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The observation problem

Given a set of variables (signals) whose interaction is described by
a known dynamical system and given measurements of some of the
variables, can you provide good estimates of (other) variables in
the system? How?

System
w2 =?

w1

Observer
ŵ2Can you do it with an observer?

Observer = system interconnected with the observed system
Estimate = value of variable in the observer
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Ingredients for a theory of observers

- Model class for the observed system (incl. measurement model)

- What makes an estimate a good estimate?

- Is the problem solvable (observability)?

- Model class for candidate observers

- Is the problem still solvable (existence)?

- How do you recognize a solution (characterization)?

- How do you build an observer (construction/design)?

- Describe the set of all solutions (parametrization).

- Find a “perfect” estimator (optimization for secondary criterion)
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X α(g, x)
x

complete symmetry Z4
partial symmetry S1

complete symmetry SO(3)
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Symmetry

Lie group G
differentiable manifold X

right action α : G × X → X , x 7→ α(g , x)
α(id, x) = x and α(g , α(h, x)) = α(hg , x)

α transitive
⇔ X is a G -homogeneous space
⇔ G is a complete symmetry for X
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Kinematic systems

Kinematic systems are of the form

ẋ = f (x , v),

yi = hi (x), i = 1, . . . , p

where x(t) ∈ X , a differentiable state manifold, v(t) ∈ V , an input
vector space, and f (x , .) : V → TxX linear.
Also, each yi (t) ∈ Yi , a differentiable output manifold.

One way to think about kinematic systems is that they are defined
by a linearly parametrized family {f (., v)}v∈V of vector fields on X .
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Kinematic systems with complete symmetry

ẋ = f (x , v),

yi = hi (x), i = 1, . . . , p

with right Lie group actions

φ : G × X → X ,

ψ : G × V → V ,

ρi : G × Yi → Yi

XV

ψg φg

such that

dφg (x)[f (x , v)] = f (φ(g , x), ψ(g , v)),

ρi (g , hi (x)) = hi (φ(g , x))
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A toy example

y = x

X = S2, V = R3, Y = S2, G = SO(3)

φ(R, x) = R>x

ψ(R,Ω) = R>Ω

ρ(R, y) = R>y
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Homographies

Transformation of an image
of a planar scene

H = R +
ξη̂>

d
pi ' H−1p̊i
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Application of homographies to image stabilization

Ḣ = H(Ω× + Γ)

pi =
H−1p̊i
‖H−1p̊i‖

Ω is the angular velocity, Γ can be estimated concurrently with H,
pi can be obtained feature point correspondences in video frames

X = SL(3), V = sl(3), Yi = S2, G = SL(3)

φ(Q,H) = HQ

ψ(Q, u) = Q−1uQ

ρi (Q, pi ) = Q−1pi
‖Q−1pi‖
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Robotics problems with symmetry

An incomplete list of robotics problems with complete symmetry:

- Attitude estimation SO(3)

- Pose estimation SE(3)

- Second order kinematics TS?(3)

- Homography estimation SL(3)

- Simultaneous Localization and Mapping (SLAM)

- Unicycle SE(2)

- Nonholonomic car with trailers

These generic problems come in several versions depending on the
types of available measurements.
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General approach

- Lift the system kinematics to the symmetry group

- Design an observer for the resulting invariant system

- Project the observer state to obtain a system state estimate

Why?

- Observer design for invariant systems on Lie groups is very
well studied (Bonnabel/Martin/Rouchon TAC 2009,
Lageman/T./Mahony TAC 2010)

- It is often possible to obtain autonomous error dynamics in
(global) gradient flow form

- The system theory of invariant systems on Lie groups is as
close to LTI system theory as one can get in the nonlinear
regime
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Lifted kinematics

Fix a reference point x̊ ∈ X and choose a velocity lift

Fx̊ : V → g such that

dφx̊(id)[Fx̊(v)] = f (x̊ , v)

Define lifted kinematics

ġ = F (g , v) := dRg (id)[Fx̊(ψ(g−1, v))], yi = ρi (g , ẙi ),

where ẙi = hi (x̊), then

dφx̊(X )[F (g , v)] = f (x , v), where x = φ(g , x̊)

The lifted kinematics on G project to the system kinematics on X !
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Lifted kinematics

XV

ψg φg
x̊

x

g G

id g

φx̊
Fx̊

Fx̊(ψ(g−1, v))

v

Symmetry R, ψ, ρi

Symmetry φ, ψ, ρi
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Lifted kinematics

Toy example

Fe3(Ω) =

(
0 −Ω3 Ω2

Ω3 0 −Ω1
−Ω2 Ω1 0

)
= Ω×

F (R,Ω) = (RΩ)×R = (RΩ×R
>)R = RΩ×

Ṙ = RΩ× rigid body! Ḣ = Hu homography!
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Type I lifted kinematics

A right invariant (physical) system description relative to an
inertial frame with sensors attached to the body-fixed frame
typically leads to left invariant kinematics on the symmetry group:

ġ = dRg (id)[Adgu] = dLg (id)[u], u = Fx̊(v)

We call such systems Type I. A complete characterization of Type I
(and Type II) symmetries has just been accepted for presentation
at this year’s CDC :-)

Type I systems allow particularly nice observer error dynamics.
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Aside: Type II lifted kinematics

The seemingly more “natural” case of Type II lifted kinematics

ġ = dRg (id)[u]

has been studied in the classical geometric control literature, see
for example the work of Jurdjevic and Sussmann.

