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Abstract

This thesis introduces Spatial Waveform Channels (SWCaasdelling tool to derive
fundamental performance bounds for Multiple-Input MUuki®utput (MIMO) antenna
systems. In practical MIMO systems, the transmitting aregikeng antennas are con-
strained to be within finite volumes in space and the signateived on individual
antennas become mutually correlated with increasing numibantennas. In SWCs
one assumes that volumes in space, rather than antenndse ceed as the transmit-
ting and receiving elements. The essential idea behincaggamption is that any rate
of transmission that can be achieved by the transmittingraoeiving antennas can in
theory, also be achieved by using the volumes to which thenaiais are constrained.
However, if the bounds calculated using SWCs are to be usafalneeds to model the
various physical constraints imposed on a MIMO system incitreesponding SWC.
This thesis formalises the notion of an SWC and gives it atrattsmathematical defi-
nition, the structure of which enables one to impose thetdtians in a MIMO system
on the corresponding SWC.

Several properties of SWCs are examined. In particulardysthe very general
concepts otlegrees of freedom at levehndessential dimensioior compact operators
defined on normed spaces. The number of degrees of freederebt bf an SWC can
be used to determine the number of mutually uncorrelatathtsgn the corresponding
MIMO system that has noise in the receiver proportional. t&ssential dimension of
the channel operator determines the number of mutually reeleded signals present
at the receiver that is largely independent of the noise kevithe receiver. Moreover,
| show that the concept of degrees of freedom can be used traese the notion of
singular values of compact operators. These generalisgdlsr values are then used
to numerically compute the degrees of freedom and esseahtransion for various
channels. Finally, uncertainty principles and their aggdion in the context of SWCs
are studied.



Notation and Symbols

AWGN
ISI
MIMO
SwWC

Additive White Gaussian Noise
Intersymbol interference
Multiple Input Multiple Output
Spatial Waveform Channel

Open ball of radiug® centered ak in the normed spac&
Closed ball of radiug’ centered ak in the normed spac&
Complex numbers

n-dimensional complex space

Dot product orR™

Imaginary part of a complex number

Inner product on the space

Intersection of two sets

L? space of equivalence classeg®fvalued functions defined dh
Modulus of an element iR™ or C"

Norm on the spac&

Probability of some event
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Real part of a complex number

n-dimensional Euclidian space
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Vector product orR?

Integers
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Positive integers
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Chapter 1

Introduction

1.1 Background

The advent of modern cellular systems such as mobile hadsdtindoor wireless lo-
cal area networks has meant that telecommunication engiaezincreasingly exposed
to extremely harsh environments. The classical additivilkenbaussian noise (AWGN)
channel [1, pp. 378], with statistically independent Géarssoise corrupting data sam-
ples is no longer adequate to model such channels. In masiqalacommunication
systems, a signal can travel from the transmitter to theivecever multiple paths.

Due to multi-path propagation, electromagnetic signadssaibject to random fluc-
tuations in signal amplitude, phase and/or angle of arriVals phenomenon is known
asfadingor scintillation [2]. Fading can be classified intarge-scaleandshort-scale
fading. Large-scale fading refers to the average sigrnahattion over large areas and is
affected by prominent terrain contours. The statisticagjeé-scale fading can be used
to estimate the mean signal attenuation as a function adriistbetween the transmit-
ter and receiver. Small-scale fading refers to the rapiddkteons in signal amplitude
and phase that can be experienced as a result of small ch@sgesall as half a wave-
length) in the position of the transmitter and/or receigmall-scale fading causes time-
spreading of the signals and time-variance of the channak rEsults in intersymbol
interference (ISI) and pulse distortion at the rec@ver

Various techniques are used to mitigate the effects of pathi propagation. These
techniques include, but are not limited to, using equadizdiversity and channel cod-
ingE. Equalizers compensate for the ISI introduced by the mattigghannel and are
generally adaptive because of the time-varying nature etctrannel. One, or a com-
bination of frequency, time, spatial or antenna polaraatiiversity may be used to
ensure that the depth and duration of fades experiencedelrgdteiver is reduced. Fi-

1See[2]and [3, ch. 4,5].
2See eg [3, ch. 7].



nally, channel coding can be used to correct some or all oétiegs introduced by the
channel. Three general types of codes: block codes, caimwolcodes and turbo codes
are commonly used. There is a great deal of published mkteritne techniques that
can be used to mitigate the effects of channel fading. (Se®f{4 good review of
mitigation techniqué

The idea that the inherent diversity in multipath enviromtsecould be exploited to
improve the performance of a communication system begamévge in the 1990s. Ini-
tial results of Winters [6] showed the potential benefits sihg multiple input multiple
output (MIMO) antenna systems in Rayleigh fading environtaeResults of Teletar [7]
and Foschinget. al. [8] proved the theoretic potential of MIMO systems. If a gyst
hasn transmitting andn receiving antennas then assuming that the transfer métrix
has independent identically distributed entries, takemfa Gaussian distribution, Fos-
chini et. al.[8] proved that the capacity of the channel grows linearlthwiin{m,n}.
Several other results have appeared in the literature vatiiing assumptions about
channel state information at the transmitter and recef«t2]. Measurements on real
systems corroborate the theoretical findings [1ﬂ.14]

The underlying assumption that leads to the unbounded griowdapacity with in-
creasing number of antennas sgnals received on individual antennas are mutually
uncorrelated However, in any practical communication system, both thegmitting
and receiving antennas are constrained to be within sonte Yiolume in space. There-
fore, as the number of antennas increase, antenna sepadiaces and the channel
capacity saturates at some finite level. Several reseaiclearaddress the effects of an-
tenna separation and mutual coupling of signals on the dgpdche channel [17-24].
However these results depend on specific antenna configsaind/or scattering envi-
ronments.

This motivates the following questiotts there a fundamental limit, independent of
specific antenna configurations, to the number of mutualbpotnelated signals avail-
able at the receiver?

One approach to answering the above question consistsdyfistucontinuous spa-
tial channels, where we assume tlidumes, to which the antennas are constrained, to
be the transmitting and receiving elemerisippose that the transmitting and receiving
antennas are constrained to be within volurieand R respectively. We assume that
a current flows in the transmitting volunféthat generates an electromagnetic field in
the receiving volumeR that can be measured. | call such chani@gstial Waveform
Channelg (SWC). We then calculate the numberlimfearly independengélectromag-
netic fields that can be measured by a physical receiver thasures the field only in
R given that the current in the transmitter is constrainedoima way. The main idea

3Also see [1,3,5].
4There is an abundance of literature on MIMO results. See Bl|Sor a review of MIMO results.
5See definitiol2]1.
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Figure 1.1: MIMO system and SWCs

being that the number of linearly independent electromagfields in R gives an up-
per bound on the number of mutually uncorrelated signalbateceiver of a MIMO
system with densely packed antennas.

The aim of the thesis is to study the properties of SWCs. liicpéar, | study how
the constraints imposed on a real MIMO system can be model8@#Cs and how these
constraints effect the properties of SWCs.

1.2 Overview

The performance of any practical MIMO system is limited bg physical constraints
imposed on it. Examples of this include total power avadaiolr transmission, noise
at the receiver and total volume in space that the transmgitind receiving antennas
can occupy. In this section, | will discuss how the constsagonsidered in this thesis
influence our model and properties of SWCs.

Referring to figur€1l1, assume that the transmitting aneivey antennas are con-
strained to volume§’ and R, respectively. Also assume that a current, of denkity
flowing in the volumeT that generates a fiel@® H] in the volumeR. HereE is the
electric field andd is the magnetic field. We need to impose restrictions on thenwves
T and R and also the current densilyand field[E H] in order to ensure that the phys-
ical limitations imposed on the MIMO system can be capturethe model for SWCs.



The constraints on the MIMO system that are studied in thasithare as follows:

1. The transmitting and receiving antennas are physicaligtrained to be within a
finite volume in space.

2. The total power/energy available for transmission igdini

3. Physical quantities, such as source current densitieskactromagnetic fields
must be continuous functions.

4. The final physical limitation that needs to be incorpataitgo the model for
SWCs is more subtle. This limitation is due to the inabilifyaoy practical re-
ceiver to measure the electric field in the receiving antemhoarbitrary accuracy.
There are several reasons for this including [25]

(2) Noise in the receiver.
(b) Dynamic range of the receiver.
(c) Resolution of the receiver.

Therefore, if two electric fields differ byoo little then a practical receiver in a
MIMO system will not be able to differentiate between thensily and we call
such signals physically indistinguishable. We need to rhtide subtle concept
of two electric fields differing byoo little to complete our description of SWCs.

| give an abstract mathematical definition for an SWC in sedi.] that enables
one to use the structure of the definition to impose the camégr discussed above. An
SWC consists of three parts, a normed sp&geof possible source current densities, a
normed spac&}y of possible electromagnetic fields and a linear opefatoX — Yz
that determines the electromagnetic field for a given socuceent density. Each one
of these parts is used to capture different physical linotet imposed on the MIMO
system. By restricting the elements 8f andY}, to satisfy certain properties, we en-
sure that constraints 1 and 3 are satisfied. The norm on tloe Spais used to ensure
that constraint 2 is satisfied. The normBais used to ascertain if two electromagnetic
fields differ by too little as required by constraint 4. Thesdiscussed further in chap-
ter@. Once we have an accurate description of an SWC, we udyg &6 properties.
In this thesis, | study three properties of SWA9:Degrees of freedom at level-2)
Essential Dimension, 3) Uncertainty Principles.

In MIMO systems withn transmitting andm receiving antennas, there will be
at mostmin{m, n} linearly independent signals that a receiver can measuw@y- H
ever, in the case of SWCs, there are infinitely many linearependent signalsn

SHere, B, ¢, (0) is the unit ball centered at the origin K. Physically we can think of functions in
this set as those sources that use less tharit of power or energy.
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I'B, £,(0) C Y. But the finite receiver sensitivity discussed in constrairabove
ensures that only finitely many linearly independent sigmain be measured by a real
receiver. The distance between any two electromagnetisfisl quantified using the
norm on the receiver space of functioris in the definition for SWCs. So, given some
levele, which depends on the receiver, there exists a nuivb@nd a set ofV elements,
o1,...,0n € Y such that all the signals that can be generated at the rechifer by
less thare from an element in the span ¢6,,...,¢x}. | call such anV the number
of degrees of freeddfnof the channel at level because a physical receiver that can
measure fields to levelcan only measuré’ linearly independent signals. This in turn
implies that as the number of antennasn — oo, the number of linearly independent
signals for the MIMO system saturates/éat

Generally, in SWCs the number of degrees of freedom for aretatepends on the
levele. However, in several important cases [25—-28] it does natgbanuch for a large
range of values of. This leads us to the concept e$sential dimensi@irof an SWC
which is the number of degrees of freedom at levigr the largest range of values of
e. This number only depends on the channel and can be used apanbound for the
number of mutually uncorrelated signals available at tleixer of a MIMO system
with densely packed antennas, largely independent of ttever sensitivity.

Finally, | study Uncertainty Principles for SWCs. The claasuncertainty principle
constrains the amount of energy a function can simultangtase in the frequency
and time domains [29,30]. We can develop a similar prindipteSWCs which tries to
answer the questiorwhat is the maximal fraction of the total radiated energyeo
that can be concentrated in the receive¥We can therefore find a bound on the best
connected mode in a MIMO system modeled by the correspor&ig.

1.3 Summary of results

This thesis is divided into six chapters. Chagler 1 provalesverview of the subject
matter studied. In the following section of this chapterView some of the previous
results from the literature that are relevant to degreeseefdom in SWCs. In chaptier 2
| discuss SWCs, explaining how the total radiated powerfgnand received energy
can be used to define norms on the space of transmitting aed/ireg functions in
SWCs. In chaptdi3 | show how one might define the very generatapts of degrees
of freedom and essential dimension for compact operatorsoomed spaces and also
develop sufficient machinery to compute the degrees of tneetthd essential dimension
for such operators. In chapfér 4 | develop numerical tealesdor the computation of
generalised singular values of compact operators on nospesces and show the results
of numerical simulations. In chapter 5 | review the cladsicecertainty principle and

’See definitiofiz312.
8See definitionE314 alld 3.5



discuss two novel principles that are more general and aleagphysical interpretation
in terms of SWCs for the principles. Concluding remarks avergin chaptefl6.
The principal results contained in chaptérs Plto 5 are suisetbelow.

Chapter &: In this chapter | give a novel definitidn 2.1 for SWCs that iffisiently
general to encompass mibsf the cases reviewed in sectibnll.4. | also prove that the
total energy/power radiated and lost by a current in thestratting volumeT'defines

a norm on the vector space of all possible current densitieectiond 213 and32.4.
Similarly, | prove that the energy stored in the electronegnfield in the receiving
volume R defines a norm on the space of all electromagnetic fields iretteiver. The
definition of an SWC is such that all the constraints imposed MIMO system can be
incorporated into it through the norms defined by the enpayér. | also prove several
theorems in sectioris 2.3 abd]2.4 which establish some ysefpérties of the space of
transmitter and receiver functions.

Chapter B: The concepts of degrees of freedom and essential dimetisycara very
general and can be used for compact operators defined oragybibrmed spaces. In
this chapter | prove in theorelm B.1 that it makes sense tatadkit degrees of freedom
at level« for a compact operator defined on a normed space. | then ssthéddrem to
give a novel definition for the number of degrees of freedonewt|< for a compact
operator (see definitidn3.2). | prove some of the simple @rigs of degrees of freedom
in theorenZ3R which are useful in their own right and are aksipful in proving other
theorems in later chapters.

The definition for degrees of freedom is a descriptive oneduoes not lend itself
to numerical evaluation for specific channels. | therefave g novel definitioli =313 for
generalised singular values and prove in thedrein 3.5 thgtete generalisations of the
commonly accepted notion of singular values of compactaipes defined on Hilbert
spaces. The advantage of defining generalised singulaes/aéuthat the number of
degrees of freedom of a compact operator can be characténigerms of its singu-
lar values and this characterisation lends itself to nucaédomputation of degrees of
freedom.

Finally, | give a novel definitions for essential dimensiB|) and essential dimen-
sion of ordern ([83) of a compact operator defined on a normed space. | angtiehe
essential dimension of an operator is different from degofdreedom at levet-in the
sense that it is independent of the arbitrarily chosen emnsiand only depends on the
operator itself. It gives a bound on the number of mutuallgarrelated signals at the
receiver of a MIMO system that is largely independent of tbis@ at the receiver.

Chapterd: In some cases, it is possible to write the operator in an SWahastegral

operator (see eg. [26]). Though, it may be difficult to anabjty calculate the singular
values of the integral operator, it is sometimes possibtatoulate the singular values
of another integral operator that closely approximatesotiginal operator. | demon-

9The only exception is the work of Kennedy. al.[31] which studies a different geometric model.
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strate in this chapter that perturbation techniques carsbd to show that the singular
values of the approximate operator approach those of tiggnatioperator as the ap-
proximation gets better. | use these ideas to analyticallgutate the singular values
of the operator that describes communication using scaaesvbetween rectangular
prisms [26]. The application of perturbation theory to taéalation of singular values

of SWCs is novel.

For most situations however, analytical techniques arédgaate and | develop an
important numerical technique for the computation of gel&ed singular values. This
technique is very similar to Galerkin’s method for the conapion of singular values of
Hilbert space operators (see eg. [32]). | prove in thedrélht if a compact operator
is defined on a normed space that has a complete Schaudethiessisie can use calcu-
lations on finite dimensional spaces to find approximationste generalised singular
values of the operator that are also lower bounds for thegésed singular values. This
theorem is useful because it gives a simple practical mathagproximately comput-
ing the degrees of freedom. | also show results of numermalpuitations for several
specific channels.

Chapter[: In this chapter | review the classical uncertainty prineighd use it to moti-
vate theoreri Bl 7 which is a generalisation of the classioatiple to arbitrary bounded
operators defined on Hilbert spaces. | also give a physitaipretation of the gen-
eral uncertainty principle for SWCs. | prove a second gdnereertainty principle in
theoren 5B that is particularly pertinent to SWCs.

1.4 Review of previous results from the literature

In this section | briefly review some of the previous resutts f the literature for de-
grees of freedom of spatial waveform chantiel®©ne of the first papers that talks about
the number of degrees of freedom of an electromagnetic feBlcciet. al.[25,33].
Bucci et. al. [33] assume that the sources and scatterers are confinedpivese sof
finite radiusa and evaluate the number of degrees of freedom of an eleahtden-
erated by the source and induced current on some obserativaC. As explained
in sectiol2Zb, the channel studied by Bueti al.[25,33] can be written as an SWC.
Bucci et. al.[25] show that the number of degrees of freedom at levelequal to the
number of singular values of the channel operator that arategr thare. However, be-
cause the singular values of the channel operator show dilstdpehavior, for a large
range of values of the number of degrees of freedom of the channel is indep¢iden
the exact value of chosen. As explained in sectibnI3.4 my novel definition feeasial
dimension given in sectidn 3.3 can be used to quantify theldeat which the singular
values ofl’ change most rapidly and can therefore be used to uniquetyifgé¢he step

10A review of previous results for uncertainty principles ¢anfound in section 5 1.



in the singular values. Moreover, their definition of degreéfreedom is a special case
of my definition of degrees of freedom given in secfioq 3.2.

