then
𝑉 𝑎◦𝑎 = Ω × 𝑎

◦
Ω × 𝑎, 𝑎 ∈ 𝐑3.

Lemma 4.5. The mapping 𝜓 ∶ 𝐒𝐄𝑛+1(3) × 𝕍 → 𝕍 , defined by

𝜓((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), (𝑉 , 𝑣
◦𝑣1,… , 𝑣◦𝑣𝑛)) ∶=(Ad𝐴−1 𝑉 ,𝐴−1(𝑣◦𝑣1 + 𝑉 𝑎

◦𝑎1),… , 𝐴−1(𝑣◦𝑣𝑛 + 𝑉 𝑎
◦𝑎𝑛)) (30)

is a right group action of 𝐒𝐄𝑛+1(3) on the space of inputs 𝕍 .

Proof 4.6. The algebraic map is well defined by construction. Observe that

𝜓((𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛), 𝜓((𝐴, 𝑎

◦𝑎1,… , 𝑎◦𝑎𝑛), (𝑉 , 𝑣
◦𝑣1,… , 𝑣◦𝑣𝑛)))

= 𝜓((𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛), (Ad𝐴−1 𝑉 ,𝐴−1(𝑣◦𝑣1 + 𝑉 𝑎

◦𝑎1),… , 𝐴−1(𝑣◦𝑣𝑛 + 𝑉 𝑎
◦𝑎𝑛)))

= (Ad𝐵−1 Ad𝐴−1 𝑉 , 𝐵−1𝐴−1(𝑣◦𝑣1 + 𝑉 𝑎
◦𝑎1) + 𝐵−1 (Ad𝐴−1 𝑉

)

𝑏
◦
𝑏1,… , 𝐵−1𝐴−1(𝑣◦𝑣𝑛 + 𝑉 𝑎

◦𝑎𝑛) + 𝐵−1 (Ad𝐴−1 𝑉
)

𝑏
◦
𝑏𝑛)

= (Ad(𝐴𝐵)−1 𝑉 , (𝐴𝐵)
−1(𝑣◦𝑣1 + 𝑉 (𝑎◦𝑎1 + 𝐴𝑏

◦
𝑏1)),… , (𝐴𝐵)−1(𝑣◦𝑣𝑛 + 𝑉 (𝑎◦𝑎𝑛 + 𝐴𝑏

◦
𝑏𝑛))

= 𝜓((𝐴𝐵, 𝑎◦𝑎1 + 𝐴𝑏
◦
𝑏1,… , 𝑎◦𝑎𝑛 + 𝐴𝑏

◦
𝑏𝑛), (𝑉 , 𝑣

◦𝑣1,… , 𝑣◦𝑣𝑛)),

= 𝜓((𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛) ⋅ (𝐵, 𝑏
◦
𝑏1,… , 𝑏

◦
𝑏𝑛), (𝑉 , 𝑣

◦𝑣1,… , 𝑣◦𝑣𝑛)).

This verifies the right group action property. It is straightforward to verify

𝜓(id, (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛)) = (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛).

It is now possible to demonstrate equivariance of the SLAM kinematics on M𝑛(3).
Lemma 4.7. The SLAM kinematics (22) are equivariant under the group actions (26) and (30) in the sense of (29).
Proof 4.8. Let 𝑋 = (𝐴, 𝑎◦𝑎1,… , 𝑎◦𝑎𝑛), Ξ = (𝑃 , 𝑝1,… , 𝑝𝑛) with 𝜉 = 𝜋(Ξ) = [Ξ], and 𝑢 = (𝑉 , 𝑣◦𝑣1,… , 𝑣◦𝑣𝑛). For 𝑋 ∈
𝐒𝐄𝑛+1(3) define a map Υ𝑋 ∶ T𝑛(3) → T𝑛(3) by

Υ𝑋(Ξ) ∶= (𝑃𝐴, 𝑝1 + 𝑃𝑎
◦𝑎1,… , 𝑝𝑛 + 𝑃𝑎

◦𝑎𝑛). (31)
It is easily verified that

𝜋(Υ𝑋(Ξ)) = 𝜑(𝑋, 𝜋(Ξ)). (32)
Consider a trajectory Ξ(𝑡) for a fixed 𝑋 ∈ 𝐒𝐄𝑛+1(3) and take the time differential of (32). One has

d𝜑𝑋◦d𝜋(Ξ̇) = d𝜋◦dΥ𝑋(Ξ̇).

