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Abstract

Visual Simultaneous Localisation and Mapping (VSLAM) is a well-known problem in robotics with a large range of applications.
This paper presents a novel approach to VSLAM by lifting the observer design to a novel Lie group VSLAMn(3) on which
the system output is equivariant. The perspective gained from this analysis facilitates the design of a non-linear observer
with almost semi-globally asymptotically stable error dynamics. Simulations are provided to illustrate the behaviour of the
proposed observer and experiments on data gathered using a fixed-wing UAV flying outdoors demonstrate its performance.
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1 Introduction

Fig. 1. The Disco Parrot UAV used to gather video data to
test the proposed observer.

Simultaneous Localisation and Mapping (SLAM) has
been an established problem in mobile robotics for at
least the last 30 years [10]. Visual SLAM (VSLAM) refers
to the special case where the only exteroceptive sensors
available are cameras, and is frequently used to refer to
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the challenging situation where only a single monocular
camera is available. The inherent non-linearity of the VS-
LAM problem remains challenging [8] and state-of-the-
art solutions suffer from high computational complexity
and poor scalability [10,21]. Due to the low cost and low
weight, as well as the ubiquity of single camera systems,
the VSLAM problem remains an active research topic
[10,9].

Both the SLAM and VSLAM problems have recently
attracted interest in the non-linear observer community,
drawing from earlier work on attitude estimation [16,5]
and pose estimation [1,25,12]. Barrau and Bonnabel [2]
exploited a novel Lie group to design an invariant Ex-
tended Kalman Filter for the SLAM problem. Parallel
work by Mahony and Hamel [17] proposed the same
group structure along with a novel quotient manifold
structure for the state-space of the SLAM problem.
Work by Zlotnik and Forbes [26] derives a geometrically
motivated observer for the SLAM problem that includes
estimation of bias in linear and angular velocity inputs.
For the VSLAM problem, where only bearing measure-
ments are available, Lourenço et al. [14,15] proposed an
observer with a globally exponentially stable error sys-
tem using depths of landmarks as separate components
of the observer. Bjorne et al. [4] use an attitude heading
reference system (AHRS) to determine the orientation
of the robot, and then solve the SLAM problem using
a linear Kalman filter. A similar approach to VSLAM
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is undertaken by Le Bras et al. [6]. Hamel and Samson
[11] have also introduced a Riccati observer for the case
where the orientation of the robot is known. Recent
work by the authors [24] introduced a new symmetry
structure specifically targeting the VSLAM problem
but used an observer design that was a lifted version of
that proposed in [11].

In this paper we present a novel non-linear equivariant
observer for the VSLAM problem. The approach uses
the SLAM manifold state-space proposed in [17] along
with a novel symmetry Lie-group, VSLAMn(3), intro-
duced by van Goor et al. [24] but fully developed for the
first time in this paper. We extend the results of [24]
by providing equivariant group actions on the state and
output spaces leading to the definition of the lifted sys-
tem, a lifted observer and more importantly an intrinsic
error that is globally defined. We propose a Lyapunov
function expressed in the intrinsic error coordinates and
use this to construct an observer for the visual SLAM
problem posed on the symmetry group VSLAMn(3).
This is in contrast to the majority of state-of-the-art al-
gorithms which depend on local error coordinates and
local linearisation [8]. The recent IEKF results [7] ex-
ploit a global symmetry of the state-space, however, the
symmetry used is not compatible with visual bearings
and the resulting algorithm still depends on local lin-
earisation of the measurement function. In our proposed
algorithm, separate constant gains for landmark bear-
ing and depth estimates are used, making the design
algebraically simple and leading to low computational
cost. We show that the error dynamics are almost semi-
globally asymptotically stabilisable (Def. A.1). The re-
sulting algorithm has low computation and memory re-
quirements, making it ideally suited to embedded sys-
tems applications in consumer electronics.

This paper consists of six sections alongside the in-
troduction and conclusion. Section 2 introduces key
notation and identities. In Section 3, we formulate
the kinematics, state-space and output of the VSLAM
system, and in Section 4 we introduce the Lie group
VSLAMn(3) and its actions on the state and output
spaces. In Section 5 we derive a non-linear observer
on the Lie group, and in Sections 6 and 7 we provide
the results of a simulation and a real-world experiment
carried out using a Disco Parrot UAV (Figure 1). The
principal contribution of the paper is theoretical and
the experimental sections support this by illustrating
the properties of the algorithm and demonstrating that
it functions on real-world data. We do not aspire to
provide a comprehensive benchmark of performance
against state-of-the-art SLAM systems in the present
paper.

2 Preliminaries

The special orthogonal and special Euclidean matrix Lie
groups are denoted SO(3) and SE(3), respectively, with
Lie algebras so(3) and se(3). For any column vector Ω =
(Ω1,Ω2,Ω3) ∈ R3, the corresponding skew-symmetric
matrix is denoted

Ω× :=


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ∈ so(3).

This matrix has the property that, for any v ∈ R3,
Ω×v = Ω× v where Ω× v is the vector (cross) product
between Ω and v. For any unit vector y ∈ S2 ⊂ R3 and
any vector v ∈ R3,

y×y×v = yy>v − v. (1)

Consider a homogeneous matrix P ∈ SE(3). The nota-
tion RP ∈ SO(3) and xP ∈ R3 is used to represent the
rotation and translation components of P , respectively;
that is

P =

(
RP xP

0 1

)
∈ SE(3).

Likewise, for a matrix U ∈ se(3), the notation Ω×U ∈
so(3), with ΩU ∈ R3, and VU ∈ R3 represent the angular
and linear velocity components of U , respectively; i.e.

U =

(
Ω×U VU

0 0

)
∈ se(3).

For a background on smooth manifolds, Lie groups and
their actions, the authors recommend [13, Chapter 7].

