
Curvature based updates for optimization problems on a
hypersurface

Jochen Trumpf
Department of Information Engineering

The Australian National University
Canberra, ACT 0200, Australia

and National ICT Australia Ltd.*
Jochen.Trumpf@anu.edu.au

Jonathan Manton
Department of Information Engineering

The Australian National University
Canberra, ACT 0200, Australia

Jonathan.Manton@anu.edu.au

Robert Mahony
Department of Engineering

The Australian National University
Canberra, ACT 0200, Australia

Robert.Mahony@anu.edu.au

Abstract— We propose a new class of algorithms for
the optimization of a smooth cost function over a smooth
hypersurface. In each step of the algorithm the hypersurface
is approximated by a quadric, the optimization problem is
solved on the quadric and the result projected back onto
the hypersurface. We illustrate with an example that this
approach can be computationally feasible.
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I. INTRODUCTION

Recently there has been significant interest in the devel-
opment of efficient optimization algorithms for a class of
constrained optimization problems where the constraint set
is a smooth matrix manifold [5], [1]. The new algorithms
are motivated by a range of linear algebra problems
involving the factorisation of matrices and determination
of invariant subspaces that can be reformulated as con-
strained optimization algorithms [4]. The matrix mani-
folds considered are often matrix groups and have a Lie-
group structure, or are quotients of Lie-groups leading
to homogeneous or even symmetric space structures. The
main contribution of the last few years of work has been
to apply the modern theory of differential geometry to
these problems to provide a means to apply the tools and
techniques of unconstrained optimization such as Newton
methods and trust region methods to the solution of the
optimization problem by exploiting the intrinsic geometry
of the underlying constraints.

There are two fundamental assumptions driving efficacy
of these algorithms:

1) The constraint set is highly symmetric.
2) The cost function is simple.

The symmetry of the constraint set is usually a natural
consequence of the algebraic structure of the underlying
problem. The cost functions considered are often sim-
ple quadratics such as the Rayleigh quotientφ(X) =
tr(XTAX), or even a linear cost such as the moment map
φ(X) = tr(NX) considered in the seminal work on the
Toda lattice [6], [9], [11] leading to work on the double
bracket flow [7], [2], [3].
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Conceptually, the cost function is sufficiently simple that
the non-linearity of the problem is entirely coded in the
nature of the geometric constraint. Moreover, the geometric
constraint is sufficiently symmetric that using local co-
ordinates associated with the natural geometric structure
will provide a good parameterisation of the problem in
order to compute an iterative update step. A number of
very efficient algorithms have been developed based on
this intuition.

In this paper we consider optimization problems mo-
tivated by the same class of linear algebra problems
discussed above, however, we develop by exploiting the
extrinsic geometry of the constraint sets. That is, we wish
to consider the embedding structure of the constraint set
in some overarching space on which a cost function may
be defined that specialises to the specific cost on the
constraint set. In a sense we approach the problem from the
perspective of classical constrained optimization, however,
it is our goal to base the algorithms developed on the twin
principals of symmetry of the constraint set and simplicity
of the cost.

To this extent we propose to approximate the constraint
set (in the case where it is a hypersurface in the embedding
space) by a quadric, solve the optimization problem on the
quadric, and project back onto the hypersurface in each
iteration step. Clearly, this will only lead to a competitive
algorithm where each of these steps is easily computable.

II. A SIMPLE EXAMPLE

A simple example that can be used to motivate the
approach is optimization of the Rayleigh quotient on a
sphere. Note that the sphere is a hypersurface and a
quadric, i.e. it equals its quadric approximation.

Problem 1: Let A = AT ∈ R
n×n be a symmetric

matrix. Define the Rayleigh quotient cost as

φ(x) = xTAx, x ∈ R
n. (1)

Define then− 1 sphere to be

Sn−1 = {x ∈ R
n | xTx = 1}. (2)

The problem considered is to compute

x∗ = arg max
x∈Sn−1

φ(x)

Problem 1 corresponds to computing the eigenvector
corresponding to the maximal eigenvalue ofA.



A. A Newton iteration for Problem 1 in intrinsic coordi-
nates

It is well known that applying a Riemannian manifold
version of the Newton iteration (i.e. a Newton iteration in
Riemannian normal coordinates) to this problem yields a
variant of the Rayleigh Quotient Iteration (RQI), see [10],
[5], [1], [8].