The work of Bucciet. al.[25] is similar to that of Miller [26] where scalar waves
are studied. The main assumption in Miller [26] is that trengmitter is constrained
to be in a volumel/ C R? and the receiver is constrained to a volubie C R?.
As shown in example—2.1, the channel studied by Miller can bigem as an SWC.
Miller [26] evaluates the number of modes of communicatlwat aire possible between
the volumesl” and W using scalar waves. Miller [26] explains how the number of
modes of communication is equal to the number of significargudar values of the
channel operator. Piestun and Miller [34] similarly analyke case for vector waves
and use a similar definition for the number of modes of comeation. As explained
in sectior 3.4, if we assume that a singular value of the oblaserator is significant if
it is greater than some constanthen the number of modes of communication is equal
to the number of degrees of freedom at lewvel-

Miller [26] also analytically evaluates the singular vadus the channel if the vol-
umesl” andIV are rectangular prisms that are aligned along one of the€lart coordi-
nate axis. Miller [26] uses the paraxial approximation & ¢mannel’s Green'’s function
to calculate the singular values. | use perturbation themfind bounds on the approx-
imation error as explained in sectibnl4.1. Miller shows that and¥ are rectangular
prisms, then the singular values of the channel operataw shstep like behavior and
claims that the number of modes of communication is esdbnimalependent of how
one defines a singular value to be significant. As explainestation 34, the defini-
tion of essential dimension given in sect[onl3.3 can be usedlculate the number of
modes of communication if the singular values of the chanpetator show a step like
behavior.

Hanlenet. al. build on the results of Miller [26] for scalar waves to inckithe
effect of scatterers [35,36]. They assume that reflectiafte@rs are present and eval-
uate a new Green’s function to account for the scattereren Tihe singular values of
the channel operator are calculated numerically. Simaratare used to calculate the
singular values for different scatterer positions. &ual.[37] build on the results of
Piesturet. al.[34] for vector waves to include the effect of scattererseyrhumerically
evaluate the Green'’s function for vector waves in the presef reflective scatterers in
two dimensions using the finite moments method (FMM).eXual.[37] then numeri-
cally calculate the singular values of the operator defirsagthe Green’s function. As
explained in sectiof 2.5, the channels studied byeXuwal.[37] and Hanleret. al.[36]
can be written as SWCs. Xat. al.[37] give a novel definition for the number of degrees
of freedom for the channel in terms of the singular value ef¢hannel operator, the
power available for transmission and noise in the receisrexplained in section 3.4
their definition is equivalent to a special case of my defnitbof degrees of freedom at
level<. Simulation results in both [36] and [37] indicate that tivegsilar values of the



channel operator decrease gradually with no sudden kneédikavior.

This is quite unlike the behavior predicted by P@bral.[28] who consider commu-
nication between finite volume transmitters and receivethe presence of scatterers.
But, instead of considering individual scatterers, thegstder a cluster of scatterers
that are constrained to be within some finite volume. Pebral.[28] use a heuristic
argument to show that the singular valugsof the channel operator show a step like
behavior with eigenvalues close to 1 fer< N, and close to O otherwise. Heré,,,
depends on the channel operator and the finite transmittidgeceiving volumes. As
explained in section 3.4, my definition of essential dimensian be used to uniquely
identify Ny, . It should be noted that this step like behavior is obserneaiost ana-
Iytical calculations of singular values where some assionptare made regarding the
scatterer and/or antenna configurations (e.g. clusteraifesers within a finite vol-
ume). In contrast, if numerical simulations are used touwtate the singular values of
channels, wherein the scatterers are placed at randonioiesathe singular values do
not generally show a step-like beha@an\/ly numerical simulations show no step-like
behavior for singular values (Note that the physical modsiriulated is considerably
different from that of Pooret. al.[28]. Therefore one cannot directly compare these
results.)

A step like behavior of eigenvalues is also found in [31,98,3The approach of
Kennedyet. al.[31] is substantially different from those discussed eaih this section
wherein the transmitting volume was assumed to be consttaikennedyet. al.[31]
consider the possible wavefields within a volume constrhine radiusk provided all
sources are in the far field (outside a ball of radRyy. The channel model used in
these papers is considerably different from that consalgrehis thesis. The physical
interpretation of these channels is discussed furtheratisd3.4. Kennedt. al.[31]
use the error in approximating the field in the receiving vodlby a finite dimensional
set of functions to evaluate the degrees of freedom of theefieddls in the receiving
volume. A similar approach can also be found in Dicketsal. [40]. However, as
explained in sectioh3.4, these definitions cannot be dyrecmpared with degrees of
freedom at level-or with essential dimension of the channel.

Newsam and Barakat [41] approach the problem of finding thyesss of freedom of
an operator differently. The primary interest of [41] is Inetinverse problem: Suppose
g(t) = [ k(s —t)f(t)dt. Hereg(t), f(t) € L*(R,C). Then givery can we determine
f? As explained in section3.4 their definition is equivalenfitspecial case of the
definition of degrees of freedom at level-

All the channels discussed so far in this section constiantdtal current in the
transmitting volume in some sense. Jensen and Wallace3dy&lgb study communi-
cation between finite transmitting and receiving volumesgiglectromagnetic waves.
They assume that the source current is constrained to beaittinite volumeT and

¢ f. simulation results in [34,36,37]



impose a restriction on the total power available for traigsian. Wallaceet. al. [43]
claim that if only the total power radiated is bounded thegré¢hare infinitely many
channels available between the transmitting and receixahgnes. They further claim
that if the super- directivity ratio is also bounded for ameucurrent then only finitely
many channels transfer sufficient power from the transntittéhe receiver. No proofs
are provided for these claims in [42,43]. Further, unlike 8WCs described in chap-
ter[@, Wallaceet. al.[43] do not constrain the total power lost as heat in the tratigg
volume.
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Chapter 2

Spatial Waveform Channels

As explained in the previous chapter, SWCs may be used to éndds on the perfor-
mance of MIMO systems with an arbitrarily large number ohsiaitting and/or receiv-
ing antennas that are constrained to a finite volume. A MIM&ey’s performance
is limited by several constraints imposed on it. So, in otdeybtain useful bounds on
MIMO systems one needs to model the constraints imposedinrhe corresponding
SWC. The approach taken in this thesis to achieve the abdeegise a definition for
SWCs that enables one to impose the required constraintsibg the structure of the
definition. This definition, given in the following sectioa novel and is sufficiently
general to encompass nmibsf the cases discussed in seciiod 1.4.

There are two distinct cases considered here. Firstly, senas that the underlying
MIMO system, which is constrained to be within some finitewog, can only radiate
for a finite duration of time. In this case we also assume tlfiaitea amount of energy is
available for transmission. | refer to this case asfihige energycase. Any real MIMO
system is subject to the above restriction and this is thd mgmortant case considered
here. In the second case | assume that the MIMO system cateatiergy for all time
t € (—o0,00). In this case | assume that the total power available forstrassion is
finite. | refer to this case as tHmite powercase. In both the finite energy and finite
power cases | assume a monochromatic time dependenéé dfiere,w is the angular
frequency of oscillation.

Finite energy case: The important constraints considered in this thesis andafiie
proach taken to model them in SWCs is as follows:

1. Constraint: The transmitting and receiving antennas are physicallgtramed
to be within a finite volume in space.

1The only exception being that studied by Kennetlyal.[31] where the physical situation considered
is much different.
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Approach taken to model the constraint: This constraint can easily be incor-
porated into the SWC model by requiring that the transngttiolume 7" and
receiving volumeR be compact subsets &F. | then impose the restriction that
the source current density must be zero out§idend the electromagnetic field
can only be measured within the volurike

2. Constraint: The total energy available for transmission is finite.
Approach taken to model the constraint: SupposeX is the space of Lebesgue
measurablé€3-valued functions defined dfi that are square integrable. It turns
oufl that the total energy required to set up a current dedsity X in 7" defines
a semi-nornmpy,.(-) on Xr. Let X1 be the set of equivalence classes of functions
in X such that ifz € )~(T and ifzy, xe € T thenpy, (1 — z2) = 0. The semi-
norm px,. induces a nornj| - ||z on the spaceXr. | assume that the source
current density is modeled by an equivalence class of fonstivhich have norm
less than the energy available for transmission.

Now, suppose that’; is the space of Lebesgue measurabfevalued functions
defined onR that are square integrable. The total energy stored in twret
magnetic field within volume? defines a semi-normy,,(-) on the spacé’;. Let
Y be the space of equivalence classes of functions simildret@ource current
density case above and let ||, be the norm induced by the semi-nop, on
this space. | assume that the electromagnetic field is modslean element of
the spacé&’ with a finite norm.

3. Constraint: Physical quantities, such as source current densitieslaoti@nag-
netic fields must be continuous functions.
Approach taken to model this constraint: An indirect approach is taken to
model this constraint. Obviously, the current density om dntenna cannot be
an equivalence class of square integrable functions. Herves shown in sec-
tion[Z.3, for allz € X ande > 0, there exists ai, € X1 such thaﬂ”:E—’:@H;(T <
e and at least one member of the equivalence class a continuous function.
Physically, we can interpret this statement as follows: doy givenJ € X,
there is a current density that is continuous and the electromagnetic field gen-
erated byJ is approximately equal to the field generatedJoywe can similarly
interpret the elements af; as electromagnetic fields.

4. Constraint: Receiver sensitivity cannot be arbitrarily high.
Approach taken to model this constraint: This constraint is not directly mod-
eled in the definition of SWCs. However, the definition givasegh structure to
an SWC, so that this structure can be used in studying theegrep of SWCs that

2See sectiol 23.
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depend on the sensitivity of the receiver. At any instantriret the energy radi-
ated by the transmitter is stored in the electromagnetid.fiebr the receiver to be
able to measure the field, the energy stored in the field inwel&d cannot be too
small. As explained earlier, the energy stored in the reckfield induces a norm
on the spac@. So, for a receiver with finite sensitivity to be able to measu
the electromagnetic field we assume that only those fieldswatm greater than
some small positive constaatare measurable. A simple way of incorporating
this idea is to say that two signd&; H,|, [E; H,| € Yy are physically indistin-
guishable at some level> 0 if the energy of the fieldE H] = [E; H,] — [E; H,|

is less thare. Or equivalently, if| [E H]||y, < e. This concept is not novel and
has been used for instance in Buetial.[25] and Landatet. al.[27].

Finite power case: The finite power case is very similar to the finite energy casmsv
the spaceX; consists of equivalence classes®@fvalued functions defined on some
compact sef’. Again, it can be shown that the total power lost and radidegfthes a
norm on the spac&’ ;. One significant difference is that we can now look at the powe
received by a volumé? C R? or the energy stored in the electromagnetic field in the
volume R C R3. If we assume that the receiving volume consists of emptgesizen
the total power received would be zero. If on the other handsgame that it consists of
a conductor with finite resistance then it would be difficaltietermine the total power
received by it. So | use the total energy stored in the resgivblume to determine the
number of degrees of freedom of the channel.

The above discussion motivates the definition of an SWC gimahe following
section. In sections3.3 afld .4, | show how the energy/poaerbe used to define
norms on the space of current densities and electromadisdtis.

2.1 Definition of Spatial Waveform Channels

At the beginning of this chapter, | explained that one cowdd the energy/power to
define a norm on the space of source current densities. Howewefining an SWC
channel, | allow any physical constraint to be used to defineran on the space of
source current densities. This ensures that an SWC is suffigigeneral to accommo-
date several models used in the literature.

LetT C R™ be compact and Lebesgue measurable anfijldie some linear vector
space ofC™ valued functions defined dfi. Here,m € Z*. For instance,F; can be
the space of all Lebesgue measurable, square integraldedios defined oi”. Now
suppose thatr, : Fr — [0, o] is some semi-norm defined on the spdge Then we
can define an equivalence relatisron Fr asf ~ g if f,g € Fr andpz,.(f —g) = 0.

It follows from the definition of a semi-norm that this is ircfaan equivalence relation.
Let 71 be the set of all equivalence classesAn. Then,px,. induces a norm on the
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elements oﬁf“T as follows
1fllz = pr.(f)

Heref € Frisan equivalence class of functions and f € Fr is some member
of the equivalence clagé From the definition of the equivalence classes it is apparen
that the above norm is well defined. Note that if the semi-npgmis in fact a norm on

the spaceF thenFr is isomorphic '[Q?ET

Definition 2.1. A spatial waveform channel (SWC) consists of a trlple(]—“T,}“R, ).
Here,7 ¢ R™ and R C R™ are compact and Lebesgue measurblalso, Fris a
normed space of equivalence classe€ttvalued functions defined dfi with norm
||| 7, and similarlyF is a normed space of equivalence classeS’e¥alued functions
defined on? with norm(|-|| z,_. Herem, n andp are positive integers. Further, : Fr—

Fris abounded linear operator.
In the following example | will show how the special case ofrtounication using
scalar waves between finite volumes can be written as an S\WE€ cfiannel was stud-

ied by Miller [26]. This example also demonstrates how a ganehannel, that does
not necessarily constrain the total power/energy usedpeawitten as an SWC.

Example 2.1. Consider communication using scalar waves between a triiisgwvol-
umeT C R? and a receiving volum& C R? which are compact and measurable such
thatT’NR = (). Suppose thafr and F are the spaces of all complex valued, Lebesgue
measurable, square integrable functions defined'@nd R, respectively. Then we can
define semi-norms on these spaces as

i) = | |-|2dr]1/2
o) = | |-|2dr}1/2

Therefore, we havé, = £2(T,C) and Fr = L2(R, C).
Now suppose that there are sourees £?(T,C) in the transmitting volumé’ that
generate waves(r) according to the scalar Helmholtz equation

V2¢(r) + k*p(r) = —1(r) Vr € R,

Herek is the wave number. Then it can be shown (see eg. [26]) thatferc R

o(r) :/TG(r,r')@Z)(r’)dr'.

3We can think of7 and R as subsets oR® to which the transmitting and receiving antennas are
constrained.
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Here,
exp{—ik|r — 1’|}
il —v/|

G(r,r') =

We can now define an operatbr: £*(T,C) — L*(R,C) asv — ¢. It is obvious
thatI" is a linear map. To prove that it is bounded, note that becalisend R are
compact and have empty intersection, there exists ar0 such that for allr € R and
v € T,r < |r —1'|. Therefore|G(r,r’)| is bounded for € R,x' € T. Suppose is
some upper bound fa€(r,r’)| for all r € T'andr’ € R. Then

6] 00y = / ()|

< / / () P dr
< PRV

Here, u(R), the volume ofR is finite becauser is compact. This proves that is
bounded. Therefor¢L*(T,C), L*(R,C),T) is an SWC. It describes communication
through free space between a finite volume transmitter andite fvolume receiver
using scalar waves.

In the following section I will describe how one can calcel#te total energy/power
radiated by a given source current density. This radiatedggfpower is then used to
define semi-norms on the spaces of transmitter and receimetions.

2.2 Energy and Power for Electromagnetic Waves

Suppos€ is a compact subset & and letJ(x, t), with x € T andt € (—oo, 00), be
the source current density that generates an electricHiéid¢) and a magnetic field
H(x, t) defined for allx € R3 andt € (—oo, 00).

Let us now consider the finite energy and finite power casesratgly. In the finite
power case we assume a monochromatic time-dependencds;Tivatassume that the
source current density is of the form

J(r,t) = R{I (r)e'} Vt € (—o0, o).

Here R{-} denotes the real part of a complex number dhd 7" — C3. Because
Maxwell’s equations are linear and time-invariant, thecegle and magnetic fields are
of the form

E(r,t) = R{E'(r)e’'} Vt € (—o00,00) and

H(r,t) = R{H'(r)e/*'} Vt € (—o0, 00),
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with B/, H' : R? — C3.

Now suppose thdt is some smooth surface the interior of which contding hen
the time-averaged, total power radiated by the current oéideR{J'(r)e’“'} can be
calculated using Poynting’s theorem [44, section 6.9]:

Pra®) = 5 [ RUB(5) 5 H (1)) -} (2.1)

Here,- x - denotes the vector-product B andda is the surface area element. Note
that the energy stored in the near-field of the transmittmlgme does not contribute to
the above integral. Therefore, this stored energy playsambip calculating the norm
on the space of transmitter functions. Also, | define the taneraged power lost (as
heat) in the transmitting volume to be

1
Pioa(V) = 3 e / 3 ()P 2.2)
T

This definition is motivated by the analogous definition fomer lost in radiating an-
tenna. So the total power, lost as heat is proportional testhere of the current and
a loss resistanc&,,,;. The loss resistance is a constant that depends on the ahateri
used to construct the antenna and the antenna configuratierstudy the behavior of
an SWC for varying loss resistances.

Let R C R? be some compact three dimensional receiving volume. Thetirtre-
averaged power entering the volurRRes given by

Pree(J) = —% R{(E'(r) x H*(r)) - n}da. (2.3)
OR

Here, OR is the boundary ofR, n is the unit normal vector to the surface pointing
outwards andia is the surface area element. We get the negative sign bessugse
the convention thah is pointing out from the surface. If we assume tiat 7" = ),
then the time-averaged power received by the receivingwelis in fact zero because
we assume a monochromatic time-dependance. However, al armenna system, due
to the presence of conductors that have finite conductinitiyé receiving volume, some
of the incident electromagnetic power is absorbed by theivec So, we can calculate
the time-averaged incident power on the receiving volutras follows:

1

Pine(J') = =5 [ min{R{(E'(r) x H"(r)) - n}, 0}da. (2.4)
OR

We assume that the power received by the receiving volumeualdo R, ., P;,.(J’).