3 Problem Formulation

3.1 VSLAM State Space

Fix an arbitrary reference frame {0}. Let P ∈ SE(3)
and pi ∈ R3, i = 1, ..., n represent the robot pose and
landmark coordinates, respectively, defined with respect
to {0}. The raw coordinates of the SLAM problem are
written (P, p1, ..., pn) ∈ SE(3) × R3 × · · · × R3. The
notation (P, pi) ≡ (P, p1, ..., pn) is used for simplicity in
the sequel.

The physical measurements in a monocular VSLAM sys-
tem are the bearings (3D directions) of landmarks per-
ceived by the robot. We assume from now on that the
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observed landmarks and the robot are not collocated to
ensure that the bearing measurements are well defined.
Interestingly, this assumption has a substantive impact
on the nature of the global symmetries that can be ad-
mitted. We make this assumption explicit, defining the
total space T ◦n (3) of SLAM configurations considered to
be

T ◦n (3) =
{

(P, pi) ∈ SE(3)× R3 × · · · × R3

pi 6= xP , i = 1, ..., n
}
. (2)

We assume that the trajectory of the robot remains in
T ◦n (3) for all time.

Given two configurations (P, pi), (P
′, p′i) ∈ T ◦n (3), then

(P, pi) ' (P ′, p′i) if there exists S ∈ SE(3) such that
(P, pi) = (S−1P ′, R>S (p′i − xS)). That is, two sets of co-
ordinates in the total space T ◦n (3) are considered equiv-
alent when they are related by a rigid body transforma-
tion of the reference frame {0}. It is straightforward to
show the relation ' is an equivalence relation on T ◦n (3)
and

bP, pic :=
{

(S−1P,R>S (pi − xS)) S ∈ SE(3)
}
.

is the associated equivalence class. The VSLAM mani-
fold is the set

M ◦
n(3) = {bP, pic | (P, pi) ∈ T ◦n (3)} ,

with quotient manifold structure. This is the open subset
of the SLAM manifold Mn(3) considered in [17] without
those equivalence classes where a landmark is co-located
with the robot. Two configurations are equivalent on
the SLAM manifold, (P 1, p1

i ) ' (P 2, p2
i ), if and only if

the ego-centric coordinates of the landmarks are equal,
R>P 1(p1

i − xP 1) = R>P 2(p2
i − xP 2) for all i.

3.2 VSLAM Kinematics

Assume that the robot is moving in a static environ-
ment. Define a velocity input vector space V = se(3) to
contain the rigid-body velocity U ∈ se(3) of the robot.
The kinematics of the VSLAM system are given by the
system function f : T ◦n (3)× V→ TT ◦n (3),

d

dt
(P, pi) = f((P, pi), U),

:= (PU, 0). (3)

3.3 System Output

The camera measurements are modelled as elements of
the sphere S2. Each individual bearing is given by an

output function hi : T ◦n (3)→ S2,

hi(P, pi) :=
R>P (pi − xP )

‖pi − xP ‖
, (4)

The output functions are well defined on M ◦
n(3) since

hi(S−1P,R>S (pi − xS))

=
(R>SRP )>(R>S (pi − xS)−R>S (xP − xS))

‖R>S (pi − xS)−R>S (xP − xS)‖
,

=
R>P (pi − xP )

‖pi − xP ‖
. (5)

The full output space of the VSLAM system is defined
as a product of n spheres,

N n(3) := S2 × · · · × S2,

with a combined output function h : Tn(3)◦ → N n(3)

h(P, pi) :=

(
R>P (p1 − xP )

‖p1 − xP ‖
, . . . ,

R>P (pn − xP )

‖pn − xP ‖

)
. (6)

4 Symmetry of the VSLAM Problem

4.1 Symmetry of the Total Space T ◦n (3)

Define a Lie group

VSLAMn(3) = SE(3)× (SO(3)×MR(1))n,

with product Lie group structure, where MR(1) is
the multiplicative real group of positive real num-
bers. This Lie group was first proposed in van Goor
et al. [24]. The associated Lie algebra is denoted
vslamn(3). We write elements of VSLAMn(3) as
(A, (Q, a)i) ≡ (A, (Q, a)1, ..., (Q, a)n) ∈ VSLAMn(3).
The group product, identity and inverse are given by

(A1, (Q1, a1)i) · (A2, (Q2, a2)i) = (A1A2, (Q1Q2, a1a2)i),

id = (I4, (I3, 1)i), (A, (Q, a)i)
−1 = (A−1, (Q>, a−1)i).

Lemma 4.1 The mapping Υ : VSLAMn(3)×T ◦n (3)→
T ◦n (3) defined by

Υ((A, (Q, a)i), (P, pi))

:= (PA, a−1
i RPAQ

>
i R
>
P (pi − xP ) + xPA), (7)

is a transitive right group action of VSLAMn(3) on
T ◦n (3).

PROOF. Trivially, Υ((I4, (I3, 1)i), (P, pi)) = (P, pi)
for any (P, pi) ∈ T ◦n (3). Let (A1, (Q1, a1)i), (A2, (Q2, a2)i) ∈
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VSLAMn(3) and (P, pi) ∈ T ◦n (3) be arbitrary. Then

Υ((A1, (Q1, a1)i),Υ((A2, (Q2, a2)i), (P, pi)))

= (PA2A1, (a
−1
1 a−1

2 RPA2A1
Q>1

Q>2 R
>
P (p− xP )) + xPA2A1

)i),

= Υ((A2A1, (Q2Q1, a2a1)i), (P, pi)),

= Υ((A2, (Q2, a2)i) · (A1, (Q1, a1)i), (P, pi)).

