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Abstract: This paper considers the design of nonlinear state observers for finite-dimensional
equivariant kinematics of mechanical systems. The observer design problem is approached by
lifting the system kinematics onto the symmetry group and designing an observer for the
lifted system. Two particular classes of lifted systems are identified, which we term type I and
type II systems, that correspond to common configurations of sensor suites for mobile robotics
applications. We consider type I systems in detail and define an error signal on the symmetry
group using the group structure. We propose an observer structure with a pre-observer or
internal model augmented by an equivariant innovation term that leads to autonomous error
evolution. A control Lyapunov function construction is used to design the observer innovation
that both ensures the required equivariance, and leads to strong convergence properties of the
observer error dynamics.

1. INTRODUCTION

Systems on Lie groups and their homogeneous spaces have
been studied extensively since the early 1970s, starting
with the work of Brockett [1972, 1973] and Jurdjevic
and Sussmann [1972]. Brockett’s work was motivated
by analytical mechanics and the study of mechanical
systems, see Brockett [1977]. The geometric description
of mechanical systems naturally leads to system models
on differentiable state manifolds that are acted upon by a
Lie group, the symmetry group of the mechanical system.
Control theory for mechanical systems with symmetry is
now a mature subject, and several textbooks on this topic
are available, e.g. Jurdjevic [1997], Bloch [2003], Agrachev
and Sachkov [2004] and Bullo and Lewis [2004]. Most of the
classical literature on system theory for mechanical systems
is focused on structure theory and control. Observers that
are specifically targeted at systems on Lie groups and their
homogeneous spaces, as opposed to more general nonlinear
systems, appear to have only been studied in the last ten
years, or so. We will survey this literature in more detail
below.

The structural question of observability has, however,
been studied in a series of papers starting with Brockett
[1972], with a more or less complete characterization given
in Cheng et al. [1990]. Apostolou and Kazakos [1996]
show how the resulting local observability criterion can
alternatively be derived using observability codistributions,
thus providing a link to the classical observabilty theory
for general nonlinear systems, see e.g. Nijmeijer and van
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der Schaft [1990] or Isidori [1999]. We will not study
observability questions in this paper.

We will study the observer problem for mechanical systems
with symmetry in a purely deterministic setup. Our work
is partly motivated by the need for highly robust and com-
putationally simple state estimation algorithms for robotic
vehicles. The classical approach to state estimation for
such applications is based on nonlinear filtering techniques
such as extended Kalman filters (Anderson and Moore
[1979]) unscented filters (Julier and Uhlmann [1997]) or
particle filters (Doucet et al. [2001]). Nonlinear observers
offer less information than a nonlinear filter, namely state
estimates rather than full posterior distributions for the
state, however, it is often possible to prove strong stability
results with large or almost global basins of attraction and
to provide computationally simple implementations of the
observers.

Another promising approach to state estimation for robotic
vehicles is a deterministic optimality based approach known
as deterministic filtering or minimum-energy filtering due
to Mortensen [1968]. In fact, it has recently been shown by
Zamani et al. [2013] that a second order minimum-energy
filter for attitude kinematics provides a geometric correction
to the Multiplicative Extended Kalman Filter (MEKF), a
state-of-the art stochastic filtering algorithm for attitude
estimation, cf. Crassidis et al. [2007]. A generalization of
minimum-energy filters to arbitrary mechanical systems
with symmetry is still work in progress but the resulting
filtering algorithms share many of the advantages and
disadvantages of stochastic filters.

One of the earliest applied results concerned the design of
a nonlinear observer for attitude estimation of a rigid-
body using the unit quaternion representation of the
special orthogonal group SO(3), Salcudean [1991]. This



work is seminal to a series of papers undertaken over
the last fifteen years that develop nonlinear attitude
observers for rigid-body dynamics; Nijmeijer and Fossen
[1999], Thienel and Sanner [2003], Mahony et al. [2005],
Bonnabel et al. [2006], Campolo et al. [2006], Maithripala
et al. [2006], Metni et al. [2006], Kinsey and Whitcomb
[2007], Martin and Salaün [2007], Tayebi et al. [2007],
Mahony et al. [2008], Vasconcelos et al. [2008], Brás et al.
[2011], Grip et al. [2012], Sanyal and Nordkvist [2012],
exploiting either the unit quaternion or the matrix Lie
group representation of SO(3). Recent observer designs
have comparable performance to state-of-the-art nonlinear
filtering techniques, Crassidis et al. [2007], generally have
much stronger global stability and robustness properties,
Mahony et al. [2008], and are simple to implement. The
full pose estimation problem has also attracted recent
attention, Vik and Fossen [2001], Rehbinder and Ghosh
[2003], Baldwin et al. [2009], Vasconcelos et al. [2010],
in which case the underlying state space is the Special
Euclidean group SE(3) comprising both attitude and
translation of a rigid-body. Another promising body of
applied work involves development of heading reference
systems for UAV systems, Salaün and Martin [2010].

Aghannan and Rouchon [2003] first recognized the impor-
tance of invariance properties of observers for mechanical
systems with symmetry. More recent work on understand-
ing the generic structure of observers for left invariant
systems on Lie groups and their homogeneous spaces,
Bonnabel et al. [2008], Mahony et al. [2008], Lageman
et al. [2009], has lead to an understanding of the role of
invariance properties of observer designs in relation to
the resulting observer error dynamics, see Bonnabel et al.
[2009], Lageman et al. [2010], Trumpf et al. [2012]. The
present paper contains further results in this direction.

In this paper we propose a general full state observer design
methodology for a class of kinematic systems with complete
symmetry. The focus on kinematic systems is natural for
a range of applied problems in mobile robotics that have
motivated the authors’ interest in this subject. Most mobile
robotic vehicles carry an inertial measurement unit (IMU),
global positioning system (GPS), tachometers, and other
velocity measurement systems as a matter of course. Such
systems provide reliable, low noise measurements of the
(inertial) velocity of the vehicle. In contrast, measurement of
the exogenous force and torque input to a robotic vehicle
is generally impossible. Even if force or torque signals
are available they are mostly of poor quality and would
degrade, rather than improve, estimates of the vehicle’s
state. In many real world applications, and certainly most
applications in mobile robotics, it is best to rely on velocity
measurements directly and use these, along with (partial)
state measurements to build an observer for the vehicle
state. It follows that kinematic models of the physical
system are the natural structure on which to base the
design of the observer.

Many physical systems, and most mobile robotic vehicles,
have physical models with symmetries that encode the
invariance of the laws of motion. That is, the behaviour
of the system at one point in space is no different from
its behaviour at another point in space, at least when
viewed through a symmetric transformation of space. Such
structure is of particular importance in the design of an

observer: if the behaviour of a system with symmetry can
be modeled and understood at one point in space, and this
model can be transported via the symmetry to all points
in space, then an observer design made at the reference
point can also be transported to all points in space to
obtain a global observer design. Observers designed using
this principle are known as equivariant observers and the
approach offers considerable benefits in design methodology
and error stability analysis.

The technical material in the paper begins (§2) by devel-
oping a modeling framework for the kinematics of systems
with complete symmetry. Much of this material is standard
in the literature, however, the focus on kinematic system
models changes the perspective and it is well worth covering
the material again. The modeling process leads us to
identify two special classes of kinematic mechanical systems,
type I and type II systems, that we consider in more detail.
Type I systems model the physical situation where both
the velocity sensors and the state sensors are mounted
on the body-fixed frame (or possibly both mounted in the
inertial frame) of a mobile vehicle. Type II systems are those
where the sensors are mounted in mutually opposite frames
of reference; for example, velocity sensors are mounted
on-board but the state measurement is provided by an
external sensor system mounted in the inertial frame
of reference. These two classes of systems comprise the
majority of mobile robotics applications that the authors
have encountered. In this paper we focus on type I systems,
the situation of most interest to the authors. Although we
make a number of comments about type II systems, we
leave a detailed discussion to future work.

The second technical section (§3) in the paper discusses full
state observer structure. We propose a structure based on
a pre-observer or internal model designed to replicate the
system kinematics, coupled with an innovation or error
correction term. The symmetry of the system is used
to define global error coordinates and we show how to
construct a pre-observer that is globally synchronous with
the system, that is the error between the pre-observer
and the system is constant along matching trajectories
for arbitrary velocity inputs. We consider only equivariant
innovations, that is innovations that depend on the relative
state of the system to the observer, as seen through
the symmetry action. There are a number of important
consequences of this structure, the most important being
the autonomy of the resulting error dynamics. This is a
crucial step in the design process as it is now possible to
design the observer innovation in error coordinates in a
way that is agnostic to the state of the system.

The next technical section (§4) tackles the observer synthe-
sis problem using Lyapunov design principles. We begin
with cost functions on the outputs that can be realized
from available measurements. By imposing invariance on
the costs we can lift these costs to a non-degenerate cost
in the error coordinates. For an actual design problem, the
simplest approach at this point is to undertake a direct
Lyapunov design process and we provide an example to
demonstrate how this can be done. In more generality, we
show how the cost can be used to define an equivariant
gradient innovation once an invariant metric on the Lie
group is defined. This construction leads to a gradient flow



in the error coordinates that is straightforward to analyze
for stability.

A final technical section (§5) is less formal and provides
the intuition and the main formulas required to extend
the proposed design methodology to an observer that also
estimates an unknown constant bias offset in the measured
velocity.

The paper is written from a rigourous point of view (at
least until §5) and full proofs of the results are provided.
This tends to make the development appear more abstract
than is truly the case. For all the applications that we have
encountered the calculations can be made using standard
matrix calculus and observer design for real world systems
can be undertaken without requiring the rather daunting
differential calculus that we are forced to use to derive
the general results. We have provided a running example
throughout the paper that demonstrates the methodology
in a way that cannot be seen by just reading the theorems.
In practice, the approach is simple and easily workable for
a wide range of important applications and has already
led to a range of highly effective observers in real world
systems.

2. EQUIVARIANT KINEMATIC SYSTEMS

In this section, we consider the structure of kinematic
systems with complete symmetries. Although this material
is closely related to work on the modeling of mechanical
systems (Marsden and Ratiu [1999], Bloch [2003], Bullo
and Lewis [2004]) and understanding their symmetries, the
focus on only the kinematics of the system leads to new
perspectives and warrants a careful development.

