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Abstract—We propose a new class of algorithms for Conceptually, the cost function is sufficiently simple that
the optimization of a smooth cost function over a smooth the non-linearity of the problem is entirely coded in the
hypersurface. In each step of the algorithm the hypersurface a4 e of the geometric constraint. Moreover, the geometri
is approximated by a quadric, the optimization problem is L _ . "

constraint is sufficiently symmetric that using local co-

solved on the quadric and the result projected back onto - : g .
the hypersurface. We illustrate with an example that this Ordinates associated with the natural geometric structure

approach can be computationally feasible. will provide a good parameterisation of the problem in
Keywords— geometric optimization, hypersurface order to compute an iterative update step. A number of
very efficient algorithms have been developed based on
I. INTRODUCTION this intuition.

In this paper we consider optimization problems mo-

Recently there has been significant interest in the dev?k/ated by the same class of linear algebra problems

opment of efficient optimization algorithms for a class of . -

i R . discussed above, however, we develop by exploiting the
constrained optimization problems where the constraint se """ : ; .
. ) . . extrinsic geometry of the constraint sets. That is, we wish
is a smooth matrix manifold [5], [1]. The new algorithms ; . .

: ; to consider the embedding structure of the constraint set
are motivated by a range of linear algebra problems . : .
in some overarching space on which a cost function may

involving the factorisation of matrices and determinatiorbe defined that specialises to the specific cost on the

of invariant subspaces that can be reformulated as con- .
i o . i “constraint set. In a sense we approach the problem from the
strained optimization algorithms [4]. The matrix mani-

. ) . gerspective of classical constrained optimization, haxev
folds considered are often matrix groups and have a Lie-: . .
it is our goal to base the algorithms developed on the twin

group structure, or are quotients of Lie-groups leading .” _. . L
. T%rmmpals of symmetry of the constraint set and simplicity
to homogeneous or even symmetric space structures. Deie cost

main contribution of the last few years of work has been : . .
; . To this extent we propose to approximate the constraint
to apply the modern theory of differential geometry to . o : .
. set (in the case where it is a hypersurface in the embedding
these problems to provide a means to apply the tools an . S
slPace) by a quadric, solve the optimization problem on the

techniques of unconstrained optimization such as Newto Ladric. and oroiect back onto the hvoersurface in each
methods and trust region methods to the solution of thy ' brol yp

ST . o iteration step. Clearly, this will only lead to a compettiv
optimization problem by exploiting the intrinsic geometry : . :
. ; algorithm where each of these steps is easily computable.
of the underlying constraints.

There are two fundamental assumptions driving efficacy Il. A SIMPLE EXAMPLE

of these algorithms: A simple example that can be used to motivate the
1) The constraint set is highly symmetric. approach is optimization of the Rayleigh quotient on a
2) The cost function is simple. sphere. Note that the sphere is a hypersurface and a

adric, i.e. it equals its quadric approximation.
Problem 1:Let A = AT € R"*" be a symmetric
natrix. Define the Rayleigh quotient cost as

The symmetry of the constraint set is usually a naturdl"
consequence of the algebraic structure of the underlyin
problem. The cost functions considered are often si
ple quadratics such as the Rayleigh quotigftX) = p(z) = 2T Az, =z e R™ Q)
tr(XT AX), or even a linear cost such as the moment m .

¢(X) = tr(NX) considered in the seminal work on th:Befme then — 1 sphere to be
Toda lattice [6], [9], [11] leading to work on the double st t={zeR"|z"z=1}. (2)

bracket flow [7], [2], [3]- The problem considered is to compute
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A. A Newton iteration for Problem 1 in intrinsic coordi- D. A cost that respects the quotient structureSsf—!

nates What happens if we consider the full Rayleigh quotient
It is well known that applying a Riemannian manifold 2T A
version of the Newton iteration (i.e. a Newton iteration in ¢a) = —7 -7

Riemannian normal coordinates) to this problem yields ah ¢ L _
variant of the Rayleigh Quotient Iteration (RQI), see [10],/ "€ Lagrange function'is given iz, A) = ¢(x)+Av(x)

51 111, [8]. as before.
(51, {21, {81 The explicit constrained optimization problem with la-

B. An extrinsic geometric formulation of the problem  grange multipliers is equivalent to solving
Consider now solving the problem

T A
2 (A 2 = xI) r=—\z, subjectto 2Tz =1.
xr T

2, = arg max ¢(x)

zER™ This is nothing particularly interesting — until we linezei
subject to the constraint it. We get
T T T T
W(x) = 2Tz —1=0. Gy () = xOTAx_Qaco;lxo . J;gx xOTAxQ
Ty To Ty Lo Ty To Ty To

As pointed out before, the constraint set is a quadric, hence " . .
. o and hence the critical points of the Lagrange function

there is no need for an approximation step, and also not f%; ome

a subsequent projection step in this case. We end up wi T

a one step algorithm whose single step can be computed (A _Zo Ao I) 2o = —Ar, subjectto zTz =1

using Lagrange multiplier theory. The critical points oéth xd xo

Lagrange functionC(z, A) = ¢(x) + M(x) are given by ¢or any 4, that satisfies, = 1. Obviously, the resulting

D¢(x) = —ADip(x) update rule leads directly to the RQI!

for A € R and € R™ such that(x) = 0. E. Another practical algorithm for the extrinsic approach

That is one must solve Consider again the case where the cost is
p(z) = 27 Ax
Not surprisingly, the solution of this update step is equivf’lnd the constraint is
alent to directly solving the eigenvalue problem. It is a P(z)=2Tz—1=0.
nice indication that the method is theoretically well pase
however, there is obviously no computational advantage i
this formulation. L(xz,\) = ¢(z) + Mp(x).