Recalling (21) one can now write

d𝜑𝑋(⌊Ξ̇⌋Ξ) = d𝜑𝑋◦d𝜋(Ξ̇)
= d𝜋◦dΥ𝑋(Ξ̇) = ⌊dΥ𝑋(Ξ̇)⌋Υ𝑋 (Ξ) (33)

for any tangent vector Ξ̇ ∈ 𝑇ΞT𝑛(3). It is easily verified that

dΥ𝑋(𝑃𝑉 , 𝑃𝑣
◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛) = (𝑃𝑉 𝐴, 𝑃 (𝑣◦𝑣1 + 𝑉 𝑎

◦𝑎1),… , 𝑃 (𝑣◦𝑣𝑛 + 𝑉 𝑎
◦𝑎𝑛)). (34)
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Recalling (22) one computes

𝑓 (𝜑𝑋(𝜉), 𝜓𝑋(𝑢)) = 𝑓 ([𝑃𝐴, 𝑝1 + 𝑃𝑎
◦𝑎1,… , 𝑝𝑛 + 𝑃𝑎

◦𝑎𝑛], (Ad𝐴−1 𝑉 ,𝐴−1(𝑣◦𝑣1 + 𝑉 𝑎
◦𝑎1),… , 𝐴−1(𝑣◦𝑣𝑛 + 𝑉 𝑎

◦𝑎𝑛)))
= ⌊(𝑃𝑉 𝐴, 𝑃 (𝑣◦𝑣1 + 𝑉 𝑎

◦𝑎1),… , 𝑃 (𝑣◦𝑣𝑛 + 𝑉 𝑎
◦𝑎𝑛))⌋Υ𝑋 (Ξ)

= ⌊dΥ𝑋(𝑃𝑉 , 𝑃𝑣
◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛)⌋Υ𝑋 (Ξ)

= d𝜑𝑋
(

⌊(𝑃𝑉 , 𝑃𝑣◦𝑣1,… , 𝑃 𝑣◦𝑣𝑛⌋Ξ
)

= d𝜑𝑋𝑓 (𝜉, 𝑢)

where the third and fourth steps follow from (34) and (33), respectively. This completes the proof.

5. Observer design
In the following section we provide a constructive design of a simple constant gain observer for the SLAM problem

that is globally asymptotically stable. The contribution of this section is not so much in providing yet another SLAM
algorithm, of which there are many, but rather to use the geometric structure and the associated observer design to
understand the tradeoff between localisation and mapping that is inherent in the SLAM formulation. The constant
gain observer developed can be easily and intuitively tuned to behave either as a localisation algorithm (for known
environment points) or a mapping algorithm (for known robot trajectory). The example also provides a good example
of the principles of equivariant observer design Mahony et al. (2013, 2020).

We approach the observer design by lifting the system kinematics onto the symmetry group and designing the
observer on 𝐒𝐄𝑛+1(3). Let 𝜉(𝑡) = [𝑃 (𝑡), 𝑝1(𝑡),… , 𝑝𝑛(𝑡)] ∈ M𝑛(3) be the ‘true’ configuration of the SLAM problem.
Let 𝑋(𝑡) = (𝐴(𝑡), 𝑎◦𝑎1(𝑡),… , 𝑎◦𝑎𝑛(𝑡)) ∈ 𝐒𝐄𝑛+1(3) and define lifted kinematics (Mahony et al. (2013, 2020))

d
d𝑡
(𝐴(𝑡), 𝑎◦𝑎1(𝑡),… , 𝑎◦𝑎𝑛(𝑡)) = (𝐴𝑉 ,𝐴𝑣◦𝑣1,… , 𝐴𝑣◦𝑣𝑛),

𝐴(0) = 𝐼4, 𝑎1(0) = 0,⋯ , 𝑎𝑛(0) = 0. (35)
Equation (35) evolves on 𝐒𝐄𝑛+1(3) where 𝑉 is the velocity of the robot and 𝑣𝑖 is the velocity of the 𝑖th target points.
Choose an arbitrary reference configuration

𝜉◦ = [𝑃 ◦, 𝑝◦1,… , 𝑝◦𝑛] ∈ M𝑛(3).

If the initial condition 𝑋(0) ∈ 𝐒𝐄𝑛+1(3) of the lifted kinematics satisfies 𝜑(𝑋(0), 𝜉◦) = 𝜉(0) then (35) induces a
trajectory that satisfies

𝜉(𝑡) = 𝜑(𝑋(𝑡), 𝜉◦) ∈ M𝑛(3)

for all time Mahony et al. (2013, 2020).
We choose the state space of the observer to lie on the SLAM group
𝑋̂ = (𝐴̂, 𝑎̂◦𝑎1,… , 𝑎̂◦𝑎𝑛) ∈ 𝐒𝐄𝑛+1(3) (36)

and will use the lifted kinematics (35) as the internal model for the observer design. The configuration estimate
generated by the observer is given by

𝜉 = [𝑃 , 𝑝̂1,… , 𝑝̂𝑛] = 𝜑(𝑋̂, 𝜉◦) ∈ M𝑛(3)

given the reference 𝜉◦ ∈ M𝑛(3). The goal of the observer design is to estimate both the relative symmetry that takes
𝜉◦ = [𝑃 ◦, 𝑝◦1,… , 𝑝◦𝑛] to 𝜉(0) = [𝑃 (0), 𝑝1(0),… , 𝑝𝑛(0)] as well as to encode the ongoing evolution of 𝑋(𝑡) given by
(35) while correcting for errors introduced by the noisy measurement of 𝑉 ∈ 𝔰𝔢(3).
Theorem 5.1. Consider the kinematics (35) evolving on 𝐒𝐄𝑛+1(3) along with outputs 𝑦 = ℎ([Ξ(𝑡)]) ∈ N 𝑛(3) given
by (24) and velocity 𝑉 ∈ 𝔰𝔢(3). Denote the observer state by 𝑋̂ = (𝐴̂, 𝑎̂◦𝑎1,… , 𝑎̂◦𝑎𝑛) ∈ 𝐒𝐄𝑛+1(3). Assume that each
landmark 𝑝𝑖, for 𝑖 = {1,… , 𝑛}, is moving with a constant unknown velocity d

