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Controllability and stabilizability of networks of linear systems
Jochen Trumpf, Senior Member, IEEE, and Harry L. Trentelman, Fellow, IEEE

Abstract—We provide necessary and sufficient conditions on the node
systems, the graph adjacency matrix, and the input matrix such that
a heterogeneous network of multi-input multi-output (MIMO) linear
time-invariant (LTI) node systems with constant linear couplings is
controllable or stabilizable through the external input. We also provide
specializations of these general conditions for homogeneous networks.
Finally, we give a very simple necessary and sufficient condition under
which a homogeneous network of single-input single-output (SISO) LTI
node systems is stable in the absence of the external input.

Index Terms—behavioral approach, controllability and stabilizability,
linear systems, network analysis

I. INTRODUCTION

In this paper we study system theoretic properties of intercon-
nections of linear systems. Given is a collection of linear time
invariant input/state/output systems, together with an interconnection
topology represented by a weighted directed graph. The systems are
interconnected through their inputs and outputs as prescribed by the
given graph, and at the same time new external input and output
channels are specified for the interconnected system. The systems
that are being interconnected are called the node systems, the system
resulting after interconnection will be called the network. In this
paper we will deal with finding conditions on the node systems,
the adjacency matrix of the graph, and the new input matrix such
that the network is controllable or stabilizable through the new
external input. We also discuss stability in the absence of the external
input. Of course, similar questions arise concerning observability
and detectability through the new external output. By dualization
however, results on controllability and stabilizability immediately
lead to results on observability and detectability. Therefore, in this
paper we will not discuss the latter issues.

The problem of finding conditions under which these basic sys-
tem theoretic properties hold for interconnected systems has been
studied before, and dates back to work by Gilbert [1], who studied
controllability and observability of systems in parallel, series and
feedback interconnections. Other earlier references on this topic are
work of Callier and Nahum [2], and of Fuhrmann [3]. Obviously,
interconnection structures in general are more complex than those
treated in these references, and therefore need to be described by
means of weighted directed graphs. This has resulted in more recent
contributions on system theoretic properties of interconnections.
Among these, we mention the work of Hara et al. [4], the recent
textbook by Fuhrmann and Helmke [5], as well as recent works by
Zhou [6] and Wang et al. [7].

In Hara et al. [4], controllability and observability was studied
for networks in which every node system is a copy of the same
single-input single-output system (such networks are called homoge-
neous). Using an argument based on the control canonical form for
controllable single input systems, it was shown that such a network
is controllable if and only if the node system is controllable and
observable, and the interconnection structure is represented by a
controllable pair. In Fuhrmann and Helmke [5], the more general
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framework of heterogeneous networks consisting of possibly distinct
multi-input multi-output node systems was studied. In this more gen-
eral framework a necessary and sufficient condition was established
for controllability of the network, reminiscent of the classical Popov-
Belevitch-Hautus (PBH) test. This result was however established
under the restrictive condition that all node systems are observable.
Zhou [6] provides a necessary and sufficient condition for control-
lability of heterogeneous networks where certain transfer matrices
associated with the node systems have full column normal rank. This
can only occur if each node system has at least as many external
inputs as internal outputs. Wang et al. [7] provide a necessary and
sufficient condition for the controllability of a homogeneous network
of MIMO LTI node systems where the interconnection structure is
given at the level of node systems rather than at the level of individual
node system inputs and outputs.

The main contributions of the present paper are the following:
1) We will generalize the result of Fuhrmann and Helmke in [5]

to the case that the node systems are not necessarily observable
and obtain a PBH-like test for network controllability applica-
ble to general linear networks.

2) The result of Hara et al. in [4] on homogeneous networks of
single-input single-output systems will be generalized to multi-
input multi-output systems.

3) We will extend both of the above results to stabilizability of
networks.

Although this paper deals with systems in input-state-output form,
an important role in our analysis will be played by elements and
ideas from the behavioral approach [8]. This approach will provide
us with flexibility in using the most suitable system representations
for the problems at hand. In the end however, our final results will
be formulated in terms of classical concepts involving state space
representations and polynomial matrices.

This paper deals with controllability and stabilizability of networks
of linear systems. It does not deal with problems of weak or strong
structural controllability of systems on graphs as studied for example
in [9], [10], [11], [12] and the references therein. Note that, in the
literature on weak or strong structural controllability, conditions are
usually given in terms of graph theoretical concepts (cactus graphs,
matchings, color change rules), whereas in our work conditions
involve system theoretic properties of the coupling matrices and the
node systems. A further related but significantly different area of
work concerns the study of controllability of networks of single inte-
grator systems. Here, controllability conditions are given in terms of
graph theoretical concepts (almost equitable partitions) but the node
systems have trivial dynamics. See Aguilar et al. [13] for a recent
representative contribution to that line of work, and also Camlibel et
al. [14] for a good explanation of a common misconception in the
related classical literature.