Definition 1. Let X , and Yi for i = 1, . . . , p be finite-
dimensional smooth real manifolds that are termed, re-
spectively, the state and output spaces. Let V denote a
finite-dimensional real vector space that is termed the
velocity space. A kinematic system is defined by state
equations

ẋ = f(x, v), (1a)

yi = hi(x) (1b)

for a smooth dynamics function f : X × V → TX , with
f(x, ·) : V→ TxX a linear map, and smooth output maps
hi : X → Yi. 4

For initial conditions x(0) we will denote the solution of
(1) by x(t;x(0)). We will assume that, given an exogenous
input signal v(t), there exist unique solutions on all time
intervals considered. The signals that we will use for the
observer construction are the (partial) state measurements
yi(t) and the velocity input v(t).

The structure that makes (1) a kinematic system rather
than a general model of non-linear dynamics is the vector
space structure of the input space V and the linearity of the
system function f(x, ·). This linearity in the input models
the natural linear structure of velocity.

Example 1.1. A physical direction of an inertial feature
(such as the magnetic field of the earth) relative to a
body-fixed frame (of a robotic vehicle to which a suite of
magnetometers is attached) can be modeled as a direction
on the two-sphere S2 embedded in R3. As the robotic vehi-
cle rotates the physical direction of the (inertially known)

magnetic field moves relative to the body-fixed frame. Such
kinematics are important in attitude estimation for mobile
robotic vehicles.

Given the state space X = S2 ⊂ R3. The kinematics
considered are

ẋ = x× Ω. (2)
where x ∈ X , Ω ∈ V ≡ R3 and × denotes the vector
product. The output is

y = x

where y ∈ Y ≡ S2 ⊂ R3.

The state x ∈ S2 is the direction of the inertial feature
relative to the body-fixed frame and as an element of
the coordinate space R3 is expressed in body-fixed co-
ordinates. Note that the actual state of the vehicle is
two-dimensional, while the parametrisation that we use
is the embedding into R3, leading to a three-dimensional
coordinate representation. The physical velocity of the
system f(x,Ω) = x × Ω (an element of TxS2), is the
motion of the inertial feature relative to the body-fixed
frame. However, this two-dimensional velocity can only
be globally parameterised via a three-dimensional object
Ω. Physically, Ω is the angular velocity of the body-fixed
frame relative to the inertial frame. As an element of the
coordinate space Ω ∈ V ≡ R3 it is expressed in body-fixed
coordinates. The output is the full state y = x.

This example is of interest for two reasons. Firstly, it is
necessary to use a three dimensional parametrisation of
velocity in order to get a global description of the two-
dimensional system kinematics in the form (1). The fact
that no global two-dimensional velocity parametrisation
exists is a consequence of the fact that TX is a non-trivial
vector bundle. 1 The fact that a global three-dimensional
parametrisation exists is a function of the embedding 2

X ↪→ R3 into Euclidean space. Secondly, the velocity
parametrization that we have used leads to an element
Ω that represents a velocity measurement physically made
relative to the inertial frame, for example, using a strap
down inertial measurement unit. In contrast, the output
measurement (in this case a full state measurement) is
physically made relative to the body-fixed frame. We will
see that this final point is a key observation, and will make
this system a type I system (Def. 5). 4
Example 2.1. A unicycle kinematic system, typically phys-
ically realized by two parallel wheels with castors front and
back to keep the vehicle from tipping, is one of the most
studied non-holonomic systems in the control literature
(see, e.g. Bloch [2003]). The kinematic state of the system
can be represented by the position and orientation of the
vehicle on a planar surface, the ground plane. Its speed and
angular velocity are measured using tachometers on each
driving wheel individually. In a typical robotics experiment
the vehicle position (but not its orientation) is measured
using an overhead camera.

This example is perhaps less compelling from an applica-
tions point of view than Example 1.1, however, it provides
1 Brockett [1977] resolves this issue by modeling such systems as
fiber bundle maps where the input fiber has the same dimension as
the state manifold.
2 According to the Whitney embedding theorem, any finite-
dimensional smooth manifold may be embedded into a Euclidean
space of high enough dimension.



a good demonstration of several of the principles of ob-
server design for symmetric systems, and almost everyone
in the audience will be familiar with the system.

The state-space considered is X = R2 × S1. The unicycle
kinematics are given by

ξ̇1 = cos(θ)u, (3a)

ξ̇2 = sin(θ)u, (3b)

θ̇ = q (3c)

for x = ((ξ1, ξ2)>, θ) ∈ X and velocity v = (u, q) ∈ V ≡
R2. The output is y ∈ Y = R2

y = (ξ1, ξ2)>.

The state x = ((ξ1, ξ2)>, θ) ∈ R2 × S1 is the position
and orientation of the unicycle with respect to an inertial
frame, written in inertial coordinates as an element of the
coordinate space R2 × R. The physical velocity f(x, v) =
((cos(θ)u, sin(θ)u)>, q) of the system is the motion of the
unicycle with respect to the inertial frame, expressed in in-
ertial coordinates. The system is non-holonomic and there
is a velocity constraint that enables one to parameterise
the physical velocity with two real parameters u, the scalar
speed, and q the angular velocity, (u, q) ∈ V ≡ R2. The
output is the location of the unicycle relative to the inertial
frame, expressed in inertial coordinates.

This example is of interest for two reasons. Firstly, the
input space V = R2 is lower dimensional than the tan-
gent space TxX . Secondly, the velocity measurement and
the output measurement are both physically made with
respect to the inertial frame. We will see that this final
point is a key observation, and will make this system a
type II system (Def. 4). 4

In local coordinates the system map of a kinematic system
has the form

f(x, v) =

m∑
i=1

Bi(x)vi

for suitable smooth functions Bi(x) and where the elements
v = (v1, . . . , vm) are associated with a basis decomposition
of the vector space V.

Let G be a finite-dimensional real Lie group. For arbitrary
A,B ∈ G, the group multiplication is denoted by AB, the
group inverse by A−1, and I denotes the identity element of
G. The associated Lie algebra is denoted g with Lie bracket
[V,W ] for V,W ∈ g. Define the left translation on the
group by LA : G→ G, LAB := AB. The right translation
RAB := BA is analogous. Although the results presented
in this paper hold for general (finite-dimensional) real Lie
groups, all the examples that we have considered involve
matrix Lie groups G ⊆ GL(n); that is closed subgroups of
the general linear group of all real invertible n×n matrices.
In this case the group multiplication is given by matrix
multiplication, the identity element is the identity matrix
and the group inverse is the matrix inverse. The associated
matrix Lie algebra is denoted g ⊆ Rn×n with Lie bracket
[V,W ] = VW − WV given by the matrix commutator.
Left and right translation LA (resp. RA) now have simple
algebraic expressions, and in particular for X ∈ G and
U ∈ g

dRX(I)U = UX, dLX(I)U = XU

where dRX(I) : TIG → TXG is the differential of RX at
I and similarly dLX(I) : TIG → TXG is the differential
of LX at I. More generally dRX1

(X2) : TX1
G→ TX2X1

G,
and dLX1

(X2) : TX1
G→ TX1X2

G. Where it is clear from
context we will omit the base point from differentials and
write dRX1

(resp. dLX1
) rather than the more general

dRX1
(X2) (resp. dLX1

(X2)). Identifying TIG ≡ g, the
adjoint representation for X ∈ G is the map AdX : g→ g,
AdX := dLX(X−1) ◦ dRX−1(I) = dRX−1(X) ◦ dLX(I).
The map AdX is a Lie algebra automorphism obtained
as the derivative of the inner Lie group automorphism
LX ◦RX−1 = RX−1 ◦ LX : G→ G. Note that the left and
right translation operations always commute. In a matrix
Lie group we have

AdX(U) = XUX−1

for X ∈ G and U ∈ g.

A right group action φ of G on a smooth manifold X is a
smooth mapping

φ : G×X → X ,
with φ(A, φ(B, x)) = φ(BA, x) and φ(I, x) = x. A left
group action is analogous with φ(A, φ(B, x)) = φ(AB, x).
The symmetry and invariance structure that we will develop
requires a choice of either right or left group actions.
Physical system models for observer design can be more
natural to model with one or the other handedness of the
symmetry, depending on the nature of the sensor systems
that are used and the way coordinates are chosen. Right-
handed invariance is the more natural representation to
analyze systems with body-fixed state sensors in the usual
coordinates used for physical system modeling. Left-handed
invariance is natural for systems with ground-based state
sensors. Since the majority of the applications that we have
considered involve body-fixed sensor systems we choose to
use right invariance (the less sinister option) to develop the
structure theory that we will use. Although it may be more
natural to model with one type of handedness, the actual
symmetry choice is an arbitrary modeling choice and can
be changed by re-defining the group multiplication 3 on
the symmetry group G and all results that we state have
direct analogues in the opposite handedness.

A group action induces smooth mappings φA : X → X for
A ∈ G by φA(x) := φ(A, x), and φx : G→ X for x ∈ X by
φx(A) := φ(A, x). The group action φ is termed transitive
if φx is surjective and in this case the manifold X is termed
a homogeneous space of G (Boothby [1986]). For a group
action φ : G×X → X , the stabilizer of an element x ∈ X
is given by

stabφ(x) = {A ∈ G | φ(A, x) = x},
and is a subgroup of G.

