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Abstract— A deterministic attitude filter is derived based on
the principles of minimum-energy filtering. The proposed filter
is applied to the attitude kinematics of a rigid body in 3D
space and is posed directly on the rotation group SO(3). The
proposed filter generalizes recently published work by Coote et
al. on deterministic filtering on the unit circle. The filter is near-
optimal in the sense that it achieves a cost that is close to the cost
incurred by a minimum-energy filter. We provide an explicit
bound on the difference in cost occurred by the proposed filter
vs. an optimal filter and show that this bound is small by means
of simulations. We compare the performance of the proposed
filter with a quaternion implementation of an Extended Kalman
Filter (EKF). While achieving comparable results to an EKF,
the proposed filter shows more robustness against a range of
deterministic disturbance levels and initialization errors.

I. INTRODUCTION

Optimal filtering in the sense of state reconstruction using
optimization methods is a subject of active research. Driven
by the needs of applications, the particular problem of atti-
tude filtering has attracted much attention. Attitude filtering
has many applications including rigid body motion planning
in robotics and unmanned aerial vehicle (UAV) navigation
in control.

According to a recent survey [1], a majority of attitude
estimation applications are tackled using methods based
on probabilistic modeling principles. Optimal probabilistic
filtering for linear systems leads to the well known Kalman
filter [2]. However, for nonlinear systems, like the attitude
kinematics of a rigid body in 3D space, intricacies such as
the lack of finite dimensional parameterizations of general
stochastic processes have made it in general impossible
to find a finite dimensional optimal probabilistic filter [3].
The most common approach to develop practical filters for
nonlinear systems is to work with a linearization of the
original system, e.g. the Extended Kalman Filter (EKF) [4].
Other methods such as particle filters [5] or the Unscented
Kalman Filter (UKF) [6] approximate the infinite dimen-
sional distributions by working with a finite sampled set.

Another common approach to attitude estimation is based
on deterministic modeling principles (e.g. [7]–[10]), and the
resulting estimators are commonly known as nonlinear atti-
tude observers. The development of these observers usually
focuses on global stability characteristics and they achieve
guaranteed convergence from almost any initial condition [1,
§X].

Minimum energy filtering [11] is a deterministic filtering
method whose development is based on an optimization
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problem. This method leads to an optimal filter with the
same filter formulas as in the Kalman filter when it is
applied to a linear system [12]. In recent work, Aguiar
et al. [13] applied this method to the pose (attitude and
position) estimation problem and showed optimality for a
system posed on the special Euclidian group SE(3) using a
representation embedded in a vector space. This is similar
to recent work by Choukroun et al. [14] that used an
embedded representation of SO(3) (via the quaternions in
R4) to obtain a filter based on probabilistic principles. In
both cases constraining the filter solution to preserve the
embedding constraints compromises the optimality of the
approach leading to suboptimal estimates. In a recent paper,
Coote et al. [15] applied the minimum energy filtering
method directly to a nonlinear system on S1. The outcome
was a near-optimal filter with an explicit bound on the filter’s
distance from optimality.

In this paper, we generalize the work by Coote et al. [15]
and apply minimum energy filtering to attitude kinematics
on the rotation group SO(3). We derive the filter directly
on SO(3) fully respecting the nonlinear geometry of the
system. We show that once the rotation is confined to be
around one fixed axis the proposed filter specializes to the
filter on S1 in Coote et al. [15]. The proposed filter is
near-optimal, that is, it achieves a cost whose difference
from the optimal cost is bounded by an explicitly given
expression. We show that this bound is small under normal
operating conditions and provide simulation results to sup-
port this statement. In comparison to an EKF, the proposed
filter appears advantageous due to its robust performance,
in a large range of experiments with different levels of
deterministic disturbance and initialization errors, while not
requiring any major calibration effort. The proposed method
assumes that direct rotation measurements are available,
similar to the early work in nonlinear observers e.g. [7]–
[9]. See also the references in the survey by Crassidis et
al. on attitude estimation methods [1, §X]. Although there
is no sensor that can directly measure the 3D rotation, in
practical situations our filter can be proceeded by a well
known attitude reconstruction process, see e.g. [16]–[18] and
the references therein.