The outline of this paper is as follows. In Section II we introduce
the problem formulation of this paper together with some notation
that we will use. Section III will deal with finding a convenient
kernel representation of the network that will reveal which properties
should be satisfied for controllability. Then, in Section IV we will
formulate our results on network controllability. The general scheme
is that we start with the most general heterogeneous multi-input multi-
output case, and then gradually specialize to the homogeneous single-
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Fig. 1. An example network with two node systems with internal states x(1)

resp. x(2). The network has one external input u1 and two external outputs
y1 and y2. The external inputs are connected to node inputs v

(k)
l , while the

node outputs w
(i)
j can be connected to external outputs or to node inputs.

input single-output case. In Section V we will extend our results
to stabilizability and stability. Concluding remarks can be found in
Section VI. In order to enhance readability, some technicalities are
deferred to the Appendix in Section VII.

II. PROBLEM FORMULATION

We study networks of (finite-dimensional) linear time-invariant
node systems of the form

ẋ(i) = α(i)x(i) + β(i)v(i),

w(i) = γ(i)x(i),
(1)

where x(i)(t) ∈ Rni denotes the internal state of the i-th node system
at time t, v(i)(t) ∈ Rmi its input and w(i)(t) ∈ Rpi its output. We
assume that there are N > 0 nodes, i.e. i = 1, . . . , N . Our notation
mostly follows [5].

The special case where α(i) = α(0), β(i) = β(0) and γ(i) = γ(0)

for all i = 1, . . . , N , i.e. where all node system dynamics are the
same, is called a homogeneous network, while the general case of
different node system dynamics is referred to as a heterogeneous
network. A single input single output (SISO) network is a network
where mi = pi = 1 for all i = 1, . . . , N , i.e. a network consisting of
SISO node systems. We will see that homogeneous SISO networks
have very special properties.

We consider static linear couplings between the node systems as
well as between the external inputs and outputs and the nodes (see
Fig. 1). In general, such couplings can be modelled as

v(i) =

N∑
j=1

Aijw
(j) +Biu, (2)

where u(t) ∈ Rm is the external network input, and

y =

N∑
i=1

Ciw
(i), (3)

where y(t) ∈ Rp is the external network output. We will not consider
external network outputs for the remainder of this paper.

By introducing the block diagonal matrices

α =


α(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 α(N)

 , β =


β(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 β(N)



and γ =


γ(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 γ(N)


and the block matrices

A =

A11 . . . A1N

...
...

AN1 . . . ANN

 and B =

B1

...
BN

 ,

the network (without the external network output) can be compactly
represented as

ẋ = αx+ βv,

w = γx,

v = Aw +Bu.

(4)

Here we have stacked the individual node system states, inputs and
outputs in the obvious way to obtain x(t) ∈ R

∑N
i=1 ni , v(t) ∈

R
∑N

i=1mi and w(t) ∈ R
∑N

i=1 pi .
The transfer matrix γ(i)(sI − α(i))−1β(i) of node system i from

v(i) to w(i) will be denoted by g(i)(s). The transfer matrix γ(sI −
α)−1β from the joint input vector v to the joint output vector w is
then equal to

G(s) =


g(1)(s) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 g(N)(s)

 .

Our goal in this paper is to study controllability and stabilizability
of the state x of the network (4) through the external control input u,
and to give characterizations of controllability and stabilizability in
terms of properties of the node systems (1) and the coupling matrices
(A,B). Considering the special case B = 0 (or, equivalently, u = 0)
we will also obtain characterizations of stability of the network.

III. SYSTEM REPRESENTATIONS OF NETWORKS

We will use elements of the behavioral approach [8] in our analysis.
The first step in a behavioral analysis is always the choice of a
convenient system representation. To this end, it is imperative to think
clearly about the selection of variables in the representation. The full
behavior B of the network (4), i.e. the linear space of C∞ solutions
of Eqs. (4), has variables (x, v, w, u). However, controllability of the
network through the external control input u obviously only depends
on the behavior of the variables (x, u), i.e. formally, on the projected
behavior B(x,u) [8]. This behavior can be obtained by elimination of
the variables (v, w) and, by inspection, is given by

ẋ = (α+ βAγ)x+ βBu. (5)

Together with the output equation

w = γx, (6)
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this is nothing but a standard linear time-invariant input/state/output
system with behavior B(x,u,w) where the system matrices (α +
βAγ, βB, γ) have special structure.

The following proposition shows that controllability of the in-
put/state behavior B(x,u) is equivalent to controllability of the in-
put/output behavior B(u,w) provided that the state x of system (5) and
(6) is observable from (u,w), i.e. if system (5) and (6) is observable
in the classical sense. Here, controllability of B(x,u) and B(u,w) is
to be understood in the behavioral sense, but note that behavioral
controllability of B(x,u) is the same as classical controllability
[8]. Similarly, the input/state behavior B(x,u) is stabilizable in the
behavioral sense if and only if the input/output behavior B(u,w) is
stabilizable in the behavioral sense, provided that system (5) and (6)
is observable. Also behavioral stabilizability of B(x,u) is the same
as classical stabilizability [8]. Note, however, that controllability of
B(u,w) is not the same as classical output controllability.

Proposition 1. [8, Ex. 6.25] Let B be the full behavior of the
input/state/output system

ẋ = Ax+Bu,

y = Cx
(7)

with variables (x, u, y). Then the following holds.

1) If B(x,u) is controllable, equivalently (A,B) is a controllable
pair, then B(u,y) is controllable.

2) If B(x,u) is stabilizable, equivalently (A,B) is a stabilizable
pair, then B(u,y) is stabilizable.