Definition 2. Consider the system (1). Consider right
(resp. left) group actions φ : G× X → X , ψ : G× V→ V
and ρi : G×Yi → Yi. The structure (G, φ, ψ, ρi) is termed
a symmetry of the system (1) if for all A ∈ G, x ∈ X and
v ∈ V one has

3 More precisely, the operation � : Ḡ× Ḡ→ Ḡ, A�B := BA turns
a copy Ḡ of the set G into a group Ḡ that is isomorphic to the group
G via A 7→ A−1. Given an action φ of G on X of either handedness,
φ̄ : Ḡ × X → X , φ̄(A, x) := φ(A, x) defines an action of Ḡ on X of
the opposite handedness.



dφA(x)[f(x, v)] = f(φ(A, x), ψ(A, v)), (4a)

ρi(A, hi(x)) = hi(φ(A, x)). (4b)

The symmetry is termed a complete symmetry if X is a
homogeneous space with respect to φ. A system with a
complete symmetry is said to be equivariant. 4 4
Example 1.2. Recall the scenario described in Example 1.1
and note that the velocity structure used is naturally
associated with rotation of a frame of reference attached
to the robotic vehicle {B} relative to an inertial frame
{A}. Express the orthonormal frame vectors of {B} in
coordinates of {A} to obtain an orthogonal matrix B. Let
{C} denote a rotated frame and express the orthonormal
frame vectors of {C} in coordinates of {A} to obtain
another orthogonal matrix C. The physical rotation Q of
{B} to {C} can be written in coordinates as Q = C>B.
A vector w ∈ {A} is rotated by the physical rotation Q
by w 7→ Qw. This is the standard orthogonal matrix
representations of the special orthogonal group SO(3).
Note that, unlike the matrices B and C, the columns of
Q ∈ SO(3) as a matrix do not carry the interpretation of
coordinates of a frame of reference with respect to {A}.
We claim that SO(3) is a symmetry group for Example 1.1
with actions

φ(Q, x) := Q>x,

ψ(Q,Ω) := Q>Ω,

ρ(Q, y) := Q>y,

for Q ∈ SO(3) as described above. It is straightforward to
verify that these are right group actions;

φ(Q1, φ(Q2, x)) = Q>1 Q
>
2 x = (Q2Q2)>x = φ(Q2Q1, x),

etc. It is trivial to verify that φ is transitive on S2. Clearly,
ρ(Q, h(x)) = Q>x = h(φ(Q, x)) and it remains to show
that the kinematics are equivariant. One has

dφQ[ẋ] = Q>(x× Ω)

= Q>x×Q>Ω = φ(Q, x)× ψ(Q,Ω).

The SO(3) symmetry expresses the physical fact that the
laws of motion, in this case just the kinematics, do not
depend on the orientation of the vehicle. 4
Example 2.2. Recall the unicycle from Example 2.1. The
special Euclidean group SE(2) is the set of rigid-body
transformations of two-dimensional Euclidean space. An
element of Q ∈ SE(2) is parameterized by a rotation

R(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
and a translation z ∈ R2. The classical homogeneous
coordinates of Q are given by

Q =

(
R(α) z

0 1

)
. (5)

We claim that SE(2) is a symmetry group for (3) with
actions

φ(Q, (ξ, θ)) := (R(α)ξ + z, α+ θ),

ψ(Q, v) := v,

ρ(Q, y) := R(α)y + z,

for Q ∈ SE(2) as described above. It is straightforward to
show that φ is a left group action by representing the state
x = (ξ, θ) in homogeneous coordinates as

4 Note that some authors use the term equivariant without requiring
that G acts transitively on X .

xh =

(
R(θ) ξ

0 1

)
and noting that φ(Q, x)h = Qxh, i.e. the action φ corre-
sponds to left matrix multiplication in homogeneous co-
ordinates. This also implies that the action φ is transitive
on X . The trivial group action ψ is both right and left
handed, while ρ is a left action since it is just the first
component of φ.

To show that the kinematics are equivariant we need to
compute the differential dφQ(x). For a tangent vector

(ξ̇, θ̇) ∈ TxX one has

dφQ(x)[(ξ̇, θ̇)] = (R(α)ξ̇, θ̇).

Thus, for f(x, v) = ((cos(θ)u, sin(θ)u)>, q) one has

dφQ[f(x, v)] =

(
R(α)

(
cos(θ)
sin(θ)

)
u, q

)
=

((
cos(α+ θ)
sin(α+ θ)

)
u, q

)
= f(φQ(x), ψ(Q, v)).

Note that f(x, v) is independent of ξ in x = (ξ, θ), so only
the angle component α + θ of φQ(x) matters for the last
step in this calculation. The output equivariance is trivial
since

ρ(Q, h(x)) = ρ(Q, ξ) = h(φQ(x))

by definition. The SE(2) symmetry expresses the physical
fact that the kinematics of the unicycle do not depend
on its pose. The left handedness of the symmetry is
due to the (natural) choice of coordinates and could
be turned into a right handedness by re-defining the
group multiplication on SE(2). The only place where this
matters in the subsequent calculus is where concatenations
of action maps occur. Swapping the handedness of the
group multiplication will then turn left translations LX
into right translations RX and vice versa. 4

To simplify the exposition, we will from now on concentrate
on the case of right handed symmetries in the theoretical
development. We will occasionally point to the necessary
modifications for the left handed case.

Consider the kinematics (1) and fix a point x0 ∈ X . The
approach that we take to the observer design problem is
to use the symmetry of a kinematic system (1) to lift to
a new system on the symmetry group. To do this we will
choose a velocity lift Fx0

: V→ g such that

dφx0(I)[Fx0(v)] = f(x0, v). (6)

To see that such a map always exists, at least for the case
of equivariant kinematics with a complete symmetry, let
k = ker dφx0(I), the Lie algebra of the stabilizer stab(x0).
Choose a complementary subspace h ⊂ g of k in g such that
g = k⊕ h. Since X is a homogeneous space of G, note that
dim(h) = dim(TxX ). Define a map F h

x0
: V→ h implicitly

by

F h
x0

(v) ∈ h, (7a)

dφx0(I)[F h
x0

(v)] = f(x0, v) (7b)

for v ∈ V. This construction is well defined since the
linear map dφx0(I) restricted to h, dφx0(I)|h : h→ Tx0X ,
is bijective due to the transitivity of φ. Although this
construction will always yield some velocity lift Fx0 ,



it is generally best to choose Fx0
carefully with some

consideration of the physics of the problem.

Given a choice of Fx0
, define a (system) function F : G×

V→ TG by

F (X, v) := dRX(I)[Fx0
(ψ(X−1, v))] ∈ TXG (8)

where we associate the tangent space TXG = dRX(I)[g]
for all X ∈ G. 5

Lemma 1. Consider a system (1) that is equivariant with
respect to a right handed complete symmetry (G, φ, ψ, ρi).
Choose any point x0 ∈ X , a function Fx0

that satisfies (6)
and define F by (8). Then for any X ∈ G and x = φ(X,x0)
one has

dφx0
(X)[F (X, v)] = f(x, v). (9)

4

Proof: Compute

dφx0(X)[F (X, v)] =dφx0(X)
[
dRX(I)[Fx0(ψ(X−1, v))]

]
=d (φx0

◦RX) (I)[Fx0
(ψ(X−1, v))]

=d (φX ◦ φx0
) (I)[Fx0

(ψ(X−1, v))]

=dφX(x0)
[
dφx0(I)[Fx0(ψ(X−1, v))]

]
=dφX(x0)[f(x0, ψ(X−1, v))]

=f(φ(X,x0), ψ(X,ψ(X−1, v)))]

=f(φ(X,x0), v).

The step from line 2 to 3 depends on the right group action
structure of φ. 4
Note that dφx(A)[F (A, v)] 6= f(φ(A, x), v) in general and
(9) does not generalize to shifting the base point. This is
because construction of Fx0

, and hence of F (A, v), depends
explicitly on the choice of base point x0, effectively the
choice of a base point for a frame of reference in which
to write down a coordinate expression of the system
kinematics.

Lemma 1 is important because it allows us to lift the system
(1) to an equivariant system on G. Before defining the lifted
system, we need to consider the structure of the outputs in
more detail. Fix a reference x0 ∈ X and set x = φ(X,x0).
For each output yi we define a reference output ẙi ∈ Yi by

ẙi := hi(x0), i = 1, . . . , p. (10)

The output model for the lifted equivariant system can now
be rewritten as the group action ρi acting on the reference
point ẙi,

yi = hi(x) = hi(φ(X,x0))

= ρi(X,hi(x0)) = ρi(X, ẙi). (11)

The reference ẙi is defined using the reference x0, however,
it is really the reference ẙi ∈ Yi itself that is fundamental
to the observer design problem. In many applications the
output hi comes naturally as a group action acting on an
a-priori known element ẙi. The group action ρi can then
be thought of as encoding the relationship between two
separate measurements, generally in different frames of
reference, of the same physical variable, yi = ρi(X, ẙi).

In the definition of a lifted system we will distinguish
between the symmetry group G, and the space in which the
lifted kinematics live; that looks like G but only the smooth

5 This construction is adapted to a right handed symmetry; given a
left handed symmetry it is necessary to replace RX by LX .

manifold structure is required for the system kinematics.
A G-torsor, G, is defined as the set of elements of G
equipped with its manifold structure, but without the
group structure. Right translation defines a group action
of G on G via R : G× G → G, R(A,X) := XA where the
identification between elements of G and G is used to apply
the multiplication, in the case of matrix groups it is simply
matrix multiplication.

Definition 3. Consider a kinematic system (Def. 1) that
is equivariant with respect to a right handed complete
symmetry (G, φ, ψ, ρi) (Def. 2) for the Lie group G. Fix
a point x0 ∈ X and a velocity lift Fx0

: V → g that
satisfies (6). Define the lifted system function F (X, v) by
(8). Define reference outputs ẙi by (10) for i = 1, . . . , p.

A lifted equivariant system is defined to be the system on
the G-torsor G

Ẋ := F (X, v), (12a)

yi := ρi(X, ẙi) =: Hi(X) (12b)

for v ∈ V and initial condition X(0) ∈ G such that
φx0

(X(0)) = x(0) projects to the initial condition of (1).

This definition is justified by the following lemma. 6

Lemma 2. Consider equivariant kinematics (1) with a
lifted system (12) (Def. 3). Then the lifted system (12)
is equivariant with respect to the complete symmetry
(G, R, ψ, ρi). Moreover, the solutions X(t;X0) of (12)
project to solutions x(t;x0) of (1) via

φ(X(t;X0), x0) = x(t;x0).