B. An extrinsic geometric formulation of the problem

Consider now solving the problem

x∗ = arg max
x∈Rn

φ(x)

subject to the constraint

ψ(x) = xTx− 1 = 0.

As pointed out before, the constraint set is a quadric, hence
there is no need for an approximation step, and also not for
a subsequent projection step in this case. We end up with
a one step algorithm whose single step can be computed
using Lagrange multiplier theory. The critical points of the
Lagrange functionL(x, λ) = φ(x) + λψ(x) are given by

Dφ(x) = −λDψ(x)

for λ ∈ R andx ∈ R
n such thatψ(x) = 0.

That is one must solve

Ax = −λx, subject to xTx = 1.

Not surprisingly, the solution of this update step is equiv-
alent to directly solving the eigenvalue problem. It is a
nice indication that the method is theoretically well posed,
however, there is obviously no computational advantage in
this formulation.

C. A naive simplification of the extrinsic geometric formu-
lation of the problem

To simplify the Lagrange function we consider replacing
the costφ by a linear approximation of the cost at the point
x0:

φx0
(x) = xT0 Ax0 + 2xT0 A(x− x0) = 2xT0 Ax− xT0 Ax0.

In this case the critical points of the Lagrange function
L(x, λ) = φx0

(x) + λψ(x) are

2Ax0 = −λx, subject to xTx = 1.

Note that this leads to the new estimate

x+ =
Ax0

‖Ax0‖
.

The algorithms derived from this is the power method

xk+1 =
Axk

‖Axk‖
.

Clearly, this will be a successful algorithm for computing
the maximal eigenvector, however, it is hardly a highly
competitive algorithm.

D. A cost that respects the quotient structure ofSn−1

What happens if we consider the full Rayleigh quotient

φ(x) =
xTAx

xTx
?

The Lagrange function is given byL(x, λ) = φ(x)+λψ(x)
as before.

The explicit constrained optimization problem with la-
grange multipliers is equivalent to solving

2

(

A−
xTAx

xTx
I

)

x = −λx, subject to xTx = 1.

This is nothing particularly interesting – until we linearize
it. We get

φx0
(x) = 2

xT0 Ax

xT0 x0

− 2
xT0 Ax0

xT0 x0

·
xT0 x

xT0 x0

+
xT0 Ax0

xT0 x0

and hence the critical points of the Lagrange function
become

2

(

A−
xT0 Ax0

xT0 x0

I

)

x0 = −λx, subject to xTx = 1,

for anyx0 that satisfiesxT0 x0 = 1. Obviously, the resulting
update rule leads directly to the RQI!

E. Another practical algorithm for the extrinsic approach

Consider again the case where the cost is

φ(x) = xTAx

and the constraint is

ψ(x) = xTx− 1 = 0.

The Lagrange function is

L(x, λ) = φ(x) + λψ(x).

The Differential and the Hessian ofL (i.e. the bordered
Differential and Hessian ofφ under the constrainedψ = 0)
are given by

DL =

(

2(Ax+ λx)
xTx− 1

)

andHL =

(

A+ λI x

xT 0

)

.

The Newton update forL on R
n+1 is given by

xk+1 = xk − ΠxHL(xk, λk)
−1DL(xk, λk)

and

λk+1 = λk − ΠλHL(xk, λk)
−1DL(xk, λk),

whereΠx andΠλ denote the appropriate projections. This
iteration should converge to a critical point ofL. Again,
such points are characterised by

xTx = 1

and
Ax = −λx,

that isx is an eigenvector and

λ = −
xTAx

xTx
.



Here are some simulation results using MATLAB.
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Evolution for the Newton algorithm choosing a random
initial condition x0 ∈ Sn−1, λ0 = −

xT

0
Ax0

xT

0
x0

and A =

diag(1, 2, 3). The first plot shows the convergence of the
eigenvalue conditionAx = −λx and the second shows
direct convergence ofxk → v1.

Some comments are in order:

• As the algorithm converges it is clear thatλ converges
to the Rayleigh quotient at least quadratically. The
upper left part of the Newton algorithm starts to look
something like the RQI.

• The convergence appears to be quadratic. The pure
RQI is cubic.