Thus Υ is a group action. To see that Υ is transi-
tive, let (P, pi), (P

′, p′i) ∈ T ◦n (3) be arbitrary. Choose
(A, (Q, a)i) ∈ VSLAMn(3) to satisfy

A = P−1P ′, ai =
‖pi − xP ‖
‖p′i − xP ′‖

,

Qi
R>P ′(p

′
i − xP ′)

‖p′i − xP ′‖
=
R>P (pi − xP )

‖pi − xP ‖
.

Then Υ((A, (Q, a)i), (P, pi)) = (P ′, p′i).

The action Υ of VSLAMn(3) on T ◦n (3) is shown in Fig-
ure 2. Given (A, (QA, a)i) ∈ VSLAMn(3) and (P, pi) ∈
T ◦n (3), the action transforms the robot pose P by right-
translation by A. The landmark points are transformed
by considering their body-fixed coordinates; applying a
rotation Q>i and scaling a−1

i ; transforming them along
with the robot pose; and finally writing the result in in-
ertial coordinates.

Fig. 2. The action Υ of the VSLAM group on the state
space for some given (A, (QA, a)i) ∈ VSLAMn(3) and
(P, pi) ∈ T ◦n (3). The pose P is mapped to PA. The body
fixed frame landmark points R>P (pi − xP ) are rotated by
Q> and scaled by a−1 in the body-fixed frame before trans-
forming with the robot pose to a new point p′i which is then
rewritten in the inertial frame.

4.2 Symmetry of the Output Space

There is an action ρ of the VSLAMn(3) group on the
output space such that the measurement function h de-
fined in (6) is equivariant with respect to Υ and ρ. The
following lemmas define this action ρ and show the equiv-
ariance of h for the proposed VSLAMn(3) geometry.
The authors know of no output action that makes bear-
ing outputs equivariant with respect to prior geometries

proposed for SLAM [2,17]. The equivariance structure
enables the development of a globally-defined intrinsic
error.

Proposition 4.2 The mapping ρ : VSLAMn(3) ×
N n(3)→ N n(3) defined by

ρ((A,(Q, a)i), yi) = Q>i yi, (8)

is a right group action of VSLAMn(3) on N n(3).

PROOF. The proof is straightforward.

Lemma 4.3 The output h : T ◦n (3) → N n(3) (6) is
equivariant with respect to actions Υ (7) and ρ (8). That
is, for any X ∈ VSLAMn(3) and any ξ ∈ T ◦n (3),

h(Υ(X, ξ)) = ρ(X,h(ξ)).

PROOF. Let X = (A, (Q, a)i) and ξ = (P, pi) be arbi-
trary. Then

h(Υ(X, ξ))

= h
(
PA, a−1

i RPAQ
>
i R
>
P (pi − xP ) + xPA

)
,

=
R>PA(a−1

i RPAQ
>
i R
>
P (pi − xP ) + xPA − xPA)

‖a−1
i RPAQ>i R

>
P (pi − xP ) + xPA − xPA‖

,

=
Q>i R

>
P (pi − xP )

‖pi − xP ‖
,

= ρ(X,h(ξ)).

4.3 Lift of the VSLAM Kinematics

In order to consider the system on the VSLAMn(3)
group, the kinematics from the total space must be lifted
onto the group. A lift is a map Λ : T ◦n (3)×V→ vslamn(3)
such that

DΥ(P,pi)(id) [Λ((P, pi), U)] = f((P, pi), U) (9)

where f((P, pi), U) is given by (3).

Lemma 4.4 The function Λ : T ◦n (3)× V→ vslamn(3),
defined by

Λ((P, pi), U) := (U, (ΛQ(U,R>P (pi − xP )),

Λa(U,R>P (pi − xP )))), (10)

where ΛQ : se(3)× (R3 \ {0})→ so(3) is given by

ΛQ (U, q) :=

(
ΩU +

q × VU
|q|2

)×
,
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and Λa : se(3)× (R3 \ {0})→ mr(1) is given by

Λa (U, q) :=
q>VU
|q|2

,

is a lift in the sense of (9) of the kinematics (3) onto
vslamn(3) with respect to the group action (7).

PROOF. Given (P, pi) ∈ T ◦n (3), let qi := R>P (pi−xP ),
W×i := ΛQ(U, qi), and wi := Λa(U, qi). Then

DΥ(P,pi)(id) [Λ((P, pi), U)]

= DΥ(P,pi)(id)
[
(U, (W×i , wi))

]
= (PU, vi) (11)

where vi is

vi =
d

ds

∣∣∣∣
s=0

[
(1 + swi)

−1RP (I4+sU)(I3 + sW×i )>qi

+xP (I4+sU)

]
.

Computing this derivative and evaluating at s = 0 one
obtains

vi = −wiRP qi +RPΩ×Uqi +RP (W×i )>qi +RPVU ,

= −q
>
i VU
|qi|2

RP qi +RPΩ×Uqi +RPVU

−RP
(

ΩU +
qi × VU
|qi|2

)×
qi, (12)

= −RP
qiq
>
i

|qi|2
VU +RPVU +RP

qiq
>
i

|qi|2
VU −RPVU ,

(13)

= 0,

where (12) follows from substituting for wi and Wi with
the full expressions for Λa and ΛQ, and (13) follows from
cancelling the ΩU term and using the relationship (1)
as well as rearranging the first term. The result follows
from substituting directly into (11) and recalling (3).

5 Observer Design

Figure 3 shows a schematic overview of the proposed
observer. The key features of equivariant observer de-
sign are the distinction between the observer state X̂ ∈
VSLAMn(3) and the estimated state (P̂, p̂i) ∈ T ◦n (3),
and the design of the correction term around the output
error (di) = ρ(X̂−1, yi) rather than the raw measure-
ments (yi) ∈ N n(3).