4

Proof: To prove the equivariance note that R is transitive
by definition and compute

dRA(X)[F (X, v)]

=dRA(X)dRX(I)[Fx0
(ψ(X−1, v))]

=d(RA ◦RX)(I)[Fx0
(ψ(X−1, ψ(A−1A, v)))]

=d(RXA)(I)[Fx0(ψ(A−1X−1, ψ(A, v)))]

=d(RRAX)(I)[Fx0(ψ((RAX)−1, ψ(A, v)))]

=F (RAX,ψ(A, v))

This proves (4a). To see (4b) note that

Hi(RAX) = ρi((RAX), ẙi)

= ρi(A, ρi(X, ẙi))

= ρi(A, ρi(X, ẙi))

= ρi(A,Hi(X))

Consider a solution X = X(t;X(0)) of (12) and com-
pute the time derivative of the projection x(t) =
φx0

(X(t;X(0))):

6 If we started out with a left handed symmetry and defined the
lifted system function accordingly, the lifted system would turn out
to be equivariant with respect to the complete symmetry (G, L, ψ, ρi)
instead.



d

dt
φx0(X(t;X(0))) = dφx0(X)F (X, v)

= dφx0
(X)dRX(I)[Fx0

(ψ(X−1, v))]

= d(φx0
◦RX)(I)[Fx0

(ψ(X−1, v))]

= dφX(x0)dφx0(I)[Fx0(ψ(X−1, v))]

= dφX(x0)f(x0, (ψ(X−1, v))

= f(φX(x0), ψ(X,ψ(X−1, v))) = f(x, v).

Since x(0) = dφx0
(X(0)) by definition, then from unique-

ness of solutions it is clear that x(t) = φx0
(X(t;X(0))) =

x(t;x(0)) is the solution of (1). 4
Example 1.3. Recall the scenario described in Exam-
ple 1.1. The Lie algebra of SO(3) is the set of skew
symmetric 3× 3 matrices

so(3) = {W ∈ R3×3 W = −W>}.
Fix x0 = e3 ∈ S2 where e3 = (0, 0, 1)> is the unit vector
in third axis of R3. We choose a velocity lift

Fe3(Ω) =

(
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

)
=: Ω×.

To verify (6) note that the Fréchet derivative

Dφe3
(Q)[WQ] = W>Q>e3 = −WQ>e3

since W ∈ so(3). Evaluating at Q = I and applying to
Fe3(Ω) yields

dφe3(I)[Fe3(Ω)] = −Ω×e3 = −Ω× e3

= e3 × Ω = f(e3,Ω)

and hence the choice of Fe3
satisfies (6). Note that only

the elements Ω2 and Ω3 actually contribute to the image
dφe3

(I)[Fe3
] since ker dφe3

(I) = span{e1}.
The system function (8) is

F (X,Ω) := dRX(I)Fe3
(ψ(X−1,Ω)

= ((X−1)>Ω)×X = (XΩ)×X

= XΩ×X
>X = XΩ×,

since X−1 = X> because X ∈ SO(3) and using the easily
verified result that (XΩ)× = XΩ×X

>. That is the lifted
kinematics are

Ẋ = XΩ× = dRX AdX(Ω×). (13)

The reference output is ẙ = h(e3) = e3. Then

H(X) := ρ(X, e3) = X>e3 = y.

In the context of the attitude estimation application this
models an inertial direction e3 corresponding to a physical
direction such as the gravitational field, measured in body
fixed coordinates y = X>e3.

It is also interesting to verify that the lifted dynamics do
project to the kinematic system (2). This can be seen by
computing

d

dt
φe3(X) = Dφe3 [XΩ×]

= −Ω×X
>e3 = −Ω×x

= −Ω× x = x× Ω.

4
Example 2.3. Recall the scenario described in Exam-
ple 2.1. The Lie algebra of SE(2) is the set

se(2) =

{(
0 a w1

−a 0 w2

0 0 0

)
∈ R3×3 a,w1, w2 ∈ R

}
. (14)

We write w = (w1, w2) and

a× =

(
0 a
−a 0

)
then W = W (a,w1, w2) ∈ se(2) can be written in block
form

W =

(
a× w
0 0

)
.

Fix x0 = (0, 0, 0) ∈ X corresponding to the origin of the
inertial frame with zero orientation. We choose a velocity
lift

F0(u, q) =

(
0 q u
−q 0 0
0 0 0

)
.

Note that

φ0(Q) = (R(α)0 + z, α+ 0) = (z, α)

for an element Q ∈ SE(2) parameterized by (5). For
W ∈ se(2) parameterized by (14) and A as in (5) then
it is straightforward to verify that

QW =

(
R(α)a× R(α)w

0 0

)
. (15)

Consider the derivative

Dφ0(Q)[QW ] = (R(α)w, a). (16)

This formula follows from the fact that the rate of change
of α in R(α)a× is a. Evaluating at Q = I, i.e. R(α) = I
and z = 0, and applying to F0(v) yields

dφ0(I)[F0(u, q)] = ((u, 0)>, q) = ((cos(0)u, sin(0)u)>, q)

= f(0, v).

It follows that the choice of F0 satisfies (6).

The system function (8) is

F (X, v) := dLXF0(ψ(X−1, v)) = XF0(v)

=

(
R(θ) ξ

0 1

)(
q× ( u0 )
0 0

)
=

(
R(θ)q× R(θ) ( u0 )

0 0

)
.

That is the lifted kinematics are

Ẋ = XF0(v) = dR̄XF0(v), (17)

where R̄X = LX is the right translation with respect to the
re-defined group multiplication on SE(2) that is turning
our left handed equivariance into a right handed one.

To see that this projects to the kinematics (3) then we
compute

d

dt
φ0(X) = Dφ0[XF0(v)] = (R(θ) ( u0 ) , q)

= ((cos(θ)u, sin(θ)u)>, q) = f(x, v),

where the second equality on the first line follows from
(16) with suitable substitution of variables. The reference
ẙ = h(0) = 0. Then

H(X) := ρ(X, 0) = ξ = y.

That is, the measurement is the observation of the position
of the unicycle expressed in inertial coordinates. 4

There are two special cases of equivariant kinematics (1)
that we identify corresponding to particular properties of
the velocity group action ψ and the resulting properties
of the lifted system on the symmetry group torsor. We
distinguish between general (right) equivariant kinematics
on a torsor, such as (12a), and those that can be written



as Ẋ = dRX AdX(Fx0
(v)) or Ẋ = dRXFx0

(v). 7 We refer
to these two special classes of systems as type I and type
II, respectively. Type II systems have the simpler physical
intuition and have been studied in the control literature
(Brockett [1972, 1973], Jurdjevic and Sussmann [1972],
Cheng et al. [1990], Apostolou and Kazakos [1996]). It
turns out that it is type I systems that model the typical
applications in mobile robotics that motivated the authors’
work and the authors are unaware of work that considers
such systems explicitly other than their own (Lageman
et al. [2010], Trumpf et al. [2012]). We will describe type
II systems first as they have the simpler physical intuition,
and then describe type I systems.

Definition 4. Consider a right equivariant kinematic sys-
tem (1) with complete symmetry (G, φ, ψ, ρi). Then this
system is said to be a type II system if ψ(A, v) = v for all
A ∈ G.

Consider the lifted equivariant system associated with a
type II system,

Ẋ = F (X, v) = dRXFx0
(ψ(X−1, v))

= dRXFx0(v),

yielding a type II system on the G-torsor G. For a matrix
Lie group G, this system has the standard form Ẋ = UX,
U ∈ g on G. This corresponds to a family of right invariant
vector fields on the Lie group G parametrized by the input
U ∈ g.

The underlying structure that leads to type II systems
(and later to type I systems) comes from the physics of
the system, in particular the way in which the velocity
measurement interacts with the system symmetry. In the
case of type II systems, the velocity parametrization of
(1) is independent of the frame of reference in which the
system is expressed. That is,

dφA(x)[f(x, v)] = f(φA(x), v). (18)

For the usual choice of coordinates and the right-handed
equivariance, this corresponds to the case where velocity
is measured with respect to the body-fixed frame. For
the same coordinates but left-handed equivariance, this
analogously corresponds to the case where velocity is
measured with respect to the inertial frame.

Example 2.4. The non-holonomic unicycle from Exam-
ple 2.1 is left equivariant in the usual coordinates and the
velocity v = (u, q) is measured with respect to the inertial
frame by the onboard tachometers. 4
Definition 5. Consider an equivariant kinematic system
(1) with right-handed symmetry (G, φ, ψ, ρi). Then this
system is said to be a type I system if there exists a velocity
lift Fx0

satisfying (7) such that

AdX(Fx0(v)) = Fx0(ψ(X−1, v)). (19)

The intuition in this definition is again seen at the level of
the lifted system on the G-torsor G. In this case one has

Ẋ = F (X, v) = dRXFx0
(ψ(X−1, v))

= dRX AdX(Fx0(v)) = dRXdLXdRX−1Fx0(v)

= dLXFx0
(v),

since left and right translation commute. For a matrix Lie
group G, these kinematics have direct velocity parametriza-
7 In the left equivariant calculus we would need to replace RX by
LX and AdX by AdX−1 .

tion Ẋ = XU , U ∈ g on G, corresponding to a family of
left invariant vector fields on the Lie group G parametrized
by the input U ∈ g. For the usual choice of coordinates
and right-handed equivariance, this structure corresponds
to the case where velocity measurements are made with
respect to the inertial frame.

Example 1.4. Recall the scenario described in Exam-
ple 1.1. A typical velocity measurement for an attitude
observation problem comes from a strap down inertial
measurement unit (IMU). The gyroscopes on such a device
use inertial effects to measure the angular velocity of the
body-fixed frame with respect to the inertial frame. Note
that the measured velocity is expressed in the body-fixed
frame, but this should not be confused with the reference
frame with respect to which the measurements are made.
The group coordinates X ∈ SO(3) are chosen to represent
the orientation of the body-fixed frame with respect to
the inertial frame. The key driver for the choice of right-
handed symmetry in the model is the output equation

y = X>ẙ.

This physically models a process where the inertial direc-
tion ẙ is measured in the body-fixed frame. However, the
inverse X−1 = X> in the group action imposes a right-
handed equivariance on the output measurement in these
group coordinates. Given that the output equation has
imposed a right-handed symmetry it is necessary to model
the kinematic symmetry as a set of right-handed actions.
Such a symmetry is provided by the definitions of φ and
ψ given in Example 1.2. The structure of the ψ action is
a consequence of the relationship of the physical velocity
measurement to the various choices of symmetry imposed
by the choice of coordinates and the natural symmetry of
the output measurement.