The paper is structured as follows. Section II introduces
some notation. The problem formulation is provided in
Section III. Section IV describes the proposed filter, verifies
its near-optimality and briefly shows how it specializes to
the filter on S1 due to Coote et al. A suite of simulation
results is provided in Section V, comparing the performance
of the proposed filter with a quaternion implementation of an
Extended Kalman Filter (EKF) and checking the assumptions



we make. A short conclusion completes the paper. An
extended version of this paper is currently under review for
the IEEE Transactions on Automatic Control.

II. NOTATION

The rotation group is denoted by SO(3). The associated
Lie algebra so(3) is the set of skew-symmetric matrices

so(3) = {A ∈ R3×3|A = −AT }.

The Frobenius norm of a matrix X ∈ R3×3 is given by
‖X‖ :=

√
trace(XT X). We define a cost φΓ : SO(3) −→

R+, by

φΓ(R) := trace
[
(R− I)T Γ(R− I)

]
,

where Γ ∈ R3×3 is symmetric positive definite. Note
that φΓ(R) coincides with the squared Frobenius norm of
Γ

1
2 (R − I) and hence is positive. The projection operator

P : R3×3 −→ so(3) is defined by P(M) :=
1
2
(M −MT ).

III. PROBLEM FORMULATION

Consider a system on SO(3){
Ṙ = R(A + gδ),
Y = Rε

(1)

where R, Y and ε are SO(3) valued state, output and
measurement disturbance signals, respectively. The signals A
and δ denote the measured angular velocity and the process
disturbance, respectively, and take values in so(3). The scalar
g acts as a scaling for the disturbance signal δ. Although
scaling appears to be unnecessary given the arbitrary nature
of δ, it will turn out that g provides an important degree
of freedom in determining the main results of this paper.
We assume all signals to be deterministic functions of time.
Additionally, we assume enough regularity so that unique
maximal solutions exist. Note that these will automatically
exist for all time since SO(3) is compact. The following cost
function is considered.

JT =
1
4
φK−1

0
(R(0)) +

∫ T

0

(
1
2
‖δ‖2 +

1
4
φI(ε)

)
dτ

=
1
2

∫ T

0

(
trace[δT δ] + trace[I − ε]

)
dτ

+
1
4

trace
[
(R(0)− I)T K−1

0 (R(0)− I)
]
,

(2)

in which K0 ∈ R3×3 is symmetric positive definite. The
cost JT is a nonnegative measure of the uncertainties of
system (1) during the estimation period [0, T ]. The cost
function (2) measures the magnitude of the deterministic
disturbance associated with a given trajectory of the system.
By minimizing over all disturbance that are compatible with
the model and the observed output the resulting system
trajectory yields the minimum energy estimate. The problem
considered is to find a recursive filter that estimates the
minimum-energy state denoted by R̂(T ), provided that all
the past noisy state measurements Y |[0,T ] and all the past
applied inputs A|[0,T ] are available to the filter.

IV. MAIN RESULTS

In this section we will discuss our solution to the problem
sketched in the previous section. First we define a filter and
then we show that this filter is a near-optimal solution to our
filtering problem. Consider the filter

˙̂
R = R̂

(
A− P

(
KY T R̂

))
, (3a)

K̇ =
1
2
Q− 1

2
K(Y T R̂ + R̂T Y )K + KA−AK, (3b)

where R̂(0) := I3×3, K(0) := K0, and Q ∈ R3×3 is sym-
metric positive definite. A and Y are defined by system (1).
The filter in Equation (3) consists of two interconnected
parts. Equation (3a) evolves on SO(3) and consists of a copy
of system (1) plus an innovation term. The innovation term
is a weighted distance between the (past) estimated signal
and the noisy measured state signal projected on the tangent
space. Note that Y T R̂ encodes the distance between Y and R̂
on the group SO(3). That is, starting from Y and following
this distance we will reach R̂ = Y (Y T R̂). This distance
can be interpreted in terms of a rotation angle between
R̂ and Y . The weighting matrix K, dynamically generated
by (3b), depends on estimates and measurements from the
past. Equation (3b) is a time-varying Riccati differential
equation. We briefly recall the following facts about the
solutions of Riccati equations.