Moreover, if (7) is observable, then both in 1. and 2. also the converse
holds.

Proof. A proof can be found in the Appendix.

The following lemma shows that observability of the node systems
implies observability of system (5) and (6).

Lemma 2. (γ, α) observable implies (γ, α+ βAγ) observable.

Proof. This follows from the dual of the well known result that
controllability is invariant under constant state feedback, see e.g. [15,
Ex. 3.9].

In order to apply Proposition 1 via Lemma 2, we start with an
unobservable/observable Kalman decomposition of each node system

α(i) =

(
α
(i)
11 α

(i)
12

0 α
(i)
22

)
, β(i) =

(
β
(i)
1

β
(i)
2

)
,

γ(i) =
(
0 γ

(i)
2

)
,

such that
(
γ
(i)
2 , α

(i)
22

)
is observable. Recall that α(i) ∈ Rni×ni . Let

ni,1 and ni,2 be the sizes of α(i)
11 and α

(i)
22 , respectively, so that

ni,1 + ni,2 = ni. By stacking all the unobservable node system
states into a vector x1 and separately stacking all the observable
node system states into a vector x2 we can rewrite the collection of
the node system dynamics (the uncoupled network dynamics) as(

ẋ1
ẋ2

)
=

(
α11 α12

0 α22

)(
x1
x2

)
+

(
β1
β2

)
v,

w = γ2x2,

where the block system matrices are reordered versions of the block
matrices (α, β, γ) in Eq. (4) and (γ2, α22) is observable. Note that
α11 has size

∑N
i=1 ni,1. The joint node transfer matrix is then

G(s) = γ(sI − α)−1β = γ2(sI − α22)
−1β2.

The following trick allows us to apply Proposition 1 via Lemma 2.
We introduce additional “virtual” outputs

w′ = x1 (8)

of the node systems to obtain the observable augmented uncoupled
network dynamics(

ẋ1
ẋ2

)
=

(
α11 α12

0 α22

)(
x1
x2

)
+

(
β1
β2

)
v,(

w′

w

)
=

(
I 0
0 γ2

)(
x1
x2

)
.

(9)

We now augment the network coupling matrices to

A =
(
0 A

)
and B = B (10)

and obtain the new coupling equation

v = A

(
w′

w

)
+Bu = Aw +Bu. (11)

Observe that the (x, v, w, u) behavior B(x,v,w,u) of the augmented
network (9) and (11) is equal to the full behavior B of the original
network as the “virtual” outputs w′ are not connected to any node
system inputs. Here, x> = (x>1 , x

>
2 ). But then B(x,u) = B(x,u).

In the following, we derive a kernel representation of B(w′,w,u).
By definition, B = B(x1,x2,v,w′,w,u) = KerR( d

dt
) where

R(s) =


sI − α11 −α12 −β1 0 0 0

0 sI − α22 −β2 0 0 0
−I 0 0 I 0 0
0 −γ2 0 0 I 0
0 0 I 0 −A −B

 .

By observability of (γ2, α22), there exist polynomial matrices
X(s) and Y (s) such that(

X(s) Y (s)
)(sI − α22

γ2

)
= I. (12)

Choose a left coprime factorization

Dso(s)
−1Nso(s) = γ2 (sI − α22)

−1 ,

where the subscript ’so’ refers to the fact that it is a factorization of
the transfer matrix from the (observable parts of) the states to the
outputs of all node systems. Compute

∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
I α12X(s) sI − α11 −α12Y (s) 0
0 Nso(s) 0 Dso(s) 0
0 0 0 0 I

R(s) =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 Z(s) sI − α11 −α12Y (s) 0
0 0 −Nso(s)β2 0 Dso(s) 0
0 0 I 0 −A −B

 ,

where Z(s) = −β1 − α12X(s)β2 and the entries marked with
’*’ in the first two rows of the first matrix have been chosen
such that the resulting matrix is unimodular; this is possible since(
Nso(s) Dso(s)

)
is left coprime. Observe that the matrix formed

from the first two block columns of R(s) has full column rank
and hence the upper left block of the last matrix in the preceding
equation has full column rank; it hence also has full row rank as it
is a square matrix. The elimination theorem [8, Theorem 6.2.6] now
implies that the lower right block in the last matrix provides a kernel
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representation of B(v,w′,w,u). We continue by also eliminating v.
ComputeI 0 −Z(s)
0 I Nso(s)β2
0 0 I

 Z(s) sI − α11 −α12Y (s) 0
−Nso(s)β2 0 Dso(s) 0

I 0 −A −B


=

0 sI − α11 −α12Y (s) + Z(s)A Z(s)B
0 0 Dso(s)−Nso(s)β2A −Nso(s)β2B
I 0 −A −B


then the elimination theorem yields B(w′,w,u) = KerP ( d

dt
) where

P (s) =

(
sI − α11 −α12Y (s) + Z(s)A Z(s)B

0 Dso(s)−Nso(s)β2A −Nso(s)β2B

)
.

Recall that here Z(s) = −β1 − α12X(s)β2, the polynomial ma-
trices X(s) and Y (s) are given by (12) and Dso(s)

−1Nso(s) =
γ2 (sI − α22)

−1 is a left coprime factorization.