5.1 Lifted System Kinematics

Let ξ = (P, pi) ∈ T ◦n (3) denote the true state of the
VSLAM system. The kinematics of ξ are given by (3).
Choose an arbitrary origin configuration ξ◦ = (P ◦, p◦i ) ∈
T ◦n (3). The lifted system is (Lemma 4.4)

d

dt
X = XΛ(Υ(X, ξ◦), U), (14)

= (AU, (QΛQ, aΛa)i),

for X = (A, (Q, a)i) ∈ VSLAMn(3). If Υ(X(0), ξ◦) =
ξ(0) then trajectories of the lifted system kinematics
project to trajectories of the VSLAM kinematics (3) [18].
That is, recalling (7)

(P (t), pi(t)) = Υ(X(t), ξ◦)

= (P ◦A, a−1
i RP◦AQ

>
i R
>
P◦(p

◦
i − xP◦) + xP◦A)

for all t ≥ 0, where we have dropped the time dependence
of A,Qi and ai from the notation to improve readability.

5.2 Landmark Observer

Let X = (A, (Q, a)i) be a trajectory of the lifted sys-
tem (14) associated with a trajectory ξ = (P, pi) of
the true system satisfying (3) for measured input signal
U = (Ω×U , VU ). Let yi := hi(ξ) (4) denote the output.

Fix an arbitrary origin configuration ξ◦ = (P ◦, p◦i ) ∈
T ◦n (3). The observer state is X̂ = (Â, (Q̂, â)i) ∈
VSLAMn(3), with kinematics given by

d

dt
X̂ := X̂Λ(Υ(X̂, ξ◦), U)−∆X̂X̂,

X̂(0) = id, (15)

where Λ is the lift defined by (10) and ∆X̂ =
(∆, (Γ, γ)i) ∈ vslamn(3) is a correction term that is cho-

sen later. The state estimate is given by ξ̂ = (P̂, p̂i) =

Υ(X̂, ξ◦) (7). Let y◦i := hi(ξ◦) denote the origin output,
and let di denote the output error [18], defined as

di = ρ(X̂−1, yi) = ρ(XX̂−1, y◦i ). (16)

Define the true range ri = ‖pi−xP ‖ and estimated range
r̂i = ‖p̂i − xP̂ ‖ for each i. The range error is

r̃i =
r̂i
ri
, (17)

for each i.
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Fig. 3. An overview of the observer system. Note the distinction between the observer state X̂ and the estimated state (P̂, p̂i),
and that the correction term ∆ is based on the output error (di) rather than the raw measurement (yi).

Define the twice differentiable barrier function βεc :

(ε,∞)→ [0,∞) to be

βεc(c) :=

{
(c−c)2

(c−ε)2(c−ε) , ε < c < c

0, c ≥ c
, (18)

for parameters 0 < ε < c.

The landmark correction terms Γi and γi for ∆X̂ are
defined to be

Γi :=

(
d>i Q̂iVU

r̂i(1 + d>i y
◦
i )
− ki

(1 + d>i y
◦
i )2

)
(d×i y

◦
i )×

+
1

r̂

(
(y◦i − di)×Q̂iVU

)×
,

γi :=
αi
r̂2
i

(
(1− d>i y◦i )d>i Q̂iVU − y◦

>
i (di × Q̂iVU )×di

)
+

1

r̂i
(y◦i − di)>Q̂iVU +

αi
r̂i
βεc(r̂i), (19)

where ki and αi are constant positive scalars. The robot
pose correction term ∆ ∈ SE(3) can be chosen to be any
continuous function of the observer state and measure-
ments (cf. §5.3).

Theorem 1 Consider the observer X̂ ∈ VSLAMn(3)
with kinematics (15). Assume thatU is bounded, and that
y×i y

×
i VU is persistently exciting, in the sense that there

exist T > 0 and µ > 0 such that

1

T

∫ t+T

t

‖y×i y
×
i VU‖dτ ≥ µ, (20)

for each i and all t > 0. Assume that there exist bounds
0 < r < r ∈ R such that

r ≤ ||pi − xP || ≤ r

for all time.

Then the landmark correction terms (19) define an al-
most semi-globally asymptotically stabilising (Def. A.1)
correction term for the error dynamics of di, r̃i (16,17)
around the equilibrium (y◦i , 1) with exception set

χ = {(d, r̃)i ∈ (S2 × R+)n | di = −y◦i for some

i ∈ [1, . . . , n]}. (21)

Moreover, as (di, r̃i)→ (y◦i , 1), the estimated state ξ̂ → ξ
converges to the true state up to the SLAM manifold
equivalence.

PROOF. The outline of the proof is as follows. We be-
gin by choosing the parameters of the correction terms
to depend on the initial conditions. Next, it is shown that
the observer equations are well-defined for all time. We
introduce storage functions in (25) and proceed to show
that they are non-increasing over time in (26). Then we
apply Barbalat’s lemma along with persistence of excita-
tion to show that the storage functions converge to zero
over time, leading to (27) and (28). Finally, we show that
convergence of the error dynamics is equivalent to con-
vergence of the true and estimated states on the SLAM
manifold.

Let K be a compact set in the complement of χ (21).
Then there exists r̃m > 0 such that (di, r̃i) ∈ K im-
plies that r̃i ≥ r̃m. Choose k0 = 1

2 r̃
m and assume that

(di(0), r̃i(0)) ∈ K. Then

r̃i(0) ≥ k0, r̂i(0) ≥ k0ri(0) ≥ k0r > 0,

for each i. Choose c = r and ε = min(k0,
1
2 )r. Then

r̂i(0) > ε > 0 for every i. By continuity of the solutions
there exist Ti > 0 such that r̂i(t) > ε and 1 + d>i y

◦
i > 0,

and hence βεr(r̂i) and Γi are well-defined, for t ∈ [0, Ti).