Proposition 1: Consider the time-varying matrix Riccati
differential equation

K̇ = Q(t) + KS(t)K + KF (t) + F (t)T K, (4)

with the initial condition K(0) = K0, where S and F are
continuous functions of time.
(i) [19, p. 175] If K0 > 0, S is symmetric and Q is
symmetric positive definite the solution stays symmetric
positive definite for t > 0 (as long as it exists).
(ii) If Q is symmetric positive semi-definite, S is symmetric
negative semi-definite and K0 is symmetric positive semi-
definite then (4) has a solution for all times t ≥ 0. This
solution is unique, symmetric and positive semi-definite. If
K0 is positive definite then this solution is positive definite.
We now state our main result.

Theorem 1: Consider the system (1) and the cost (2).
Given some measurements Ym(t) and their associated inputs
Am(t) for t ∈ [0, T ], assume that unique solutions R̂(t) and
K(t) to (3a) and (3b) exist on [0, T ]. Assuming further that

W (T ) :=
∫ T

0

(
trace

1
4

[
1
4
g2K−2

(
(R̂T R)2 − I

)
+ K−1QK−1

(
I − R̂T R

)
−R̂T YmK

(
R̂T RK−1 −K−1R̂T R

)])
dτ,

(5)

is nonnegative, the filter (3) yields a near-optimal estimate
R̂(T ) of the state R(T ) in the sense that JT ≤ J∗T +W (T ),
where J∗T denotes the optimal value for the cost (2) and
W (T ) is the optimality gap.



Proof: Under the conditions listed in the theorem, a
somewhat lengthy but not overly difficult calculation shows
that

JT =
1
4

trace
[
(R(T )− R̂(T ))K−1(T )(R(T )− R̂(T ))T

]
+
∫ T

0

(
1
2

∥∥∥∥δ − 1
4
g(K−1R̂T R−RT R̂K−1)

∥∥∥∥2

+
1
4
φI(Y T

m R̂)
)

dτ + W (T ).

(6)

According to Proposition 1, K(T ) is a positive definite
matrix and hence its inverse K−1(T ) exists. This matrix is
also positive definite and hence the first term on the right
hand side of (6) is a squared matrix Frobenius norm and is
positive. We assumed W (T ) to be positive and hence the
right hand side of Equation (6) consists of three positive
terms. Therefore, the cost function JT fulfills the inequality

JT ≥
∫ T

0

(
1
4
φI(Y T

m R̂)
)

dτ. (7)

Observe that the right hand side of Equation (7) is inde-
pendent of any specific choice of the variables R(0), δ|[0,T ]

and ε|[0,T ] and only depends on the measured data Ym(.)
and the filter signals. This implies that the right hand side
of Equation (7) is a lower bound for JT . Therefore the
minimum of the cost JT is reachable once equality holds
in Equation (7). Equivalently, the cost function will be
minimized if among all the possible values of R(0), δ|[0,T ]

and ε|[0,T ] that together with Ym(.) and Am(.) fulfill the
system equations (1), we choose a set that yields

R(T ) = R̂(T ),

δ =
1
4
g
(
K−1R̂T R−RT R̂K−1

)
,

W (T ) = 0.

(8)

We will show next that the first two conditions are achiev-
able. However, we can not guarantee the third condition
and hence only near-optimality will be concluded for this
filter. Consequently, an optimality gap W (T ) > 0 remains
by which the cost function can deviate from its optimal value
during the estimation period.