d𝑡𝑝𝑖 = const. and note that 𝑣◦𝑣𝑖 = 𝑃−1𝑝̇𝑖
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inherits the ego motion from the changing robot pose. Define 𝑤◦𝑤𝑖 = 𝑃𝑣◦𝑣𝑖 = 𝑃0𝐴̂𝑣
◦𝑣𝑖, for 𝑖 = {1,… , 𝑛} and note that for

𝐴̂→ 𝐴 then 𝑤◦𝑤𝑖 → 𝑃𝑣◦𝑣𝑖 = 𝑝̇𝑖.
Fix an arbitrary reference 𝜉◦ = [𝑃 ◦, 𝑝◦1,… , 𝑝◦𝑛] ∈ M𝑛(3) and define the output error to be

𝑒 = 𝜌(𝑋̂−1, (𝑦1,… , 𝑦𝑛)). (37)
where (𝑦◦1,… , 𝑦◦𝑛) = ℎ(𝜉◦). Choose gains 𝑘0 > 0 and 𝑘𝑖, 𝑙𝑖, 𝑚𝑖 > 0 for 𝑖 = 1,… , 𝑛.

Consider the observer defined by

d
d𝑡
𝑋̂ = (𝐴̂𝑉 + Δ𝐴̂, 𝛿

◦
𝛿1 + 𝑤̂

◦𝑤1,… , 𝛿
◦
𝛿𝑛 + 𝑤̂

◦𝑤𝑛), 𝑋̂(0) = id, (38)
d
d𝑡
𝑤̂◦𝑤𝑖 ∶= Ad𝑃0 Δ𝑤̂

◦𝑤𝑖 + 𝑚𝑖𝑘𝑖(𝑒𝑖 − 𝑦
◦
𝑖 ), 𝑤̂◦𝑤𝑖(0) = 0

◦
0, (39)

where 𝑤̂◦𝑤𝑖 is an estimate of 𝑤◦𝑤𝑖 and the innovations are given by

Δ ∶= −𝑘0ℙ𝔰𝔢

( 𝑛
∑

𝑖=1
𝑘𝑖(𝑒𝑖 − 𝑦

◦
𝑖 )𝑒

⊤
𝑖

)

∈ 𝔰𝔢(3) (40)

𝛿
◦
𝛿𝑖 ∶=

𝑙𝑖
𝑘𝑖
(𝑒𝑖 − 𝑦

◦
𝑖 ) + Δ𝑎̂◦𝑎𝑖 + 𝑤̂

◦𝑤𝑖. (41)

Then, the configuration estimate 𝜉(𝑡) = 𝜑(𝑋̂(𝑡), 𝜉◦) ∈ M𝑛(3) and the estimates (𝑤̂◦𝑤1,… , 𝑤̂◦𝑤𝑛) converge globally
asymptotically and locally exponentially to the true state 𝜉(𝑡) ∈ M𝑛(3) and to the (𝑤◦𝑤1,… , 𝑤◦𝑤𝑛) respectively.

Proof 5.2. Let 𝑋(𝑡) ∈ 𝐒𝐄𝑛+1(3) satisfy the lifted kinematics (35) and assume 𝜙(𝑋(0), 𝜉◦) = 𝜉(0). It follows that
𝜑(𝑋(𝑡), 𝜉(0)) = 𝜉(𝑡) Mahony et al. (2013, 2020). Define a group error 𝐸 by

𝐸 = 𝑋̂𝑋−1 = (𝐴̃, 𝑎̃◦𝑎1,… , 𝑎̃◦𝑎𝑛) ∈ 𝐒𝐄𝑛+1(3), (42)
where 𝐴̃ ∶= 𝐴̂𝐴−1, and 𝑎̃◦𝑎𝑖 ∶= 𝑎̂◦𝑎𝑖 − 𝐴̃𝑎

◦𝑎𝑖. Using (35) and (38), it is straightforward to verify that

𝐸̇ = (Δ𝐴̃, 𝛿
◦
𝛿1 + 𝑤̂

◦𝑤1 + Δ(𝑎̂◦𝑎1 − 𝑎̃
◦𝑎1) −𝑤

◦𝑤1,… , 𝛿
◦
𝛿𝑛 + 𝑤̂

◦𝑤𝑛 + Δ(𝑎̂◦𝑎𝑛 − 𝑎̃
◦𝑎𝑛) −𝑤

◦𝑤𝑛). (43)
Using the fact that 𝐸−1 = (𝐴̃−1,−𝐴̃−1𝑎̃◦𝑎1,… ,−𝐴̃−1𝑎̃◦𝑎𝑛), it follows

𝑒 = (𝐴̃(𝑦◦1 − 𝐴̃
−1𝑎̃◦𝑎1)),… , 𝐴̃(𝑦◦𝑛 − 𝐴̃

−1𝑎̃◦𝑎𝑛))