(We will show later that Ti can be chosen arbitrarily
large, and that r̂i(t) > ε and 1 + d>i y

◦
i > 0 hold for all

time.)
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By definition, ri = a−1
i r◦i , and r̂i = â−1

i r◦i . Differentiat-
ing these with respect to time yields

ṙi = −V >U yi,
= −d>i Q̂iVU ,

˙̂ri = −V >U ŷi + r̂iγi,

= −V >U yi + αiβ
ε
r(r̂i) (22)

+
αi
r̂i

(
(1− d>i y◦i )d>i Q̂iVU − y◦

>
i (di × Q̂iVU )×di

)
,

where ŷi = hi(ξ̂) is the estimated measurement. Since
βεr (18) is a barrier function ensuring that r̂i(t) > ε

(βεr(r̂i)→∞ as r̂i ↘ ε) and the remaining terms in (22)

are bounded, it follows that r̂i is well defined ∀t ∈ [0, Ti).

Differentiating the output error di yields

ḋi =
d

dt
ρ(XX̂−1, y◦)i =

d

dt
Q̂iQ

>
i y
◦
i ,

=
(
Q̂iΛQ(U,R>

P̂
(p̂i − xP̂ ))− ΓiQ̂i

)
Q>i y

◦
i

− Q̂iΛQ(U,R>P (pi − xP ))Q>i y
◦
i .

Observe thatR>
P̂

(p̂i−xP̂ ) = r̂iŷi andR>P (pi−xP ) = riyi.

Using this, the derivative of di is simplified to

ḋi = AdQ̂i
(ΛQ(U, r̂iŷi)− ΛQ(U, riyi)) di − Γidi,

= AdQ̂i

(
ŷi × VU
r̂i

− yi × VU
ri

)×
di − Γidi,

=

(
y◦i
×Q̂iVU
r̂i

− d×i Q̂iVU
ri

)×
di − Γidi, (23)

where the last step is obtained by using various identities
involving the skew symmetric operator.

Recalling (23) and using identities involving the skew
symmetric operator and projector, the derivative of 1−

y◦>i di is

d

dt

(
1− y◦>i di

)
= −y◦>i ḋi,

= −y◦>i

(
y◦i
×Q̂iVU
r̂i

− d×i Q̂iVU
ri

)×
di + y◦>i Γidi,

= −y◦>i

(
d×Q̂iVU

r̂i
− d×i Q̂iVU

ri

)×
di

+

(
d>i Q̂iVU

r̂i(1 + d>i y
◦
i )
− ki

(1 + d>i y
◦
i )2

)
y◦>i (d×i y

◦
i )×di,

= (r−1
i − r̂i

−1)y◦>i

(
d×Q̂iVU

)×
di

+

(
d>i Q̂iVU

r̂i(1 + d>i y
◦
i )
− ki

(1 + d>i y
◦
i )2

)
y◦i
>Πdiy

◦
i ,

= (r−1
i − r̂i

−1)y◦>i

(
d×Q̂iVU

)×
di

+

(
d>i Q̂iVU

r̂i
− ki

1 + d>i y
◦
i

)
(1− d>i y◦i ). (24)

Observe that ki
1−d>i y

◦
i

1+d>
i
y◦
i

→ ∞ as 1 − d>i y◦i ↗ 2. Since

all other terms in (24) are bounded, it follows that 1 −
d>i y

◦
i < 2 − ν for some small ν > 0, and hence 1 +

d>i y
◦
i > ν > 0 and Γi is well-defined and bounded for all

t ∈ [0, Ti).

We show by contradiction that the domain of definition
[0, Ti) can be extended arbitrarily. Suppose, for some
i, that T ′i is the largest value such that Γi and βεr(r̂i)

are well-defined. Then Γi and βεr(r̂i) are both bounded

on [0, T ′i ) by the arguments above, and continuous. It
follows that their limits as t → T ′i exist and are finite.
But then, by continuity of solutions, Γi and βεr(r̂i) can

be extended to [0, T ′i + t∆) for some sufficiently small
t∆ > 0. This contradicts the assumption that T ′i is the
maximum value for which Γi and βεr(r̂i) are well-defined

on [0, T ′i ), and therefore no such maximum value can
exist. Hence Γi and βεr(r̂i) are well-defined on [0,∞), and
so are the observer dynamics.

For each i, define the storage function

li(di, r̃i; ri) :=
ri
2
‖y◦i − di‖2 +

r2
i

2αi
(1− r̃i)2

= ri(1− y◦>i di) +
1

2αi
(ri − r̂i)2, (25)

in the variables (di, r̃i) where the second line follows from
‖di‖ = ‖y◦i ‖ = 1 and substituting for r̃i. Note that li
depends on the time varying range ri as a parameter.
By assumption, ri ≥ r > 0 and the storage functions li
are positive definite.
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The derivative of li may now be computed as follows:

l̇i = ṙi(1− y◦>i di) + ri
d

dt
(1− y◦>i di)

+
1

αi
(ri − r̂i)(ṙi − ˙̂ri),

= −(1− y◦>i di)d>i Q̂iVU

+ ri(r
−1
i − r̂i

−1)y◦>i

(
d×Q̂iVU

)×
di

+ ri

(
d>i Q̂iVU

r̂i
− ki

1 + d>i y
◦
i

)
(1− d>i y◦i )

+ (r̂i − ri)βεr(r̂i)
+ (r̂i − ri)r̂−1

i (1− d>i y◦i )d>i Q̂iVU

− (r̂i − ri)r̂−1
i y◦>i (di × Q̂iVU )×di,

= ri(r
−1
i − r̂i

−1)y◦>i

(
d×Q̂iVU

)×
di

− kiri
1− d>i y◦i
1 + d>i y

◦
i

+ (r̂i − ri)βεr(r̂i)

− (r̂i − ri)r̂−1
i y◦>i (di × Q̂iVU )×di,

= −kiri
1− d>i y◦i
1 + d>i y

◦
i

+ (r̂i − ri)βεr(r̂i). (26)

The second term is negative semi-definite, since it is zero
when r̂i ≥ r (18), and otherwise r̂i < r ≤ ri and r̂i−ri ≤
0. It follows that l̇i(t) ≤ 0, and li(t) ≤ li(0) for all t.