Consider a trajectory Rh : [0, T ] −→ SO(3) that is
generated by

Ṙh = Rh

(
Am +

1
4
g
(
RT

h R̂K−1 −K−1R̂T Rh

))
(9)

and is fixed by the final condition Rh(T ) := R̂(T ), where R̂
and K−1 are solutions of the proposed filter in Equation (3).
It is straightforward to show that (9) has a unique initial state
Rh(0) that produces the final condition Rh(T ) = R̂(T ).
Also define a signal εh : [0, T ] −→ SO(3) by

εh := RT
h Ym, (10)

and a signal δh : [0, T ] −→ so(3) by

δh :=
1
4

(
RT

h R̂K−1 −K−1R̂T Rh

)
. (11)

Equations (9) and (10) show that Rh(0), δh|[0,T ] and εh|[0,T ]

together with Am(.) and Ym(.) satisfy the system equa-
tions (1). Moreover, Equations (9) and (11) show that Rh

is a trajectory of the system given in Equation (1). Hence,
R̂ = Rh is the desired solution.

Remark 1: The previous theorem assumes that unique
solutions exist for Equation (3) on [0, T ]. However, it is not
clear if (3b) will always admit a solution on this interval.
This can potentially become problematic for (3a) since K
appears in this equation as well. We know that according to
Proposition 1, for Equation (3b) to have a unique solution
the term (Y T R̂ + R̂T Y ) should be positive semi definite.
This is the case if and only if the angle of rotation between
Y and R̂ is less than 90 degrees. However, this is not trivial
to verify as R̂ also depends on K. Nevertheless, in Section V
we will show that in all the cases we tested by simulation,
the assumption that a unique K exists for all time holds true.

We also assume that W (T ) is positive. This is certainly
the case when we apply this filter to an S1 system as our
filter specializes to the work by Coote et al [15] and W (T )
is then fourth order in the error. On SO(3), by choosing
Q = gI the first two terms in W (T ) (5) yield a positive
value that specializes to the Gap incurred in the S1 case.
The third term in W (T ) is a curvature correction term that
is zero in the S1 case. In the general case, this term appears
to evolve slowly and extensive simulation studies indicate
that it is dominated by the first two terms.

Remark 2: Note that importance of Theorem 1 lies in
providing a bound W (T ) for evaluating the performance of
the filter against an optimal filter. Additionally, this bound is
numerically quantifiable and is formulated in Equation (5).
More importantly W (T ) is usually small. We demonstrate
this later in Section V as well.

A. Filtering on S1

Once the system (1) is confined to only involve rotations
around a fixed axis, for example the z axis, it can be easily
shown that the filter proposed in this paper coincides with the
near-optimal filter on S1 due to Coote et al [15]. A rotation
of θ radians around the z axis can be parameterized as

R =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (12)

Similarly we model the output and the measurement distur-
bance that are rotations of y and ε radians around the z axis,
respectively. An angular velocity perpendicular to the plane
of the rotation R and of w radians per time unit can be
parameterized as

A =

 0 −w 0
w 0 0
0 0 0

 . (13)



Similarly we model the process disturbance that is an angular
velocity perpendicular to the plane of the rotation R of
δ radians per time unit. Substituting these parameterized
matrices into Equation (1) yields{

θ̇ = w + gδ,
y = θ + ε.

(14)

This is precisely the system on S1 that Coote et al. [15]
considered. Substituting in the cost given in Equation (2)
and defining K−1

0 as

K−1
0 =

 k−1
0 0 0
0 k−1

0 0
0 0 h−1

0

 (15)

yields

JT = k−1
0 (1− cos (θ0)) +

∫ T

0

(
| δ |2 +(1− cos (ε))

)
dτ.

(16)
This the cost used in Coote et al [15]. We choose Q to
be a multiple of the identity, Q = gI , and substitute
parameterizations similar to the ones above into the filter
equations (3). This yields

˙̂
θ = w + k sin(y − θ̂)

k̇ =
1
2
g2 − k2 cos(y − θ̂)

ḣ =
1
2
g2 − h2,

(17)

in harmony with the work by Coote et al [15]. Hence the
proposed filter is a generalization of the filter introduced by
Coote et al. Note that there is an extra equation (the third
line in Equation (17)) that does not affect the other equations
as far as it has a solution.