= (𝐴̃(𝑦◦1 − 𝐴̃
−1𝑎̃◦𝑎1),… , 𝐴̃(𝑦◦𝑛 − 𝐴̃

−1𝑎̃◦𝑎𝑛))

= (𝐴̃𝑦◦1 − 𝑎̃
◦𝑎1,… , 𝐴̃𝑦◦𝑛 − 𝑎̃

◦𝑎𝑛). (44)
Based on (43), it is straightforward to show that the derivative of each element of (44) (along with (41)) fulfills

𝑒̇𝑖 = Δ𝑒𝑖 − Δ𝑎̂◦𝑎 − (𝛿
◦
𝛿𝑖 + 𝑤̂

◦𝑤𝑖) +𝑤
◦𝑤𝑖,

= Δ(𝑒𝑖 − 𝑦
◦
𝑖 ) + Δ𝑦◦𝑖 −

𝑙𝑖
𝑘𝑖
(𝑒𝑖 − 𝑦

◦
𝑖 ) + 𝑤̃

◦𝑤𝑖,

with 𝑤̃◦𝑤𝑖 = 𝑤◦𝑤𝑖 − 𝑤̂
◦𝑤𝑖. Differentiating 𝑤̃◦𝑤𝑖 and recalling (39), one has

𝑑
𝑑𝑡
𝑤̃◦𝑤𝑖 = Ad𝑃0 Δ𝑤̃

◦𝑤𝑖 − 𝑚𝑖𝑘𝑖(𝑒𝑖 − 𝑦
◦
𝑖 ) (45)

We first prove global asymptotic convergence of the observer. Consider the following candidate (positive definite)
Lyapunov function,

L =
𝑛
∑

𝑖=1

(

𝑘𝑖
2
|

|

𝑒𝑖 − 𝑦
◦
𝑖
|

|

2 + 1
2𝑚𝑖

𝑤̃◦𝑤2
𝑖

)

. (46)
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Differentiating L and using the fact that for any 𝑥 ∈ 𝐑3 then 𝑥◦𝑥⊤Δ𝑥◦𝑥 = 0 (respectively 𝑥◦𝑥⊤(Ad𝑃0 Δ)𝑥
◦𝑥 = 0 ), one has

L̇ =
𝑛
∑

𝑖=1

(

𝑘𝑖
(

𝑒𝑖 − 𝑦
◦
𝑖
)⊤ 𝑒̇𝑖 +

1
𝑚𝑖
𝑤̃◦𝑤⊤𝑖

𝑑
𝑑𝑡
𝑤̃◦𝑤𝑖

)

= tr

(

Δ
𝑛
∑

𝑖=1
𝑘𝑖𝑦

◦
𝑖
(

𝑒𝑖 − 𝑦
◦
𝑖
)⊤

)

−
𝑛
∑

𝑖=1
𝑙𝑖 ||𝑒𝑖 − 𝑦

◦
𝑖
|

|

2

Now recalling the expression of Δ (40), it is straightforward to verify that

Δ = 𝑘0

[ 1
2
∑𝑛
𝑖=1 𝑘𝑖(𝑦

◦
𝑖 × 𝑒𝑖)

× −
∑𝑛
𝑖=1 𝑘𝑖(𝑒𝑖 − 𝑦

◦
𝑖 )

0 0

]

.

and hence

L̇ = −
𝑘0
2

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖𝑦

◦
𝑖 × 𝑒𝑖

|

|

|

|

|

2

− 𝑘0
|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖(𝑦◦𝑖 − 𝑒𝑖)

|

|

|

|

|

2

−
𝑛
∑

𝑖=1
𝑙𝑖 ||𝑒𝑖 − 𝑦

◦
𝑖
|

|

2

The derivative of the Lyapunov function is negative semi-definite, equal to zero when 𝑒𝑖 = 𝑦◦𝑖 , and application of

LaSalle’s principle ensures that the equilibrium
(

(𝑒𝑖 − 𝑦
◦
𝑖 )
⊤, 𝑤̃◦𝑤⊤𝑖

)⊤
→ (0

◦
0, 0

◦
0) is globally asymptotically stable. It

follows that 𝐸 = (𝐴̃,−𝑎̃◦𝑎1,… ,−𝑎̃◦𝑎𝑛) converges asymptotically to a constant. The condition 𝑒𝑖 = 𝑦◦𝑖 implies (44)
𝐴̃𝑦◦𝑖 − 𝑎̃

◦𝑎 = 𝑦◦𝑖 , ∀𝑖 = 1,… , 𝑛.