Here,R, .4 is the radiation resistance of the receiving antenna. Tgpsaach is however

not ideal because the radiation resistance of an antentensygepends on the antenna

configuration. | therefore do not take this approach in thesis.
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Instead, we look at the energy stored in the electromagifietionithin the receiving
volumeR. At any instant in time the total power radiated by the curdemsityJ(x, ¢)
is stored in the electromagnetic field throughiit The time-averaged energy stored
in the field within the volumer is [44, section 6.7]

!/ 1 / 1 !/
Eroo(7) = Z/ReO|E(r)|2+%|H (r)2dr. (2.5)

Here,ey andy, are the permittivity and permeability of free space. Theivadion be-
hind using this energy is that it simplifies calculations siderably. We do not specif-
ically calculate the total energy re-radiated from the resre We assume that the total
energy lost as heat and also lost due to re-radiation is ptiopal to the incident en-
ergy. We absorb this constant of proportionality intg,, the loss resistance of the
transmitting antenna and therefore do not need to statglicelky.

Now consider the finite energy case wherein we assume thastemitting volume
has current flowing in it only during a finite time interv@l, ¢;]. | again assume a
monochromatic time-dependance for the source currenitgens.

J(r,t) = R{I' ()&, (1) }.
Here,

f1o0<t<h
& (1) = { 0 otherwise

Note that because of the indicator functiQn, we cannot assume that the electric and
magnetic fields are monochromatic.

In this case we need to calculate the total energy radiateatidoyolumeT” during
the time interval0, ¢;]. One needs to be careful in calculating this total radiatestgy,
because the electromagnetic field is not well defined in tesmitting volumer'. |
assume that the total radiated energy is the energy thabrisdsin the field outside a
closed surfacé&: the interior of which containg’. By making the surfac@ arbitrarily
close to the volum@&, we can ensure that the total radiated energy is very clogeto
actual radiated energy. This is not a problem when modelingahantenna system
because it would have finite conductivity and therefore tiergy stored in the field in
the small volume?,;,,; \ 7" will be very small and goes to zero &sgets closer to the
volumeT'. Here,(2;,, is the interior of the closed surfae

In this case we can write the total energy radiated by thestrétiting volume as

Broa))(11) = /

Qemt

where().,; is the exterior of the surfade. Again, | define the total energy lost (as heat)
to be

1
co|E(r, t1)|> + M—|H(r,t1)|2dr (2.6)
0

[Elost(‘]/)](tl) :Rloss/()l/T|J(rvt)|2drdt' (27)

17



Finally, if R ¢ R? is some compact receiving volume, then the total energyedtior
this volume at time instartt is given by

Bree(3)(11) = /

1
o|E(r, t)|* + —[H(r, t1)[%dr (2.8)
R Ho

Note that for the remainder of this document | will refer tatbd(r,¢) andJ'(r) as
the source current density in both the finite energy and fiiteer cases. The reader
should interpret the current densif{(r) to be R{J'(r)e’“!&,, (¢)} in the finite energy
case andr{J'(r)e’**} in the finite power case.

2.3 Finite Energy Case

In this section | will describe how a MIMO system with antesriaat are constrained to
finite volumes and radiate for a finite time duration can be ehedlas an SWC. | assume
that the transmitting antennas have a finite amount of erergiable for transmission
and that the energy is radiated in the form of electromagriigtids and lost as heat in
the transmitting volume.

Supposél’ C R? is a compact set an@l < ¢, < oo is some instant in time and the
antennas are constrained to voluffi@nd can only radiate energy during the interval
[0, t0]. Let L2(T, C?) be the space of equivalence classe€bfalued functions defined
on T with finite L2 norm. In this section, | will define a different norm on thisasp of
functions that depends on the total energy lost and radiated

Also supposd € £3(T, C?) is some function, such th&{J(r)e’“'¢, (1)}, r € T,

t € (—o0,00) is the current density. Then we can calculate the total gnexdiated
[Eraa(J)](to) from equation[(Z]6) and the total energy lost as hiat, (J)](to) from

equation[(Z17).

Theorem 2.1.LetT C R? be some compact set andgt< oo be some instant in time
and let(2 be a closed surface the interior of which contaiisThen we can define an
inner product onC?(T', C?) as follows. For allJ,, J, € £*(T,C?),

(Ji,do)g5. =L +1p where
Tty
Ii = Rips [} [ 35 (x, )35 (x, t)drdt and
[2 = € erzt ET(I‘, to)EQ(r, to)dr + i erzt H>(1((I'7 to)Hg(I‘, to)dr. (29)

Here, fori = 1,2, J/(r, t) generates the electric field;(r, t) and magnetic field;(r, t)
andJ!(r,t) = J;(r)e?“'&, (¢).

Proof. Let x,y,z € L*T,C?),a € C and letE,,E,,E, andH,,H,, H, be the
corresponding electric and magnetic fields generates, lyyz. From the linearity of
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Maxwell’s equations, we know that the electric and magrfetids generated by + y
areE, + E, andH, + H,. Therefore, we get the following after some simple algebrai
manipulations

(x+y, Z>)~(T,t0 =(x,z)5.  +(y, z)gmo,

X1t

(ax, z) = a*(x, Z>)~(T,t0 :

Itis easy to show thafx, y) 3, is the complex conjugate @f, x)z . Finally, note
sLQ Lo

that if J;, = J, then/, is always non-negative antl is proportional to the.? norm.
Therefore,(J;, J1>)?T’t0 is always non-negative and if it is zero, thdn must be the
equivalence class of functions that are zero almost evesavh

Consequently(-, -) x,., is an inner product of*(7, C?). ]

Let| - | z. denotethe norminduced by this inner product and?lﬁgo denote the
Tat() [}
subset of£*(T, C?) functions with finite|| - || 5 nornfl. From the definition of the
,t0

inner product in equatioh_(3.9), we can tell that the normﬁmo is equal to the total
energy lost and radiated by the source current of dedsity

Similarly, if R ¢ R? is compact, then we can define an inner product on the space
L?(R, C°), that gives the total energy stored in the field in volumeThe inner product

IS
(181 HL B2 )y, = [ eoBi(0Ba(r) + - H () Ha(o)dr (2.10)
R o

Itis trivial to show that(-, -)_is an inner product. Lef - ||, be the norm induced by

this inner product and lét; denote the set of functions whol€l|y. normiis finite. The
following theorem shows that the case of communicationgislactromagnetic waves,
with an energy constraint on the transmitter can be writeearaSWC.

Theorem 2.2. Let,)~(T7t0 and)N/R be as described above. Then, the opera’toﬁ(ﬂto —
Yr which maps any current density Xy, to the corresponding electric and magnetic
fields inYy at timet, is linear and bounded.

Proof. Because each current density in the sphace )~(T7t0 generates a unique field
in R, there exists an operatdr that mapsJ to some field[E H|. The linearity of
the operatod” follows from the linearity of Maxwell's equations. To showat I is
bounded, note that if the total energy radiated is boundedi(iHJH;(T’to < b < oo)then

the energy stored within volume is less than the same bound (i|§E H]||;, < b).
Thereforel™ is bounded andT'|| < 1. O

4|t will be shown in theorerfi2]3 that all elements@¥(T', C?) are also elements of 7, .
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Therefore the triplé X7, Y, T') is a spatial waveform channel. The electromag-
netic field for a given current density depends on the positiiothe scatterers. There-
fore, the operatar, in the above theorem depends on the position of the scattéiete
that it is not important to have a closed form descriptionhaf operatoi’. One only
needs to calculate the electromagnetic field for a givencgoaurrent density in order
to study the properties of the SWC. This calculation is dam@erically in sectiof413.

Finally note that if R N T = () then the operatofl is compact. This is a direct
consequence of the following theorem.

Theorem 2.3.Let T' be a compact set and Iéfmo be the normed space described
above. Ifx € £*(T,C?) thenx € Xr,,. Moreover, ifx € £2(T,C?) and {x1,xa, ...}
is a sequence ig?(T, C?), then

lim ”Xn - X|’)~(T,t0 =0« JLHC}O Hxn - XHEQ(T,(CS) = 0.

n—oo

Proof. Letx € £3(7',C?). Thento prove that € Xr.;,, we need to show thajix|| ¢,
)
is finite. But,

%1%, , = Riosslxlz20,c5) + [Eraa(x)](to)

Xt

Then as shown in appendix’A.2, there exists a congtanto such that

[Eraa(¥)](t0) < blIx/|22(7c5)-
Therefore,

%, < (Rigss + b) Xl xqrcs) < o0 (2.11)

andx € Xr,.

Now suppose(x;}°; is a sequence i£?(7,C?). Then it is also a sequence in
)?T,to. Also, suppose thatm; . ||x — x|/ z2(r,csy = 0 and letd > 0 be given. Then
there exists atv such that for alh > NV,

)
Hxn — X|’£2(T7C3) S TRIOSS.

Therefore, from equatiof(Z111) we know that foral> N,
I —xllg,, <0

Hencelim; .« [[x — x5, =0
The converse statement follows very easily from,

1
I/l 2res < p—IIxll ., - (2.12)

loss
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The above theorem is very useful because it shows tha thig . norm induces
)

the same topology on the spa§T’, C*) as|| - || z2(r,cs) norm. This is useful because it
allows us to use several well established propertie§?¢1’, C?). The following corol-
laries are simple consequences of the above theorem.

Corollary 2.3.1. LetT be some compact set and J%Ir,to be as described above. Then
the space of*-valued continuous functions defined Biis dense INX7,.

Proof. This statement follows form theordmP.3 and the fact f¥avalued continuous
functions defined ofi” are dense irC?(T, C?). O

Corollary 2.3.2. LetT' be some compact set and lg'&,to be as described above. If
{x;}5°, is a complete Schauder basis #%(7, C?) then it is a complete Schauder basis
for Xr4,.

Corollary 2.3.3. Let)?mo, Y andT be as described in theordmP.2. Then, the operator
I' is compact.

Proof. The integral kernel that describes the oper&ta continuous o” x R. There-
fore the operator is compact if it is defined @f(7, C*). Hence the operatdr is
compact from theorefind.2. O

The first corollary above is used to ensure that constraipe8iied in the introduc-
tion to this chapter is satisfied. Because the set of contimfunctions is dense il ,,
foranyJ € )?T,to and any > 0, there exists d, € )?T,to such that|J — J1H)~(T’t0 <4
and a continuous function is a member of the equivalence dlasThe second corol-
lary is useful in the numerical computation of degrees aédiam. As explained in the
following two chapters, the existence of a complete Schabdsis is essential for the
numerical computation of degrees of freedom. Because Hrerseveral well known
Schauder bases fdr* (T, C?), the corollary ensures that we have an adequate supply of
Schauder bases fd?mo.

2.4 Finite Power Case

The finite power case is almost identical to the finite ene@gec The only difference
is that the total lost and radiated power is used to define @ worthe space of source
current densities. The proofs of the following theoremsahmgost identical to the finite
energy case and are omitted here.

Supposel € L3(T,C?) is some function, such th&{J(r)e*'},r € T, t € R
is the current density. Then we can calculate the total gnexdiated?,,4(J) from
equation[(Zl1) and the total energy lost as h&gt,(J) from equation[(ZI2).
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Theorem 2.4.Let T C R? be some compact set. Then we can define a norm on
L2(T, C?) as follows. ForallJ € £3(T, C3?),

||J||)?T = [PIOSS(J) + Pmd(J)]l/z .
Here, P,,., and P,,, are as defined in equatiof1) and (Z2) respectively.

The major difference between the finite energy case and tive fiower case is that
there is no obvious way of defining an inner product on the esédcource functions
X7 in the finite power case. This is because the radiated powegqumtion [Z11) is
determined using a vector product and not a scalar produlserefore the space of
source current densities is not an inner product space. drialfowing section | de-
velop a novel theory to cope with compact operators on nogpades without an inner
product structure. B

Now, let R be some compact subsetl®t. Then the space of receiver functiorig
is similar to the space of receiver functions in the finiterggecase. Instead of using
the energy stored in the receiving volumilat time instant,, we use the time-averaged
energy stored in the receiving volume as defined in equdlld) (o induce a norm on
the space&’z. We can again prove the following theorem which shows thatfithite
power case can be written as an SWC.

Theorem 2.5.Let X and 175: be as described above. Then, the operétor)N(T — SN/R
which maps any current density iy to the corresponding electric and magnetic fields
in Y is linear and bounded.

We can also prove the following theorem and corollariestiefproofs are omitted
here because they are identical to the finite energy case.

Theorem 2.6.LetT" be a compact set and I&T be the normed space described above.
If x € L*(T,C?) thenx € X;. Moreover, ifx € £2(T,C?) and {x;,x,,...} is a
sequence i*(T, C?), then

Tim [x, x|, = 0 lim [x, x| pagp ey = 0.

Corollary 2.6.1. Let T be some compact set and lﬁf be as described above. Then
the space of ? valued continuous functions definedBiis dense inX7.

Corollary 2.6.2. LetT be some compact set and Jﬁf be as described above.f is
a Schauder basis fo£?(7, C?) then it is a Schauder basis fof;.

Corollary 2.6.3. Let X7, Yz andT" be as described in theord@P.5. Then, the operator
I' is compact.
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2.5 Discussion

The abstract concept of an SWC was introduced in definffidh 2n this section |
explain how the channels discussed in several papers cantbewvas SWCs.

As discussed in sectidn1.4, Buas. al. [25,33] study the degrees of freedom of
electromagnetic fields. Suppose that all sources and sai@ttre restricted to be within
aspheres C R? of radiusa and the field is measured over an observation cGrve R?
of arc length2S. Suppose thak(r’),r’ € B gives the total current density of the sources
and that induced on the scatterers. The total current (scamd induced) density is
assumed to be constrained so that

/ |J(x)]2d’r’ < Ia. (2.13)
B
where! is some positive constant. Then the electric field at a poisigiven by
E(r) = / J("G(r,r')dr’ Vr e C. (2.14)
B

Here, the dyadic Green’s function [25]

G(r,r') = —ijt3 explif(r — R)|N(R), (2.15)
N(R) =T+ Rexp(j3R) %y =22 (2.16)

with,r € C,r' € BandR = |r—r’|. Also,w is the angular frequency of the electromag-
netic wave s is the wave number ang, is the permeability of free space. One can now
define the operatdr : J — E. Therefore({L£?(B,gs(0), C?), £L*(C,C?),T) is the SWC
studied in [33]. There is a subtle difference between thesgay situation modeled by
this channel and the corresponding SWC. In an SWC, we assuaharty source cur-
rent density in the transmitter space of functions, the nofnvhich is less than some
pre-specified bound, can be generated on a real antenna. veigugeicciet. al.[25]
assume that the scatterers and sources are within the vdym&0). Therefore, only
certain source/induced current densities are possible@#pend on the scatterer distri-
bution within this volume. However, in all subsequent asayn [25,33] it is assumed
that any element of?(B, »:(0), C?) that satisfies the constraint in equatibn{.13) can
be a source/induced current density. So, we can assuméaéhaiannel used in [25,33]
can be written as an SWC.

The work of Bucciet. al.[25] is similar to that of Miller [26] where scalar waves are
studied. Miller [26] analyses communication between vatsmsing scalar waves. The
main assumption in Miller [26] is that the transmitter is strained to be in a volume
V C R? and the receiver is constrained to a volui¥ieC R3. We can assume th&tand
W are compact. Miller [26] assumes that the transmitter wawnetiony) € £2(V, C)
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generates a wave functidh) € £2(W, C) according to

) (y) = / Glx,y)p(x)dx Yy € W.

Here, the operatdr : £L*(V,C) — L*(W,C) and [26]

Tk —
Gix.y) = exp{ik|x y+e37’0\}.

4dm|x — y + esry

Herex € V,y € W, ry € R is the distance between the centers of the transmitter and
receiver anc; is a unit vector in the direction of the vector connectingstheenters. It
was shown in example2.1 that this channel can be written 8$\@. Piesturet. al.[34]
study communication using vector waves and their work iy génilar to that of [26]
which studies communication using scalar waves. Thergfioeechannel studied in [34]
can similarly be written as an SWC.

Hanlenet. al.[36] generalise the work in [26] by including the effect ofatter-
ers. The effect of scatterers is incorporated into the chlaoperatorl” in an SWC.
Therefore, the channel studied in [36] can be written as a S8imilarly, the channel
studied in Xuet. al. [37], which generalises the work of [34] to include the effet
scatterers can be written as an SWC by changing the opérator

Poonet. al. [28] also consider communication between finite volumegnaitters
and receivers in the presence of scatterers. But insteaonsidering individual scat-
terers, they consider a cluster of scatterers that are reamst to be within some finite
volume. The scatterers reflect waves from the transmitténéaeceiver provided the
waves from the transmitter emerge from some solid afig[@8]. The Green'’s function,
G(rg,rr) is split up into three components

G(rp,rr) = / / Ap(rp, K)H(K, k) Ar(k, r7)dKdk. (2.17)

Here A+ models the transmitting volumd,z models the receiving volume arl mod-
els the scatterers. Alsd{ andk are unit vectors in the transmitting and receiving
volumes and the integration is performed over the unit sggheln order to model the
scattering environment, [28] assumes that

H(K,k) #0ifand only ifk € , andK € Q,.