It turns out that this models the much rarer case of inertially based
sensors that usually require “live” communication between the
robot and a ground station (or a system such as GPS)!

Additionally, the error dynamics are not as simple as for Type I
symmetries. For a detailed analysis of the attitude estimation
problem in both cases see T./Mahony/Hamel/Lageman TAC 2012.
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Observer design (for all types)

Lifted kinematics

ġ = dRg (id)[Fx̊(ψ(g−1, v))], yi = ρi (g , ẙi ),

Observer

˙̂g = dRĝ (id)[Fx̊(ψ(ĝ−1, v))]− dRĝ (id)∆ẙ (ĝ , y), ĝ(0) = id

x̂ = φx̊(ĝ),

where x̊ is chosen as the best guess of x(0).

It remains to choose the innovation term ∆ẙ (ĝ , y) in a way such
that EI := ĝg−1 → id.
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Invariant innovation terms

An innovation term ∆ẙ (ĝ , y) is called invariant if

∆ẙ (ĝh, ρ(h, y)) = ∆ẙ (ĝ , y)

For an invariant innovation term and y = ρ(g , ẙ),

∆ẙ (ĝ , y) = ∆ẙ (ĝ , ρ(g , ẙ)) = ∆ẙ (ĝg−1g , ρ(g , ẙ))

= ∆ẙ (ĝg−1, ẙ),

i.e.
∆ẙ (ĝ , y) = ∆ẙ (EI , ẙ)
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Error dynamics - Type I with invariant innovation

Lifted kinematics Observer

ġ = dLg (id)[Fx̊(v)] ˙̂g = dLĝ (id)[Fx̊(v)]− dRĝ (id)∆ẙ (ĝ , y)

Error dynamics

ĖI =
d

dt
(ĝg−1) = ˙̂gg−1 − ĝ(g−1ġg−1)

= dRg−1(ĝ)dLĝ (id)[Fx̊(v)]− dRg−1(ĝ)dRĝ (id)∆ẙ (ĝ , y)

− dLĝ (g−1)dRg−1(id)[Fx̊(v)]

= −dREI
(id)∆ẙ (EI , ẙ)

The error dynamics ĖI = −dREI
(id)∆ẙ (EI , ẙ) are autonomous!
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Constructing an invariant innovation term

Starting with individual smooth functions fi : Yi → R+ with a
global minimum at ẙi , define the aggregate cost

`ẙ (ĝ , y) :=

p∑
i=1

fi (ρi (ĝ
−1, yi ))

The aggregate cost is invariant

`ẙ (ĝ , y) = `ẙ (EI , ẙ)

and the right trivialization of its gradient w.r.t. a right invariant
Riemannian metric

∆ẙ (ĝ , y) := dRĝ−1(id)grad1`ẙ (ĝ , y)

is an invariant innovation term.
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Observer for the toy example

System

ẋ = x × Ω, y=x

Lifted kinematics

Ṙ = RΩ×

Cost

f (y) = k‖y − e3‖2
2

Observer

˙̂R = R̂Ω× − k(e3 × R̂y)×R̂, x̂ = R̂e3
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The main convergence result

Theorem (Mahony/T./Hamel, NOLCOS 2013)

Consider a kinematic system with a Type I complete symmetry.
Assume that

p⋂
i=1

stabρi (ẙi ) = {id}.

and construct an observer as above. Then

ĖI = −grad1`ẙ (EI , ẙ)

and x̂(t)→ x(t) at least locally, but typically almost globally.
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A nonlinear homography observer

H ∈ SL(3), U ∈ sl(3), pi ∈ S2
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Experimental results - Lab

credit: Minh Duc Hua (Laboratoire I3S, CNRS)
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Experimental results - Underwater

credit: Minh Duc Hua (Laboratoire I3S, CNRS)
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Outlook

- There are lots of open questions! Type II theory? Are there
other types? Is there a general internal model principle?

- Extensions to biased input measurements, systems with
measurement delays

- Minimum energy estimation or variational estimators (Sanyal
et al.) as an alternative to nonlinear stochastic filtering

- Extensions to infinite dimensional systems

- Many essentially unexplored applications in robotics and
computer vision
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Unpaid advertisements

Invited tutorial session on “Geometric observers”

57th IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, December 17-19, 2018

Graduate course on “Nonlinear Observers: Applications to Aerial
Robotic Systems”

Module M12, EECI International Graduate School on Control,
Genoa, Italy, April 8-12, 2019
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