By exploiting the expression of 𝑎̃◦𝑎𝑖 ∶= −𝐴̃𝑎◦𝑎𝑖 + 𝑎̂
◦𝑎𝑖 (or equivalently 𝑎̃𝑖 ∶= −𝑅𝐴̃𝑎𝑖 + 𝑎̂𝑖), one gets:

𝐴̃(𝑦◦𝑖 + 𝑎
◦𝑎𝑖) = 𝑦◦𝑖 + 𝑎̂

◦𝑎𝑖

This in turn implies that the limit satisfies

𝐴−1(𝑦◦𝑖 + 𝑎
◦𝑎𝑖) = 𝐴̂−1(𝑦◦𝑖 + 𝑎̂

◦𝑎𝑖)

It follows that

𝜌(𝑋, 𝑦◦𝑖 ) = ℎ(𝜑(𝑋, 𝜉◦)) = ℎ(𝜑(𝑋̂, 𝜉◦)) = 𝜌(𝑋̂, 𝑦◦𝑖 ).

Regarding just the central equality, and noting that ℎ is full rank on M𝑛(3) then

𝜉 = 𝜑(𝑋, 𝜉◦) = 𝜑(𝑋̂, 𝜉◦) = 𝜉

which concludes the proof of global asymptotic stability.
To prove local exponential stability of the observer error we define the following slightly modified Lyapunov func-

tion:

L𝜖 =
𝑛
∑

𝑖=1

(

𝑘𝑖
2
|

|

𝑒𝑖 − 𝑦
◦
𝑖
|

|

2 + 1
2𝑚𝑖

𝑤̃◦𝑤2
𝑖 − 𝜖𝑤̃

◦𝑤⊤𝑖 (𝑒𝑖 − 𝑦
◦
𝑖 )
)

. (47)

with 𝜖 a positive number such that 𝜖 < 𝑘min
𝑖 ∕𝑚max

𝑖 .
Differentiating L𝜖 , it yields

L̇𝜖 = −
𝑘0
2

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖𝑦

◦
𝑖 × 𝑒𝑖

|

|

|

|

|

2

−𝑘0
|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖(𝑦◦𝑖 − 𝑒𝑖)

|

|

|

|

|

2

−
𝑛
∑

𝑖=1
𝑙𝜖𝑖 ||𝑒𝑖 − 𝑦

◦
𝑖
|

|

2−𝜖
𝑛
∑

𝑖=1

|

|

|

𝑤̃◦𝑤𝑖
|

|

|

2
+𝜖

𝑛
∑

𝑖=1

𝑙𝑖
𝑘𝑖
𝑤̃◦𝑤⊤𝑖 (𝑒𝑖−𝑦

◦
𝑖 )−𝜖

𝑛
∑

𝑖=1
𝑤̃◦𝑤⊤𝑖 Δ𝑦

◦
𝑖
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− 𝜖
𝑛
∑

𝑖=1
𝑤̃◦𝑤⊤𝑖

(

Δ + (Ad𝑃0 Δ)
⊤
)

(𝑒𝑖 − 𝑦
◦
𝑖 ).

with 𝑙𝜖𝑖 = (𝑙𝑖 − 𝜖𝑘𝑖𝑚𝑖), for 𝑖 = {1,… , 𝑛}. From the above expression of Δ (40), it is straightforward to verify that
around the equilibrium the last term of L̇𝜖 is a negligible third order term. Hence, in a local neighbourhood of the
asymptotic limit

L̇𝜖 ≈ −
𝑘0
2

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖𝑦

◦
𝑖 × 𝑒𝑖

|

|

|

|

|

2

− 𝑘0
|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖(𝑦

◦
𝑖 − 𝑒𝑖)

|

|

|

|

|

2

−
𝑛
∑

𝑖=1

(

𝑙𝜖𝑖 ||𝑒𝑖 − 𝑦
◦
𝑖
|

|

2 + 𝜖 ||
|

𝑤̃◦𝑤𝑖
|

|

|

2
− 𝜖

𝑙𝑖
𝑘𝑖
𝑤̃◦𝑤⊤𝑖 (𝑒𝑖 − 𝑦

◦
𝑖 )
)

− 𝜖𝑘0
𝑛
∑

𝑖=1

(

1
2
𝑤̃◦𝑤⊤𝑖

( 𝑛
∑

𝑖=1
𝑘𝑖(𝑦◦𝑖 × 𝑒𝑖)

×

)

𝑦◦𝑖 − 𝑤̃
◦𝑤⊤𝑖

( 𝑛
∑

𝑖=1
𝑘𝑖(𝑒𝑖 − 𝑦◦𝑖 )

)

𝑦◦𝑖

)

≤ −
𝑛
∑

𝑖=1

(

𝑘0
2𝑛

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖𝑦

◦
𝑖 × 𝑒𝑖

|

|

|

|

|

2

+
𝑘0
𝑛

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖(𝑦

◦
𝑖 − 𝑒𝑖)

|

|

|

|

|

2

+ 𝑙𝜖𝑖 ||𝑒𝑖 − 𝑦
◦
𝑖
|

|

2 + 𝜖 ||
|

𝑤̃◦𝑤𝑖
|

|

|

2

− 𝜖
𝑙𝑖
𝑘𝑖
|𝑤̃◦𝑤𝑖|.|𝑒𝑖 − 𝑦

◦
𝑖 | − 𝜖

𝑘0
2
|𝑤̃◦𝑤𝑖|.