Here,); and(?, are solid angles over which the scatterers are assumed isible yrom
the transmitting and receiving volumes [28]. The channadlisd by Pooret. al. [28]
can be written as an SWC similar to the channel studied byeMj26]. The SWC is
simply (L%(Ar, C?), L2(AR, C3),T). Here the channel operatbris determined by the
Green'’s function in equatiof (Z17).
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2.6 Chapter Conclusion

Spatial waveform channels have previously been used talesécperformance bounds
for MIMO channels [26,28,36,37,45]. However, SWCs havebesn clearly defined in
any of these papers. In this chapter | give a novel definiboiSiWVCs that is sufficiently
general to include the works of [25,26,28,36,37,45] as ispeases. This definition
gives SWCs sulfficient structure to model the different ptgistonstraints imposed on
MIMO systems. L B

According to definitio 211 an SWC is a triplé/r, F, ). Here Fr is the space
of all the transmitter current densme§R is the space of electromagnetic fields in the
receiving volume and' : Fr — ]—“R is a bounded linear operator that determines the
electromagnetic field in the receiving volume given the entidensity in the transmit-
ting volume. The spaceBr and.Fy are normed spaces and the norms on these spaces
can be physically interpreted as energy or power.

The main contributions of this chapter are as follows:

1. Novel definition for spatial waveform channels and a ptglsinterpretation of
the definition.

2. Demonstrated that communication using electromagneties in MIMO sys-
tems can be written as an SWC. The constraints imposed on &aOijdtem can
be incorporated into the corresponding SWC model.

3. Established several properties in sectionk 2.3add 23WEs that can be used
to model communication using electromagnetic wavedimte energyandfinite
powercases.
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Chapter 3

Degrees of Freedom and Essential
Dimension for Compact Operators

The concepts of degrees of freedom and essential dimensgoresy general. In this
chapter | motivate the definition for degrees of freedom\atllefor a compact operator
on an arbitrary normed space. | then explain how the notiategfees of freedom can
be used to define generalised singular values. As the nangestsg singular values
of compact operators on Hilbert spaces are special casenefalised singular values.
These generalised singular values play the same role ghatgthknown singular values
of compact operators on Hilbert spaces do. | also distitdhetween the terms essential
dimension and degrees of freedom and show that one can atgsaainique essential
dimension with any compact operators on normed spaces.

3.1 Motivation

| motivate the definition of degrees of freedom at lewdbr compact operators on
normed spaces by considering linear operators on finitertbioral spaces. | will dis-
cuss several possible definitions for degrees of freedomill lewplain the physical

intuition behind each definition using a simple example.

Consider a communication channel that usésansmitting antennas and receiv-
ing antennas which can be mathematically modeled as follawsthe current on the
n transmitting antennas be given kyc C”. This current on the transmitting antennas
generates a curregpte C™ in them receiving antennas according to the equation

y = Hx.
Here,H € C™*" is the channel matrix. We can define the operdfor C* — C™ as

X =Y.
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Note thaty is not assumed to be the current on the receiving antennaslibei
current generated by the transmitting antenna in the rigeantenna. To complete the
model let the current on the receiving antenna be given by

y, = Hx 4+ n.

Heren is the additive noise present at the receiver. The fundaahprndblem in com-
munication is to determine the signakthat was transmitted given that some sigpal
was received. Generally this problem is ill-conditioned.

Firstly, H need not be injective. Therefore, there might exist & HC" and
x1, Xy € C" such thaix; # x, and

Hx; = Hxy =Y.

Even if H is injective the problem could be ill-conditioned owing hetpresence of
noise. Suppose the noise in the receiver can be modeled@asdol

= | <e

Prob(n) = { N(()e) n| > c.

Here,e > 0 is some constant an¥(¢) is a normalisation constant. So,yfis the
received signal then we can only tell for certain that thegraitted signak is in the
setH Y(B.cn(y) N HC"). Here,B. ¢ (y) is the closed ball of radiuscentered aj.
Therefore, the noise in the receiver fundamentally deteesiiwhether or not one can
calculate the transmitted signal given the received signal

It is possible to overcome the above problem by using thevietig method. For all
setsQ) C C™ let B, cn(Q) = UyeqBecm(y). Also, let the se ¢ C" be such that

Vy € Beem(HS) : H ' (B.cn(y)NHS)N S contains exactly one element. (3.1)

If we ensure that the transmitted signal is an element, ¢fien for each received signal,
one can uniquely determine the transmitted signal. Geggetiaére will exist sets that
satisfy the above condition and have infinitely many elesent

However, along with non-zero receiver noise, in most ptatsibannels only a finite
amount of powerP > ( is available for transmission. That is,

x| < P.

Without loss of generality, we can assume tRat 1 because if the available power is
different from 1, then we can always scalaccordingly. This leads us to

Possible Definition for Degrees of Freedom 1Supposed : C* — C™ is a linear
operator and let > 0. Then the number of degrees of freedom at levsithe largest
numberN such that there exists a s€tC B ¢»(0) C C" with N elements that satisfies

property@.1).
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One can think of the number of degrees of freedom as the maxwmaber of dif-
ferent signals that a transmitter can send so that, evereiprésence of noise and a
power constraint on the transmitted signal, the receiverdescode the received signal
to accurately determine the transmitted signal.

An alternative way of defining the degrees of freedom is imseof finite e-netd.

If y andy’ are two received signals then | will call the signglsandy’ physically
indistinguishable at levelif |y —y’| < e (see eg. [25]). The intuition behind calling two
such functions physically indistinguishable is fairly adws. If the distance between the
vectorsy andy’ is less thary, the noise at the receiver can makdook like y’ so a
real physical receiver cannot tell the difference betweamdy’. Also we will call a
setS physically indistinguishable from a sét at level< if for all x € S there exists an
x' € S such thatx — x| <e. Thatis,S’ is ane-net forS.

The notion of physical indistinguishability can be usededirtk the degrees of free-
dom because the sét B, c-(0) is physically indistinguishable from some set with a
finite number of elements. To see this note thab, ¢ (0) is a bounded subset of a
finite dimensional space and is therefore totally boundetherefore has a finite-net.

Possible Definition for Degrees of Freedom 2Supposed : C* — C™ is a linear
operator and let > 0 be given. Then the number of degrees of freedom at tevlel
is the smallest numbéY such thatH B, ¢~ (0) has ane-net with N elements.

One can think of the degrees of freedavhas the minimum number of vectors
x1,...,Xy € C" sothat for all possible transmitter functioxsc ELCn(O), there exists
somex;, 1 < i < N such thatHx and Hx; are physically indistinguishable at the
receiver.

The following example will make the two definitions clearer.

Example 3.1.Letm =n =2, P =1,¢ = 0.25 and
10
i [0 3]

Now suppose tha¥; and IV, are respectively the degrees of freedonHoif degrees of
freedom are defined as in the possible definitldns 1[and 2

The setS = {(z,y) : z € {0,0.5},y € {0,0.25,0.5}} satisfieq3.1). Therefore, the
number of elements 6f, 6 is a lower bound forV; .

The setS, = {(z,y) : x = 0.1n,y = 0.1m,n = 1,...,10andm = 1,...,20} is

ane-net forHBpc2(0). Therefore the number of elementsSin 200 is an upper bound
for Ns.

Lf S is any subset of a metric space th&nis ane-net for S if for all 2 € S, there exists an, € S,
such thatlist(z, z.) < e.
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The above example illustrates the physical interpretaifdhe degrees of freedom.
But, the problem with using either of these definitions fayres of freedom is that it is
very difficult to calculate the exact number of degrees cédi@m. This fact is obvious
from the very simple example considered above. This prolidecommonly know as
the sphere packing problem. Though we cannot easily soisg@tbblem, we can look
at the dimensionality of the sphere packing problem. Thainistead of looking at
specific subsetS§ andS, of C* andC™, we can look at linear subspaces.

The singular value decomposition theorem tells us thatktlegists a set of basis
functions inC™ andC™ such that the matrix representation férin these basis function
is diagonal. LetH be such a matrix with the basis functions ordered such thaat th
diagonal elements are in decreasing order. A simple exammmef the diagonal matrix
proves that

1. for alle > 0 there exist a numbeW; and a set of mutually orthogonal vectors,
{v1,...,vn,} C C"such that if any vectov is orthogonal tov;,7 = 1,..., N,
and if|v| < 1, then|Hv| < e. For a givery, call the smallest number that satisfies
the above conditionV, (¢). Note that the vectors, ..., vy, span the space of
all linear combinations of the right singular vectors fwhose corresponding
singular values are greater than

2. for alle > 0 there exist a numbeW, and a set of linearly independent vectors,
{uy,...,uy,} C C™ such thatforall € By ¢~ (0),

Na
inf [Hv — Zaiui| < €.
a;

i=1

For a givene, call the smallest number that satisfies the above conditigia).
Note that the vectora,, ..., uy, span the space of all linear combinations of the
left singular vectors of/ whose corresponding singular values are greaterdhan

A simple examination of the diagonal matrix tells us thathbdt (¢) and N, (¢) are
equal to the number of singular valueskbfthat are greater than This leads us to our
definition for degrees of freedom in finite dimensional sjgace

Definition 3.1. Let H : C" — C™ be a linear operator and let > 0 be given. Then the
number of degrees of freedom at levdbr H is the smallest numbe¥ such that there

exists a set of vectots, . .., uy € C™ such that for allv € El,@(o),
N
o 1Y = ) aiui] <

i=1

2] will not go through a detailed proof here because this isguspecial case of theordml3.4.
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This particular characterisation for the number of deg@eseedom is the one
that is most easily generalised to compact operators onethepaces. Moreover, it is
fairly straightforward to compute the singular values otmneas and therefore one can
calculate the degrees of freedom for a given matrix. Thewahg example illustrates
the use of the above definition for degrees of freedom.

Example 3.2.Letn = 5, m = 4 and

0.2 02 05 1.0 0.8
0.8 06 09 02 0.1
0.1 03 0.6 08 0.6
0.5 0.1 0.0 0.6 0.1

The singular values dfl are 4.6, 1.0,0.30,0.01 and0. Therefore the number of degrees
of freedom at level-1 is 3 and the number of degrees of freedom at |éveh is 4.

| will look at one final example to show how the ideas in the pyes example can be
generalised to infinite dimensional function spaces. Themo®l used in this example
is the singular value decomposition of compact operatokilivert Spaces.

Example 3.3. Consider communication using scalar waves in free spaasgusanite
volume transmitting and receiving antennas (see examfle d.etV,W C R? be
measurable, compact add\ W = () andG : V x W — C be defined by

ejk;lx_yl

G(XJ) = m

Then,
1. T: £*(V,C) — L*(W,C) defined by

(T)(2) = / G(x, 2)¢(x)dx

is compact [46].

2. K:V xV — C defined by

K(x,y):/WG*(x,z)G(y,z)dz

is continuous and Hermitian.

3This matrix was generated using thend function in Matlab.
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3. U: L*V,C) — L*(W,C) defined by

(Wo)(y) = | Kx.y)o(x)ix
14
is compact, self-adjoint and non-negative.

4. We now have the spectral theorem [47, pp. 261]
U o= F r
- Za ¢] L2(V,C) ¢

Here,¢, are the set of orthonormal eigenfunctionslothat we can get via Gram-
Schmidt orthogonalisation and, are the singular values df. Note that we can
haveo; = «; evenifi # j.

5. We also have the singular value decomposition (SVD) éme¢47, pp. 261]
=) (d0ewole) (3:2)
j

6. The eigenvaluelP‘a?} of ¥ form a countable set with being the only possible
point of accumulation [48, thm 8.3-1].

Now suppose > 0 is some small positive number. Then the number of mutudtypg¥
onal functionsp € £*(V, C) such that|¢|| z2(v,c) < 1 and||T¢|| z2qw,c) > € is finite. To
see this note that if; is an eigenfunction o¥ then

oluwey = [ { / G<x,z>¢i<x>dx}* | 6t mo)ayis
- /V 7(50) (W) ()

From point[® above, we know that {f\; = o7} is the set of all eigenvalues df
then there is a finite subs¢f\;, }, of the set of eigenvalues such thigt > ¢ if and
onlyifj € {s,...,j8}. The set{gbﬁ,.. , ¢,y + has the required property. Now, if
¢ € L(V,C) with [|¢]lz2v,cy < 1, then we can writep = Y a;¢; + ¢, Here,
a; = (¢, ¢;) c2(v,c) and ¢, is the remainder term. From Parseval’s theorem we have

el + el zzwey < 9l
J
< 1
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Finally, if ¢ € £*(V,C) is orthogonal to all thep;,,i = 1,..., N, the SVD theorem
(point[@) gives

HFQbH%%W,C) = Z‘aﬂz)‘j
J

= > Y

J
JF Iy JN
< > €lay[?
J
JF Iy JN
< e

Equally, for alle > 0 there exists a numbe¥ and a set of functiong, ... ¥y such
that for all ¢ € L*(V, C), [|¢| z2v,c) < 1

N
inf [|[T¢ — Zaﬂ/fz‘HLQ(W,C) <S¢

at,-..,aN -
=1

The proof follows from choosing, = I'¢,,.

The singular value decomposition theorem was used in thagu® example to
prove the required result. However, the compactness of pleeator[” is essential to
ensure that the eigenvaluesIofl’ form a countable set with zero being the only pos-
sible point of accumulation. This leads us to the idea thatdbmpactness df is
sufficient to ensure that we can generalise the notion ofedsgof freedom to compact
operators in normed spaces. In fact, the definition for degyoé freedom can then be
used to define singular values for compact operators orranpibormed spaces. This
will be extremely useful in numerically calculating the degs of freedom for compact
operators.

3.2 Degrees of Freedom for Compact Operators

In this section | show how the definition of degrees of freedarfinite dimensional
spaces can be generalised to compact operators on arlpitnamgd spaces. The follow-
ing theorem shows that it makes sense to talk about the nuoflgegrees of freedom
for compact operators.
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Theorem 3.1. SupposeX and Y are normed spaces with nornfis: ||x and || - ||y
respectively and” : X — Y is a compact operator. Then for al > 0 there exists
N € Z§ and{v;}¥, C Y such that

N
inf [Tz = aibilly <eVa € By x(0) (3.3)

a,...,an -
=1

Proof. The proof is by contradiction. Let> 0 be given. Suppose no sughexists.
Letz, € By x(0) be any vector. Choosg, = T'z;. Then,

1
in | Ty Zaz/}Hy <e

i=1

Suppose thafy, ..., vy} and{zy,..., x5} have been chosen. Then, by our assump-
tion, there exists amy | € FLX(O) such that

N
inf T =) aiilly > e (3.4)

=1
Choosen1 = Txyy1. Also, if M < N, by choosingy; = 0if i < N,i # M and
a; = 1,7 = M in the inequality[[3}), we have

||TZEN+1 — Tl‘]u”y > €.

Therefore, using the Cauchy criterion, the sequdrte, }2° ; chosen by induction can-
not have a convergent subsequence. This is the requirechdarion becauséz,, }>°
is a bounded sequence ahds compact. ]

So we can use the following definition for the number of degrekfreedom at
level-< for compact operators on normed spaces.

Definition 3.2 (Number of degrees of freedom at levgl-SupposeX andY” are normed
spaces with normg- || x and|| - ||y respectively and” : X — Y is a compact operator.
Then the number of degrees of freedom at levglthe smallestv € Z* such that there
exists a set of vectokg)y, ..., ¥y} C Y such that

N
inf [Tz = athilly < eV € Bix(0).

at,...,aN -
i=1

This definition is a descriptive one and can not be used talzk the number of
degrees of freedom for a given compact operator. In the fttiteensional case we can
calculate the degrees of freedom by calculating the singalaes. However, as far as

33



| am aware, there is no known description of singular valeesdmpact operators on
arbitrary normed spaces. In the following I will give a nodeffinition for generalised
singular values of compact operaﬂ)rm fact we use the degrees of freedom to define
singular values.

| will first establish some very simple properties of degreegseedom at level of
compact operators.

Theorem 3.2. SupposeX and Y are normed spaces with nornjis || x and || - ||y
respectively and” : X — Y is a compact operator. Le¥/(¢) denote the number of
degrees of freedorf at level<. Then

1. There exists amy < ||T'|| < oo such that for alle > ¢, NV (e) = 0.
2. N (e) is a non-increasing function ef

3. In any finite interval(e, e5) C R, withey > €1 > 0, N'(¢) has only finitely many
discontinuities (different values).

4. UnlessT is identically zero, there exists ap such that for alle < ¢, MV(e) > 1.

Proof. 1. Becauséd' is compact, it is bounded and therefdfg|| < co. Suppose
e > ||T'|| then from the definition of 7|, if ¢ € X and||¢||x < 1, then||T¢| <
|7 < €. ThereforeN (¢) = 0.

2. Suppose; < €. Then there exist functiong,, . . ., 1y(,) such that for allp €

By x(0),
N (er)
inf ||T§Z5 — Z a,ﬂ/}iHy < €1 <€
A7 yeeny G‘N(el) i—1

ThereforeN (e2) < N (e;) from the definition of degrees of freedom at level-
3. This follows from parfR and the definition of degrees oéftem at levek-.

4. BecausdT'|| > 0, there exists a functiop € X, ||¢||x < 1suchthat|T¢|ly > 0.
Then for alle < || T'¢[|, N(e) > 1.

O

The following examples show that agjoes to zero)(¢) can both be bounded or
go to infinity.

4In chapte R | will explain how one can use numerical methodsatculate these singular values.
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Example 3.4. Let [! be the Banach space of all real-valued sequences with fihite
norm and lefey, e,, . . .) be the standard Schauder basis farThen define the operator
T:1' — ' ase, — e; Vn. This operator is compact.