T

Ax = —Xx, subjectto z'z=1.

he Lagrange function is

C. A naive simplification of the extrinsic geometric formu- The Differential and the Hessian &f (i.e. the bordered
lation of the problem Differential and Hessian ap under the constrainegl = 0)

To simplify the Lagrange function we consider replacing*® given by
the costp by a linear approximation of the cost at the point DL — ( 2(Az + Ax) > and L — < A+ =z )

To: 2Te -1 zT 0
buy () =t Azg + 20T A(x — 20) = 228 Az — 2l Axg. The Newton update fo£ on R"*! is given by
-1
In this case the critical points of the Lagrange function Tpy1 = o — I HL (g, Ag) ™ DL(2g, Ak
L(z,A) = by (x) + Mp(z) are and
2Axg = —A\r, subjectto zlz=1. Net1 = M — ILHL (25, M) " DL (g, Ai),
Note that this leads to the new estimate wherell, andII, denote the appropriate projections. This
Az iteration should converge to a critical point gf Again,
Ty = m such points are characterised by
T
The algorithms derived from this is the power method ziz=1
Axp, and
Tkt1 = | Azl Ax = =)z,
Clearly, this will be a successful algorithm for computingthat isz is an eigenvector and
the maximal eigenvector, however, it is hardly a highly 2T Ax
competitive algorithm. A=-——7—



Here are some simulation results using MATLAB.
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convergence of x to eigenvector
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Evolution for the Newton algorithm cpoosing a random
initial condition zo € S"1, Ay = —@g—f;? and A =
diag(1,2,3). The first plot shows the convergence of the
eigenvalue conditiomdz = —Axz and the second shows
direct convergence of;, — v;.

Some comments are in order:

« As the algorithm converges it is clear thatonverges
to the Rayleigh quotient at least quadratically. The
upper left part of the Newton algorithm starts to look
something like the RQI.

o The convergence appears to be quadratic. The pure

RQI is cubic.
« However, it is clear that this algorithm is not the RQI.

1. AGENERAL ALGORITHM

The above approach is a logical solution of the problem,
however, in a more general case the curvature will change

Define the Lagrange function by

L= ¢(z) + M(x).
Then the basic algorithm is
Algorithm 1:

1) Given initial conditionsry € M.

2) Compute the best estimate obased on the require-
ment that the normal component of the Differential
of the Lagrange function is zero, i.e. solve faoy

<D’¢((E0),HID£($U,/\0)> =0. (3)

3) Initialise xo and ) Ao and iterate the
following routine to convergence:

a) Compute the quadratic approximation of the
cost and the manifold aty,

¢(x)

mg, () + O(|z — z|*)
and
P(x) = my (x) + O(|lz — z1 ).

Compute an approximate solutiaf_; to the
optimization problem associated with minimiz-
ing m?  subject tom¥ = 0.

The present proposal is to use a Newton step
of the Lagrange multiplier update ifxy, A\x)

Th41 Tk
Ak Ak

It is entirely possible that a different approach
could be used effectively here. Indeed, it would
be equally possible to use several iterations of
the Newton method at this point to improve the
k11 estimate if desired.

Re-projectry,, onto M

b)

)—Hﬁ(l’k, /\k)_lD[,(xk, )\k)

c)
Zpt1 = (zg41)

and discard\y1.

Compute a new,; based on the requirement
that the normal component of the Differential
of the Lagrange function is zero, i.e. solve for
Akt1

(DY (Zgs1), Ue DL(Zpy1, Akg1)) = 0.

e) Check for numerical convergence. If not set

d)

Tk = Thil, A= Agt1

and continue the iteration.

at every point in the manifold. Thus we need to have a For the eigenvalue computation we have the Hessian
methodology that re-projects to the manifold after eachnd Differential given as computed above. Note that the

iteration.

Given a manifoldM = {z € R | ¢(z) = 0} and a
cost¢ : R™ — R. Assume that there is a computationally
efficient projection operation

II:R" — M.

condition

(DY(Zpg1), e DL(Tpo1, Mey1)) = 0

for the eigenvalue computation leads to

Thoy (AZpr + Mep1Zpg1) = 0



or resulting algorithm displays cubic convergence and shares

Npss — _:?EHAEM properties with the RQI. We have seen that the power
h :fgﬂfkﬂ ’ method results from applying our scheme to a linearization

o o of the extrinsic cost function, whereas the RQI results from
wherez; 71 = 1 due to the projection, but the form yhe jinearization of a geometrically more meaningful cost
of the equation is useful to see in general. function. In both cases the optimization problem on the

The Newton update for the re-projected scheme can bg,aqric approximation of the constraint set could be solved
written as the solution of the iteration explicitely. Doing just one Newton step in the bordered

(A+ Mo + mkx;{A)ka — Ay + Az, space instead yields our new .algorlthm. As an interesting

side note, we see that optimizing the quadratic cost over a
linearization of the constrained set (this is effectivelyatw
It is clear that this is not quite the same as the RQ|t,he intrinsic Newton method does) gives the same result —

although it appears that it shares some of the same maj@ RQl — as optimizing a proper linearization of the cost

T
Ty Try1 = 0.

characteristics. over a quadric approximation of the constraint set.
A simulation shows that this algorithm displays cubic REFERENCES
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Evolution for the projected external geometry algorithm
using a single Newton update. A random initial condition

was chosenzy, € S™ ', Ay = —‘?TTL;;O and A =
0

diag(1,...,N) for N = 10. The first plot shows the

convergence of the eigenvalue conditida: = —Ax and

the second shows direct convergencerpf— v;.

IV. CONCLUSIONS

We have introduced a new class of algorithms for
the optimization of a smooth cost function defined on a
hypersurface. For the Rayleigh quotient on the sphere the



