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Abstract—In this work we study minimum-energy fil-
tering for attitude kinematics with vectorial measure-
ments using Mortensen’s approach. The exact form of
a minimum-energy attitude observer is derived and is
shown to depend on the Hessian of the value function
of an associated optimal control problem. A suitably
chosen matrix representation of the Hessian operator leads
to a Riccati equation that approximates a minimum-
energy attitude filter. An extended version of the proposed
approximate filter is included for a situation where there is
slowly time-varying bias in the gyro measurements. A unit
quaternion version of the proposed filter is derived and
shown to outperform the multiplicative extended Kalman
filter (MEKF) for situations with large initialization errors
or large measurement errors.

I. INTRODUCTION

Consider the problem of deriving an optimal
filter for the attitude of a rigid-body using vectorial
measurements in 3D space. The natural state formu-
lation for attitude kinematics of a rigid-body evolves
on the special orthogonal Lie group SO(3) [1]. State
of the art stochastic methods apply modifications
to the extended Kalman filter (EKF) and the un-
scented Kalman filter (UKF) equations in order to
preserve the group structure of the estimates. See for
example the multiplicative extended Kalman filter
(MEKF) [2], the unscented quaternion estimator
(USQUE) [3] or the invariant extended Kalman filter
(IEKF) [4]. In a different approach, Choukroun et
al [5] use an embedded representation of SO(3),
namely as unit quaternions in R4, to obtain an
‘optimal’ attitude filter in R4. However, the optimal
filter estimate needs to be re-projected onto the
rotation group to obtain feasible estimates.

In the late 1960s, Mortensen [6] has introduced a
systematic approach to deriving filtering algorithms
for deterministic nonlinear systems in Euclidean
space. This approach, known as minimum energy
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filtering, was further explored by Hijab [7]. Con-
vergence of minimum-energy filters was studied by
Krener [8] who proved that under some conditions
including the uniform observability of the system, a
minimum-energy estimate converges exponentially
fast to the true state. Aguiar et al. [9] applied
minimum-energy filtering to systems with perspec-
tive outputs by embedding the nonlinear geometry
in an overarching Euclidean space. The resulting
estimates need to be projected back to the special
Euclidean group SE(3). A simple quaternion nor-
malization as the projection process could arguably
yield a sub-optimal filter unless proven otherwise
mathematically. Geometric nonlinear observers for
attitude kinematics have been heavily studied in
the past few years [10]–[14]. Moreover, different
approaches to deterministic optimal attitude filtering
can be found in [15], [16] that are based on un-
certainty ellipsoids and non-integral cost functions,
respectively. In recent work [17] a near-optimal
deterministic filter was derived for a system defined
on the unit circle S1. The authors extended this work
to attitude kinematics on SO(3) for the case of full
attitude measurements [18]. The earlier work by the
authors was based on ad-hoc methods and to the
authors knowledge there is no prior work that uses
the more structured Mortensen’s approach to derive
minimum energy filters on SO(3).

In this paper we derive a deterministic attitude
filter using vectorial measurements by adapting
Mortensen’s approach [6] to the geometric structure
of SO(3). This approach yields an elegant represen-
tation of the filter equation as a gradient flow of the
measurement error cost associated with the optimal
control Lagrangian, where the gradient is taken with
respect to a Riemannian metric based on the Hessian
of the value function. The Hessian of the value
function that is required to implement the filter can
itself be computed by repeated differentiation. Using
a matrix representation of the Hessian we obtain
a Riccati equation that approximates a minimum-
energy attitude filter by neglecting the third order

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: February 21, 2013 21:46:04 PST



2

derivative of the value function. We provide an
extended version of the proposed filter that deals
with bias in the gyro measurements. For numerical
analysis, we provide a quaternion implementation
of the proposed filter. We observe that the pro-
posed filter has the same observer part as a unit
quaternion attitude MEKF [2]. The proposed Riccati
equation however augments the Riccati equation of
the MEKF with additional terms that are associated
with the geometric structure of the system that
is not captured by the MEKF construction. By
means of simulations we compare the proposed filter
to the MEKF. The proposed filter achieves faster
convergence and lower estimation error in the bias
estimates and consequently in the quaternion esti-
mates than the MEKF in a suit of simulations where
there are large initialization or large measurement
errors.