To see this let;, = >~ as.e;, n = 1,2,... be a sequence in the unit ball if.
Then

00
=1

So

Tx, = [i ain] €1
i=1

is well defined and bounded. Because the dimension of theerafi§j is one, it is
compact [48] and for alk > 0 the N'(¢) < 1.

Example 3.5. Let /! and (ey, e,,...) be as defined in the previous example. Define
T:1' — ' ase, — +e, Vn. Itis fairly trivial to show that7" is compact and also that
hmeﬂo N(G) = OQ.

Figure[31 shows a typical example of degrees of freedonvat-tfor some com-
pact operator that satisfies all the properties in the ablogeréem. We identify the
discontinuities in the number of degrees of freedonY cdit level< with the singular
values ofT".

Definition 3.3 (Generalised Singular ValuesSupposeX andY are normed spaces and
T : X — Y is a compact operator. Let/(¢) denote the number of degrees of freedom
of T" at levele. Thene,, is them! generalised singular value af if

SUP.,, N(e) =m—1 and
inf.., N(e) =M >m.

Further, if m < M then for allm < n < M, ¢, := ¢,, is then' generalised singular
value ofT".

Note that we used the behavior of degrees of freedom to fgethie generalised
singular values. Let the degrees of freedom of the opefabm as shown in figuile3.1.
Then the generalised singular values, of I' identify the jumps in the degrees of
freedom. So¢; = 0.9, = €3 =€, =0.8,¢5 =0.6.. ..

The intuition behind the definition for generalised singwkaues needs further clar-
ification. In the finite dimensional case ¢f is thep™ singular value of some operator
I': C* — C™, then there exist corresponding left and right singulacfiomsv, € C”
andu, € C™ such thaw, is of unit norm,I'v, = u, and the norm of;, iSe¢,. This is
not necessarily true for arbitrary compact operators omedrspaces as the following
example proves.
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Degrees of Freedom

10

Degrees of Freedom vs €

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 3.1: Degrees of Freedom of a Compact Operator
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Example 3.6.Let!! be the sequence space of real numbers with the standard &@hau
basis(ei, es,...). Define the operatoF : ' — ' asT¢, = (1 — +)e; Vn. Thenl

is bounded and because the rangelois finite dimensional it is compact. Also, the
number of degrees of freedomIoét levelc is

0 ife>1,
N(e):{ 1 ife<1.

Soe; = 1. However, for any vectou in the unit ball ini*, ||Tul|;: < 1.

The above example motivates the following theorem whichHaemp the intuition
behind the definition of generalised singular values.

Theorem 3.3. SupposeX and Y are normed spaces with nornfis: ||x and || - ||y
respectively and’ : X' — Y is a compact operator. Let, be a singular value of the
operatorI’. Then for all¢ > 0, there exists a function € B, x(0) such that

€m + 60 > ||TY]ly > €, — 0.

Proof. The proof is by contradiction. Assume that there exists-a0 such that for all
e X, if |[¢|lx = 1then||TY|y ¢ [em — 0,6, + 0]. Let N(e) denote the number
of degrees of freedom at levelof the operatod’. From the definition of degrees of
freedom at level-we have
Nen+0) < m—1, (3.5)
Nen—0) > m. (3.6)
So there exist functions,, . . . , ¢,,_; such that for ally € B, x(0)

m—1

inf [Ty =) aigi]| < e+ 9.

A1,y Qm—1 -
=1

Because for all) € X, if ||¢||x = 1 then||TY||y € [em — 0, €m + 0],

if [|¢]|x = 1. SoN (e, —0) < m — 1. This contradicts equatioh{3.6). Therefore there
exists ai) € B, x(0) that satisfies the conditions of the theorem. O

The above theorem shows how the generalised singular vataeslated to the tra-
ditionally accepted notion of singular values of compacatrapors on Hilbert spaces.
However, we still need to prove that in the special case di¢ttlspaces, the new defi-
nition for generalised singular values agrees with theticathlly accepted definition.
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Recall that ifH; andH, are Hilbert spaces with inner products-);;, and(-, )4,
respectively and if" : H; — Hs is a compact operator then the Hilbert adjoint operator
for T'is defined as the operatdr : H, — H; that satisfies [48, Sec. 3.9]

(Tx,y)r, = (x, T y)n, Yo € Hy andy € Ho.

The singular values of’ are defined to be the square roots of the eigenvalues of the
operator’™*T : 'H; — 'Hi. | will refer to these as Hilbert space singular values to
distinguish them from generalised singular values.

In order to prove that the generalised singular values aualeg Hilbert space
singular values we need the following theorem. This theoieemmportant in its own
right because it shows that there are two other equivaleys wicalculating the degrees
of freedom of a Hilbert space operator.

Theorem 3.4. Supposét{; andH, are Hilbert spaces and’ : H; — H, is a compact
operator. Then for alk > 0 there exists aiV € Z* and a set ofV mutually orthogonal
functions{¢;}¥, such that if

T e H17 ||x||7'f1 S 1 and<x7¢i>H1 =0
then
| T3, < e

Moreover the smallesV that satisfies the above condition for a giveis equal to the
number of degrees of freedomofat level«.

Proof. | first prove that such aiV exists and then prove that the smallest sicks in
fact equal to the number of degrees of freedom.

Lete > 0 be given. Becaus€ is compact, we can use the singular value decompo-
sition theorem which says [47, pp. 261]

T = Zax-, Oi)r, Vi (3.7)

Here, 0;, ¢; and; are the Hilbert space singular values and left and rightudarg
functions ofT’, respectively. BecausE is compact, the set of singular values is at most
countable [48, thm 8.3-1] and we can reorder the Hilbert sgaagular values so that
o, > o; if i < j. Also, because 0 is the only possible point of accumulatoortiie
Hilbert space singular values [48, thm 8.3-1], there exdastsmberV; € Z* such that

o, > eifand only if n < V.
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Now, if z is orthogonal tap;,i = 1,..., N; and if ||z||, < 1 then from equa-

tion (34)
IT2l3, = ZUQI O w1l I3,

oo

< 62 Z |<x7¢i>7{1‘2
i=N1+1

< 2.

It is fairly trivial to prove that/V; is the smallest number that satisfies the conditions
of this theorem because otherwise some element in the spgm of. ., ¥, } will be
orthogonal to the span of any chosen set of elemgnts. .., ¢, } if M < N;.

To prove the second part of the theorem Mt denote the number of degrees of
freedom ofT" at level<. Then to prove thaiv, > N; note that ifz is in the unit ball
in H; then we can writer = > .° (x, ¢;)», ¢ + x,. Herex, is the remainder term
that is orthogonal to all the,. So, from the singular value decomposition theorem

(equation[(317))
N1

[Tz — Z@(%@?Hl%ﬂﬂg < e
i=1

To prove thatV; > N, assume thatv, > N, for a contradiction. Then there exists
a set{y/}', such that

N1
ingN | Tx — Zai@DZ{HHz < eVr € Hy, [|zfly, < 1.
! i=1

Because we assumé, > N, there exists g € span{, ..., ¥y, } which is orthogo-
nal to ally!. Lety = 3., biyh;. Theny = Tw wherez = ZNI b ¢, from the singular
value decomposition theorem. We can assume, w.l.0.g. hb&tare normalised so that
|x||%, = 1. Then

inf ||Tx—2cw G = llyll3, (3.8)
Ny
= be (3.9)
b2
> 0_26 (3.10)
i=1
= €. (3.11)
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In the above we get equation{B.8) from the fact thas orthogonal toy., inequal-
ity (BI0) from the definition ofV; and equationi{3.11) fronx||, = 1.
The inequality[(3111) is the required contradiction. Thisyes thatV, = N;. O

Corollary 3.4.1. Suppose that{; and H, are Hilbert spaces and” : H; — Hs IS
a compact operator. Then the number of degrees of freedoeval« is equal to the
number of Hilbert space singular valuesBthat are greater than or equal te

We can now easily prove that the new definition for generdlisiegular values
agrees with the traditionally accepted definition for siagwalues on Hilbert spaces.

Theorem 3.5. Supposét{; andH, are Hilbert spaces and’ : H; — H, is a compact
operator. Supposée,,} are the generalised singular values Bfand {),,} are the
possibly repeated eigenvalues written in non-increasirtgoof the operatorf™ 7" :
H, — Hi. Then

2

m*

Ay = €

Proof. From corollanff3. 21 we know that () is equal to the number of Hilbert space
singular values ofl" that are greater than or equal 40 Therefore ife,, is the m!”
generalised singular value @f thene,, must also be then'* Hilbert space singular
value ofT” which isy/\,,. O

In Hilbert spaces we have three characterizations for @sgoé freedom: 1) As
in Definition[333, 2) As in Corollary_3.411 in terms of singulealues and 3) As in
TheorenZ3 M in terms of mutually orthogonal functions indloenain.

The first two characterisations can be generalised to nospades. However, the
final characterisation is more difficult to generalise. Itulkbbe extremely useful to
generalise the final characterisation because, for theeHi#ipace case, the functiops
in theoren-3 ¥ are the best functions to transmit. One coosdiply replace the mutual
orthogonality by using Riesz’s lemma which states (see 4§, dp. 78])

Lemma 3.6 (Riesz’s lemma) Let Y and Z be subspaces of a normed spaXeand
suppose thaY” is closed and is a proper subspacesfThen for alld € (0, 1) there is
az € Z such that

|zl = 1and|ly — || > 6vy € Y. (3.12)
The following conjecture is still an open question.

Conjecture 3.1. Let X andY be reflexive Banach spaces and fet: X — Y be
compact. Given any > 0 and somg € (0,1), there exists a finite set of vectors
{¢:}¥, suchthat for alle € X

N
lzllx <land inf [z = aiillx >0, (3.13)

..... an -
=1

40



implies
HTZCHY < €.

Comparing with theoreri 3.4, equatidn (3.13) is analogougduiring thatz be
orthogonal tap;. The conjecture is definitely not true if the requirementedfaxivity is
removed as the next example proves.

Example 3.7. Consider the sequence spaéeand let{e,} be the standard Schauder
basis for/'. Then define the operat@t : [! — [! ase,, +— e; for all n. It was proven in
exampld=3}4 thal’ is compact.

Now ife < 1, for any functionr € I! if ||z]| = 1, ||Tx|| = ||| = 1 > €. So no finite
set of functions can satisfy the conditions in the conjectur

3.3 Essential Dimension for Compact Operators

The definition for degrees of freedom given in the previousise depends on the
arbitrarily chosen numberand therefore this definition does not give a unique number
for a given channel. The physical intuition behind choogg arbitrary small number

e is best explained in [37]. In this paper= ¢ is the noise at the receiver, and Xu and
Janaswamy [37] claim that the number of degrees of freedomaimentally depends
on this noise at the receiver.

However, in several important cases the number of degreeslainnel is essentially
independent of this arbitrarily chosen positive number2531,45]. This is due to the
fact that in these cases the singular values of the chanmshtmp show a step like
behavior. Therefore, for a big range of valueshe number of degrees of freedom at
level< is constant. This leads us to the concept of essential dimmi'ﬂ)ﬂ which is
only a function of the channel and not the arbitrarily chopesitive numbee. Some
of the properties that one might require from the essenitiaédsion of an operator are:

1. It must be uniquely defined for a given operdtor

2. The definition must be applicable to a general class ofatpes under consider-
ation so that comparisons can be made between differenaitoper (c.f. the es-
sential dimension definition in [49] that is only applicabdethe time-bandwidth
problem.)

3. It mustin some sensepresenthe number of degrees of freedom at level-

SNote that the term essential dimension has been used irsftdadrees of freedom in several papers.
As far as | am aware, this is the first time a distinction hasibeade between the two terms.
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The final requirement in defining the essential dimensionlséarther clarification.
Obviously the essential dimension Bfcan not in general be equal to the number of
degrees of freedom at levelbecause the latter is a function af However, if the
singular values of’ (in decreasing order) change suddenly from being large @llsm
then the ‘knee’ is at the essential dimensionlof The following definition for the
essential dimension tries to identify this ‘knee’ in the siegeneralised singular values.

Each levele defines a unique number of degrees of freeddr(e) for a given com-
pact operatof’. So for each positive integer € Z* we can calculaté’(n) = p({e :

n = Nr(e)}). Hereu(-) is the Lebesgue measure. This function is well defined becaus
of the properties of generalised singular values discussttteoren{3P2. We can now
define the essential dimensionlogs follows.

Definition 3.4. The essential dimension of an operalois
EssDim(T") = argmax{E(n) : n € Z"}

whereE(n) is as defined above. #frgmax above is not uniquely defined then one can
choose the smallestof all then that achieveanax{ E(n)} as the essential dimension.

In this definition we are simply calculating the maximum rargf values of the
arbitrarily choserx over which the number of degrees of freedom of an operatas doe
not change.

This definition uniquely determines the essential dimemsiball compact opera-
tors. Further, itis equal to the number of degrees of freedoevel< for the maximum
range ofe. Choosing this value for the number of degrees of freedormmderao model
MIMO communication has the big advantage that it is largetjejpendent of the noise
level at the receiver. Further, if for a given noise leveltlienber of degrees of freedom
is greater than the essential dimension then one can betairevien if the noise level
varies by a significant amount the number of degrees of fredd@lways greater than
the essential dimension.

The essential dimension bfis the number of generalised singular value§ affter
which the change in two consecutive singular values is atx@man. However, one
can also look at how the generalised singular values aregaingugradually. The above
definition is a special case of the following definition of &sal dimension of orden-
withn = 1.

Definition 3.5. Let X, Y be normed spaces and [et: X — Y be a compact operator.
Let \; be the generalised singular valueslofvritten in descending order. For even,
define the essential dimensionlodf order+: to be N if

AN—n/2 = AN+4n/2 = AM—nj2 — AM+n/2
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Figure 3.2: Singular values of an Operator

forall M # N. If there are severalV that satisfy the above condition, then choose the
smallest/V that satisfies the above conditionxlis odd then we requiré/ to satisfy

AN—(n=1)/2 = AN4(n+1)/2 = AM—(n—1)/2 = AM+(n+1)/2
forall M # N.

A simple example illustrates the concepts of essential dgiomality and degrees of
freedom.

Example 3.8. Figure[3:2 shows the singular values of some oper&tdFor this oper-
ator the number of degrees of freedom at le¥&F is 7 and at leveld.05 is 9. So the
number of degrees of freedom do not change much even thoeigiuthbere changed
by a great amount. One can identify the location of the ‘knedhe singular values
with the essential dimension of the channel.

The essential dimension of the channel is 7. This is becawse € (0.8,0.4),
Nr(e) = 7. ThereforeE(7) = 0.4 which is greater thanF(n) for all n # 7. The
essential dimension of order-2 is 8 becanse- \g = 0.7 which is greater than\,, | —
Ao forall M +#£ 8.
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3.4 Discussion

There are several other known definitions for essential dgio® and degrees of free-
dom as discussed in sectibnll.4. In this section | compare efigition with others
that are commonly used in the literature. Because no classindiion has been made
between degrees of freedom and essential dimension indnatlire, | compare defini-
tions that depend on some arbitrary constant with my defimitor degrees of freedom
at level< and those that determine a unique number for a given chamtigt of essen-
tial dimension.

3.4.1 Degrees of Freedom

There are several definitions for degrees of freedom at-letredt are used in the liter-
ature. The definition of Bucat. al.[25] is a special case of definitignB.2 for degrees
of freedom at levek They study the case of communication using electromagneti
waves. Suppose the current, both source and induced aremmm§1a7£2(57cs)(0)
and the electric field is an element 6¢(C, C?). Here,S is a sphere of radiug, C' is
some compact observation curve ahg@rovides a finite bound on the source and in-
duced currents. Also, suppose that the operato£?(S, C*) — L2(C, C?) determines
the electric field for a given source current.

Nowlet& = {g=Tf: f € L*(B,C?),|f|lz2pc < Ia} and given any two sets
A, B C L%*C) let

d(A, B) = sup inf ||ja — b||¢.
acA beB
Bucci et. al. [25] assert that the operatbrhas a finite number of degrees of freedom
if the set&’ is physically indistinguishable at levelfrom another set that has a finite
number of functions. Bucat. al.[25] definess’ to be physically indistinguishable from
aset? C L3(C,C3) at levele if £ is ane-net of the set’. That s, if

5(&,L) <e.

One could define the number of elements in the smallest of & to be the number
of degrees of freedom of the channel. However, as Batcal. [25] point out, this
definition is not the easiest one to use because it is extyedifécult to determine the
smalleste-net in many important cases. They suggest an alternativweitctn that is
easier to use in practice. The number of degrees of freeddheafperatoi” at level<
is defined to be the dimension of the smallest subsgdce £%(C, C?) such that

NE, %) <e.

This definition is a special case of my definition for degrefefseedom at level-.
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Miller [26] analyses communication between volumes usoades waves. The main
assumption in [26] is that the transmitter is constrainethe¢an a volumel C R3
and the receiver is constrained to a voluiileC R®. We can assume that and W
are compact. Miller [26] assumes that the transmitter wawvetfony € £%(V,C)
generates a wave functidh) € £?(W, C) according to

(T)(y) = / Gl y)d()dx Yy € W,

Here, the operatdr : £L*(V,C) — L*(W,C) and

exp{ik|x —y + esro|}

G(x,y) =
(X Y) 47T|X -y -+ 637"0‘

Herex € V,y € W, ry € R is the distance between the centers of the transmitter and

receiver anck; is a unit vector in the direction of the vector connectingstheenters.
Miller [26] asserts that in order to find the besimmunication modesve need to

find the source wave functian that maximises the norm of the received wave function

¢ which is given by

16200 = /W & (y)(y)dz
= [we [ [ 6 wxGrxiyeidndx,

= /¢*(x1)/K(Xl,Xg)Q/J(XQ)dXﬂiXQ- (3.14)
\% \%4
(3.15)

Here

K(xl,xz):/WG*(y,xl)G(y,XQ)dy.

