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the Newton iteration

Newton’s method

xk+1 = xk − {Hess f(xk)}
−1 grad f(xk), x0 ∈ R

n

is an iteration

xk+1 = N(f)(xk), x0 ∈ R
n

which is defined for any twice differentiable
function f : R

n −→ R.
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the Newton iteration

The sequence

xk = {N(f)}k (x0)

it generates converges locally quadratic to
non-degenerate critical points of f .
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the Newton iteration

The sequence

xk = {N(f)}k (x0)

it generates converges locally quadratic to
non-degenerate critical points of f .

In particular, it converges locally to any (isolated)
strict local maximum of f .
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parametrisations

Sometimes a to be maximised function is not
naturally defined on an R

n but rather on some
smooth manifold (curved space), e.g. the sphere.
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Sometimes a to be maximised function is not
naturally defined on an R

n but rather on some
smooth manifold (curved space), e.g. the sphere.

One description of manifolds is that they look
locally like an R

n. This means that the manifold
can be covered by a collection of subsets for
each of which there is a homeomorphism
(coordinate chart) onto an open set in R

n.
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parametrisations

Sometimes a to be maximised function is not
naturally defined on an R

n but rather on some
smooth manifold (curved space), e.g. the sphere.

One description of manifolds is that they look
locally like an R

n. This means that the manifold
can be covered by a collection of subsets for
each of which there is a homeomorphism
(coordinate chart) onto an open set in R

n.

The whole atlas has to fit nicely together, i.e. via
diffeomorphisms in overlapping regions.
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parametrisations

This implies that for each point p of the manifold
M there exists a local parametrisation, i.e. a
smooth injective map

µp : R
n −→ M, µp(0) = p
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parametrisations

This implies that for each point p of the manifold
M there exists a local parametrisation, i.e. a
smooth injective map

µp : R
n −→ M, µp(0) = p

We consider the special case where µp varies
locally smoothly with the base point, which might
only be possible in a small neighborhood of a
given point p∗ (hedgehog theorem).
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parametrisations

Take e.g. the sphere and the operation of the
special orthogonal group on it

φ :SO(n + 1) × Sn −→ Sn,

(Q, p) 7→ Qp

and consider the exponential map

exp :so(n + 1) −→ SO(n + 1),

Ω 7→ exp Ω .
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parametrisations

It can be shown that

φ(exp(.), p∗) : so(n + 1) −→ Sn

is locally injective around 0 when restricted to the
subspace











0 Z

−Z⊤ 0



 |Z ∈ R
k×(n−k)







.

This defines a local parametrisation µp∗ which
can be “moved around” Sn by applying φ.
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the new algorithm

Let µp and νp be two families of local
parametrisations and consider the iteration

pk+1 = νpk
(N(f ◦ µpk

)(0)), p0 ∈ M

which is defined for every twice differentiable
function f : M −→ R.
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the new algorithm

Let µp and νp be two families of local
parametrisations and consider the iteration

pk+1 = νpk
(N(f ◦ µpk

)(0)), p0 ∈ M

which is defined for every twice differentiable
function f : M −→ R.

Note that for M = R
n and νp = µp the obvious

parametrisation x 7→ p + x this is the standard
Newton method.
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convergence
properties

Theorem: If µp and νp are smooth around a
non-degenerate critical point p∗ of f and if
moreover µ′

p∗(0) = ν ′
p∗(0) then our algorithm

converges locally quadratic to p∗.
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convergence
properties

Theorem: If µp and νp are smooth around a
non-degenerate critical point p∗ of f and if
moreover µ′

p∗(0) = ν ′
p∗(0) then our algorithm

converges locally quadratic to p∗.

In general, nothing is said (and known) about
global convergence.
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an example

Consider a real symmetric n × n matrix N with
eigenvalues λ1 ≥ · · · ≥ λk > λk+1 ≥ · · · ≥ λn. Its
k-dimensional principal eigenspace is the
subspace spanned by the eigenvectors to
λ1, . . . , λk.
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an example

Consider a real symmetric n × n matrix N with
eigenvalues λ1 ≥ · · · ≥ λk > λk+1 ≥ · · · ≥ λn. Its
k-dimensional principal eigenspace is the
subspace spanned by the eigenvectors to
λ1, . . . , λk.

Consider the function (generalised Rayleigh
quotient)

f : Grass(k, n) −→ R, [X] 7→ tr X⊤NX
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an example

µp is given by

p =



Q





I

0









µp(Z) =



Q exp





0 Z

−Z⊤ 0









I

0









where Q ∈ O(n) and Z is k × (n − k).
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an example

Then

grad(f ◦ µp)(0) =



Q⊤NQ,





I 0
0 0







 =





0 −N12

N⊤
12 0




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an example

Then

grad(f ◦ µp)(0) =



Q⊤NQ,





I 0
0 0







 =





0 −N12

N⊤
12 0





and

Hess(f ◦µp)(0)Z =





0 ZN22 − N11Z

Z⊤N11 − N12Z
⊤ 0




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an example

So computing N(f ◦ µp)(0) amounts to solving the
Sylvester equation

N11Z − ZN22 = −N12
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an example

So computing N(f ◦ µp)(0) amounts to solving the
Sylvester equation

N11Z − ZN22 = −N12

This Z could than be plugged into

νp(Z) =



Q exp





0 Z

−Z⊤ 0









I

0









to get a new Q.
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an example

It’s much better though to use an orthogonal
projection onto O(n) instead by computing a
QR-decomposition of





I

−Z⊤



 = QZR

and to use QQZ as the new Q.

Transporting iterative algorithms from Euclidean space to manifolds – p. 15/18



general iterates

Replacing the Newton iteration N(f) : R
n −→ R

n

by any other iteration G(f) : R
n −→ R

n that is
locally order q converging to non-degenerate
critical points of f , we can derive sufficient
conditions on a family µp of local
parametrisations that guarantee local order q
convergence of the “transported algorithm”

pk+1 = µpk
(G(f ◦ µpk

)(0)), p0 ∈ M
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general iterates

Let G(f) : R
n −→ R

n be defined by

G(f)(x) := g(x, f(x), grad f(x), Hess f(x))

where

g : R
n × R × R

n × R
n×n −→ R

n

is sufficiently smooth.
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general iterates

Let G(f) : R
n −→ R

n be defined by

G(f)(x) := g(x, f(x), grad f(x), Hess f(x))

where

g : R
n × R × R

n × R
n×n −→ R

n

is sufficiently smooth.

For N(f) it would be g(x, α, y, Z) = x − Z−1y.
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general iterates

Theorem: If G(.) is order q locally convergent to
non-degenerate critical points and µp is a locally
smooth family of local parametrisations which
are local diffeomorphisms then the transported
algorithm is locally order q convergent to
non-degenerate critical points.
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general iterates

Theorem: If G(.) is order q locally convergent to
non-degenerate critical points and µp is a locally
smooth family of local parametrisations which
are local diffeomorphisms then the transported
algorithm is locally order q convergent to
non-degenerate critical points.

This result can be further generalised (see
forthcoming paper).
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general iterates

Theorem: If G(.) is order q locally convergent to
non-degenerate critical points and µp is a locally
smooth family of local parametrisations which
are local diffeomorphisms then the transported
algorithm is locally order q convergent to
non-degenerate critical points.

This result can be further generalised (see
forthcoming paper).

Thank you.
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