The type I nature of the system is easily verified

Fx0
(ψ(X−1, v)) =((X−1)>Ω)× = (XΩ)×

= AdX(Ω×) = AdX(Fx0
(v)).

4

It appears to be much more challenging to verify the
algebraic conditions of Definition 5 than Definition 4 since
the former requires a choice of Fx0

. However, if the physical
modeling is undertaken with care, our experience shows
that this leads naturally to the required structure and
makes the identification of type I or type II systems
straightforward.

The difference between type I, type II and general equiv-
ariant systems on the symmetry group torsor is really a
consequence of how velocity is parameterized in the physical
system. If one allows the freedom to change the way in
which the velocity is parameterized in the model in a state-
dependent way then one may choose a new velocity

vnew = ψ(X−1, vold)

to transform any equivariant system into a type II system
Ẋ = dRX (Fx0(vnew)). Such a transformation is state-
dependent of course, and the new velocity vnew cannot
be ‘measured’ using the old velocity sensors because they
will be physically placed incorrectly in the system. If the
full system state were known, then the state dependent
transformation ψ(X−1, ·) would be exactly the operation
required to infer the new velocity from the old physical



velocity sensor, a transformation that is clearly of no
practical use in designing observers.

The terms type I and type II are deliberately chosen to be
agnostic to the handedness of equivariance of the underlying
kinematic system, since the handedness is a matter of
modeling choice, while the type of system depends on the
physical relationship between the sensors.

3. OBSERVER STRUCTURE THEORY

In this section, we propose a structure for the design of
equivariant observers and derive invariance properties of
the associated error kinematics.

The proposed approach is to design an observer for the
lifted equivariant system (12) and then project this down
to X to obtain an observer on the original system state
space. We use X̂ ∈ G (where G is the G-torsor) to denote an
estimate for the lifted system state X(t;X(0)) for unknown
X(0). The fundamental structure for the observer that
we consider is that of a pre-observer (or internal model)
(Bonnabel et al. [2009, 2008], Lageman et al. [2010]) with
innovation. The pre-observer is a copy of the lifted system
kinematics (12) with X̂ replacing X

˙̂
X = Fx0

(ψ(X̂−1, v))X̂ (20)

and depends on v ∈ V and the observer state X̂. The
innovation ∆ ∈ g is an error correction term. It takes
outputs {yi} and the observer state X̂ and generates a
correction term for the observer dynamics with the goal
that X̂ → X(t,X(0)), or at least that x̂ = φ(X̂, x0)
converges to x(t;x(0)). Thus, the proposed observer for a
lifted equivariant systems has the form

˙̂
X = Fx0

(ψ(X̂−1, v))X̂ − dRX̂∆(X̂, y1, . . . , yp), (21a)

x̂(t) = φx0(X̂(t; X̂(0)) (21b)

for X̂(0) ∈ G some initial condition, typically X̂(0) = I,
and x0 chosen as the best a priori guess of x(0).

The observer (21) described above could be analyzed locally
by exploiting the equivariance of the underlying kinematics,
see Bonnabel et al. [2008, 2009]. Indeed, if a local approach
based on equivariance is taken, then there is no real need to
lift the system on to the symmetry group torsor, a moving
frame approach can be taken directly on the state space,
cf. Bonnabel et al. [2008]. By lifting onto the symmetry
group torsor, however, it is possible to provide global
analyses and design methodologies for the cases of type I
and type II systems, see Mahony et al. [2008], Lageman
et al. [2010], Trumpf et al. [2012]. Since there is a large class
of applications, indeed most applications the authors are
aware of, that can be modeled as type I and type II systems,
this warrants a careful development of this approach.

3.1 Pre-observers and error functions

In order to study the relationship between two trajectories
on G, we will introduce a (smooth) error function

E : G × G →M, (22)

where M is a smooth manifold. The role of the error E is
analogous to the vector error x̃ = x̂−x in providing a global
comparison between trajectories in classical linear observer

theory. Note that in linear observer theory the scalar norm
of the error ||x̃||2 is also used as a quantitative measure
of observer performance. We make a distinction between
the error function E (x̃ in the linear theory), a multi-
dimensional map that allows comparison of trajectories of
the pre-observer; and a cost function, that we will define in
§4 (||x̃||2 in the linear theory), that is used as a Lyapunov
function during the design of the innovation term.

Two particularly simple error functions on a Lie group
torsor G are the canonical type I error EI : G × G → G,

EI(X̂,X) := X̂X−1, (23)

and the canonical type II error EII : G × G → G
EII(X̂,X) := X−1X̂, (24)

both defined for an underlying right equivariant model. 8

Where the arguments X̂ and X are clear from the context
we simply write EI and EII. Observe that both EI and
EII are non-degenerate in the sense that the partial maps
E(X̂, ·) : G → G and E(·, X) : G → G from either error are
global diffeomorphisms.

Both type I and type II errors have natural invariance
properties. The type I error has a symmetry that matches
that of the underlying kinematic model. That is, given right-
handed symmetry of the kinematics then the matching
symmetry on the Lie-group is right translation RS . For all
X̂,X ∈ G, S ∈ G, one has

EI(RSX̂, RSX) = X̂SS−1X−1 = EI(X̂,X).

The type II error has the opposite symmetry to that of the
underlying kinematic model

EII(LSX̂, LSX) = X−1S−1SX̂ = EII(X̂,X).

The structure of type I and type II errors is coupled to
the structure of type I and type II systems, respectively.
Consider a type I lifted equivariant system (Def. 5) and the

pre-observer (20). For any initial conditionsX(0), X̂(0) ∈ G
one has

d

dt
EI =

d

dt
[X̂]X−1 + X̂

d

dt
[X−1]

=
(
AdX̂ Fx0(v)

)
X̂X−1 − X̂X−1 d

dt
[X]X−1

= X̂Fx0
(v)X−1 − X̂X−1 (AdX Fx0

(v))XX−1

= X̂(Fx0(v)− Fx0(v))X−1

= 0.

It is worth observing that the same error properties do not
hold for the type II error and type I systems

d

dt
EII =

d

dt
[X−1]X̂ +X−1 d

dt
[X̂]

= −X−1(AdX Fx0
(v)))XX−1X̂

+X−1(AdX̂ Fx0
(v)))X̂

= −Fx0
(v)EII + EIIFx0

(v)

=
(
−Fx0(v) + AdEII

Fx0(v)
)
EII.

A similar computation to the above shows that type II
lifted equivariant systems are compatible with the EII error
and not compatible with the EI error.

8 Should one choose to model the underlying kinematic system with
the opposite equivariance then the definitions of type I and type II
errors would switch.



The analyses for type I and type II systems have many
similarities but vary substantially in detail at the point
where the outputs are considered. In the name of conceptual
simplicity, and in order to keep the length of the paper
within reason, we will concentrate on type I systems from
this point on in this paper. Type I systems provide a model
for a wide range of applications in mobile robotics that
have motivated much of the authors’ work in this area.

3.2 Equivariant innovations

Since we will need to deal extensively with elements of all
output spaces at the same time in the sequel we introduce
notation. Define the product output space Y by

Y = Y1 × · · · × Yp.
We will write y, ẙ, eI ∈ Y with

y = (y1, . . . , yp), ẙ = (ẙ1, . . . , ẙp), eI = (eI
1, . . . , e

I
p)

where eI is the output error that we will introduce in
Definition 7 below.

The innovation is a function of the observer state X̂ ∈ G
and measurements y ∈ Y with parameters ẙ ∈ Y

∆: G × Y × Y → g, (25)

(X̂, y; ẙ) 7→ ∆ẙ(X̂, y).

The reference outputs ẙi = hi(x0) are important constant
parameters in the observer design and it is useful to keep
them explicitly in the notation. The driving term in (21) is

actually −dRX̂∆ = −∆X̂, however, since the goal of our
work is to design equivariant observers then it is appropriate
to left trivialize the innovation to the Lie algebra. In
general, one may allow ∆ to also depend on velocity and
time, however, neither of these generalizations lead to any
advantage in observer design (Lageman et al. [2010]) and
the development is simpler and more direct without the
added complexity. Where the arguments (X̂, y; ẙ) are clear
from context we will simply write ∆.

Definition 6. An innovation (25) is termed equivariant if
for all S ∈ G, yi, ẙi ∈ Yi, then

∆ẙ(RSX̂, ρ
1(S, y1), . . . , ρp(S, yp)) = ∆ẙ(X̂, y1, . . . , yp).

The key advantage of working with an equivariant innova-
tion is that the observer design problem can be reduced to
a Lyapunov argument in suitable error coordinates. The
structure developed so far leads to the following theorem.

Theorem 1. Consider a type I lifted system (Def. 5) with
the observer (21). Then the dynamics of the canonical
error EI is autonomous if and only if the innovation term
∆ is equivariant. The autonomous error dynamics for an
equivariant innovation has the form

d

dt
EI = −dREI

(I)∆ẙ(EI, ẙ). (26)

4

Proof: The error dynamics is given by

d

dt
EI =

d

dt
[X̂]X−1 + X̂

d

dt
[X−1] (27)

=
(
AdX̂ Fx0

(v)
)
X̂X−1 −∆ẙ(X̂, y)X̂X−1

− X̂X−1 (AdX Fx0(v))XX−1

= −∆ẙ(X̂, y)EI. (28)

If ∆ẙ(X̂, y) is equivariant then

∆ẙ(X̂, y) = ∆ẙ(RX−1X̂, ẙ) = ∆ẙ(EI, ẙ)

and the error dynamics are autonomous and of the form
(26).

On the other hand, if the error dynamics are autonomous
then from (28)

∆ẙ(X̂, y) = −dRE−1

I

d

dt
EI

and the right hand side is a function only of EI; that is,
it cannot depend independently on the signals X̂, X or y.
Since the error is equivariant then for any S ∈ G one has
EI(RSX̂, RSX) = EI(X̂,X) and autonomy of the above
expression ensures that

dREI(RSX̂,RSX)−1

d

dt
EI(RSX̂, RSX) = dRE−1

I

d

dt
EI.