It is well known that the function that achieves the maximum value in equaton{3.14)
is the eigenfunction with the highest eigenvalue of thegrakequation

W) = [ Kt (3.16)

Let {\;} and{v;} be the sets of eigenvalues and their corresponding normuladigen-
functions of equation{3.16), respectively, written in cksding order of eigenvalues.
Becausei (x1, x,) is self-adjoint the eigenfunctior{s); } form an orthonormal s

SFor repeated eigenvalues one can use the Gram-Schmidtdrteteasure orthogonality.
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The eigenfunctionsg, ¢, . . . are the best source functions to transmit in the sense
that out of all functions) € £2(V, C) of unit norm,:; maximises|I'y|| z2qw.c). Also,
given functions{+; }7~*, the function orthogonal tg, . . ., ¢,,_; and of unit norm that
maximises|['y|| z2w,c) IS ¥y, [26]. Moreover, ifgp; = I'y; then

l6ilZae = /V 2 () /V K (1, %a) s (xa) dx1 s
— Ai-

Therefore Miller [26] asserts that the numbersagnificanteigenvalues\; determine
the number of physically distinguishable signa)st the receiver. Hence the number of
significanteigenvalues of equatiof(3116) gives the number of modesrofitunication.
Piestun and Miller [34] similarly analyse the case of vestawves. If we can assume
that an eigenvalue is significant if it is greater than soneegmecified levet, then we
know from corollary(3. 411 that the number of modes of comroation is equal to the
number of degrees of freedom of the channel operator atlgweising my definition.

Xu et. al. [37] build on the results of [34] for vector waves to include teffect
of scatterers. They numerically evaluate the Green’s fandbr vector waves in the
presence of reflective scatterers in two dimensions usiaditlite moments method
(FMM). Xu et. al.[37] then numerically calculate the singular values of tperator
defined using the Green’s function. Suppodseare the singular values in descending
order and also suppose that there is transmit power comisi?ai> 0 and receiver noise
level @ > 0. Xu et. al.[37] define the number of degrees of freedoni'ab bél

Naos(Pr,Q) =max{N : P, =|a,|*|\.|] >Q,n=1,2,...,N
N
and ) " [a,” = P},
n=1

The definition of Xu and Ganaswamy [37] is equivalent to dabni3.2 for the special
case of operators on Hilbert spaces. This is a direct coeseguof corollary3.411.
Newsam and Barakat [41] approach the problem of finding thyesss of freedom of
an operator differently. The primary interest of [41] is Inetinverse problem: Suppose
g(t) = [ k(s—t)f(t)dt. Hereg(t), f(t) € L*(R, C). Then givery can we determing?
This inverse problem is ill-posed in the sense that it isearily sensitive to noise [41].
However, some components ¢ft) can be accurately determined and the number of
such components is defined to be the number of degrees obfreefithe operator [41].

7[37] use@,, instead ofQ in their definition. However they mak@,, = @ subsequently and use that
in all their calculations. | do not think usin@,, instead ofl) makes sense because thién, s will depend
on how@),, is chosen which in turn depends &n, then!” eigenfunction of". Therefore, the definition
for DOF is not unique anymore.
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Let X andY be Hilbert spaces and lét : X — Y be a compact operator. If
g € I'(X) is a perturbation off € I'(X) such that|g — ¢'|ly < eandif'f = g and
I'f" = ¢, then for some tolerancg [41] define the number of degrees of freedom to be

Naop = max{dim(V) : V subspace oK and| Py (f — f')|| <dV|g—¢| < €}

Here Py is the projection operator.

Newsam and Barakat [41] prove thatdf is then'" eigenvalue ofi*T" then the
number of degrees of freedomA§ if oy, 11 < €/6 < oy,. The definition of Newsam
and Barakat [41] is equivalent to definitin13.2 for the spkciase of operators on
Hilbert spaces. This is a direct consequence of cordllahyd3.

3.4.2 Essential Dimension

Several articles do not give an explicit definition for esgdrdimension but argue that
the “knee” in the singular values of the channel operatoresponds to the essential
dimension of the channel [25,26,28,45]. It is therefordidift to compare the defini-
tion of essential dimension with these works. However, teindion[3.4 for essential
dimension tries to identify the knee in the singular valued gives a unique number
for a given channel. Further, one can use the definffioch . %®$sential dimension
of orders to ensure that outliers do not effect the identification & kmee. In sum-
mary, the definition of essential dimension enables one iguety quantify the results
of [25,26,28,45].

A step like behavior of eigenvalues is also found in [31,98,3The approach
of Kennedyet. al. [31] is substantially different from those discussed earin this
section wherein the transmitting volume was assumed to hsti@ned. In contrast,
Kennedyet. al.[31] consider the possible wavefields within a volume caisgd to a
radiusR provided all sources are in the far field (outside a ball ofusds). Most of
their results are for wavefields in two dimensions. Howetregy emphasise that their
results can be extended to three dimensions. The channalmseld in these papers
is considerably different from that considered in this the$iowever, their definition
of degrees of freedom is comparable to my definitions of éedetimension because
they evaluate the number of significant eigenvalues of aipeperator to calculate
the degrees of freedom.

Let Br(0) C R? be an open ball of radiuB centered at the origin. A wave field in
Br(0) is afunctionF’ : Br(0) — C that satisfies the scalar Helmholtz equation [31].

V2F(x) + k*F(x) =0, x € Bg(0).

Herek = 27 /) is the wave number antlis the wavelength. Kennedst. al. [31] use
the following model: if all the sources are in the far fieldett¥'(x) can be written as

2T
F(x) = /0 a(¢)e*xI@) dg (3.17)
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using polar coordinategx = [||z||, arg(x)] = [rz, ¢(x)]). Here,y = (1, ¢) is a unit
vector with azimuth angle. Physically, the wave field’(x) can be interpreted as the
superposition of planar waves arriving from each azimutfies with amplitudea (o).
This model is suitable for far field sources because the wavasng from these sources
can be approximated by planar waves.

Using an orthonormal series expansion for the planar waeestion[(3.17) can be
rewritten as [31]

F(x)= Y 21T (R)a,®,(x). (3.18)

Here, the se{®,,(x)} are a set of functions orthonormal over the unit circle armdlz
written as

n In(K]|X]]) expiing(z) }

N AR

whereJ,(-) is then' order Bessel function of the first kind and

P, (x)

T.(R) = /O " Pryrdr

is a normalization term. Alsay,, are the Fourier expansion coefficientsugd):

2
an:/o a(p)e” " dep.

Even though the series representation of the wave field regjunfinitely many
terms, it is shown that'(x) can be approximated with arbitrary accuracy using only
finitely many terms. Specifically if

Fy(x) = Y V21T (R)a,®,(x)
and

a- 7 (@) ldo

then the relative truncation error for the wave field witt#r(0) and for a truncated
series of lengtl2 NV + 1 can be defined as

1 |F(x) = Fn(x)|

= dx.
7TR2 Br(0) A

€N(R)
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Kennedyet. al. prove that [31]

ey < ne_A

N = [erR/A] + A.

Because the normalised truncation error decreases exjahewith increasing/N for

all N > [emR/\], [31] asserts thater R/\] is the number of degrees of freedom of
the multipath field. A similar definition for degrees of freed is also found in Dickins
and Hanlen [40]. LetX be some normed space akdbe a Hilbert spaces. Also, let
I' : X — Y be some operator. Then if for some choiceNgf and a set of functions
{¢:}2, and for anyz € X with ||z|x < 1

No
Pz =Y (T, ¢u)yén|| <e<oo
n=1 Y
and ifVn > N,

n

[z — Z<FSE, (bn)Y(Z)n

n=1

< €€_a(n_N0)

Y

then Dickins and Hanlen [40] assert thgf is the number of degrees of freedom of the
operator.

However, this definition does not give a unique numbgrfor a given channel
because if the above condition is satisfied by some fiNitden it is also satisfied by
all N € Z*. So it does not satisfy all the conditions that the essedimaénsion of an
operator is required to satisfy as explained in the prevsaasion. Another commonly
used definition is that of Landau and Pollak EZ?]This definition however is only
applicable to time-bandwidth problems and cannot be usearbotrary SWCs.

3.5 Chapter Conclusion

In this chapter | prove that for a compact operdtoon some normed space, for any
given numbek > 0 there is a unique numbeéY,,((e) which is the number of degrees
of freedom of the operatdr at levele. Physically we can interpret this number as the
maximum number of linearly independent functions a regéhvat has noise of variance

8The definition given here is different from that in [40], whidoes not assume anything ab@ut| x
but using that definition the spaces that have degrees afdred’, would actually be finite dimensional.
SAlso see [49].
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o? = e can measure. This definition has been used previously faifgpeperators on
Hilbert spaces (see eg. [25]). However, as far as | am awaieistthe first definition
that is applicable to an arbitrary compact operator on ndrepaces.

| prove that one can use this definition for degrees of freettodefine generalised
singular values which are generalisations of commonly@tecesingular values defined
for Hilbert space operators. A direct consequence of thefiaitions is that the num-
ber of degrees of freedom of compact operators can be chasatt in terms of their
generalised singular values. The advantage of this clearsation is that it lends itself
to numerical computations as shown in the next chapter.

In this chapter, | also distinguish between the terms “degyd freedom” and “es-
sential dimension” though they have been used interchéhgaathe literature. In the
situation where the singular values of an operator changélyafrom being large to
small, the position of the “knee” in the singular values igque for a given channel. In
such channels, the number of degrees of freedom at tedepends very little on the
actual value ot. | define the essential dimension of an operator as the sshallenber
of singular values after which the difference between twasegutive singular values is
at a maximum.,

The main contributions of this chapter are:

1. Novel definition of degrees of freedom at levdbr arbitrary compact operators
on normed spaces. | prove that the definition gives a uniqugeu for a given
level e for any compact operator.

2. Novel definition for normed space singular values. | gipdigsical interpretation
for this definition and show that it is a generalisation ofysilar values of compact
operators on Hilbert spaces.

3. Novel definitions for essential dimension and essenimedsion of order for
any normed space compact operator.
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Chapter 4

Computation of Generalised Singular
Values

In this chapter | develop techniques for the calculation erfigralised singular values
of normed space operators. In some special cases it is possidnalytically calculate
bounds on the generalised singular values using pertorbtteory. This is discussed in
the following section. However, in a majority of cases atiegl computations are nigh
on impossible and one has to resort to numerical technigbegeral numerical tech-
niques are known for the computation of singular values w@gral operators. The one
that can be most easily generalised to normed space operative Galerkin method
(see eg. [32]). The essential idea behind this method isécsame complete Hilbert
basis and use finite dimensional approximations of the rategperator. | will prove
in sectio 4P that in the special case of normed spaces wittplete Schauder bases
it is possible to use the same techniques to calculate therglesed singular values.
The results of the numerical computation of generalisegdar values in some special
cases is given in sectiGn#.3

4.1 Perturbation Theory Applied to Scalar Wave Com-
munication

In several cases it is difficult to evaluate the singular galand the left and right singular
functions of the operatdr for a given spatial waveform channetr, Yz, I'). However,
in some cases itis possible to calculate the singular vainégunctions for another op-
eratorl” : X — Yj that closely approximatds. Therefore, one can use perturbation
theory to show that the the singular valued'atan in some sense be approximated by
the singular values df’.

We can use the following perturbation theory result [47, ¢hhv 4.10]: If ¥
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Figure 4.1: Communication Using Scalar Waves Between Rgatar Prisms

L2(T) — L%(T)andW¥, : L*(T) — L*(T) are self-adjoint, compact then
dist(o(V), 0 (VU + Ua)) < ||[Tal (4.1)

Hereo (V) = {0;(¥)}L, is the spectrum oft indexed in decreasing order and €
ZT U {oc} and

dist(a(¥),o(V + Up)) = sgp iI]l_f loi (V) — 0; (U 4+ Wa)l.

Also if we can write

(Wr)(y) = /V Ka(e, 9)o(y)dy 4.2)

then

10a < \/ / K a(2,y) [Pdedy 4.3)
VxV

Now consider communication between rectangular prismsguscalar waves. This
problem was studied by Miller [26]. | use slightly differembtation to that used in [26].
Let V, W C R? be two compact and measurable sets)let V, W and let(e;, es, e3)
be unit vectors iR3. Also, letr, > 0 such thatl’ N (W + rge3) = 0 (see figuré4l1).
We can define the linear operafor £*(V) — L£*(W) as (c.f. examplEZ211)

(TCf)(z) = /‘/G(X,z)f(x)dx Vxe W
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where

exp{jk|z + roes — x|}
A7z + roes — x|

G(x,z) =

Because7|y . is continuousT is compact and£?(V), £L2(W),T') is an SWC. Now
we can define the operatdr: £2(V) — L£2(V) as

(W )(y) = /V k(x,y)f (x)dx.

Here
k:(x,y):/WG*(z,X)G(z,y)dz.

We wish to calculate the eigenvalues of the operadtorMiller [26] uses the paraxial
approximation to find these eigenvalues. The paraxial aqption consists of using
Taylor series expansions of the terms under the modulus gighe denominator and in
the exponent of the Green'’s functi6iix, y), respectively. Note that this approximation
is commonly used in antenna theory and is also used in céilogldne singular values
in other papers on waveform channels [25,33].

The approximating operatdry : £*(V) — L£?(V) is defined as

(Wrf)(y) = / br(x, ) £ (x)dx.

\%

Here
br(x,y) = / G (2, %)Gir(2, y)dz
w

and

eXp{jkaz (Z7 X)}
fTO (Z> X)

where fr, and fr, are the second and zeroth order Taylor Series expansiojas-of
roes — x| with respect tax andz about the respective origins.
We can writel = U + U whereU, : L2(V) — L2(V) is defined by

Waflly) = (¥ —Tr)(D)y)
- / (K (x,y) — kr(x, 7)) f(x)dx

— VKA(X7Y)f(X)dX'

Gr(z,x) =
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Let x; be thei** Cartesian coordinate &f. Ifﬂ

bi = Sup |xi|7 L= 172737
xeV-Ww
b = maxb;,,
(2
I = inf |roes + x|
xeV-Ww

then it can be shown that (see appediX A.1)

bu(W) {ewifgc
l3

2
b2 bb
Le2m——cr ezt ez 2 2 -y

Al A2

|Ka(z,y)] <

Here,c;, c; are constants and(1V) is the Lebesgue measureldf. Therefore,

1/2
ol < [/ / |KA<x,y>|2dxdy]
VJV

W)V
2 2 2
{e” 1z 271%%901 + c3 + 0367r§ll)_261 : 27T§IZ—201 (4.4)

|0‘

>
)|

Equation[[£4) provides a bound fipw A ||. All the terms in the square brackets in this
equation, except for the constagtcan be made arbitrarily small 48 — 0. Therefore,
for smallb/1, |ka(z,y)| is proportional tabu(W)u(V') /I3, Itis very interesting to note
that the norm of|{ W || does not actually go to zerolif I goes to zero. We not only need
b to be small compared tdout also to be small compared idor this approximation to
be valid.

Miller [26] proves that the eigenvalues of the operakgrshow a step like behavior.
The eigenvalues, indexed in decreasing order of magnittglelase to 1 until they
reach a critical valuév,,,., and then decrease rapidly to zero. Here,

pW)pV)y 1

Nmax -
r2 N AzpAzp

and Az7, Azp andr are as shown in figule—4.1. Therefore, if the right hand side of
equation[[41) is small, then the eigenvalue¥aghow a similar behavior and if this is
the case, thew,,,. is the essential dimension of the channel.

1Specifically, referring to figuleEd.b; = 2Az7 + 2Azg, by = 2Ayr + 2Ayg andbs = 2Azp +
QAZR andl = ro + 20z + QAZR

54



4.2 Computing DOF for Compact Operators

In chapteB it was proved that in order to calculate the degof freedom of a com-
pact operator on a normed space, one needs to calculateé@sgjsed singular values.
However, no known method exists for computing these singaliaies. In this section, |
will develop a numerical method based on finite dimensioppteximations that could
be used to calculate the generalised singular values.

SupposeX andY are normed spaces afid: X — Y is a compact operator. Also
suppose thak” has a complete Schauder bagis, 1, . ..}. LetS,, = span{yy, ..., ¥, }.
Then we can define the operatty = T|s, : S, — Y. Lete,, ande,,,, be them!
singular values of" andT,, respectively. Then, | will prove in theordm¥#.1 that

1. Asn — o0, €mn — Em.
2. Foralln, if ¢,,, exists, then it is a lower bound fey,.

The crux of the argument used to prove the theorem is as felldgsume > 0 is
given and letV (¢) denote the number of degrees of freedom at lef@l the operatof.
This is the case if and only if there exist functiois;, . . . , -} C Y such that for all
1 € X, T can be approximated to leveby a linear combination of the; and further,
no set of functions{¢},...,¢y} C Y can approximate allb € X if N < N (e).
Equivalently, there is a function in the unit ball i whose image und€f can be
approximated by a function in th@an{¢1, ..., dx } that cannot be approximated by
span{d},.... ¢},

So we take the inverse image of@anet of points irspan{¢,, . . ., o) } and choose
n large enough so that all the inverse images are closg tdNe can do this because
thev); form a complete Schauder basis 8t | then show that there exists a function
in S,, such that its image undér cannot be approximated by a linear combination of

.., ¢ for N < N(e). This will prove that the number of degrees of freedom at
level< of T,, approaches that ¢f and consequently so do the singular values. The
details are as follows.