IV. NETWORK CONTROLLABILITY

The following is our key result on network controllability. Please
refer to Section III for the notation used in the theorem statement.

Theorem 3. The network (4) is controllable if and only if the
polynomial matrix

P (s) =

(
sI − α11 −α12Y (s) + Z(s)A Z(s)B

0 Dso(s)−Nso(s)β2A −Nso(s)β2B

)
is left prime.

Proof. The input/state/output system obtained by plugging Eq. (11)
into Eq. (9) has behavior B(x,w′,w,u), and is observable by Lemma 2.
Hence, controllability of B(x,u) = B(x,u) is equivalent to con-
trollability of B(w′,w,u) by Proposition 1. A full row rank kernel
representation of B(w′,w,u) is given by the matrix P (s) and the result
now follows from [8, Theorem 5.2.10].

Note that the matrix P (s) in the above theorem is in general
significantly smaller than the matrix in a classical, directly applied
PBH-test would be. In the sequel we will obtain several consequences
of the key result of Theorem 3. However, before embarking on this,
we first formulate a basic result that establishes a relation between
our special factorization D−1

so (s)Nso(s)β2 of the joint node transfer
matrix γ(sI − α)−1β = γ2(sI − α22)

−1β2 and any arbitrary left
coprime factorization of this transfer matrix.

Lemma 4. Let D(s)−1N(s) be any left coprime factorization of
γ(sI − α)−1β. Assume that (α, β) is a controllable pair. Then
D−1
so (s)Nso(s)β2 is also a left coprime factorization and there exists

a unimodular polynomial matrix U(s) such that

(Dso(s) −Nso(s)β2) = U(s) (D(s) −N(s)) .

Proof. This follows immediately from Lemma 22 and Lemma 23 in
the Appendix.

Then, as a first consequence of Theorem 3 we recover a result by
Fuhrmann and Helmke [5, Theorem 9.8] that is reminiscent of the
classical Popov-Belevitch-Hautus test (PBH test) for controllability.
The result deals with the special case where all node systems are
controllable and observable.

Corollary 5. [Fuhrmann-Helmke test] Assume that all node sys-
tems are controllable and observable. Let D(s)−1N(s) be any left
coprime factorization of γ (sI − α)−1 β. Then the network (4) is
controllable if and only if the polynomial matrix(

D(s)−N(s)A −N(s)B
)

(13)

is left prime.

Proof. By observability, the first block row in P (s) is not present.
The result then follows immediately from Theorem 3 and Lemma
4.

Before proceeding, we make the trivial observation that controlla-
bility of all node systems is a necessary condition for controllability
of the network (4).

Lemma 6. If the network (5) is controllable then all pairs (α(i), β(i),
i = 1, 2, . . . , N are controllable.

Proof. Let η ∈ C
∑N

i=1 ni and λ ∈ C be such that η∗β = 0 and
η∗α = λη∗. Then η∗(α + βAγ) = η∗α = λη∗ and controllability
of the network implies η = 0. It follows that the pair (α, β) is
controllable and hence all pairs (α(i), β(i), i = 1, 2, . . . , N are
controllable.

Returning now to the general case that not all node systems are
required to be observable, the following result gives a necessary
condition on the rank of the external input matrix B for the network
to be controllable. The result gives a necessary lower bound on the
rank of B in terms of the number of unobservable agents that share
a common unobservable eigenvalue.

Theorem 7. Assume that among the N node systems (1) there are
k unobservable ones, indexed by, say i1, i2, . . . ik. Moreover, assume
these have at least one unobservable eigenvalue in common, i.e.,
there exists λ ∈ C such that λ is an unobservable eigenvalue of the
pair (γ(j), α(j)) for j = i1, i2, . . . , ik with geometric multiplicities
`1, . . . , `k, respectively. Then the network is controllable only if
rank(B) ≥

∑k
i=1 `i ≥ k.

Proof. Let P (s) be given by (3). Obviously, for any λ ∈ C we
must have rank(P (λ)) ≤ rowdim(P ), where ’rowdim’ denotes the
number of rows. Counting this number of rows we find

rowdim(P ) =

N∑
i=1

ni,1 +

N∑
i=1

pi. (14)

Now let λ be a joint unobservable eigenvalue of k node systems
with respective multiplicities `1, . . . , `k. Then λ must be at least
a
∑k
i=1 `i-fold eigenvalue of α11 and hence rank(λI − α11) ≤∑N

i=1 ni,1−
∑k
i=1 `i. Now looking at the column space of P (λ) we

estimate:

rank(P (λ)) ≤
N∑
i=1

ni,1 −
k∑
i=1

`i +

N∑
i=1

pi + rank(B). (15)

Now assume that the network is controllable. Then by Theorem
3, P (λ) has full row rank, i.e., rank(P (λ)) = rowdim(P ). By
combining (14) and (15) this implies rank(B) ≥

∑k
i=1 `i ≥ k.

A. Controllability of homogeneous networks

Note that the previous results were all concerned with the hetero-
geneous case. We will now specialize to the case that the network is
homogeneous, i.e., all node systems are identical, and given by the
triple (α(0), β(0), γ(0)). If the node system is unobservable, then a
necessary condition for controllability of the network is that the rank
of B is at least equal to the number of nodes.