Write ∆ẙ(X̂, y) = ∆ẙ(X̂, ρi(X, ẙ)) and compute

∆ẙ(RSX̂, ρ
i(S, y)) = ∆ẙ(RSX̂, ρ

i(RSX, ẙ))

= −dREI(RSX̂,RSX)−1

d

dt
EI(RSX̂, RSX)

= −dRE−1

I

d

dt
EI = ∆ẙ(X̂, ρi(X, ẙ))

= ∆ẙ(X̂, y).

It follows that the innovation is equivariant. 4

3.3 Output errors

Since we will ultimately construct an invariant innovation
based on invariant cost functions on the output spaces, we
introduce output error coordinates that are adapted to the
given equivariance structure.

Definition 7. Consider a lifted equivariant system (Def. 3).

Given an estimate X̂ ∈ G then define the type I output
error eI

i : G × Yi → Yi by

eI
i(X̂, yi) := ρi(X̂−1, yi). (29)

Where the arguments are clear from context we will simply
write eI

i.

Note that eI
i is implementable, since yi is measured and X̂

is known from the observer state. The error eI
i(X̂, yi) has

a natural equivariance;

eI
i(RSX̂, ρ

i(S, yi)) = ρi((RSX̂)−1, ρi(S, yi))

= ρi(S−1X̂−1, ρi(S, yi))

= ρi(X̂−1, ρi(S−1, ρi(S, yi)))

= ρi(X̂−1, yi) = eI
i(X̂, yi)

associated with the equivariance of the underlying system
kinematics. Indeed, the error eI

i inherits this equivariance
from the symmetry of the output yi encoded in the ρi

group action. The above construction is a specific example
of an invariant output error (Bonnabel et al. [2008]).

This invariance leads to the following structure

eI
i(X̂, yi) = ρi(X̂−1, ρi(X, ẙi)) = ρi(XX̂−1, ẙi)

= ρi(E−1
I , ẙi) = eI

i(E
−1
I , ẙi)

It follows that for X̂ = X, then eI
i = ẙi, that is eI

i is
‘centred’ on the reference ẙi. The above computation also
demonstrates that eI

i is adapted to the EI error.



Example 1.5. Recall the scenario described in Exam-
ple 1.1. The reference output was ẙ = e3 with measure-
ment y = ρ(X, e3) = X>e3.

The output error is

eI = ρ(X̂−1, y) = X̂y.

This can be written

eI = X̂X>e3 = X̂X>e3 = EIe3 = ρ(E−1
I , e3).

4
Remark 1. In prior work (Trumpf et al. [2012], Lageman
et al. [2010]) an output yi was termed complementary
to an invariant system on the Lie-group if it had the
opposite equivariance to that of the group kinematics. In
those papers, complementary outputs to a left equivariant
system would have right symmetry, and vice versa. The
equivalent situation in the present development has the
underlying symmetry of the kinematics as the primary
equivariance. However, type I systems are defined in such
a way that they have the opposite equivariance on the
group when written without group action on the Lie
algebra. The measurement yi has the underlying symmetry
of the kinematics, and hence, in the old language, is a
complementary measurement for a type I system.

Type II systems have a matching equivariance on the
group when written in their direct velocity parameter-
ization. The measurement yi also has the same handed
equivariance. Such measurements were termed compatible
measurements in prior work. 4

4. OBSERVER DESIGN METHODOLOGY

The approach taken in this paper is to define invariant
cost functions on the output spaces. Properly chosen,
these functions can be lifted and aggregated to define a
Lyapunov function in error coordinates on the G-torsor G
that has a global minimum at the identity with positive
definite Hessian. Since the error dynamics of the system
are autonomous, a straightforward Lyapunov design leads
to desirable observer behaviour.

Definition 8. An invariant cost function at ẙi on the
output space Yi is a function `iẙi : G×Yi → R+, (X̂, yi) 7→
`iẙi(X̂, yi) such that for all S ∈ G

`iẙi(RSX̂, ρ
i(S, yi)) := `iẙi(X̂, yi)

and (I, ẙi) is a global minimum of the cost.

The cost is termed non-degenerate if the Hessian in the
second variable, Hess2`

i
ẙi

(I, ẙi) > 0 is positive definite at

(I, ẙi). 4

It is straightforward to verify that for an invariant cost
function

`iẙi(X̂, yi) = `iẙi(RX̂−1X̂, ρ
i(X̂−1, yi)) = `iẙi(I, e

I
i)

= `iẙi(I, ρ
i(E−1

I , ẙi)) = `iẙi(EI, ẙi) (30)

and hence `iẙi can be directly written as a cost in terms of

the error eI
i and in turn as a function of the group error

EI. In fact, if one can find a single variable cost function
on an output space Yi, then it is straightforward to build
an invariant cost function using a related construction. Let

f : Yi → R+ be a function with a global minimum at a
point ẙi. Define

`iẙi(X̂, yi) := f(ρi(X̂−1, yi)) = f(eI).

This function is invariant by construction since

`iẙi(RSX̂, ρ
i(S, yi)) =f(ρi(S−1X̂−1, ρ(S, yi)))

=f(ρi(SS−1X̂−1, yi))

=f(ρi(X̂−1, yi))

=`iẙi(X̂, yi).

The global minimum is a direct consequence of the global
minimum of f . Similarly, if f is non-degenerate at ẙi then
`iẙi is non-degenerate.

The aggregate cost that we consider is written as a function

`ẙ : G × Y → R+,

`ẙ(X̂, y) :=

n∑
i=1

`iẙi(X̂, yi). (31)

This cost is a function over the product of the observer
state space and all output spaces that depends on a set of
parameters ẙ ∈ Y.

If all the cost functions are invariant then, recalling (30),
the aggregate cost function can be written

`ẙ(X̂, y) =

p∑
i=1

`iẙi(EI, ẙi) = `ẙ(EI, ẙ)

Thus, the aggregate cost can be rewritten as an error cost
`ẙ(·, ẙ) : G → R+ in the coordinate EI on the G-torsor G
that depends on constant parameters ẙ. Although they
have the same algebraic form, we will make a distinction
between the aggregate cost `ẙ with domain G × Y and the
error cost `ẙ(·, ẙ) with domain G. The fact that the error
cost is a map from G to R+ makes it suitable to use in the
Lyapunov design procedure that we propose later in the
section.

Lemma 3. Assume that `iẙi(X̂, yi) are non-degenerate in-
variant cost functions at ẙi for i = 1, . . . , p. Then the
aggregate cost `ẙ : G × Y → R+, (X̂, y) 7→ `ẙ(X̂, y) is
invariant. The error cost `ẙ(·, ẙ) : G → R+, EI 7→ `ẙ(EI, ẙ)
has a global minimum at EI = I. Moreover, if

p⋂
i=1

stabρi(ẙi) = {I}

then `ẙ(·, ẙ) is non-degenerate at I. 4

Proof: Invariance of the aggregate cost is straightforward
consequence of invariance of the individual output costs.
The global minimum of the error cost follows from the fact
that all the output costs in output error coordinates have
global minima at (I, ẙi) (30).

Let si = ker dρiẙi(I) denote the Lie-algebra associ-

ated with stabρi(ẙi). It is straightforward to verify that⋂
stabρi(ẙi) = {I} is equivalent to

⋂
si = {0}.

For each output cost `iẙi(EI, ẙi) in error coordinates,
compute the differential



d1`
i
ẙi(EI, ẙi) = DEI

`iẙi(I, ρ
i(E−1

I , ẙi))

= d2`
i
ẙi(I, e

I)DEI
ρiẙi(E

−1
I ) (32)

= d2`
i
ẙi(I, e

I)dρiẙi(E
−1
I )DEI

inv(EI)

= −d2`
i
ẙi(I, e

I)dρiẙi(E
−1
I )dLE−1

I
(I)dRE−1

I
(EI) (33)

where d1 and d2 indicate differential with respect to the
first and second argument respectively, DEI

is the Fréchet
derivative with respect to the argument EI, inv(E) =
E−1

I and we use the well known formula d inv(X) =
−dLX−1(I) ◦ dRX−1(X). Evaluating this expression at
EI = I one obtains

d1`
i
ẙi(I, ẙi) = −d2`

i
ẙi(I, ẙ0)dρiẙi(I).

Since (I, ẙi) is a global minimum of `iẙi then d2`
i
ẙi

(I, ẙi) = 0

and d1`
i
ẙi

(I, ẙi) = 0 as expected at a global minimum.

The Hessian operator tensors

Hess1`
i
ẙi(I, ẙi) : TIG→ T ∗IG

Hess2`
i
ẙi(I, ẙi) : TẙiX → T ∗ẙiX

that map tangent vectors to co-vectors are intrinsically
defined at a critical point of the cost (Absil et al. [2008]).
From the above derivation, standard computation shows
that the relationship between the Hessian operators is given
by

Hess1`
i
ẙi(I, ẙi) = dρiẙi(I)?Hess2`

i
ẙi(I, ẙ0)dρiẙi(I)

where dρiẙi(I)? denotes the pull back dρiẙi(I)? : T ?ẙiX →
T ?IG induced by dρiẙi . Since Hess2`

i
ẙi

(I, ẙ0) is positive

definite then it follows that Hess1`
i
ẙi

(I, ẙi) is positive semi-
definite with kernel

ker Hess1`
i
ẙi(I, ẙi) = ker dρiẙi(I) = si.

One has that

Hess1`ẙ(I, ẙ) =

n∑
i=1

Hess1`
i
ẙi(I, ẙi).

Since
⋂
si = {0}, it follows that Hess1`ẙ(I, ẙ) > 0 is

positive definite. 4
For type I systems (with constant parameters ẙ) the error
cost `ẙ(·, ẙ) on the G-torsor G can be thought of directly
as a candidate Lyapunov function for the design of the
observer. The design process can be undertaken explicitly
working with the algebraic structure of the problem or
tackled using the general theory presented later in the
section. It is illustrative to consider an example first,
and show how a practical problem can be approached
using classical Lyapunov design methodology and simple
algebraic manipulations.

Example 1.6. Recall the scenario described in Exam-
ple 1.1. The reference output is ẙ = e3 with measurement
y = ρ(X, e3) = X>e3 and output error eI = X̂y = EIe3.