V. SIMULATIONS

In this section the performance of the proposed filter as
well as the validity of its assumptions are demonstrated by
a suite of simulation results.

A. Comparison to EKF

The proposed filter’s performance is compared with a
quaternion based implementation of the commonly applied
Extended Kalman Filter (EKF). The process disturbance δ
is generated in form of a skew symmetric matrix and the
disturbance contaminated input is fed to both the EKF (after
conversion to a quaternion) and the proposed filter. Note that
we have adopted the concept that although the system on
SO(3) works with an exact input Ω, the filter’s measurement
of Ω is noisy, that is A = Ω − gδ. The measurement
disturbance ε is generated on an R3 vector and is transformed
via the exponential map to a rotation and a quaternion,
respectively, for the proposed filter and the EKF. The sim-
ulation step size is 0.001 time units and the stop time is at
30 time units. The angular velocity inputs Ω(t) considered
are continuous skew symmetric matrices (18). Two cases
are considered, firstly a periodically varying velocity and
secondly a constant velocity. Counter-intuitively the constant

angular velocity is actually more challenging for the filter
since it generates system trajectories that ”wrap around”
the rotation group, exploring the full nonlinear nature and
the global topology of SO(3), whereas the periodic velocity
leads to trajectories that are confined to a local neighborhood
in SO(3).

Ω1 =

 0 − cos(t) 0
cos(t) 0 −3 sin(5t)
−0 3 sin(5t) 0

 ,

Ω2 =

 0 −1 4
1 0 −3
−4 3 0

 .

(18)

The initial state distribution considered is an exponential map
of a normally distributed noise (with standard deviation of
π
2 ) generated on the skew symmetric matrices. Note that this
corresponds to potentially very large initialization errors.

The matrices Q and K(0) are the only tuning parameters
of the proposed filter and for the sake of simplicity they are
fixed to Q = I and K(0) = 10I for all the simulation runs.
As for tuning the EKF, we have tried to find a feasible set of
filter parameters for every combination of input/noise levels
in advance.

We have tested the two filters in five different treatments
(choice of noise/input parameters), listed in Table I, with 40
repeats in each treatment. The angle of rotation between the
true system trajectory R and the estimate R̂ forms the basis
of our comparison. The histogram in Figure 1 depicts the

TABLE I
This table presents five different simulation treatments based on two

different angular velocity inputs (18) with two or three combinations of
noise levels associated with each input. We have done simulations with 40

repeats in each treatment. The measurement noise ε is the dominant noise
affecting the filters directly. Different levels of process noise δ are also

considered for completeness.

Input = Ω1

Parameters log(ε) gδ

Treatment 1 ∼ N (0,
π

15
) ∼ N (0,

π

22
)

Treatment 2 ∼ N (0,
π

7
) ∼ N (0,

π

2
)

Input = Ω2

Treatment 3 ∼ N (0,
π

300
) ∼ N (0,

π

30
)

Treatment 4 ∼ N (0,
π

100
) ∼ N (0,

π

50
)

Treatment 5 ∼ N (0,
π

13
) ∼ N (0,

π

20
)

performance of the filters in terms of the tracking error ob-
tained over all filtering steps for every repeat in the five treat-
ments explained in Table I. Since both filters have the same
starting point this histogram is indicative for both estimation
speed and precision. The observed tracking error data has a
mean, mode and standard deviation of (0.041,0.007,0.117) in



Fig. 1. Histogram of the two filters’ angle of rotation tracking errors
over all the simulation data. Note that angles greater than 0.2 radians are
accumulated at 0.2 radians.