The remainder of the paper is organized as fol-
lows. Section II introduces our notation and some
mathematical identities used later in the paper. In
Section III we formally present the problem of
minimum-energy attitude filtering for a system de-
fined on SO(3) and characterize the optimal fil-
ter estimate as the minimum of a value function
derived from an associated optimal control prob-
lem. Section IV contains the filter derivation using
Mortensen’s approach. We provide a quaternion ver-
sion of the proposed filter along with a quaternion
implementation of the attitude MEKF in Section V.
We demonstrate simulation-based comparisons be-
tween the two filters. Lastly, Section VI concludes
the paper.

II. NOTATION

The rotation group is denoted by SO(3) = {X ∈
R3×3 |X>X = I, det(X) = 1}, where I is the 3 by 3
identity matrix. The associated Lie algebra so(3) =
{A ∈ R3×3 |A = −A>}, is the set of skew-symmetric
matrices. For Ω = [a, b, c]> ∈ R3, the lower index
operator (.)× : R3 −→ so(3) yields the skew-symmetric
matrix Ω× = [Ω1 Ω2 Ω3] where Ω1 = [0 c − b]>,
Ω2 = [−c 0 a]> and Ω3 = [b − a 0]>. Inversely,
the operator vex : so(3) −→ R3 extracts the skew
coordinates, vex(Ω×) = Ω. The cost ‖.‖R : R3×3 −→ R+

0

is given by

‖M‖R :=

√
1

2
trace(M>RM),

where R ∈ R3×3 is symmetric positive definite. Note
that ‖M‖R coincides with the Frobenius norm of
R1/2M . The symmetric projector Ps is defined by
Ps(M) := 1/2(M+M>). The skew-symmetric projector

Pa is defined by Pa(M) := 1/2(M −M>). It is easily
verified that the vector product of the two vectors
γ, ψ ∈ R3 satisfies

(γ × ψ) = vex(2Pa(ψγ>)) = 2 vex(Pa(γ×ψ×)). (1)

Let LX : SO(3) −→ SO(3), LXS = XS, be the left trans-
lation and let TLX : T SO(3) −→ T SO(3) denote the
associated tangent map. Let D1F (X,Y ) ·TLX Γ denote
the derivative of the function F with respect to the
first argument X ∈ SO(3) in the tangent direction
TLX Γ = XΓ ∈ TX SO(3), where Γ ∈ so(3). Recall the
relationship between a directional derivative D and
a gradient ∇ with respect to a Riemannian metric
〈., .〉X : TX SO(3)×TX SO(3) −→ R:

D1F (X,Y ) · TLX Γ = 〈∇1F (X,Y ),TLX Γ〉X =

〈TL∗X ∇1F (X,Y ),Γ〉I .
(2)

The asterisk denotes the adjoint with respect to the
given Riemannian metric. We use the standard left-
invariant Riemannian metric on SO(3). That is, for
Γ,Ω ∈ so(3) and X ∈ SO(3)

〈TLX Γ,TLX Ω〉X = 〈Γ,Ω〉I :=
1

2
trace(Γ>Ω). (3)

One has

〈TLX Γ,TLX Ω〉X = 〈vex(Γ), vex(Ω)〉 = vex(Γ)> vex(Ω). (4)

For the sake of simplicity, in the reminder of the
paper we will omit the subscript notation from the
Riemannian metrics.

III. PROBLEM FORMULATION
In this section, we present the system governing

the kinematics of the attitude of a rigid body and an
associated measurement model that yields vectorial
sensor measurements. We formulate the problem of
minimum-energy filtering for this system.