Barbalat’s Lemma [20, Lemma 4.2] is used to prove l̇i →
0. To show that l̇i is uniformly continuous, it is sufficient
to show that l̈i is bounded. Recall that ri is bounded
above and below by assumption, and that r̂i(t) > ε for
all time. Computing the second derivative of li, one has

l̈i = −kiṙi
1− y◦i

>di

1 + y◦i
>di
− 2riy

◦
i
>ḋi

(1 + y◦i
>di)2

+ (r̂i − ri)
∂βεr

∂r̂i
˙̂ri.

It suffices to show that the component terms are all
bounded. In the first and second terms, 1/(1 + y◦i

>di)
is bounded from the above discussion. The components
riy
◦
i
>ḋi and ṙi(1 − y◦i

>di) are also bounded due to the
boundedness of r̂i, ri, and the assumption that U is
bounded. As for the third term, the component ˙̂ri is
bounded since the velocity input VU is bounded and r̂i
is lower bounded. This means that both βεr(r̂i) and its

derivative with respect to r̂i are bounded. Therefore, l̇i is
uniformly continuous, and by Barbalat’s lemma, l̇i → 0.
This implies that di → y◦i , since both terms that appear

in l̇i (26) are non-positive .

It remains to show r̃i → 1 (or equivalently r̂i → ri).
Applying Barbalat’s Lemma to di(t) and exploiting the
same bounding arguments as before, it is straightforward

to verify that ḋi → 0. It is also easily verified that Γi → 0
as di → y◦i .

From (23), ḋi may be written as

ḋi =

(
y◦i
×Q̂iVU
r̂i

− d×i Q̂iVU
ri

)×
di − Γidi,

=
d×i d

×
i Q̂iVU
ri

− d×i y
◦
i
×Q̂iVU
r̂i

− Γidi,

= (r−1
i − r̂

−1
i )d×i d

×
i Q̂iVU +

d×i (di − y◦i )×Q̂iVU
r̂i

− Γidi,

= (r−1
i − r̂

−1
i )Q̂iy

×
i y
×
i VU +

d×i (di − y◦i )×Q̂iVU
r̂i

− Γidi.

Clearly, r̂−1
i d×i (di − y◦i )×Q̂iVU → 0 as di → y◦i . Hence

ḋ→ (r−1
i − r̂

−1
i )

(
Q̂iyi

×yi
×VU

)
, (27)

as di → y◦i . Therefore, (r̂i−ri) 1
r̂iri
‖yi×yi×VU‖ → 0. Re-

call that ri ≤ r. The estimated range r̂i is also bounded
above by a constant r̂i depending on the initial value of
li(0). Since |ri − r̂i| < (rr̂i)|r−1

i − r̂
−1
i |, it follows from

(27) that

(ri − r̂i)‖yi×yi×VU‖ → 0. (28)

Each li must converge to a positive constant c0i ≤ li(0)

as l̇i → 0. Therefore, (25) ensures that (r̂i − ri) →
±
√

2αic0i . Integrating (28) over a period of time T , and
using the fact that (ri − r̂i) is converging to a constant,
it follows that

(ri − r̂i)
∫ t+T

t

‖yi×yi×VU‖dτ → 0.

Using the persistence of excitation assumption (20), it
must be that r̂i → ri.

Recall the exception set χ (21). It is straightforward
to verify that this set has measure zero. Since the ini-
tial choice of compact set K in the complement of χ
was arbitrary, then the equilibrium (y◦i , 1) of (di, r̃i) is
almost semi-globally asymptotically stabilisable by the
proposed correction terms (Def. A.1).

Observe that, at the equilibrium,

ŷi = ρ(X̂, y◦i ) = ρ(X̂, di) = yi,

r̂i = r̃iri = ri.

Using this, the ego-centric coordinates of the SLAM con-
figuration and their estimates satisfy

R>P (pi − xP ) = riyi = r̂iŷi = R>
P̂

(p̂i − xP̂ ),
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and thus

pi = (RP̂P−1)>(p̂i − xP̂P−1).

Therefore, at the equilibrium point, each pi is related
to each p̂i by the same rigid body transformation S =
P̂P−1. Moreover, it is clear that P = S−1P̂ . Hence, the
two configurations on T ◦n (3) are equivalent on the SLAM

manifold, ξ ' ξ̂. This completes the proof.

5.3 Total Space Representative

In Theorem 1 the convergence result is independent of
the choice of correction term ∆. This is due to the ego-
centric nature of the group action considered and the in-
variance properties of the SLAM manifold, which cause
the inertial frame of a SLAM system to be unobserv-
able. In essence, choosing ∆ will influence the element
S ∈ SE(3) that relates the reference and estimated
states, but does not influence the convergence of the
SLAM error. Nevertheless, it is clear that as the error
converges, it is desirable that the S(t) that relates the
reference and established states converges to a constant,
essentially capturing the “inertial map” property that
is desired in visual odometry. It is a key contribution of
this paper to observe that imposing this constraint is a
separate requirement from the underlying SLAM solu-
tion, that is, we must introduce an additional criterion
that captures this property and then use this to design
the correction term ∆.