Corollary 8. Assume the network is homogeneous. Assume that the
node system is unobservable with an unobservable eigenvalue of
geometric multiplicity `. Then the network is controllable only if
rank(B) ≥ N` ≥ N .

Proof. This follows immediately from Theorem 7.
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By collecting the above results we arrive at the following conse-
quence of Theorem 3, again concerning the homogeneous case.

Theorem 9. Assume the network is homogeneous. Let D(s)−1N(s)
be a left coprime factorization of γ (sI − α)−1 β. Assume that
rank(B) < N . Then the network is controllable if and only if the
node system is controllable and observable, and(

D(s)−N(s)A −N(s)B
)

(16)

is left prime.

Proof. If rank(B) < N then by Corollary 8 the node system is
observable. Controllability of the node system follows from Lemma
6. By applying Corollary 5 we then obtain that (16) is left prime.
The converse follows immediately from Corollary 5.

Specializing even further, we now consider the case that the
network is homogeneous and the node system is a single input single
output system. Note that in that case the input matrix B has N rows.
Thus, either rank(B) = N or rank(B) < N . In case that B has full
row rank N , the corresponding network turns out to be controllable
if and only if the node system is controllable, irrespective of the
coupling matrix A. The case that rank(B) < N is the main result
of Hara et al. [4, Proposition 3.1]. We recover this result as a special
case of our Theorem 9.

Corollary 10. Assume the network is homogeneous and the node
system is a single-input single-output system. Then the following
holds.

1) If rank(B) = N then the network is controllable if and only
if the node system is controllable.

2) If rank(B) < N then the network is controllable if and only
if the node system is controllable and observable, and the pair
(A,B) is controllable.

Proof. A proof of 1. can be given using the PBH test. Assume the
node system is controllable and let η ∈ C

∑N
i=1 ni and λ ∈ C be such

that η∗βB = 0 and η∗(α+βAγ) = λη∗. Since B has full row rank
this implies η∗β = 0 and hence η∗α = λη∗. Controllability of the
node system then implies η = 0, so the network is controllable. The
converse implication follows from Lemma 6.

We will now prove 2. First note that a left coprime factoriza-
tion D(s)−1N(s) of γ (sI − α)−1 β is obtained by taking a left

coprime factorization d(s)−1n(s) of γ(0)
(
sI − α(0)

)−1

β(0), and
then putting D(s) := d(s)I and N(s) = n(s)I , with I the N ×N
identity matrix. Then (16) reduces to(

d(s)I − n(s)A −n(s)B
)

(17)

First assume that the network is controllable. Lemma 6 then yields
controllability of the node system. Moreover, by Theorem 9, the node
system is observable and (17) is left prime. We want to prove that
for each µ ∈ C the complex matrix (µI − A − B) has full row
rank. To prove this, let µ be given. Consider the polynomial equation
d(s) − µn(s) = 0 in the unknown s. Clearly it has a solution, say
λ ∈ C. Note that n(λ) 6= 0 for otherwise we would also have d(λ) =
0 which would contradict coprimeness of d(s) and n(s). Thus we
obtain µ = d(λ)

n(λ)
. Since(

d(λ)I − n(λ)A −n(λ)B
)

(18)

has full row rank, the same now holds for (µI −A −B).
We will now prove the converse implication. Assume that the node

system is controllable and assume that (A,B) is controllable. Our
aim is to show that (18) has full row rank for all λ ∈ C. Take any
λ. If n(λ) 6= 0 then define µ := d(λ)

n(λ)
. Since (µI − A − B) has

full row rank the same now holds for (18). On the other hand, if
n(λ) = 0 then necessarily d(λ) 6= 0. This again follows from the
fact that n(s) and d(s) are coprime. Also in that case (18) has full
row rank and hence (17) is left prime. Together with observability
of the node system, an application of Theorem 9 then completes the
proof.

Remark 11. For the homogeneous SISO case, Corollary 10 gives a
complete picture of how to express controllability of the network in
terms of conditions on the node system and the coupling matrices. In
particular, for the case rank(B) < N these involve two conditions
on the node system only (controllablity and observability) and a
condition on the coupling matrices only (controllability). For the
case rank(B) = N there is only a condition on the node system
(controllability). This is in contrast with the homogeneous MIMO
case: for the case rank(B) < N we have conditions in terms of the
node system only (again controllability and observability), but the
left primeness condition on (16) involves both the node system and
the coupling matrices. In addition, it not clear how to obtain similar
necessary and sufficient conditions for the case that rank(B) ≥ N .
Note that in the MIMO case, B has Nm0 rows, where m0 is the
number of inputs of the node system. Of course, if rank(B) = Nm0

(full row rank) then, like in the SISO case, controllability of the
network is equivalent to controllability of the node system. A
complete picture for the case that N ≤ rank(B) < Nm0 remains
unclear beyond the general condition given in Theorem 3.

V. NETWORK STABILIZABILITY

We now turn to necessary and sufficient conditions for stabilizabil-
ity of the network. While doing this, we will also address the issue
of stability. In particular, we aim at finding conditions, preferably
in terms of conditions on the node systems and conditions on the
coupling matrices, under which the network (5) is stabilizable by
means of the external input u. The development will follow that
of the controllability case and therefore some of the details will be
omitted.