• However, it is clear that this algorithm is not the RQI.

III. A GENERAL ALGORITHM

The above approach is a logical solution of the problem,
however, in a more general case the curvature will change
at every point in the manifold. Thus we need to have a
methodology that re-projects to the manifold after each
iteration.

Given a manifoldM = {x ∈ R
n | ψ(x) = 0} and a

costφ : R
n → R. Assume that there is a computationally

efficient projection operation

Π : R
n →M.

Define the Lagrange function by

L = φ(x) + λψ(x).

Then the basic algorithm is
Algorithm 1:

1) Given initial conditionsx0 ∈M .
2) Compute the best estimate ofλ based on the require-

ment that the normal component of the Differential
of the Lagrange function is zero, i.e. solve forλ0

〈Dψ(x0),ΠxDL(x0, λ0)〉 = 0. (3)

3) Initialise xk = x0 and λk = λ0 and iterate the
following routine to convergence:

a) Compute the quadratic approximation of the
cost and the manifold atxk,

φ(x) = mφ
xk

(x) +O(|x− xk|
3)

and

ψ(x) = mψ
xk

(x) +O(|x− xk|
3).

b) Compute an approximate solutionxk+1 to the
optimization problem associated with minimiz-
ing mφ

x0
subject tomψ

x0
= 0.

The present proposal is to use a Newton step
of the Lagrange multiplier update in(xk, λk)
(

xk+1

λk

)

=

(

xk
λk

)

−HL(xk, λk)
−1DL(xk, λk).

It is entirely possible that a different approach
could be used effectively here. Indeed, it would
be equally possible to use several iterations of
the Newton method at this point to improve the
xk+1 estimate if desired.

c) Re-projectxk+1 ontoM

x̄k+1 = Π(xk+1)

and discardλk+1.
d) Compute a new̄λk+1 based on the requirement

that the normal component of the Differential
of the Lagrange function is zero, i.e. solve for
λ̄k+1

〈Dψ(x̄k+1),ΠxDL(x̄k+1, λ̄k+1)〉 = 0.

e) Check for numerical convergence. If not set

xk = x̄k+1, λk = λ̄k+1

and continue the iteration.
For the eigenvalue computation we have the Hessian

and Differential given as computed above. Note that the
condition

〈Dψ(x̄k+1),ΠxDL(x̄k+1, λ̄k+1)〉 = 0

for the eigenvalue computation leads to

x̄Tk+1

(

Ax̄k+1 + λ̄k+1x̄k+1

)

= 0



or

λ̄k+1 = −
x̄Tk+1

Ax̄k+1

x̄Tk+1
x̄k+1

,

where x̄Tk+1
x̄k+1 = 1 due to the projection, but the form

of the equation is useful to see in general.
The Newton update for the re-projected scheme can be

written as the solution of the iteration

(A+ λkI + xkx
T
kA)xk+1 = Axk + λkxk,

xTk xk+1 = 0.

It is clear that this is not quite the same as the RQI,
although it appears that it shares some of the same major
characteristics.

A simulation shows that this algorithm displays cubic
convergence:
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Evolution for the projected external geometry algorithm
using a single Newton update. A random initial condition
was chosenx0 ∈ Sn−1, λ0 = −

xT

0
Ax0

xT

0
x0

and A =

diag(1, . . . , N) for N = 10. The first plot shows the
convergence of the eigenvalue conditionAx = −λx and
the second shows direct convergence ofxk → v1.

IV. CONCLUSIONS

We have introduced a new class of algorithms for
the optimization of a smooth cost function defined on a
hypersurface. For the Rayleigh quotient on the sphere the

resulting algorithm displays cubic convergence and shares
properties with the RQI. We have seen that the power
method results from applying our scheme to a linearization
of the extrinsic cost function, whereas the RQI results from
the linearization of a geometrically more meaningful cost
function. In both cases the optimization problem on the
quadric approximation of the constraint set could be solved
explicitely. Doing just one Newton step in the bordered
space instead yields our new algorithm. As an interesting
side note, we see that optimizing the quadratic cost over a
linearization of the constrained set (this is effectively what
the intrinsic Newton method does) gives the same result –
the RQI – as optimizing a proper linearization of the cost
over a quadric approximation of the constraint set.
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