The following equation is a model for the attitude
kinematics of a rigid body. Ẋ(t) = X(t)Ω×(t), X(0) = X0,

u(t) = Ω(t) +Bv(t),
yi(t) = X(t)>ẙi +Diwi(t), i = 1, · · · , n ,

(5)

where X is an SO(3)-valued state signal repre-
senting the attitude of a body-fixed frame, i.e. a
frame attached to a moving rigid body, relative to
a reference frame, i.e. a frame fixed at a reference
point. The signal Ω ∈ R3 represents the angular
velocity of the moving body expressed in the body-
fixed frame. The signals u ∈ R3 and v ∈ R3 denote
the body-fixed frame measured angular velocity
input and the input measurement error, respectively.
The coefficient matrix B ∈ R3×3 allows for different
weightings for the components of the unknown
input measurement error v. We assume that B is
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full rank and hence that Q := BB> is positive
definite. The unit norm vectors ẙi ∈ S2 ⊂ R3

are known vector directions in the reference frame.
The measurements yi ∈ R3 are measurements of
the ẙi in the body-fixed frame and the signals
wi ∈ R3 are the unknown output measurement
errors. The coefficient matrix Di ∈ R3×3 allows for
different weightings of the components of the output
measurement error wi. Again we assume that Di is
full rank and hence Ri := DiD

>
i is positive definite.

Consider the cost

J(t;X0, v|[0, t], {wi|[0, t]}) =
1

2

∫ t

0

(
v>v +

∑
i

w>i wi

)
dτ

+
1

2
trace

[
(X0 − χ)>K−1

0 (X0 − χ)
]
,

(6)

in which K0 ∈ R3×3 is symmetric positive definite
and χ ∈ SO(3) is an initial guess for the unknown
initial state X0. Note that χ = I in case no reliable
candidate for the value of χ is available. The cost (6)
can be thought of as a measure of the aggregate
energy stored in the unknown signals of system (5).

The principle of minimum-energy filtering is as
follows. At each time t, given the measurements
{yi|[0, t]} and u|[0, t], the goal is to obtain an estimate
X̂(t) of the true state X(t) by minimizing the
cost (6). In order to obtain X̂(t), one seeks a com-
bination of the unknowns (X0, v|[0, t], {wi|[0, t]})
that is compatible with the measurements {yi|[0, t]}
and u|[0, t] in fulfilling the system equations (5).
Note that in general, infinitely many combinations
of these unknowns are compatible with the mea-
surements. By minimizing the cost (6) a triplet
(X∗0 , v∗|[0, t], {w∗i |[0, t]}) is chosen that contains
minimum collective energy.

The minimizing unknowns (X∗0 , v∗|[0, t],
{w∗i |[0, t]}) replaced in the system equations (5)
yield the optimal state trajectory X∗[0, t]. The
subscript [0, t] indicates that the optimization
takes place on the interval [0, t]. We pick the final
optimal state X∗[0, t](t) as our minimum-energy
estimate at time t, X̂(t) := X∗[0, t](t).

A naive approach to the minimum energy filtering
problem leads to an infinite dimensional optimiza-
tion problem for each time interval [0, t]. To obtain
a practical algorithm we will seek to derive a recur-
sive filter that at each time t yields the minimum-
energy estimate as its state value.

Note that the cost (6) depends on the unknowns
X0, v|[0, t] and {wi|[0, t]}, but given X0 and v|[0, t],
the known {ẙi}, and the measurements u|[0, t] and

{yi|[0, t]}, the wi|[0, t] are uniquely determined by (5).
Hence, the cost (6) is equivalent to

J(t;X0, v|[0, t]) =
1

2
trace

[
(X0 − χ)>K−1

0 (X0 − χ)
]

+∫ t

0

1

2

(
v>v +

∑
i

(X>ẙi − yi)>R−1
i (X>ẙi − yi)

)
dτ

(7)

where the cost (7) depends only on the signals X0

and v|[0, t]. Minimizing (7) over these two arguments
is simplified by first assuming that X0 is known and
minimizing over v|[0, t], then later optimizing over
X0. The problem of minimizing (7) subject to (5)
can be seen as an optimal control problem where
the signal v|[0, t] is considered as a control input.