Fig. 2. The rotation angle tracking performance of the proposed filter and
the EKF in a typical situation that the EKF performs badly. Note that the
figure is zoomed to a neighborhood around an angle of π radians.

the proposed filter as opposed to (0.096,0.000042,0.27) in the
EKF. These results indicate that the proposed filter achieves
comparable or even slightly better estimates compared to the
EKF in terms of consistency and repeatability of results.
Moreover, the proposed filter demands less effort for the
tuning process. Specifically, the lower mean and standard
deviation associated with the proposed filter’s tracking error
indicate more robustness to the uncertainties of the system.
The mode observed in the implemented EKF indicates that
the EKF performs well in most of the situations where it
is well tuned. However, in practice detailed knowledge of
system noise processes is rarely available and tuning EKFs
is known to be a challenging problem requiring a range of
techniques [4, p. 204]. In particular, Figure 2 shows a typical
situation where the implemented EKF fails. Here, the rotation
angle of the true state R, that is shown in blue, is mainly
oscillating in a small neighborhood close to π. Recall that
the filters are initialized with R̂(0) := I that corresponds
to an angle of 0 radians. In this situation, measurements Y
with angles greater than π radians ”wrap around” SO(3) in
the sense that an angle of π + θ radians is the same as the

Fig. 3. Evolution of the smallest eigenvalue of K in time.

angle of −π + θ radians. The EKF, since it is based on
a linearization, hence encounters an ambiguity as to which
is the right ”direction” to correct the estimate. It might be
possible - by modifying the EKF - to tackle this ambiguity
if the axis of rotation was constant. However, our simulation
results tell us that this is not always the case. On the other
hand the proposed filter, whose rotation angle estimates are
shown in blue, is posed directly on SO(3) and can correctly
judge the nonlinear trend in the state and the measurements.

B. Results on Remark 1

In Remark 1 we discussed the assumptions we made
in Theorem 1. Although there was no formal guarantee
provided for when these assumptions hold, here we study
their validity by means of simulations.

1) Simulation results on the existence of solutions: Fig-
ure 3 shows the evolution for the statistics of K against time.
We observe that the minimal eigenvalue of K is positive in
all the situations tested.

2) Simulation results on the smallness and positivity of
W (T ): Remark 1 stated that W (T ) is a small positive
quantity. Positivity is crucial in order for Theorem 1 to apply.
From simulations we have observed that, relatively, W (T )
has a small positive value for a majority of the simulation
runs listed in Table I. However, our results indicate that
negative values for W (T ) also occur in some rare instances
in each treatment. By increasing Q the number of situations
where W (T ) has a negative value will be reduced and indeed
will be eliminated for large enough Q. Such a choice will
of course compromise the tracking performance of the filter.
For example, Figure 4 shows the statistics of W (T ) over all
simulations listed in Table I where Q = 5I . These results are
organized in two different graphs according to the two inputs
considered (18). With this choice of Q the negative instances
for W (T ) occur only in treatments where the constant input
Ω2 is applied. By choosing Q even larger (Q = 10I), it
was observed that W (T ) was always positive. To further see
that W (T ) is only a small gap (recall that W (T ) denotes an
upper bound on the difference between the cost the proposed
filter achieves and the optimal cost) Figure 5 shows the cost



Fig. 4. Statistics of W (T ) over all simulation data when Q = 5I .

Fig. 5. Statistics of the relative optimality gap (Wr(T ) :=
W (T )

W (T )+Jmin
)

over all simulation data when Q = 5I . Note the figure is zoomed to the
first 0.5 units of time.

for the proposed filter relative to the optimal cost, i.e. the
ratio Wr(T ) := W (T )

W (T )+Jmin
, plotted against time for each

input (18) separately. Here we observe that the proposed
filter’s optimality gap W (T ) is relatively small compared to
the optimal value. Wr(T ) appears to converge asymptotically
to zero. This is because W (T ) in the numerator converges
to a stable range (that is shown in Figure 4) although Jmin

keeps growing in the denominator. This is the case for both
the constant and the periodic inputs (18).

VI. CONCLUSION

We proposed a near-optimal deterministic attitude filter
posed directly on the rotation group SO(3). The proposed
filter is a generalization of a near-optimal filter on S1 due
to Coote et al [15]. The proposed filter shows comparable
but more robust performance compared to a quaternion based
EKF filter while needing almost no calibration. Furthermore,
it comes with an explicit bound on the distance to optimality
and we showed that the optimality gap is asymptotically
small, justifying the term “near-optimal”.
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