We propose an output cost based on the chordal distance
on the sphere S2 ⊂ R3,

`e3(X̂, y) =
1

2
‖X̂y − e3‖2.

The invariance of the cost is a consequence of the in-
variance of the Euclidean norm operator with respect to
rotation

1

2
‖QX̂y −Qe3‖2 =

1

2
‖Q(X̂y − e3)‖2 =

1

2
‖X̂y − e3‖2

for any Q ∈ SO(3). Applying the rotation X̂−1, it follows
that

`e3(X̂, y) =
1

2
‖eI − e3‖2 =

1

2
‖EIe3 − e3‖2 = `e3(EI, e3)

as expected. Clearly `e3 has a unique minimum at the
point eI = e3 corresponding to EI = I. It is straightforward
to see that the cost is non-degenerate since it is the
restriction of a non-degenerate quadratic function on R3×3

to SO(3).

Taking the time-differential of `e3
(EI, e3) along error dy-

namics ĖI = −∆EI with ∆ ∈ so(3) yields

d

dt
`e3

(EI, e3) =(EIe3 − e3)>ĖIe3

=− (EIe3 − e3)>∆EIe3

=− (eI − e3)>∆eI

=− tr
(
eI(eI − e3)>∆

)
.

Define the orthogonal projection onto the skew-symmetric
matrices with respect to the trace inner product tr(Z>1 Z2)
on Rn×n, Pso(3) : R3×3 → so(3), by

Pso(3)(Z) :=
1

2
(Z − Z>).

Since ∆ ∈ so(3) then

tr
(
eI(eI − e3)>∆

)
= tr

(
Pso(3)

(
eI(eI − e3)>

)
∆
)
.

This leads us to propose the innovation

∆ := k
[
Pso(3)

(
eI(eI − e3)>

)]>
= k

1

2

(
−eIe>3 + e3e

I>
)>

=
k

2

(
−e3e

I> + eIe>3

)
=
k

2
(e3 × eI)×

for k > 0 a scalar gain and where the last line follows
from the identity uw> − wu> = (w × u)× for u,w ∈ R3.
Note that the innovation ∆ is implementable since it is a
function of known variables eI and e3. Written in terms of
the observer state X̂ and measurement y one has

∆e3
(X̂, y) =

k

2
(e3 × X̂y)×. (34)

To see that the innovation is equivariant compute

∆e3
(RQX̂, ρ(Q, y)) = ∆e3

(X̂Q,Q>y))

=
k

2
(e3 × X̂QQ>y)×

=
k

2
(e3 × X̂y)× = ∆e3

(X̂, y).

The observer that we consider is then, using (21), (13) and
(34),

˙̂
X = X̂Ω× −

k

2
(e3 × X̂y)×X̂, (35a)

x̂(t) = X̂(t)e3. (35b)

It follows from Theorem 1 that the error dynamics are

Ė = −k
2

(e3 × EIe3)×EI.

With this choice it is easily verified that
d

dt
`e3

(EI, e3) = −k
2
‖(e3 × eI)×‖2F = −k‖e3 × eI‖2.

From Lyapunov theory, see e.g. Khalil [1996], it follows
that EI converges to the largest forward invariant set
contained in {EI ∈ SO(3) | e3 × EIe3 = 0}. 4



A key aspect of the proposed design methodology is
that the explicit Lyapunov design process is relatively
straightforward to undertake and leads to effective observer
construction. We go on to show that this approach to
observer design will always yield an implementable observer
construction by considering the general case.

Consider the time differential of `ẙ(·, ẙ) along solutions of a
type I system with observer (21) and for constant reference
outputs ẙ. One has

d

dt
`ẙ(EI, ẙ) = d1`ẙ(EI, ẙ)

[
d

dt
EI

]
= −

n∑
i=1

DEI
`iẙi(I, ρ

i
ẙi(E

−1
I ))

[
dREI

(I)∆
]

= −
n∑
i=1

d2`
i
ẙi(I, e

I)DEI
ρiẙi(E

−1
I )

[
dREI

(I)∆
]

= −
n∑
i=1

d2`
i
ẙi(I, e

I)dρiẙi(E
−1
I )DEI

inv(EI)
[
dREI

(I)∆
]

=

n∑
i=1

d2`
i
ẙi(I, e

I)dρiẙi(E
−1
I )dLE−1

I
(I) [∆]

=

n∑
i=1

d2`
i
ẙi(I, e

I)dρi
eI
i

(I) [∆] . (36)

The transition from line 4 to 5 is based on the derivation in
(32) to (33) along with the cancelation dRE−1

I
dREI

= id.

For the final line, observe that

DY [ρ(XY, z)] = DY [ρ(Y, ρ(X, z))]

= d1ρ(Y, ρ(X, z))

= dρρ(X,z)(Y )

and

DY [ρ(XY, z)] = DY [ρ(LX(Y ), z)]

= d1ρ(LX(Y ), z) ◦ dLX(Y )

= dρz(XY ) ◦ dLX(Y ).

It follows that

dρz(XY ) ◦ dLX(Y ) = dρρ(X,z)(Y ).

Setting X = E−1
I , Y = I and z = ẙi verifies (36).

Equation (36) is of critical importance in the design of ob-
servers since the resulting relationship for d

dt`ẙ is expressed
entirely in terms of known variables. The individual cost
functions `iẙi are known, and their differentials with respect

to the second argument d2`
i
ẙi

(ẙi, e
I) can be computed. The

error eI is implementable, ẙi is known and the first term
in the expansion can be computed. The group action ρi is
known and the output yi is measured so that the second
term is also implementable.

To provide a general framework for the design of the innova-
tion ∆ based on (36) we need to provide a methodology to
take the differential information

∑n
i=1 d2`

i
ẙi

(I, eI)dρi
eI
i

(I),

that can be thought of as an element of the dual g? to
the Lie-algebra g, and map this to an element ∆ ∈ g.
In Example 1.6 this correspondence was undertaken alge-
braically using the structure of the trace operator and the
projection Pso(3). In general, an elegant and well motivated
approach to lifting a differential to a tangent vector is done

by defining a Riemannian metric and using the gradient
construction.

Remark 2. It is worth noting that gradient innovation
construction is not the only option for observer design. A
more general structure would be to consider general gain
maps

Kẙ(X̂, y) : g? → g.
This is the situation encountered in recent work on deter-
ministic optimal observer design (Zamani et al. [2013]).
Further discussion of general gain maps is beyond the
scope of the present work. 4

Let 〈·, ·〉 : g×g→ R be a positive definite inner product on g.
It is straightforward to place a right invariant Riemannian
metric on G induced by the inner product 〈·, ·〉,

〈dRSV, dRSW 〉S = 〈V,W 〉
where dRSV and dRSW ∈ TSG are arbitrary elements of
the tangent space of G at S expressed as right translations
of elements V,W ∈ g of the Lie-algebra.

Remark 3. For a matrix Lie-group, with matrix Lie-
algebra, a simple and effective choice of inner product is
the trace inner product

〈V,W 〉 := tr(V >W ).

4

By identification, the above construction induces an invari-
ant Riemannian metric on the G-torsor G where invariance
is to be interpreted with respect to the natural G-action.
The gradient of a function f : G → R, denoted grad f , is
defined implicitly by

〈grad f(S),dRSW 〉 = DSf(S)[dRSW ],

for all W ∈ g ≡ TIG (or equivalently dRSW ∈ TSG), and
for grad f(S) ∈ TSG.

Consider the derivative DEI
`ẙ(EI, ẙ) of the aggregate cost

taken in (the general) direction dREI
W ∈ TEI

G where
W ∈ g. An analogous computation to (36) yields

DEI
`ẙ(EI, ẙ)[dREI

W ] = DEI
`ẙ(I, ρiẙi(E

−1
I , ẙ))[dREI

W ]

= −
n∑
i=1

d2`
i
ẙi(I, e

I)dρi
eI
i

(I) [W ] . (37)

The gradient with respect to the first variable EI of the cost
`ẙ(EI, ẙ) is then the solution to the implicit relationship

〈grad1 `ẙ(EI, ẙ),dREI
W 〉

= −
n∑
i=1

d2`
i
ẙi(I, e

I)dρi
eI
i

(I) [W ] (38)

for arbitrary W ∈ g and grad1 `ẙ(EI, ẙ) ∈ TEI
G. Looking at

equations (36) and (38), a good gradient innovation fulfils

∆(EI, ẙ) = kdRE−1

I
grad1 `ẙ(EI, ẙ). (39)

This choice will lead to a decrease of the cost
d

dt
`ẙ(EI, ẙ) =− k〈grad1 `ẙ(EI, ẙ), grad1 `ẙ(EI, ẙ)〉

=− k‖ grad1 `ẙ(EI, ẙ)‖2,
providing the basis for the stability analysis of the observer
given in Theorem 2. However, before this analysis is
undertaken we still need to actually define an equivariant
innovation according to Definition 6. To this end we simply
extend the definition suggested by (39) to

∆ẙ(X̂, y) := kdRX̂−1 grad1 `ẙ(X̂, y) (40)



for arbitrary X̂ ∈ G and y ∈ Y.

Lemma 4. Consider a type I lifted equivariant system
(Definition 5) with an invariant aggregate cost `ẙ(X̂, y)
(Equation (31)). Let 〈·, ·〉 be a right invariant Riemannian
metric on G. Then the innovation given by (40) is equiv-
ariant (Definition 6) and

∆ẙ(X̂, y) = ∆ẙ(I, eI) = ∆ẙ(EI, ẙ).

Proof: From (30) one has that for all W ∈ g

〈grad1 `
i
ẙi(RSX̂, ρ

i(S, yi)),dRRSX̂
W 〉

= d1`
i
ẙi(RSX̂, ρ

i(S, yi))
[
dRRSX̂

W
]

= d1`
i
ẙi(RSX̂, ρ

i(S, yi)) ◦ dRS
[
dRX̂W

]
= DX̂`

i
ẙi(RSX̂, ρ

i(S, yi))
[
dRX̂W

]
= DX̂`

i
ẙi(X̂, yi)

[
dRX̂W

]
= d1`

i
ẙi(X̂, yi)

[
dRX̂W

]
= 〈grad1 `

i
ẙi(X̂, yi),dRX̂W 〉

= 〈dRS grad1 `
i
ẙi(X̂, yi),dRSdRX̂W 〉

= 〈dRS grad1 `
i
ẙi(X̂, yi),dRRSX̂

W 〉.
This implies

grad1 `
i
ẙi(RSX̂, ρ

i(S, yi)) = dRS grad1 `
i
ẙi(X̂, yi).