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖(𝑦◦𝑖 × 𝑒𝑖)

×
|

|

|

|

|

− 𝜖𝑘0|𝑤̃
◦𝑤𝑖|.

|

|

|

|

|

𝑛
∑

𝑖=1
𝑘𝑖(𝑒𝑖 − 𝑦◦𝑖 )

|

|

|

|

|

)

This in turn shows that by choosing 0 < 𝜖 < min
(

𝑘min
𝑖

𝑚max
𝑖
, 1
𝑛𝑘0
,

2𝑙min
𝑖 𝑘min2

𝑖

2𝑘max3
𝑖 𝑚max

𝑖 +𝑙max2
𝑖

)

, then there exists a local neighbourhood

of (0
◦
0, 0

◦
0) such that L̇𝜖 < −2𝑚min

𝑖 𝜖L𝜖 and local exponential stability is proved.

Although the proof provided is somewhat complicated, the algebraic structure of the observer, (38), (39), (40), (41)
is remarkably simple compared to comparable SLAM algorithms in the literature. The innovation terms (40) and (41)
are simply lifted versions of the gradients of the cost function with respect to the variables. There is no covariance or
information matrix to propagate in this algorithm, there are no linearisations, the variables in the algorithm are directly
related to the physical variables of the problem.

Furthermore, although the observer is derived explicitly using the geometric structure of the SLAM manifold it is
posed on the symmetry group 𝐒𝐄𝑛+1(3). This symmetry also acts on the total space through the group action Υ (31).
As such, one can define a trajectory

(𝑃 , 𝑝̂1,… , 𝑝̂𝑛) ∶= Υ𝑋̂(𝑃
◦, 𝑝◦1,… , 𝑝◦𝑛) = (𝑃 ◦𝐴̂, 𝑝◦1 + 𝑃

◦𝑎̂◦𝑎1,… , 𝑝◦𝑛 + 𝑃
◦𝑎̂◦𝑎𝑛). (48)

and consider the evolution of the robot pose𝑃 and environment map points (𝑝̂1,… , 𝑝̂𝑛) separately. That is, the proposed
observer induces an observer estimate on the total space coordinates analogous to the sort of trajectory estimates pro-
vided by classical SLAM algorithms. A key point that we emphasise is that the total space trajectory is not observable
from the data. The invariance associated with the gauge transform is always present in the data, and the evolution of
the total space trajectory along the fibre can actually be arbitrarily assigned. The geometric invariance associated with
the SLAM manifold is present in all SLAM algorithms, however it is usually swept-under-the-carpet by introducing
priors on the initial condition or other tricks. The structure of the proposed observer makes this relationship explicit.
The observer is posed on the symmetry group and acts on the SLAM manifold to define an globally asymptotically
stable system. The action of the observer trajectory on the total space provides insight into how the trajectory on the
SLAM manifold can be lifted to relate to the separate localisation and mapping problems.

To see this, consider how choosing the gains can provide focus on estimating the environment (mapping), estimating
the pose with respect to known environment (pose estimation), or solve the complete SLAM problem.

• Mapping: By choosing 𝑘0 = 0 the robot pose estimate is no longer corrected by landmark measurements. This
formulation solves the mapping problem independent of the robot pose and is closely related to the work of
Guerreiro Guerreiro et al. (2013) and Lourenço et al. Lourenço et al. (2016) but posed in the inertial-frame.
The robot pose estimate is still present in the total space oberver (48), however, the estimate becomes a forward
integration of the measured velocity.
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Figure 3: Con�guration trace for Simulation 6.1 in the presence of noise. The blue trace is the estimate of the position
of the robot frame with its �nal estimated position plotted as a blue star, while the underlying black trace is the true
position of the robot frame with its �nal location plotted as a black circle. The true landmark feature positions are shown
in black, with their �nal positions shown as black circles. The landmark estimates are plotted in green with their �nal
position shown as green stars Note that the true robot trajectory (in black) is not subject to the velocity noise, that is,
the noise process in velocity was assumed to be in the measurement device and not in the robot motion. The high levels
of noise are evident in the spread of the measurements as well as the trace of the estimated trajectory.

• Pose Estimation: By choosing 𝑙𝑖 = 𝑚𝑖 = 0 the map estimates are no longer updated by the measurements. (Note
that (39) has solution 𝑤̂◦𝑤𝑖(𝑡) = 0

◦
0 for all time.) Assuming that the landmark priors are correct (that is {𝑝◦𝑖 } are

the true positions of the global landmarks in some frame of reference) then the pose estimate 𝑃 (48) converges
to the true pose (in the given frame of reference) analogous to previously published pose estimation algorithms
Baldwin et al. (2009); Vasconcelos et al. (2010).

In practice, if this algorithm is employed, a tradeoff between these two extremes must be chosen by relative gain scaling
of the two innovations. Choosing gains is an important aspect of any practical implementation of an observer and is
discussed in the Simulation section.

6. Simulation results
Details of two simulations are provided to demonstrate the behaviour and capability of the proposed algorithm.