The criterion that we propose to minimize is the
weighted mean velocity of the landmark points

n∑
i=1

κi‖ ˙̂pi‖2

For a static environment, the true landmark points are
not moving. For the observer estimate these points may
be moving, due to residue velocity associated with the
landmark error correction, but also importantly, due to
the correction term ∆ that is moving the entire SLAM
configuration. The motion due to ∆ will be strongly cor-
related, while it is expected that the residue velocity due
to the correction terms will be uncorrelated and for large
constellations of points average to zero. Choosing ∆ to
minimize this additional criteria can be thought of as
minimizing instantaneous map drift.

Proposition 5.1 Let the origin configuration ξ◦ =
(P ◦, p◦) ∈ T ◦n (3), the observer state X̂ = (Â, (Q̂, â)i) ∈
VSLAMn(3), and the correction term ∆X̂ = (∆, (Γ, γ)i)
be defined as in the statement of Theorem 1. Let

ξ̂ = (P̂, p̂i) = Υ(X̂, ξ◦) ∈ T ◦n (3) be the estimated state
on the total space, and let q̂i = R>

P̂
(p̂i − xP̂ ) for each i.

Then the solution to

∆ = argmin
∆∈se(3)

{
n∑
i=1

κi‖ ˙̂pi‖2
}
, (29)

where κi are positive scalars, is given by

∆ = AdÂ(Ω×∆, V∆), (30)

where Ω∆ and V∆ are determined by

(
Ω∆

V∆

)
= −

(
n∑
i=1

κi

(
q̂×i q̂

×
i q̂×i

−q̂×i I3

))−1

 n∑
i=1

κi

 q̂×i AdQ̂>
i

(Γi)q̂i

γiq̂i + AdQ̂>
i

(Γi)q̂i

 , (31)

so long as the inverse in (31) remains well-defined.

PROOF. First, observe that

q̂i = R>
P̂

(p̂i − xP̂ ),

= R>
P̂

(â−1
i RP̂ Q̂

>
i R
>
P◦(p

◦
i − xP◦) + xP̂ − xP̂ ),

= â−1
i Q̂>i R

>
P◦(p

◦
i − xP◦).

Equation (29) presents a weighted least squares prob-
lem, and to solve it we analyse the component expres-
sions κi ˙̂pi. The time derivative of each p̂i needs to be
computed. Recall that the velocity lift Λ is defined pre-
cisely so that ˙̂pi = 0 when the correction terms are set
to zero. Since differentiation is a linear operation, this
means that

˙̂pi =
d

dt

(
RP◦Ââ

−1
i Q̂>i R

>
P◦(p

◦
i − xP◦) + xP◦Â

)
= −RP◦ÂΩ×∆â

−1
i Q̂>i R

>
P◦(p

◦
i − xP◦)−RP◦ÂV∆

+ γiRP◦Ââ
−1
i Q̂>i R

>
P◦(p

◦
i − xP◦)

+RP◦Ââ
−1
i Q̂>i ΓiR

>
P◦(p

◦
i − xP◦),

= −RP◦ÂΩ×∆q̂i −RP◦ÂV∆ + γiRP◦Âq̂i
+RP◦Â AdQ̂>

i
(Γi)q̂i,

‖ ˙̂pi‖ = ‖ − Ω×∆q̂i − V∆ + γiq̂i + AdQ̂>
i

(Γi)q̂i‖,

=

∥∥∥∥∥(−q̂×i I3

)(Ω∆

V∆

)
−
(
γiq̂i + AdQ̂>

i
(Γi)q̂i

)∥∥∥∥∥ .
Therefore, by the theory of Weighted Least Squares, (31)
is exactly the solution to (29), as required.

Proposition 5.1 provides a clear way to choose a cor-
rection term based on the static landmark assumption,
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and allows for scalars κi to be chosen to weight the op-
timisation. The computational and memory costs of the
correction terms scale linearly with the number of land-
marks as opposed to alternative observer designs [10,21]
which scale quadratically.

6 Simulation Results

To verify the landmark observer design in Theorem 1
and the robot correction term in Proposition 5.1, we
conducted a simulation of a flying vehicle equipped
with a monocular camera, observing 5 stationary
landmarks as it moves in a circular trajectory with
a constant body-fixed velocity U = (Ω×U , VU ), where
ΩU = (0, 0, 0.5)rad/s and VU = (1.5, 0, 0)m/s. For sim-
plicity, it is assumed that the camera frame coincides
with the body-fixed frame of the vehicle. The initial posi-
tion of the vehicle was set to (3, 3, 5)m with its rotational
axes aligned with the inertial frame {0}. The positions
of the landmarks were initialised to random positions
(p1
i , p

2
i , 0) on the ground plane with p1

i , p
2
i ∼ N(0, 52)m.

The origin position P ◦ of the robot is set to the iden-
tity I4, and the origin landmark positions p◦i are set to
10yi(0), where yi(0) are the measured bearings to the
true landmark positions at time 0. That is, the esti-
mated points are initialised with correct bearings and
an arbitrary depth of 10 m. The observer is defined on
VSLAM5(3) with kinematics given by (15), landmark
correction terms (Γi, γi) given by (19), where ki = 5
and αi = 500, and robot correction term ∆ given as in
Proposition 5.1 with κi = 1. At the end of the simula-
tion, the estimated system state is aligned with the true
system state by matching the true and estimated robot
poses. Figure 4 shows the trajectories of estimated land-
mark positions and robot position over time, as well as
the true landmark positions and the true robot trajec-
tory, and figure 5 shows the evolution of each of the land-
marks’ associated storage functions, as defined in (25).

This simulation provides a simple demonstration of per-
formance of the proposed observer and illustrates typical
trajectories of the landmark estimates during a repeat-
ing motion such as the circle. The estimated landmark
positions can be seen to converge to the true landmark
positions in a natural manner. The choice to initialise
landmarks as having a bearing matching the initial mea-
surement is a natural one for practical implementation
of the algorithm, although Theorem 1 provides that al-
most any initial conditions will converge. This almost
semi-global convergence is a key property of the observer
presented here that is not available in many of the state-
of-the-art solutions.