Again, we will use results from the behavioral approach [8]
whenever convenient. We refer to Section III for the notation used
in the sequel. Recall that Dso(s)−1Nso(s) = γ2 (sI − α22)

−1 is a
left coprime factorization and that X(s) and Y (s) are polynomial
matrices such that (12) holds; these exist by observability. We now
state necessary and sufficient conditions for network stabilizability.

Theorem 12. The network (4) is stabilizable if and only if the
complex matrix

P (λ) =

(
λI − α11 −α12Y (λ) + Z(λ)A Z(λ)B

0 Dso(λ)−Nso(λ)β2A −Nso(λ)β2B

)
has full row rank for all λ ∈ C with Re(λ) ≥ 0.

Proof. Again, the input/state/output system obtained by plugging
Eq. (11) into Eq. (9) has behavior B(x,w′,w,u) and is observable by
Lemma 2. Hence, stabilizability of B(x,u) = B(x,u) is equivalent to
stabilizability of B(w′,w,u) by Proposition 1. Since a full row rank
kernel representation of B(w′,w,u) is given by the matrix P (s), the
result then follows from [8, Theorem 5.2.30].

We now turn to studying the consequences of this theorem.
Before doing this we formulate the following lemma on coprime
factorizations of G(s) = γ(sI − α)−1β = γ2(sI − α22)

−1β2.

Lemma 13. Let D(s)−1N(s) be any left coprime factoriza-
tion of γ(sI − α)−1β. Assume that (α, β) is stabilizable. Then
(Dso(λ) −Nso(λ)β2) has full row rank for all λ ∈ C with
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Re(λ) ≥ 0 and there exists a polynomial matrix W (s) such that
W (λ) is nonsingular for all λ ∈ C with Re(λ) ≥ 0 and

(Dso(s) −Nso(s)β2) =W (s) (D(s) −N(s)) .

Proof. This follows immediately from Lemma 22 and Lemma 23 in
the Appendix.

For the special case that all node systems are stabilizable and
detectable we can now formulate an obvious Fuhrmann-Helmke test
for stabilizability, analogous to the test for controllability in Corollary
5.

Corollary 14. Assume that all node systems are stabilizable and
detectable. Let D(s)−1N(s) be a left coprime factorization of
γ (sI − α)−1 β. Then the network (4) is stabilizable if and only if(

D(λ)−N(λ)A −N(λ)B
)

(19)

has full row rank for all λ ∈ C with Re(λ) ≥ 0.

Proof. If the network is stabilizable, then by Theorem 12 the matrix
formed by the lower right blocks in P (λ) must have full row rank for
all λ ∈ C with Re(λ) ≥ 0. By Lemma 13 the same then holds for
(19). The converse follows similarly, with the additional observation
that, by detectability, λI − α11 is nonsingular for all λ ∈ C with
Re(λ) ≥ 0.

We now first make the observation that stabilizability of all node
systems is necessary for stabilizability of the network. Similar to the
controllability case in Lemma 6, a proof can be given using the PBH
test and will be omitted here.

Lemma 15. If the network (5) is stabilizable then all pairs (α(i), β(i)
(i = 1, 2, . . . , N ) are stabilizable.

In the sequel we will return to the general situation that not all node
systems are detectable. Then we have the following lower bound on
the rank of the input matrix B for network stabilizability.

Theorem 16. Assume that among the N node systems (1) there are
k nondetectable ones, indexed by, say i1, i2, . . . ik. Moreover, assume
that there exists a common λ ∈ C with Re(λ) ≥ 0 such that λ is an
unobservable eigenvalue of the pair (γ(j), α(j)) for j = i1, i2, . . . , ik
with geometric multiplicities `1, . . . , `k, respectively. Then the net-
work is stabilizable only if rank(B) ≥

∑k
i=1 `i ≥ k.

Proof. A proof runs along the same lines as the proof of Theorem 7,
where now λ ∈ C is a joint unobservable eigenvalue with Re(λ) ≥ 0.
The details are omitted.

A. Stabilizability of homogeneous networks

Again, all previous results deal with the heterogeneous multi-input
multi-output (MIMO) case. We will now consider the case that the
network is homogeneous. In that case we have the following result.

Corollary 17. Assume the network is homogeneous. Assume that
the node system is nondetectable with an unobservable eigenvalue
of geometric multiplicity `. Then the network is stabilizable only if
rank(B) ≥ N` ≥ N .

The following analogue of Theorem 9 now follows.

Theorem 18. Assume the network is homogeneous. Let D(s)−1N(s)
be a left coprime factorization of γ (sI − α)−1 β. Assume that
rank(B) < N . Then the network is stabilizable if and only if the
node system is stabilizable and detectable, and(

D(λ)−N(λ)A −N(λ)B
)

(20)

has full row rank for all λ ∈ C with Re(λ) ≥ 0.

Proof. Let rank(B) < N . If the network is stabilizable then by
Corollary 17 the node system is detectable. By Lemma 15 the node
system is stabilizable. By Corollary 14, (20) then has full row rank
for all λ ∈ C with Re(λ) ≥ 0. The converse follows immediately
from Corollary 14.