As in the maximum-principle [19] the pre-
Hamiltonian for the above optimal control problem
is

H−(X,µ×, v, t) :=
1

2
[v>v +

∑
i

(X>ẙi − yi)>R−1
i (X>ẙi − yi)]

− µ>(u−Bv),
(8)

where µ ∈ R3 represents a costate variable Θ ∈
so∗(3) via 〈µ×,Γ〉 = Θ(Γ) for all Γ ∈ so(3). In
the following the identification of Θ ∈ so∗(3) with
µ× ∈ so(3) will be used without further reference.
Since the pre-Hamiltonian (8) is quadratic in v its
minimum is given by the differential condition

DvH− · γ = 0, ∀γ ∈ R3. (9)

Solving for v yields the optimal v∗ = −B>µ.
Substituting v∗ in (8) yields the optimal Hamiltonian

H(X,µ×, t) =
1

2
[−µ>Qµ+

∑
i

(X>ẙi − yi)>R−1
i (X>ẙi − yi)]

− µ>u.
(10)

In order to apply the dynamic programming
principle [19] to this problem the following value
function is defined

V (X, t) := min
v|[0, t]

J(t;X0, v|[0, t]), (11)

where J is the cost (7) and the minimization is
constrained by the system equations (5). This is well
defined because from (5), X0 and v|[0,t] uniquely
determine X(t) and vice versa X(t) and v|[0,t]
uniquely determine X(0). The Hamilton-Jacobi-
Bellman equation is then [19]

H(X,TL∗X ∇1V (X, t), t)− ∂V

∂t
(X, t) = 0. (12)

From (7) the initial time boundary condition is

V (X0, 0) =
1

2
trace

[
(X0 − χ)>K−1

0 (X0 − χ)
]
. (13)
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Up to here we have used the dynamic programming
principle to address the optimal control part of the
problem (by minimizing (7) over v). To complete
the optimal filtering problem, we also need to op-
timize V over X0. This can be equivalently posed
as optimization over the final condition X(t) since
the initial and final conditions are deterministically
coupled by the optimal input v|[0 , t]. Assuming that
the value function is strictly convex, its minimum
is characterized by the condition

∇1V (X, t)|X=X̂(t) = 0. (14)

This equation is also referred to as the ’final
condition’ since it is evaluated at time t. Recall that
the minimum-energy estimate X̂(t) is defined as
the final value of the minimizing argument X∗[0,t](t).
Solving Equation (14) characterizes X̂(t). However,
this still requires an explicit solution to a potentially
infinite dimensional nonlinear optimization problem
and must be repeated at every time t. To overcome
this issue we will use Mortensen’s approach [6] to
derive a recursive solution to this problem.

IV. FILTER DERIVATION
In this section we apply Mortensen’s approach [6]

to the minimum-energy filtering problem presented
in Section III. Note that the final condition (14) is
equivalent to the following equation. For all Γ ∈
so(3)

{D1V (X, t) ·XΓ}X=X̂(t) = 0. (15)

Equation (15) characterizes the solution X̂(t). Next
we compute the total time derivative of (15) in order
to derive a dynamic filter updating the solution [6].

d

dt
{D1V (X, t) ·XΓ}X=X̂(t) = 0. (16)

Applying the chain rule to Equation (16) yields

{D2
1V (X, t) · (XΓ,

˙̂
X(t)) +D1

∂V

∂t
(X, t) ·XΓ}X=X̂(t) = 0. (17)

The second order derivative of the value function
is related to the Hessian of the value function as an
operator acting on a tangent direction. In order to
obtain a matrix formulation we represent this by a
matrix K ∈ R3×3 such that for all Γ,Ψ ∈ so(3),
with vector representations γ := vex(Γ) and ψ :=
vex(Ψ),

D2
1V (X, t) · (XΓ, XΨ) = 〈Kγ, ψ〉 = 〈γ,Kψ〉.