Theorem 4.1. SupposeX andY are normed spaces aril : X — Y is a compact
operator. Suppose that has a complete Schauder bagig,, v», ...} and letsS, =

span{y, ..., ¥, }. LetT, =T|s, : S, — Y. If ¢,,, them! singular value ofl" exists
then forn large enoughg,,, ., them™ singular value off;, will exist and

lim €,,, = €.
n—oo

Furthermore, ife,, ,, exists then it is a lower bound fey,.

Proof. | will prove this theorem in two parts. In part a) | will proveét if ¢, ,, exists
for somen = N € N thene,, ,, exists for alln > N and is a non-decreasing sequence
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that is bounded from above hy,. In part b) | prove using a contradiction argument that
em.n €Xists for some: € N and that,, , must converge te,,.
| will use the following notation in the proof:

B, ={veX:lolx<r)

Parta Let T and T, be as described in the theorem andAéte) and NV, (¢) be the
numbers of degrees of freedom at levelf 7" andT,,, respectively. Assume that
€m.n, EXISts and ety > n;.

Thenforall{¢1, ..., ¢n,, -1} C Y thereisa) € S,, N B; such that

Tn, =Tt ¢ span {1, ..., On, (-1}

Becauses,,, C S,,, forall {¢1,...,én, -1} CY we havey € S, N B, and

Tnzw = TQ/’ ¢ Spane{(bh cevy d)./\/’nl (6)71}'

Therefore,

Ny, (€) > Ny, (6) Ve > 0. (4.5)
Because

E<i5171nf’n1 N, (€) > m (4.6)

we haveN,, () > N, (e) > m for e < ¢, ,,. Hencee,, ,, must exist.
From the definition of generalised singular values, we haumaton [4.5) and

Sup5>5m,n2 NnQ (6) <m-—1
If €0, > €mn, then there exists an such that,, ,,, > € > ¢, ,,. Therefore,

No(61) =m>m—12> N,,(€).

This contradicts equatiofi{4.5). Therefarg,, < €.n,-

The same argument used above shows that if exists therg,, > ¢, ,,. There-
fore, if ¢,,,, exists forn = n; € N thene,,, iS a non-decreasing sequence in
n > n;y that is bounded from above lay,.
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Partb By part a, ife,,,, exists forn > n; then because,, ,, is a bounded monotonic
sequence im it must converge to some, < ¢,,.

Now there are two situations to consider. Firsty,, might not exist for any
n € N. Secondlyg,, , might exist for some: but the limite], might be strictly
less tharx,,. We consider the two situations separately and arrive addhee set
of equations. We then show a contradiction to this set of egs

Situation 1: Assume, to arrive at a contradiction, that, does not exist for any

n € N. Then
N,(e) <m —1 Vn € NandVe > 0. 4.7)
From the definition of degrees of freedom, there exist conista< 3 < ¢,, such
that
Ny(a) <m—1 VneNand (4.8)
N(B) > m. (4.9)

Situation 2: Assume, to arrive at a contradiction, that < ¢,,. From the defini-
tion of generalised singular values we know,

SUDc>,, , Nu(€) <m —1 and
infee.,, N(e) >m

Because,, ,, < €, we know that there exist numbersindg, e/, < o < 5 < ¢,
such that

Ny(a) <m—1 VneNand (4.10)
N(B) > m. (4.11)

Therefore, in both situation 1 and situation 2, we need tegtoat equation§{4.1.1)
and [4.ID) cannot be simultaneously true.

Because€l’ is compact, I’ B, is totally bounded [48, ch. 8]. Therefore, for all
T B, has a finite:-net. Hence there exists a set of vectf§s ..., {p} C B; such
that for allp € T'By, there exists @, 1 < p < P with

00—«

6 —Télly < =5 (4.12)
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Now, becausé;, 1, ...} is a complete Schauder basis forand becaus® <
00, there exists a numbeY such that for all, > N and for allp, 1 < p < P,
there exists &, ,, € S,, N B; such that

0 —«
— Spn . 4.13
pr fp, HX < 2”TH ( )

Therefore, for ally € T'B, and for alln > N there exists @,1 < p < P and a
&m € Sn N By such that

||T§p,n - ¢||Y = ||T§p,n - Tgp + Tgp - ¢||Y
< |NT€pn — Ty + 1T, — olly (Triangle Inequality)
< 76— &)y + 75 (cquationZT2))
< HTy\gn_Tﬁ‘ +h 5 ¢ (equation[ZI3))
- f—a. (4.14)

From equation[{4.10) and the definition of degrees of freedeenknow that for
all n € N there exist vector§e, ,,, . . ., ¢m—1,,} C Y such that

¢ espan, {d1n, ..., 0m-1n} YEE€T(B1NS,). (4.15)

But, from the definition of degrees of freedom and equafla$we know that
for all n and all vectors{¢, ,,, ..., ¢,—1,} there exists a vectap € 7B, such
that

¢ ¢ spang{d1n,- - Pm-1n}-

From equation[{4.14) we know that for all> N there exists &,,, € S, N B,
such that

||¢ - Tgp,n” < B — Q.
Therefore, for allh > N there exists g, ,, € S,, N B, such that
Tpn & span,{@1n, - - P10} (4.16)

This directly contradicts equation {4115). Therefore;,ifexists thery,, ,, exists
for n large enough and

lim €,,, = €.
n—oo
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The theorem shows that if the domain of the operator has somelete Schauder
basis then we can calculate the generalised singular vafitee operator restricted to
finite dimensional subspaces and as the subspaces get biggal approach the gen-
eralised singular values of the original operator. Moregae theorem also proves that
the generalised singular values of the finite dimensionatatprs provide lower bounds
for the original generalised singular values. We, howeweed a practical method of
calculating the generalise singular values of linear dpesadefined on finite dimen-
sional normed spaces.

Let X, Y be two finite dimensional Banach spaces andletX — Y be a linear
operator. Suppose,...,¢, are the generalised singular valuesiof DenoteB; =
{z € X :||z]|x <1} and let

¢ = sup |Tz]y.
reBy

Then for alle > €]

e > sup |[Tally
rEBy

and for alle < ¢/, there exists an € B; such that|Tz||y > e. Therefored;, = ¢, the
first generalised singular value 6f Suppose for ease of argument that e N (e)

p (i.e. ¢, is not a repeated singular value). Therefore, foea [¢,1,¢,), /\/’(e)
Now for eache € [e,1, ¢,) there exists ¢, }”_; € Y such that

P-

sup inf [Tz — Zazwlﬂy <e.

reBy {az i=1

Let ¥, . denote the set of all sefs); : |||y < 1}7_; that satisfy the above equation
for a givene € [e,11,€,) and let

v, = U U,..

€€lept1,6p)

Suppose the setg,, ..., ¥, have been chosen as above. Then

inf sup 1nf T — a;\; = €p11-
{wl}z 1€Y, 2By {ai}? i=1 { Z } !

To prove this lete,,, denote the left hand side of the above equation. We show by
contradiction that,,, < ¢,,,. Otherwise, let € (¢, ,,¢,,1). Then because> ¢, ,,
we know that there existsfa); }?_, such that

sup mf xr — a;\;
reBy {‘11 i=1 { Z }
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If this is the case theW'(e) < p. But we know from the definition of generalised
singular values that i < ¢,,; thenA/(¢) > p + 1. This is a contradiction and proves
thate, 1 < E;H.

To prove the converse, suppose, to arrive at a contradjdtiane;,, , > ¢,,;. Let
€ € (6p41,€,,1). ThenN(e) = p. Therefore there exists a set of functidns};_, such

that
P
sup inf T — a; o; < €.
reB; {ai}€:1 { Zzl }
Therefore{¢;}!_, € ¥, . C ¥,. Hence,

P
inf  sup inf T — a;p; <€
{iYi_1€Vp ze By {ai}]—, { ; }

By definition, the left hand side of the above equatiodis and this contradicts the
assumption that € (e,1,¢,,,). The following theorem summarises the above result.

Theorem 4.2.Let X, Y be two finite dimensional Banach spaces and/letX — Y
be a linear operator. Also leB; be the closed unit ball itk and suppos&,, is defined
as explained above. Then,

sup [|[Tz|ly = &
rEBy

and ife, is not a repeated generalised singular value then

p
r — E a;\; = €p+1-
i=1

The above theorem characterises the singular values irstefra maximisation
problem over a finite dimensional domain and one can useaewel-know maximi-
sation methods to calculate the generalised singular saldewever, it is difficult to
check whether a given set of functiofg; }_, is an element o,.. | therefore use the
following algorithm to calculate bounds on the generalisegular values.

SupposeX,Y,T : X — Y andeq, ..., ¢, are as defined above. Let

{0y €Yy zeBy {ai}i_,

inf  sup inf {

€)= sup || Tx|y.
reEBy

BecauseB; C X is a compact set anfil- ||y andT" are continuous, there exists an
x1 € By such that|z, ||y = €;. Choose)y = T'x;.
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Now suppose), ..., 1, have been chosen. Then let

p
sup inf T — a;\W;
reBy {ai}f:1 { ;

Again, becausé?; C X is a compact set angl- ||y and7" are continuous, there exists
anz,.; € B such thatr,;, attains the maximum in the above equation. Choose
Vpi1 = Tryy . Comparing with theorei 4.2 we note thatis an upper bound for,.
Itis an open conjecture as to whetkgr= ¢,,.

In this algorithm, instead of searching over all possiblis $&,} ¢ ¥, we select
a special set that is in some sense (it is the image of theB; that maximises equa-
tion (41T)) the best possible set to use. This choice istissbecause otherwise the
calculation of generalised singular values becomes todeusome (one needs to find
the set¥, before calculating,,.) Note however, that the above algorithm gives the
right value fore;. In the next section, | use this algorithm to calculate agpnations
for the generalised singular values of some specific spasimeéform channels.

} —d.. (4.17)

4.3 Software design and techniques used for numerical
simulations

In this chapter | present the results of numerical simutetiol describe the software
used for the simulations and several techniques that am toseeduce the running
time of the simulations are also discussed. All simulativese done in two dimen-
sions because the number of grid points required to do strookin three dimensions
makes it infeasible to do computations over distances greéaan a few wavelengths
(c.f. eg. [37] and [31], where simulations were also donenaia timensions). In this
thesis, Finite-Difference Time-Domain (FDTD) simulatsowere used to calculate the
electromagnetic field in the presence of reflective scaiere

In order to calculate the degrees of freedom of SWCs, onesneedalculate the
generalised singular values of the compact operators in SWIis is a direct con-
sequence of the definition of generalised singular valuasordler to calculate these
generalised singular values we use several theorems piroeedier chapters. Suppose
T is the transmitting volumeii is the receiving volume, is some instant in time and
(X4, YR, I') is an SWC. The essential idea involved in the calculatiorhefgener-
alised singular values is:

1. Let{x;}, be a Schauder basis f@f (7, C*). Then we know from the second
corollary to theorerh 213 thdix; }3°, is also a Schauder basis &, .

2. Letl', = I'lgangx,yv,- Then we know from theorein 4.1 that the generalised
singular values of’,, approach those df asn — oo.
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3. We can use any convenient, finite subset of a Schauder dfgi¥(7, C?) to
calculate approximations of the generalised singularesabfT".

In this thesis, | assume that the source and receiver ard@maaestricted to square
areas of sizé A x 1\ or 2\ x 2\, where\ is the wavelength (see eg. [37] where a similar
assumption was made). | divide the transmitting and resgigquares into several
smaller squares and use functions that are non-zero on ote @imaller squares to
form a subset of a Schauder basis for the space of transgnéttid receiving functions.

The task of finding the generalised singular values can beisfw three compo-
nents. Firstly, one needs to find the orthonormal sourcetifomein X, from a finite
subset of the chosen Schauder basis using the Gram-Schetitibadn This step is only
required for the finite energy case. It is easy to use exigdlafjab routines to cal-
culate singular values of compact operators defined on filmensional spaces once
the channel operator has been specified as a matrix expresseins of orthonor-
mal bases. In the finite power case, the space of source dasatioes not necessarily
carry an inner product structure and therefore we need telde\alternative algorithms
to calculate the singular values as explained in the prevgaction. Secondly, one
needs to calculate the received field for each one of theqoaimal) source func-
tions in the presence of randomly placed scatterers. Kioak needs to calculate the
transfer matrix in terms of the Schauder bases for the scamdereceiver functions
and calculate the singular values of the operatpr The first two tasks were com-
pleted using programs written {@++ and the last one was undertaken udihgtlab
in the finite energy case and++ in the finite power case. The source code used
for these programs can be found on the attached compact didevnloaded from
http://users.rsise.anu.edu.au/ ~somaraju |

The interactiveC++ program consist of five files and allows the user to calculae t
orthonormal source functions and the received field. Ségettngs such as loss resis-
tance and simulation domain size can be set interactivétydstarting the simulations.
The functionality of different files in the program is brie@iplained below.

mai n. cpp: The program execution starts in the functimain()  within this file.

field.cpp,field. hpp: These files are used to define theld object. This
object is used to calculate the electromagnetic field fovargset of sources and
scatterers possibly in the presence of a perfectly matchest (PML) (see sub-
section4.3P). The field object allows the user to speciéysimulation region,
step sizes, the number of randomly placed scatterers inrthéation region and
the position of all the sources and their magnitudes. Oneatamspecify if the
simulation domain has a PML. Once all the above have beenfigokt¢he sim-
ulation can start and the field object can be used to calctiiatelectromagnetic
field aftern time steps by calling the functidimeStep(int n)
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fieldwutil.cpp,fieldwutil.hpp: These files contain several utility functions
that can be used on objects of firdd  class.

grantchm dt . cpp, grantSchm dt . hpp: These files are used to calculate the or-
thonormal source functions. The basis expansion of th@odimal source func-
tions in terms of the subset of the Schauder bésj$:°, is stored in a file. See
subsectio 4311 for a more detailed description of therdlyos used in this file.

recei ver Fi el d. cpp, recei ver Fi el d. hpp: These files are used to calculate
the field at several randomly placed receivers in the presehandomly placed
scatterers and the calculated fields are stored in a file. B=estio 4312 for a
more detailed description.

sval Cl ass. cpp, sval d ass. hpp Objects of this class are used to calculate the
generalised singular values in the finite power case asieglén subsection4.3.3

genSval . cpp, genSval . hpp The functions in this file are used to perform the
maximisation routines for calculating the generalisedsiar values. Functions
from the the GNU scientific library are used to perform the mmasation (see
http://www.gnu.org/software/gsl/ ).

sval . m The matlab filesval.m uses the orthonormal basis expansion and receiver
fields calculated using th@é++ program to evaluate the singular values of SWCs
in the finite energy case.

4.3.1 Calculating Orthonormal Source Functions forXy,,

Suppos€x;}5°, is an orthonormal basis i6%(7, C*). Then the sefx;}°, is a com-

plete Schauder basis forr,, with respect to the nornj - || (see theoreri2.3).
)

However, the functions are not orthogonal with respect ®itimer product-, -)

X1,
where,

<J1,J2>)?T’t0 =L+ with

Ii = Rips [} [ 35 (x, )35 (x, t)drdt and
[2 = € erzt ET(I‘, to)EQ(I', to)dr + i erzt H>(1((I'7 to)Hg(I‘, to)dr.

The source functiongx; } ¥ ; need to be orthonormalised with respect to the inner prod-
uct(-,-) g, using the Gram-Schmidt process.
>to
In order to calculate the inner produgt; , XQ))?T for a given time instant,, one
)

needs to calculate bothh and/, in the above equation. However, to calculatgone
needs to calculate the fields generated by the source fasaictime instant, in free
space. Therefore the simulation region needs to be as blgeadigtance travelled by
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light in the timet,. This makes the simulation region extremely large and tmeerical
computations take a great amount of time. We can howevenesthat the sources are
contained in a cell made of a perfect electric conductor.pSeg(Y’ is such a cell and
Q. . is the interior of this cell. I7} is defined by

* 1 *
Ié = €p / Ell (I‘, tQ)EIQ(I', to)dr + — Hll (I‘, tQ)H,Q(I', to)d[‘,
QeatNSY,, Ho J Qe ,

thenl; + 1), defines an inner product on the space of source current enskiere,
E. andH are the electric and magnetic fields generated by the sodfdes: = 1,2
that are contained within the cell’. Now, the norm defined by this inner product
gives the total energy radiated by the sources. Becausetfexpelectrical conductors
absorb no energy, this norm is actually equal to the normaediby the inner product
()%, o Therefore we can tell from the parallelogram law for inneoducts that

I, = [;. Because the perfect conductors are also perfect refleat@lectromagnetic

radiation, the field outside the conductors is zero. Theegfae can reduce the total
simulation region and speed up the calculation of the oxdhoal source functions by
using/} instead ofl,.