The first simulation demonstrates the functionality of the algorithm (Fig. 3-4) with noise in landmark measurements
and robot velocity estimates as well as moving landmarks. Although this is already a challenging scenario, the real
power of the proposed algorithm is demonstrated in the second simulation (Fig’s 5, 6, 7) where we use a simple 2D
example to study the global stability, robustness and computational cost of the proposed algorithm.
6.1. Demonstration of functionality

We consider the case of a vehicle equipped with a 3D-sensor, such as a stereo camera, observing an unknown
constellation of point feature landmarks. The vehicle moves along a roughly circular trajectory at a fixed altitude
(𝑧 = 5𝑚) above the ground with forward velocity 1.5m.s−1 while turning with angular velocity 0.5 rad.s−1, tracing out
a circular trajectory of radius 3m (Fig. 3). A Gaussian noise of standard deviation 5-10% relative error is added to the
system velocity and the corresponding trajectory is not exactly circular.

There are ten landmark features modeled of which five points are stationary while five points are initialised with
a random positive velocity of magnitude between 0 and 0.1m.s−1. The vehicle does not know which landmarks are
stationary in advance. All points are initialised randomly on the ground plane (𝑧 = 0) with the vehicle viewing them
from above (Fig. 3). Perfect data association was assumed and no landmark labelling errors are simulated.
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Figure 4: Evolution of the magnitude of velocity estimates |𝑤̂◦𝑤𝑖| for Experiment 2 (with noise). The �ve velocity estimates
associated with stationary points are clearly identi�ed with small velocity estimates. The mean of the vector velocity
estimates for these estimates converge to zero.

The observer gains 𝑘𝑖 = 0.05 and 𝑙𝑖 = 0.05 for 𝑖 = 1…10 are used. The velocity observer gain 𝑚𝑖 = 1 for
𝑖 = 1,… , 10, was used in order to impose time-scale separation between the convergence of the configuration error
and the velocity estimation. A higher gain in velocity estimation could be used, however, this would couple error in the
velocity estimation into the configuration estimation and impact the asymptotic performance of the filter (Fig. 4). The
performance of the integral velocity observer is clear in the convergence of the stationary landmark velocity estimates
to a noise floor near to zero, and the convergence of the moving landmark velocity estimates to constant magnitudes
in Figure 4. The stationary landmark velocity estimates have zero mean over time as can be seen from Figure 3.

The observer estimate is 𝜉(𝑡) = 𝜑(𝑋̂, 𝜉◦). This is an element of the SLAM manifold M𝑛(3), and as such does
not have separate robot pose and landmark estimates. The configuration plot, Figure 3, uses total space coordinates
(𝑥𝑃 , 𝑝̂1,… , 𝑝̂𝑛) with respect to a reference frame {0}. In order to visualise the error in the configuration estimate
effectively, we have used an invariance transformation 𝛼𝑆final where 𝑆final ∈ 𝐒𝐄(3) is chosen to map 𝑃final to 𝑃final. That
is, for the purposes of displaying the results, plot the total space coordinates of the observer trajectory in a frame of
reference such that the final pose of the observer matches the final pose of the true robot trajectory. As a consequence,
there will be zero error in the robot pose in the final instant, all the errors in the observer will be visible in the landmark
errors.
6.2. Robustness and Computational Comparison

In this section we consider the robustness of the proposed algorithm, and in particular its robustness to non-
Gaussian noise introduced through data association errors (mislabeling of landmarks). These errors are common
in real world systems Tombari et al. (2013) where feature detection and data association algorithms that identify and
remove outliers Tombari et al. (2013); Chin et al. (2016); Bustos and Chin (2017) consume a major part of the compu-
tational resources required for modern SLAM algorithms. To provide strong comparative evidence we keep the case
considered very simple, a square 2D trajectory (Fig. 5), and simulate the vanilla Extended Kalman Filter (EKF) SLAM
algorithm for comparison. This scenario minimizes the linearisation errors inherent in the EKF formulation and the
algorithm is known to perform well for 2D problems Stachniss et al. (2016); Durrant-Whyte and Bailey (2006); Bailey
and Durrant-Whyte (2006); Aulinas et al. (2008); Thrun (2002).

Figure 5 shows the comparison of the reconstructed trajectories generated by the proposed equivariant observer
and a classical extended Kalman filter algorithm for a typical simulation. The sensor range of the vehicle is modelled
as a hemi-disk of radius 1m and only map points within this range are observed at any given time. There were a total
of 200 points in the environment models, although not all were observed by the vehicle during the simulation. In
addition, when each point is observed and labelled we introduce a 5% probability of mislabelling, that is of associating
the observed point with the wrong point from previous measurements. To avoid unrealistic mislabeling we only allow
points to be mislabelled within the visible points at the time of sensing, a typical matching error for data association al-
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Figure 5: Reconstructed trajectory and map for Equivariant observer (in green) and Extended Kalman Filter (in blue).
The black trace in both plots indicates the true trajectory and the black crosses the true features. The robot is located
at the radial centre of the red hemi-disk, which denotes the sensor range. Sensor measurements and vehicle odometry are
corrupted by noise of relative magnitude 5-10%. In addition, the data association fails with probably 5%, however, we only
allow mislabeling within the locally observed subset of points. The global robustness of the proposed equivariant observer
deals well with the high noise levels and provides a better solution than the extended Kalman �lter.

gorithms. In addition, measurement noise in the order of 5-10% (5cm standard deviation) is added to the measurements
and additional noise is added to the robot odometry. The noise parameters are deliberately highly challenging and the
algorithms are run on all data with no removal of outliers to emphasise the base level performance of the algorithms.
We use the true noise covariances (ignoring data association error) in both measurements and state processes to tune
the EKF gains. The equivariant observer uses observer gains 𝑘𝑖 = 1 and 𝑙𝑖 = 0.2 for 𝑖 = 1…10. The gain 𝑚𝑖 = 0 was
set to zero as only static environment points were considered.