Finally, we specialize to the homogeneous SISO case to obtain an
extension of the controllability result of Hara et al. [4] dealing with
stabilizability. In the following, let

g(0)(s) = γ(0)
(
sI − α(0)

)−1

β(0) (21)

be the transfer function of the node system. We have the following
characterization of stabilizability of the network in terms of the node
system and the coupling matrices.

Theorem 19. Assume the network is homogeneous and the node
system is a single-input single-output system with transfer function
g(0)(s), cf. (21). Then the following holds.

1) If rank(B) = N then the network is stabilizable if and only if
the node system is stabilizable.

2) If rank(B) < N then the network is stabilizable if and only if
the node system is stabilizable and detectable, and(

1

g(0)(λ)
I −A −B

)
(22)

has full row rank for all λ ∈ C with Re(λ) ≥ 0 and g(0)(λ) 6=
0.

Proof. As in the proof of Corollary 10, let the polynomials d(s)
and n(s) be obtained by taking a coprime factorization d(s)−1n(s)
of g(0)(s). Assume that the network is stabilizable. By Lemma 15
and Theorem 18 we have that the node system is stabilizable and
detectable, and (

d(λ)I − n(λ)A −n(λ)B
)

(23)

has full row rank for all λ ∈ C with Re(λ) ≥ 0. Take any such
λ with g(0)(λ) = d(λ)−1n(λ) 6= 0. Then n(λ) 6= 0. Noting that

1

g(0)(λ)
= d(λ)

n(λ)
, the condition (22) then follows.

We now prove the converse. Assume the node system is stabilizable
and assume that (22) holds for all Re(λ) ≥ 0 with g(0)(λ) 6= 0. For
such λ we clearly have n(λ) 6= 0 so (23) has full row rank. It remains
to show that this also holds for Re(λ) ≥ 0 with g(0)(λ) = 0. For
such λ we have n(λ) = 0. By coprimeness of n(s) and d(s) we then
have that d(λ) 6= 0 so also in this case we have that (23) has full row
rank. Thus, (20) has full row rank for all λ ∈ C with Re(λ) ≥ 0.
Together with detectability of the node system the result then follows
from Theorem 18.

Unlike in the case of controllability, the full row rank condition
on (22) does not reduce to ordinary stabilizability of the pair (A,B).
The following example illustrates this.

Example 20. As node system take the stabilizable and detectable
system ẋ(0) = ax(0) + v(0), w(0) = x(0) with a ∈ R. Its transfer
function is g(0)(s) = 1

s−a . For given coupling matrices (A,B), net-
work stabilizability then holds if and only if ((λ− a)I −A −B)
has full row rank for all λ ∈ C with Re(λ) ≥ 0. This is equivalent
with the condition that (µI −A −B) has full row rank for all
µ ∈ C with Re(µ) ≥ −a, in other words: stabilizability with respect
to the stability domain {µ ∈ C |Re(µ) < −a}.
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B. Stability of autonomous networks

Finally, we turn to the question under which conditions on the
node systems and coupling matrix A the autonomous network

ẋ = (α+ βAγ)x (24)

is stable. Obviously, the network is stable if and only if it is stabiliz-
able with B = 0. Clearly then, in the (most general) heterogeneous
MIMO case, we obtain from Theorem 12 that the network is stable
if and only if

P (s) =

(
sI − α11 −α12Y (s) + Z(s)A

0 Dso(s)−Nso(λ)β2A

)
(25)

is Hurwitz. It follows that all eigenvalues of α11 must have negative
real part, so all node systems must be detectable. From Lemma 15
also all node systems must be stabilizable.

In case the network is MIMO but homogeneous, it follows immedi-
ately from this that the network is stable if and only if the node system
is stabilizable and detectable and (D(s)−N(s)A) is Hurwitz, where
D(s)−1N(s) is a left coprime factorization of γ(sI − α)−1β.

We finally look at the homogeneous SISO case to obtain the
following immediate consequence of Theorem 19.

Corollary 21. Assume the network is homogeneous and the node
system is a single-input single-output system with transfer function
g(0)(s), cf. (21). Then the network is stable if and only if the node
system is stabilizable and detectable, and

1

g(0)(λ)
I −A (26)

is nonsingular for all λ ∈ C with Re(λ) ≥ 0 and g(0)(λ) 6= 0.

VI. CONCLUSIONS

In this paper we have studied controllability, stabilizability and
stability of networks of linear systems. In particular, we have es-
tablished necessary and sufficient conditions for controllability of
heterogeneous networks of MIMO node systems, generalizing a
controllability condition of Fuhrmann and Helmke [5] to the case
that the node system is not necessarily observable. For the case of
homogeneous networks of MIMO nodes we have shown that if the
rank of the external input matrix is strictly less than the number
of nodes, then observability of the node system is even a necessary
condition for controllability. This result can also be considered as a
MIMO extension of a similar result of Hara et al. [4] on SISO node
systems. Finally, we have extended our results on controllability to
conditions for stabilizability and stability of networks. In particular,
we have extended the celebrated result of Hara et al. [4] to conditions
for stabilizability of homogeneous networks of SISO node systems.

VII. APPENDIX

In this appendix we collect some technicalities needed in this paper.