(18)
The second term in (17) is given by replacing

the partial time derivative in (17) from (12) and
calculating the derivative with respect to X .

D1
∂V

∂t
(X, t) ·XΓ = −〈

∑
i

((X>ẙi)× (R−1
i (X>ẙi − yi))×,Γ〉.

(19)

Denote

l :=
∑
i

(R−1
i (ŷi − yi))× ŷi (20)

where ŷ := X̂>ẙ. Equation (17) yields

˙̂
X = X̂(u− Pl)×, (21)

where P := K−1 and X̂(0) = χ is obtained by
evaluating the final condition (14) at time 0 using
the boundary condition (13).

Note that Equation (21) is the exact form of a
minimum-energy (optimal) observer for system (5)
where energy is measured by the cost (6). The
observer contains the innovation term l which is
a weighted sum proportional to the information
contained in the error ŷi − yi. The matrix P acts
as the gain for this innovation term.

To fully solve (21), the matrix P needs to be up-
dated on-line. We follow Mortensen’s approach [6]
to compute the total time derivative d

dt
〈Pγ, ψ〉. A

rather tedious and lengthy calculation yields the
following Riccati differential equation that dynam-
ically updates P . Note that in order to obtain this
equation one needs to neglect the third order deriva-
tives of the value function with respect to X . In
other words we assume that the value function (11)
is quadratic in the state X . This provides a sec-
ond order approximation of the infinite dimensional
minimum-energy filter.

Ṗ = Q+ 2Ps(P (u− Pl)×)− PSP + PEP, (22)

where

S :=
∑
i

(ŷi)
>
×R
−1
i (ŷi)×, E := trace(C)I − C,

C :=
∑
i

Ps(R−1
i (ŷ − yi)ŷ>i ).

(23)

The initial condition P (0) = (trace(K−1
0 )I −

K−1
0 )−1 is given by calculating the second order

derivative of the value function (11) and evaluating
using the boundary condition (13) at time 0. Note
that K−1

0 was given in the cost (7).
The Riccati equation (22) along with the

minimum-energy observer (21) approximates a
minimum-energy filter for system (5) up to the
second order. The approximation is due to neglect-
ing the third order derivative of the value func-
tion (11). One could continue to apply Mortensen’s
approach to obtain higher order approximations of a
minimum-energy filter but that would require tensor
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algebra. In a recent paper [17] the authors provide
expressions for the third order terms for the case of
rotations in a plane SO(2) ≡ S1 where the Hessian
and all higher order derivatives of the value function
are scalars.

Note that one can also consider bias in the angular
velocity measurements (5). This yields the following
modified angular velocity measurement model.

u(t) = Ω(t) +BΩvΩ(t) + b(t), (24)

where b(t) ∈ R3 is an unknown slowly time-
varying bias signal generated from

ḃ(t) = Bbvb(t), b(0) = b0, (25)

where Bb ∈ R3×3 is a weighting matrix known
from the model, vb ∈ R3 is a small unknown
perturbation and b0 ∈ R3 is an unknown initial
bias. Using this model and a similar derivation as
we used in this section, but on the state manifold
SO(3)×R3 using the natural metric, one can solve
the filtering problem in Section III by modifying the
cost function (6) to include the initial bias b0 and
the model perturbation vb. This yields the new filter

˙̂
X = X̂(u− b̂− Pal)×, X(0) = χ, (26a)

where b̂ is the estimate of the bias b given from
˙̂
b = −P>c l, b̂(0) = ζ, (26b)

and where l is the same innovation term as (20)
and ζ ∈ R3 is a guess for the initial condition b0
that can be chosen as a zero vector in case there is
no reliable guess available. The gains Pa and Pc are
updated from the following equations.

Ṗa = QΩ + 2Ps(Pa(2(u− b̂)− Pal)×) + Pa(E − S)Pa − P>c − Pc,

Ṗc = −(u− b̂− Pal)×Pc + Pa(E − S)Pc − Pb

Ṗb = Qb + Pc(E − S)Pc,
(26c)

where QΩ := BB> and Qb := BbB
>
b .