Figure 6 graphs the results of the statistical study undertaken. The Root Mean Square Error (RMSE) of the map
quality is computed for a sample size of 500 simulations for each data association error probability setting. That
is 500 separate simulations similar to Figure 5, for independent noise and map locations, were run and the results
compiled to generate Fig. 6. The resulting sample statistics are shown in box plot format. The graph clearly shows the
advantage of the Extended Kalman Filter for very low data association error (less than 3% labelling error). Once the
data association error exceeds 3 mislabelled points per hundred matches, then the global stability and robustness of
the proposed equivariant observer comes into play outperforming the EKF formulation that relies on Gaussian noise
assumptions and local linearisation of the system equations.

The fragility of stochastic SLAM algorithms to data association errors is well known (Stachniss et al. (2016);
Cadena et al. (2016)). Modern SLAM pipelines include a range of heuristics and sophisticated algorithms to identify
and remove outliers (Tombari et al. (2013); Chin et al. (2016); Bustos and Chin (2017)). Although such algorithms
are effective, they also consume significant computational resources. The cost of outlier removal is in addition to the
cost of the feature extraction (common to all feature based algorithms) and the cost of computing the filter updates.
It is not possible to evaluate our algorithm against the plethora of robust stochastic algorithms used to reduce data
association errors, however, it is possible to evaluate the computational cost of computing the state estimate using
the equivariant algorithm and the extended Kalman filter as a lower bound to the expected computational cost of any
modern SLAM algorithm. Figure 7 plots statistics for a series of experiments in which the maps size was increased
from five points to two hundred points. At five points the underlying SLAM problem is not well conditioned, and even
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Figure 6: Errors in data association are introduced for each landmark �seen� by the robot sensors with a probability of
mislabling each point shown on the x-axis. The Root Mean Square Error (RMSE) of the map quality is computed for a
sample size of 500 simulations for each data probability of mislabeling. The mean and standard deviation of the RMSE is
shown in the box, and the full range of the RMSE is shown by the wiskers.

Figure 7: Statistics of the computational cost of updating one step of the SLAM algorithm is shown for a range of map
sizes. Neither algorithm was optimized and both algorithm were coded as variations of the same data structure, feature
extraction, etc. Satistics from a run of 500 indepedent simulations for each size of map are displayed as box plot.

highly optimized real-time SLAM and VIO algorithms tend to require at least 20-30 feature points active at any one
time. In this simulation that would require around 100 map points since most of the points are not visible to the robot
most of the time.

Most of the computational cost in the proposed algorithm is associated with the feature extraction process and the
cost of processing many points is negligible. The EKF algorithm, that maintains a covariance matrix has computational
cost that grows quadratically with map size in both computation and memory. In classical algorithms, this issue is
addressed by limiting the map size and working with sub-maps, however, the down side of such an approach is a loss
of performance in loop closure over longer trajectories.

The simulations demonstrate the potential of the proposed algorithm as a low computational cost, highly robust
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SLAM algorithm that can handle large map size and high levels of data association errors. A classical EKF outperforms
the proposed equivariant observer in map RMS error for data association error rates lower than two in a hundred
matches, is on par for mislabeling in the order of 3%, and the equivariant observer outperforms the EKF for higher
levels of mislabeling error. Moreover, a typical map size to demonstrate this performance is of the order of 100-200
points and the error correction benefit from correctly estimating the error covariance comes at significant computation
cost. Outlier detection is a computational cost that would be an additional load on the processor.

The example simulation Fig. 5 was done for 5% probability of mislabeling and shows that the equivariant observer
map and trajectory are clearly of higher quality than the corresponding EKF trajectory. Having said this, neither
trajectory demonstrates the high precision mapping quality that state-of-the-art SLAM algorithms with sophisticated
outlier removal can obtain. The map and pose estimate, however, are quite sufficient to provide spatial awareness to
IOT devices and to use as a navigational aid for consumer mobile robotic vehicles. In such applications there is a need
for a low complexity SLAM algorithm that is highly robust to non-Gaussian noise such as data association errors and
provides good enough map and pose estimates reliably.

7. Conclusion
This paper provides a detailed development of the equivariant structure of the classical landmark point SLAM

problem. The key contributions of the paper include; the development of the SLAM manifold M𝑛(3), demonstrating
that the SLAM kinematics are equivariant with respect to a group action of 𝐒𝐄𝑛+1(3) on M𝑛(3), and proposing an
observer with globally asymptotically stable error dynamics for landmark SLAM in dynamic environments.
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