7 Experimental Results

To demonstrate the observer described in Theorem 1 in
a real-world scenario, we gathered video, GPS, and IMU
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Fig. 4. The simulated trajectories of observer landmark esti-
mates from initial positions with correct bearings but fixed
depth of 10m. The observer landmark trajectories are shown
in a range of colours matching those used in Figure 5, and
the true landmark positions are shown in red. The observer
robot trajectory is shown in blue, and the true robot trajec-
tory is shown in black. The (◦) and (?) markers, respectively,
denote the start and end of the trajectories of all the objects
shown.
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Fig. 5. The evolution of the storage functions of each of the
landmarks in the system shown in Figure 4. The colours
match the colours of the landmark trajectories in Figure
4. The initial convergence of the landmarks is quick as the
bearings converge, and then slows as the depths gradually
converge.

data from a Disco Parrot fixed-wing UAV flying out-
doors. Image features were identified using OpenCV’s
goodFeaturesToTrack, and subsequently tracked using
OpenCV’s calcOpticalFlowPyrLK. These image fea-
tures were then corrected for camera intrinsics and
converted to spherical bearing coordinates before being
used as landmark inputs to the observer. Landmarks
are added to the system state after being observed for
two frames so that their depths can be initialised from
optical flow. When a landmark is no longer visible, it is
removed from the observer state.

Initially, the input velocities U = (ΩU , VU ) to the sys-
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tem were estimated by combining the GPS signal (to
obtain scale information) with egomotion estimated us-
ing the IMU and optical flow from the video stream, as
outlined in [19]. Once sufficiently many landmarks are
initialised, the optical flow vectors of each of the land-
marks were combined with the existing landmark esti-
mates to compute the input velocity U = (ΩU , VU ). The
observer was implemented using Euler integration with
gain parameters set to ki = 5.0 and αi = 0.5 for each i.
The video recorded had a frame rate of 30 fps, leading to
the Euler integration step being set to dt = 0.033 s. GPS
data was recorded at 25 Hz in order to compare with the
observer’s estimated trajectory. The observer trajectory
was aligned to the GPS trajectory using the Umeyama
method [23]. Figure 6 shows the aligned trajectories ac-
cording to the observer and according to the GPS in the
x and y directions, where the z direction refers to the
plane’s altitude. Figure 7 shows the final positions of all
landmark points in addition to the observer- and GPS-
estimated trajectories. Figure 8 shows a frame taken
from the video stream used in the experiment, with lines
to represent the optical flow tracking overlaid. A video
showcasing the feature tracking system is available on-
line 1 . The quality of the trajectory and map provided
in Figure 7 show the robustness of the observer to noisy
bearing measurements in practice.

Fig. 6. The x and y positions of the UAV according to the
aligned Observer (blue) and GPS (red).

8 Conclusion

This paper presents an observer design posed on a sym-
metry group for the VSLAM problem. The SLAM mani-
fold introduced in [17] and the symmetry group discussed
in [24] are reintroduced and exploited in the observer de-
sign. The observer is formulated on output errors, and
provides a clear way to change the gains for bearing and
depth of landmarks separately. The almost semi-global
convergence of the proposed observer improves on the
properties of state-of-the-art Extended Kalman Filter

1 https://www.youtube.com/watch?v=QzIxh2eM1_s
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Fig. 7. The full trajectory of the UAV according to the
aligned Observer (blue) and GPS (red), and the final posi-
tions of all of the landmarks, coloured with the colour of the
pixel where they were first observed.

Fig. 8. A single frame of the video stream used in the experi-
ment. Red circles represent the image features being tracked,
and yellow lines represent the vector of motion of the image
features between the current frame and the previous frame.

systems, which suffer from linearisation errors. While re-
search into the development of non-linear observers for
the SLAM problem is only recent, the observer for VS-
LAM presented in this paper demonstrates some of the
key advantages the approach can offer.

A Almost Semi-Globally Asymptotically Sta-
bilising Controls and Corrections

The concept of semi-global asymptotic stabilisability
was introduced in [22] to model the dependence of gain
on the basin of attraction in feedback stabilisation of a
dynamical system. In the context of an observer anal-
ysis, this definition can be transferred to stabilisability
of the error dynamics by correction. However, the clas-
sical concept introduced by Teel and Praly does not
capture topological constraints associated with stability
analysis on manifolds. For a large class of manifolds,
including Lie-groups with SO(3) as a subgroup, these
topological constraints prevent the existence of globally
smooth asymptotically stable error dynamics [3]. On
such spaces, smooth error dynamics will always admit
an exception set χ of unstable or hyperbolic critical
points that cannot be part of the basin of attraction of
the desired equilibrium.

We consider a system-observer pair, where the observer
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has the internal model principle, coupled through a cor-
rection function ∆(x̂, y) depending on the observer state
and system output. We assume that there is a well de-
fined error function e : G×M →M where G is the ob-
server state space and M is the system state space. The
error dynamics evolve on the manifold M depending on
the system and observer state evolution as well as any
exogenous inputs such as velocities.

Definition A.1 An equilibrium e? of the error dynam-
ics of a system-observer pair, on a manifold M , is almost
globally stable if its basin of attraction is the complement
of an exception set χ ⊂M of measure zero.

An equilibrium e? of the error dynamics of a system-
observer pair, on a manifold M , is said to be almost semi-
globally stabilizable if, for each compact set K ⊂ M in
the complement of an exception set χ ⊂ M of measure
zero, there exists a choice of correction ∆(x̂, y) such that
e? is an asymptotically stable equilibrium of the error
dynamics with basin of attraction containing K.
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