V. SIMULATIONS
In this Section we provide a formulation of the

proposed filter (26) using unit quaternions. Using
this formulation we compare the performance of
our filter against the quaternion-based multiplicative
extended Kalman filter (MEKF) [2].

A unit quaternion belongs to the set Q = {q =
(s, v) ∈ R × R3 : |q| = 1}. The set Q is
a group under the operation q1 ⊗ q2 = (s1s2 −
v>1 v2, s1v2 + s2v1 + v1 × v2), with identity element

1 = (1, 0, 0, 0) and inverse q−1 = (s, −v). The
unit quaternion version of the attitude observer (26a)
is given by

˙̂q(t) =
1

2
q̂ ⊗ p(u− b̂− Pal) , (27)

where q̂(0) = 1 and p(γ) := (0, γ) for γ ∈ R3.
The signal b̂ is generated from (26b) and the gains
are given from (26c). The MEKF [2] which in this
context is a special case of the IEKF [4] is given
by the same observer equations (26a) and (26b).
However, in the Riccati equations of the MEKF, the
term u− b̂l is used rather than 2(u− b̂)− Pal, and
the term E is not present. The following simulation
study shows that the extra terms in the proposed
Riccati equations (26c) facilitate faster convergence
and lower root mean square (RMS) estimation error
of the proposed filter, specially when the initializa-
tion and measurement errors are large, as is the case
in attitude filtering for low cost unmanned aerial
vehicles (UAVs).

The two filters are simulated using zero initial
bias estimates and identity unit quaternion initial
quaternion estimates. Also, the identity matrix is
used as the initial gain matrix of the two filters. A si-
nusoidal input Ω = [0.2 sin(π

6
t) −cos(π

6
t) 2 cos(π

6
t)]

drives the true trajectory X . The input measurement
errors v and vb are Gaussian zero mean random
processes with unit standard deviation. The coef-
ficient matrix B is chosen so that the signal Bv has
a standard deviation of 25 degrees per ‘second’. The
bias variation is adjusted by Bb such that Bbvb has
a standard deviation of 0.0004 radians per ‘second’
squared. The system is initialized with a unit quater-
nion representing a rotation through 120 degrees
and an initial bias of 20 degrees per ‘second’. We
assume that two orthogonal unit reference vectors
are available. We also consider Gaussian zero mean
measurement noise signals wi with unit standard
deviations. The coefficient matrices Di are chosen
so that the signals Diwi have standard deviations
of 30 degrees. Although the two filters do not have
access to the noise signals vΩ, vb and wi themselves,
they have access to the matrices QΩ = BB>,
Qb = BbB

>
b and Ri = DiD

>
i . We have tested the

two filters in a suit of simulations involving different
levels of initialization errors, measurement errors
and different reference vectors. Figures 1 show a
situation that is typical for our simulations where
there is large initialization or large measurement
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errors, as in the case of using low cost MEMS gyros
such as the popular InvenSense MPU-3000 family.
We have performed a Monte-Carlo simulation and
the RMS of the estimation errors of the two filters
are demonstrated for 100 repeats. Figure 1 indicates
that the RMS of the rotation angle estimation error
of the proposed filter converges faster towards zero
and remains lower than the error of the MEKF. This
is due to the fact that the proposed filter performs
better in estimating the bias (Figure 1).
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Fig. 1. The rotation angle and bias estimation performance of the
proposed filter compared against the MEKF.

VI. CONCLUSIONS

A new attitude filter was proposed that is derived
using Mortensen’s approach to minimum-energy
filtering. The filter is posed directly on the special
orthogonal group SO(3) and uses vectorial mea-
surements. The proposed method yields the exact
form of a minimum-energy attitude observer which
is shown to depend on the Hessian of the value
function of an associated optimal control problem.
An extended version of the filter is proposed that
also deals with gyro bias. The proposed algorithm
outperforms the industry standard attitude filter, the
MEKF, in simulations for the case of UAVs where

there are large initialization or large measurement
errors.
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