Proof of Proposition 1.
We prove 2. Let (u, y) be a trajectory in B(u,y). There exists x such
that y = Cx, and (x, u) ∈ B(x,u). Since B(x,u) is stabilizable, there
exists (x′, u′) ∈ B(x,u) such that (x′(t), u′(t)) → 0 as t → ∞ and
(x(t), u(t)) = (x′(t), u′(t)) for all t ≤ 0. Define y′ = Cx′. Then
(u′, y′) ∈ B(u,y), (u′(t), y′(t)) → 0 as t → ∞ and (u(t), y(t)) =
(u′(t), y′(t)) for all t ≤ 0. This shows that B(u,y) is stabilizable.

Assume now that (7) is observable. Then in particular it is
detectable. Let (x, u) be a trajectory in B(x,u). Define y = Cx.
Then (u, y) in B(u,y). By stabilizability there exists (u′, y′) ∈ B(u,y)

with (u′(t), y′(t)) → 0 as t → ∞ and (u(t), y(t)) = (u′(t), y′(t))

for all t ≤ 0. Clearly, there exists x′ such that y′ = Cx′ and
(x′, u′) ∈ B(x,u). By observability, since (u, y) and (u′, y′) coincide
on the negative halve line, this implies x(t) = x′(t) for t ≤ 0.
Finally, since (u′(t), y′(t))→ 0 as t→∞, by detectability we have
x′(t) → 0 as well. Also, (x(t), u(t)) = (x′(t), u′(t)) for all t ≤ 0.
This proves stabilizability of B(x,u).

A proof of 1. uses similar ideas as above, and will be omitted here.

Lemma 22. Consider the system (7). Let D(s)−1N(s) =
C (sI −A)−1 be a left coprime factorization. Then the following
statements hold.

1) If (A,B) is a controllable pair then (D(s) −N(s)B) is left
prime.

2) If (A,B) is a stabilizable pair then (D(λ) −N(λ)B) has
full row rank for all λ ∈ C with Re(λ) ≥ 0.

Proof. Let B be the full behavior of (7). The full behavior has a
kernel representation B = KerR( d

dt
), with

R(s) =

(
sI −A −B 0
−C 0 I

)
.

Note that if (A,B) is controllable, then the projected behavior B(u,y)

is controllable by Proposition 1. If (A,B) is stabilizable, then the
projected behavior B(u,y) is stabilizable by Proposition 1. We derive
a kernel representation for this projected behavior. Compute(

∗ ∗
N D

)
R(s) =

(
∗ ∗ ∗
0 −N(s)B D(s)

)
.

Here the *’s in the first row of the first matrix have been chosen
such that the resulting matrix is unimodular. This is possible due
to coprimeness of D(s) and N(s). Since the first block column of
R(s) has full column rank, the first block column of the matrix on the
right hand side must have full column rank as well. Thus, the ’*’ in
the upper left corner of this matrix (being square) must have full row
rank. Hence, the projected behavior B(u,y) has a kernel representation
−N( d

dt
)Bu+D( d

dt
)y = 0. If this behavior is controllable we must

have that (D(λ) −N(λ)B) has full row rank for all λ ∈ C. If it
is stabilizable then the same holds for all λ ∈ C with Re(λ) ≥ 0
(see [8]).

Lemma 23. Let G(s) be a proper real rational matrix. Assume that
G(s) = D1(s)

−1N1(s) = D2(s)
−1N2(s) are two factorizations

with Di(s) and Ni(s) (i = 1, 2) polynomial matrices. Then the
following holds.

1) If both factorizations are left coprime, then there exists a uni-
modular polynomial matrix U(s) such that (D2(s) −N2(s)) =
U(s)(D1(s) −N1(s)).

2) If (D1(s) − N1(s)) is left prime and (D2(λ) − N2(λ))
has full row rank for all λ ∈ C with Re(λ) ≥ 0, then
there exists a polynomial matrix W (s) such that (D2(s) −
N2(s)) =W (s)(D1(s) −N1(s)) with the property that W (λ)
is nonsingular for all λ ∈ C with Re(λ) ≥ 0.

Proof. For a proof of 1., consider the behaviors B1 and B2 rep-
resented, respectively, by the kernel representations D1(

d
dt
)y −

N1(
d
dt
)u = 0 and D2(

d
dt
)y − N2(

d
dt
)u = 0. Since both are a

factorization of the same transfer matrix, by [8, Theorem 8.2.7]
the controllable parts of B1 and B2 are equal. However, since
(D1(λ) −N1(λ)) and (D2(λ) −N2(λ)) both have full row rank for
all λ ∈ C, both B1 and B2 are in fact controllable. We conclude that
B1 = B2. It then follows that a unimodular U(s) exists as claimed
[8, Theorem 3.6.2].

To prove 2., again consider the behaviors B1 and B2. In this case,
only B1 is controllable, so B1 is equal to the controllable part of B2.
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Clearly this implies that B1 ⊂ B2. Then there exists a polynomial
matrix W (s) such that (D2(s) −N2(s)) =W (s)(D1(s) −N1(s)).
Since for i = 1, 2, (Di(λ) −Ni(λ)) has full row rank for all λ ∈ C
with Re(λ) ≥ 0, we must have that W (λ) is nonsingular for all
λ ∈ C with Re(λ) ≥ 0.
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