Using the suggestive notation

ρ(S, y) := (ρ1(S, y1), . . . , ρp(S, yp)),

it then follows from (40) that

∆ẙ(RSX̂, ρ(S, y))

= kdR(RSX̂)−1 grad1 `ẙ(RSX̂, ρ(S, y))

= kdRX̂−1dRS−1dRS grad1 `ẙ(X̂, y)

= kdRX̂−1 grad1 `ẙ(X̂, y)

= ∆ẙ(X̂, y)

showing that the gradient innovation is equivariant.

In particular,

∆ẙ(X̂, y) = ∆ẙ(RX̂−1EI, ρ(X̂−1, ẙ)) = ∆ẙ(I, eI)

= ∆ẙ(RXEI, ρ(X, ẙ)) = ∆ẙ(EI, ẙ)

as claimed. 4
For a type I system, the observer for a gradient innovation
associated with an invariant aggregate cost function is

˙̂
X = AdX̂−1 (Fx0

(v)) X̂ − k grad1 `ẙ(X̂, y), (41a)

x̂(t) = φx0
(X̂(t; X̂(0)) (41b)

for X̂(0) ∈ G some initial condition, typically X̂(0) = I
and x0 chosen as the best a-priori guess of x(0). For this
observer, then Lemma 4 and Theorem 1 show that the
associated error dynamics (26) are of gradient type

d

dt
EI = −dREI

∆ = −k grad1 `ẙ(EI, ẙ).

Theorem 2. Consider a type I lifted equivariant system
(Def. 5). Let `ẙ denote an aggregate cost constructed
from non-degenerate equivariant output costs according
to Equation (31). Assume that⋂

stabρi(ẙi) = {I}.
Let 〈·, ·〉 be an inner-product on g that induces a right-
invariant Riemannian metric on G. Define an innovation

by (39) and consider the observer system (21a) resp. (41a).
Then there exists a basin of attraction B ⊆ G containing
I such that for any initial conditions X(0) and X̂(0) ∈ G
such that EI(0) ∈ B then EI(t) → I and X̂(t) → X(t).

Moreover, if φx0
(X(0)) = x(0), then x̂(t) = φx0

(X̂) →
x(t;x0). 4

Proof: The time differential of `ẙ(EI, ẙ) along the error
flow (26) yields

d

dt
`ẙ(EI, ẙ) = −k‖ grad1 `ẙ(EI, ẙ)‖2 (42)

where the norm ‖ · ‖ is the norm on TEI
G induced by the

right invariant Riemannian metric.

Since the error cost `ẙ(·, ẙ) is non-degenerate (Lemma 3),
there exists an open neighbourhood of I in G where the
cost has compact connected sub-level sets all containing
the global minimum I and no other critical point of the
cost. Let B ⊆ G be the largest such sub-level set of the
cost. Convergence of the error dynamics to the unique
minimum follows from classical Lyapunov theory by noting
that grad1 `ẙ(EI, ẙ) = 0 on B implies that EI = I. It follows

trivially that X̂(t) → X(t). The final statement is also
straightforward to see given the projection properties of
the observer and state flows. 4
Example 1.7. Recall the scenario described in Exam-
ple 1.1. The reference output is ẙ = e3 with measurement
y = ρ(X, e3) = X>e3 and output error eI = X̂y = EIe3.
The innovation is

∆e3
(X̂, y) =

k

2
(e3 × X̂y)×

and the observer is given by (35).

In Example 1.6 it was shown that

d

dt
`e3(EI, e3) = −k‖e3 × eI‖2

and hence EI converges to the largest forward invariant
set contained in {EI ∈ SO(3) | e3×EIe3 = 0}. The reason
that we don’t get convergence of EI → I, as was the case
in Theorem 2, is because with only one measurement y the
lifted cost function

`ẙ(EI, ẙ) =
1

2
‖EIe3 − e3‖2

is degenerate. Indeed, since there is only a single measure-
ment

ker Hess`ẙ(EI, ẙ) = ker dρe3
(I) = span{(e3)×}.

One has

stabρ(e3) = {EI ∈ SO(3) EIe3 = e3}
= {EI ∈ SO(3) e3 × EIe3 = 0}

and one can see that the unobservable subspace of the
error system is the stabilizer of the output group action.
The proposed observer converges to stabρ(e3) but not
necessarily to I.

Observe that

stabφ(x0) = stabφ(e3) = span{(e3)×},
the kernel of the group action φe3 : SO(3) → S3. Since
stabφ(e3) ⊂ stabρ(e3) then the unobservable subgroup
of the error flow lies in the kernel of the group action
projection and it follows that x̂(t)→ x(t).



The only way to ensure convergence of the error estimate
on the group (for constant reference ẙ) is by adding an
additional measurement with reference output ẙ2 that is
not co-linear with e3. However, a similar effect is obtained
if the reference output ẙ := ẙ(t) is time varying and
observability can be recovered based on a persistence of
excitation condition (Trumpf et al. [2012]). The error cost
construction `ẙ(·, ẙ) and the Lyapunov argument given in
Theorem 2 cannot be used for this analysis since it depends
on the constant ẙ assumption. More details can be found
in Trumpf et al. [2012]. 4
Remark 4. The general condition for the state x̂(t)→ x(t)
is that

k ⊆
p⋂
i=1

si

for k = ker dφx0
(I) and si = ker dρiẙi(I). 4

5. VELOCITY BIAS

Most of the common velocity sensor systems used by
mobile robotic systems suffer from slowly time-varying
disturbances caused by temperature or vibration sensitivity
of the micro-electronic mechanical (MEMS) architecture
used to generate the physical measurement or calibration
error in more general sensors. It is of interest to consider
how the design methodology proposed in this paper can
be extended to deal with such a situation. This section
presents the structure of a general nonlinear observer for
type I systems with bias estimation. The development is
based on work in progress (Khosravian et al. [2013]) and
we present only the main formulas and intuition in the
present paper.

Consider a velocity measurement v ∈ V, modeled by

v = v̊ + b

where b ∈ V is an unknown constant bias, and v̊ ∈ V
is the true system velocity. Define B := Fx0(b) to be a
constant bias on the Lie-algebra for the lifted system that
corresponds to the measurement bias b and let B̂ denote
an estimate for B.

For a system of type I (Def. 5) with innovation (39)

∆(X̂, y) := kdRX̂−1 grad1 `ẙ(X̂, y)

the proposed observer (41) with bias estimation is

˙̂
X = AdX̂

(
Fx0(v)− B̂

)
X̂ −∆(X̂, y)X̂, (43a)

˙̂
B = −γAd?

X̂

(
∆(X̂, y)

)
, (43b)

x̂(t) = φx0(X̂(t; X̂(0)), (43c)

where γ > 0 is a positive constant and Ad?
X̂

: g → g
denotes the Hermitian adjoint of AdX̂ with respect to the
inner product 〈·, ·〉 on g associated with the right-invariant
Riemannian metric used. That is 〈AdX̂(U1), U2〉 =
〈U1,Ad∗

X̂
U2〉 for all U1, U2 ∈ g.

Example 1.8. Recall the scenario described in Example 1.1
and the discussion in Example 1.7. The reference output
is ẙ = e3 with measurement y = ρ(X, e3) = X>e3, output

error eI = X̂y = EIe3 and innovation ∆e3
(X̂, y) = k

2 (e3 ×
X̂y)×.

The observer (43) has the form

˙̂
X = X̂

(
Ω× − B̂

)
− k

2
(e3 × X̂y)×X̂,

˙̂
B = −γAdX̂>

(
e3 × X̂y

)
×
,

where Ad?
X̂

= AdX̂> since

〈AdX̂(U1), U2〉 = tr
([

AdX̂(U1)
]>
U2

)
= tr

(
X̂U>1 X̂

>U2

)
= tr

(
U>1 X̂

>U2X̂
)

= tr
(
U>1 AdX̂>(U2)

)
=〈U1,Ad∗

X̂
U2〉.

Since the map Fe3
is one-to-one, the bias evolution (43b)

can be projected directly onto the velocity space V
˙̂
b = −γ(X̂>e3)× y (44)

where the AdX̂> has also been factored through the
vector product. This observer ((43) with the projected
bias evolution (44)) is the literature standard nonlinear
attitude observer that has been extensively studied over
the last ten years; Mahony et al. [2005], Bonnabel et al.
[2006], Campolo et al. [2006], Maithripala et al. [2006],
Metni et al. [2006], Kinsey and Whitcomb [2007], Martin
and Salaün [2007], Tayebi et al. [2007], Mahony et al.
[2008], Vasconcelos et al. [2008], Brás et al. [2011], Grip
et al. [2012], Sanyal and Nordkvist [2012]. 4

Detailed stability proofs for the convergence of a nonlinear
observer with bias estimate of this form for SO(3) and
SE(3) are provided in application papers available in
the literature. The proofs of these results are not as
straightforward as that given for Theorem 2 since the
resulting error dynamics, including the bias error B̃ =
B̂ − B, are no longer autonomous. Typical proofs use a
combination of Lyapunov stability analysis and Barbalat’s
lemma to prove convergence to an invariant set, and then a
separate stability analysis of the time-varying linearisation
using the work of Morgan and Narendra [1977b,a] and
Loŕıa and Panteley [2002], or a uniform observability
condition (Thienel and Sanner [2003]), to prove uniform
local exponential stability at the global minimum. A fully
general development for the case of matrix Lie-groups is
given in Khosravian et al. [2013].

6. CONCLUSION

This paper has provided a general development of a full
state observer design methodology for kinematic systems
with complete symmetry. The approach proposed applies
in particular to type I systems, as described in Definition 5
in the paper, a class of systems that includes a large range
of applications in mobile robotics that have motivated the
authors’ work. The approach is simple and practical and
has led to a range of highly effective observers for real
world applications.
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