4.3.2 Calculating the Receiver Field

FDTD simulations using the Yee scheme [50] are used to alethe field at different
receiver locations for a given source function (see eg. $8])- Sixteen points per
wavelength were chosen in each cartesian direction to nsrithe effects of numerical
dispersion (see eg [52]). In order to maximise the distaeteden the transmitting and
receiving volumes, it was decided that Perfectly Matchegeks(PMLs) be us&z{56].
PMLs are absorbing layers that do not reflect any of the ele@gnetic waves that are
incident upon them and the magnitude of electromagneties/eeduces exponentially
as they travel in the PML. Also, reflective scatterers weeeg@dll at random locations
in the simulation region. The reflective scatterers were alaced within the PML.
This enables one to model the effect of distant scattererause the PML reduces the
magnitude of the electromagnetic waves and the total emeflpgeted is very small. The
received field is calculated at random positions within iheuation region. FigurE4l2
on pagd @B shows an example of a typical simulation region.

4.3.3 Calculating the Generalised Singular Values

In the finite energy case, the spaces of source and receivetidas are Hilbert spaces.
Therefore, as was proven in theorEm 3.5, the generalisgdlainvalues of the channel

2Also see [52,55]
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operator are equal to the traditionally accepted notiohefingular values of compact
operators defined on Hilbert spaces. There are several welk methods that can
be used to calculate these singular values andvthtab function SVDis used to
calculate these singular values.

In the finite power case, the space of source functions ismutreer product space.
Therefore a new program was written@++in order to calculate the generalised singu-
lar values. SupposeXr, Xg,I') is an SWC andx;}2, is a complete Schauder basis
for X, andT,, = Il gpanix,yn, 1S the restriction of” to the span of the first vectors in
the Schauder basis. Then we know from thedrerh 4.1 that tigellsinvalues of",, are
approximately equal to those bBffor n large enough. Therefore, we only need to calcu-
late the singular values of the operalyr. The algorithm described after theoreml 4.2 is
used to calculate these generalised singular values andgsbkts of these calculations
are presented in the following section.

4.4 Results and Discussion

The singular values of various SWCs were calculated. Thecsaesistance, number
of scatterers and the receiver and scatterer locationswaeird and the results of these
simulations are presented in this subsection. The sinomigivere performed under the
following conditions (see figuie4.2 on pdgéd 68):

1. Because we are performing the simulations in 2D, the gsuand scatterers were
assumed to be invariant in thedirection and only transverse magnetic fields were
considerell The sources and receivers were assumed to be restricteithto w
squares of sizeB\ x 1A or 2\ x 2.

2. The total size of the simulation regionlié\ x 256\ (c.f. Xu and Janaswamy [37]
where the simulation region is of a similar size). It was dedithat 16 grid
points be chosen per wavelength in order to minimise theeffiedispersion (see
eg [52]). The simulation region was surrounded by a PML afkhes2\ which
proved to be sufficient to absorb all the incident electronetig waves.

3. The center of the source was always locatethat 8\. Ten receivers were placed
at random locations in the half of the simulation region tthidt not contain the
source. A variable number of scatterers were placed bothmihe simulation
region and in the PML. The scatterers were assumed to becigré®nducting
materials of variable length betweéh and4 ). The exact form of the scatterers is
not important because we are using them to create a riclegogtenvironment.

3Reciprocity between the electric and magnetic fields shias éxactly the same behavior can be
observed for the transverse electric case.

65



Figure[4.B on page®$9 shows the first twenty singular valuestgpical SWC in
the finite energy case. In this figure, the field was calculatetil0 randomly placed
receivers. Hundred scatterers were randomly placed inithelation region and the
loss resistance was assumed to5be The error bars indicate the variability of the
singular values for different receivers. The number of degrof freedom for this SWC
at level10~* is about 6.

This behavior is typical of all the SWCs that were simulaféd.’knee’ type behav-
ior is detected for any of the simulations performed. Thewesal dimension of all the
simulated channels is 1. This is similar to the behavior joted by Xuet. al.[37] and
other numerical results [34,36]. Notice that the ‘knee’aygehavior is only observed
in analytic evaluations of singular values of channels wplecific assumptions made
about the sources and/or scatterers [25,26,28,31]. Famnios, in Bucckt. al. [25] it
was assumed that all sources and scatterers were condttaiaeball of radius:. In
Miller [26] it was assumed that the sources and receiver®e wastangular prisms. In
Poonet. al. it was assumed that the scatterers coupled the electrotmagjekl from
the source to the receiver only if the source radiation wdkiwsome solid angle (see
sectiorLh).

Figure[4.%# on page_¥0 shows how the singular values changevaiiying loss re-
sistanceR;, s In the finite energy case. As expected, as the loss resistacreases, the
generalised singular values decrease. This is becauseofitbstenergy is lost as heat
in the transmitting antenna. The energy lost as heat is caabfeato the energy radiated
if the loss resistance is abou21Therefore, below this value of loss resistance, the total
energy radiated dominates and there is little change inittgukar values as the loss
resistance changes.

Figure[45 on page¥1 shows the behavior of the singular salith increasing
number of scatterers in the finite energy case. As the nunf&ratterers increases,
the singular values reduce in magnitude. This is explaihede examines the physi-
cal situation modeled by the simulation region. Reflectea@tterers that are randomly
placed between the source and the receiver ensure thataflacgion of the energy is
reflected. Therefore, the total energy in the receiver isced. However, the amount
of reduction in the magnitude of the singular valagseduces with increasing. This
indicates that there are a greater number of reflected sigméhe path with increasing
number of scatterers. Therefore, the smaller singularegahre effected less by the
increasing number of scatterers due to the presence ofpteuléflective paths.

Figure[4® on page¥2 shows the behavior of the singular sdtrezero loss re-
sistance in the finite energy case. In this case the singalaes show a similar be-
havior to the case where the loss resistance is not zero. iFlusntrary to what is
predicted by Wallace and Jensen [43]. If the norm on the sphseurce functions is
given by the total power/energy radiated the resulting ajoerof the SWC need not
be compact. Therefore, the singular values should not gerto. ZHowever, because
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the channel operator is not compact in this case, the theasgidped in this thesis can
not be used. Specifically, we can not prove that the sing@hares of the operatdr,,
approach those df. This is to be expected because the operBfodefined on a fi-
nite dimensional space is compact but the operatisrnot. Therefore we cannot have
lim, . ||I'» — T'|| = 0 because the uniform operator limit of a compact operatort mus
be compact.

Figure[4Y on pade¥3 shows the vaﬂ@sfor various values of loss resistance cal-
culated for the finite power case.df, is them!" singular value of the channel operator
I ande,,, ,, is them™ singular value of’,, thene/, is an upper bound fat,, .. The legend
shows the loss resistance in Ohms for different plots shovihe figure. The values,
were calculated by maximising the function in equation .. I'he maximisation was
performed by choosing a random initial vector and this pdoce was repeated several
times. The error bars in the graph indicate the maximum rahggfor different initial
vectors. As expected as the loss resistance increaggs smaller. It should be noted
that the loss resistance chosen was always greateibfhaifhis is because of the fol-
lowing: it is possible to get high concentrations of enengyismall receiving volume
R for arbitrarily small amount of radiated power (e.g. thinkaosource between two
perfect reflectors, so that all the energy ever radiated éystiurce is restricted to be
between the reflectors).

Therefore itis possible to have current configurations floick the radiated power is
close to zero. The total power radiated is calculated usaynthg’s theorem. In order
to use Poynting’s theorem one needs to calculate the veaidupt of the electric and
magnetic fields on a surface enclosing the source. Howeseause the Yee scheme is
used for FTDT simulations, the electric field is calculatedrdeger grid points and the
magnetic field is calculated on half-integer grid points.efidiore if the surface is on
the integer grid points then one can only approximate theneidgfield on the surface.
Therefore there is a small, but inevitable numerical ernat enters the calculation of
the total power radiated. This error is not significant wham lbss resistance is large
because the functions which radiate very small amount ofggnieut still concentrate
high amounts of energy in the receiving volume tend to hagk Amplitudes. Therefore
the total power lost as heat is high and this factor domirtaepower used by the source
functions. However, for small loss resistances, it is gieshat a numerical calculation
of the total power used to set up a current might be negatidetlais could result in
some absurdly large values for singular values. So diftexgres of simulations need
to be performed to study the performance of the channel fatlsemoss resistances.

“see section 4l 2 for a definition &f
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4.5 Chapter Conclusion

In this chapter | showed that it is possible to use pertuobatineory to calculate the
essential dimension of the scalar waveform channel stuoyeililler [26]. But, as
it is generally not possible to analytically calculate tlegkes of freedom, numerical
techniques are required. In this chapter | prove that if tened space on which the
compact operator is defined has a complete Schauder basis/éhean use numerical
techniques similar to Galerkin’s method. | proved in theoi&] that the singular val-
ues of finite dimensional approximations of an operator aggn those of the original
operator if the domain of the operator has a complete Schdadés. | also developed
an alternative formulation of singular values in theofel #hat is more conducive to
numerical calculations. Numerical simulations were panied in both the finite energy
and finite power cases using the finite-difference time-dor(f@DTD) method and the
simulation results were presented in seclioth 4.4 The maitribations of this chapter
are:

1. Used perturbation theory to analytically calculate theeatial dimension of a
scalar waveform channel.

2. Developed a numerical technique to calculate normedespaceralised singular
values.

3. Numerical results of simulations were presented.

74



Chapter 5

Uncertainty Principles for Energy
Concentrations

Uncertainty Principles (UPs) have gained great populaiitge Heisenberg [57]. The
famous original example is Heisenberg’s Uncertainty Rpiec it is impossible to ex-
actly measure the locaticand the momentum of a particle simultaneously. This is a
special case of a more general framework, which may be fatadl(via various Hilbert
space techniques) to apply to a wide range of scenarios.

In a communication theory setting, a similar uncertaintyngple has been well
known: that a signal cannot be arbitrarily confined in bothetiand frequency. The
reader is directed to Slepian [49] for a discussion. The wafkLandau, Slepian and
Pollak [27,30,58] has formalised this result, althoughhatit explicit reference to the
operator theoretic nature of the probﬂarﬁimilar to the classical UP, one can generalise
this UP to arbitrary operators on Hilbert spaces as wells Bleineralisation is particu-
larly pertinent to SWCs. We shall pose the following questiéiven a signal (source
current) which has energy in one voluriig, how well can we constrain a function
(electromagnetic field) of that signal to have energy in &eotvolumel/z?

The remainder of this chapter is arranged as follows: Ini&eBi] | collate clas-
sic results on uncertainty and formulate UPs in terms ofatpetheoretic terminology.
Sectiorf5.R develops an Uncertainty Principle for commation between volumes with
a particular form of operator channel. In sectiod 5.3 | praws®cond uncertainty prin-
ciple and explain its interpretation in a communicatiorotiyesetting.

5.1 A Review of the Uncertainty Principle

Before explaining the Uncertainty Principle, we develomsaelevant notation.

Landau provides some work in this regard [27].
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5.1.1 Notation

Following Selig [29], letH be a Hilbert space with inner produgt-) and norm|| - || =
(-,-YY2. Further, letA be a linear operator with domaiR(A) C H and range in
H. We then define the normalised expectation valug,/) and standard deviation
(uncertainty)g 4 (f) of the operatord with respect tof € D(A) to be [29]

_ (AL
Ta(f) = 7. 1) (5.2)
oa(f) = A =7alh)SII (5.2)

If the domain of some operatot is dense irH then we can define its adjoist using
the following equation [48]

(Az,y) = (v, Aly) Yo € D(A),y € D(A"). (5.3)
The domain ofD(AT) consists of vectors € H such that the function
y — (z, Ay)

(which is a linear map defined on a dense subset)at a continuous linear functional.
Furthermore,A is said to be Hermitian or self-adjoint # = Af. Therefore, for a
self-adjoint operator

(Az,y) = (z, Ay) Vz,y € D(A). (5.4)

Any operator that obeys equatidn{5.4) is said to be symmeditote that it is possible
that an operator is symmetric but not self-adjoint if its domai(A) is not dense in
H.

Given two linear operatord and B with domainsD(A) andD(B) respectively, the
commutator is defined as

[A,B]= AB — BA
and the anti-commutator is defined as
[A,B]y = AB+ BA

with domainsD(AB) N D(BA) for either one. The operatord and B are said to
commutewith each other if A, B] = 0. Otherwise they are called non-commutative
operators.

Also, let L*[R] be the set of all square integrable real-valued functiorfineid on
the real line with norm| f||, = (f, f)*/?. Here the inner produdt, -) is defined as

(f,g) = / " fgD. (5.5)
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We can now think of| f||2 as the energy of the functigh€ L?[R]. The angle between
two non-zero functiong andg is defined as

o COS_l §R{<f7 g>}
O 9) = o gl (5.6)
We also define
fw>=[ff@wiwm: (5.7)

to be the fourier transform of(z) whenever this integral exists.

5.1.2 The Classical Uncertainty Principle

The classical uncertainty principle states that the caeotivalues of two non-commuting
observables such as position and momentum cannot be pyeditermined in any
guantum state. That is, the standard deviation of two nanreoting operators cannot
be made arbitrarily small simultaneously.

Theorem 5.1.1f A and B are two self-adjoint operators on a Hilbert spaté then

(A~ ) F (B ~ )£l = S{A, BT, )

forall f € D(AB)ND(BA)andalla,b € R. Equality holds precisely whe — a) f
and(B — b) f are purely imaginary scalar multiples of one another.

Selig realizes that the only property of self-adjoint op@rsirequired in the proof of
the above theorem is given by equatibnl5.4). He therefdogmailates theorein 3.1 in
terms of symmetric operators.

Theorem 5.2. [29, theorem 3.4] IfA and B are two symmetric operators on a Hilbert
spaceH, then
1
I(A=a) fIlI(B =) f]| = S{I{[A, BIf, /)
+|([A—al, B = b f, f)P}?

forall f € D(AB)ND(BA) and alla,b € R. Equality holds precisely whe — a) f
and(B — b) f are purely imaginary scalar multiples of one another.

Proof. Let A, B,a,b and f be as stated in the theorem. From the Cauchy-Schwarz
inequality we have

20(B =)A= a)fll = 2{(B = b)f, (A = a) )]
=2[S{{(B-b)f.(A=a)f)} +
R{U(B —b)f. (A~ a) )} (5.8)
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Here,®{-} and{-} denote the real and imaginary parts of a complex number. We ca
evaluate the real and imaginary parts@B — b) f, (A — a) f).
2S{((B =), (A= a)f)} = (B=f.(A-a)f)
~{(A=a)f.(B=b)f)
=((A=a)(B=0)f,[)
—((B=0)(A=a)f[)
= ([A—al,B—=bI|f, f)
= ([4, BIf. f) (5.9)

The symmetry of the operators is used in the second step arfddhthat scalar multi-
plication commutes with all linear operators is used in #st.|Also,

2R((B=b)f,(A=a)f) =((B=0)f,(A—a)f)
+{(A=a)f,(B-b)f)
—([A—al,B - bI.f, f) (5.10)

Substituting equation§{5.110) aid {5.9) into equation)(prBves the theorem. [
Theorem &R is valid for arbitrary values efandb. However, the left hand side

of the inequality in this theorem is minimized if and b are the magnitudes of the
projection vectors ofd f and B f onto f, respectively. That is

_ _afll = _(AfD
min [Af — af|| |Af T il
= ||Af —7a(F)f]]
= oal(f)

Note thato 4 (f) is the uncertainty (standard deviation) of the operatoTherefore we
obtain the following special case of the UP.

Corollary 5.2.1. [29, Corollary 3.6] If A and B are two symmetric operators on a
Hilbert spaceH, then

oa(Non(f) = 5\/I(A, BIF, )+ 400vs()

forall f € D(AB) N D(BA) and alla,b € R. Equality holds precisely whefy —
Ta(f))f and(B — 75(f)) f are scalar multiples of one another.

Here, the covariance of the operaterandB is defined as

covag(f) = %([A —71a(f)I, B —15(f)I]+f. f)
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Heisenberg’s Uncertainty Principle

The first UP discovered by Heisenberg is a special case ofl@ayr&.2Z1. We can
derive Heisenberg's UP by substitutidg = - f, the position operator anélf = —if’,
the momentum operator into corolldry 512.1. Héee /—1. Making this substitutich
and noting thatA, B]f = if we get

oa(Nos(f) = 5y/lABIf, )P + 400V, (1)

>S4, BI1. )]
L.
= Slir

1 2
= Sl

Here,o4(f) andog(f) are the uncertainties in position and momentum respegtivel
Note that equality is attained iffA — 74(f))f and(B — 75(f)) f are purely imaginary
scalar multiples of each other (see Theofenh 5.1). That is

—if'(x) — () f(2) = ir(x — 7a(f)) f (2)

andr € R. Therefore, f(x) is a complex gaussian function:

f(SC) — Ceiba:e—r(ar—a)z/Q

for somec € C andr > 0. Herea = 74(f) andb = 75(f) are the expectation values of
the position and momentum operators respectively.

Heisenberg’s principle shows that a quantum system desthly a wave function
f cannot have precise values for position and momentum atatie sime. This prin-
ciple is often stated in terms of a function and its fouri@ansform as explained in the
following theorem .

Theorem 5.3. [29, theorem 6.1]] Letf € L(R), || f|| = 1 and set
v = [alf(@)Ps
o = [ulfPds
Mo = [@—n i)k
Bo = [(-wfifw)lde

2We can make this substitution because both operators amasiin.
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whenever these integrals exist. ThAnAw > x/2, where equality is attained iff
f(x) = (r/m)VAeiwore=re=2)"/2 for anyr > 0.

The theorem is proved trivially by noting that;(f) = Az andog(f) = Aw/2m,
whereAf = -fandBf = —if' [29].

This theorem gives valuable insight into how localized acfion can be in both
time and frequency. If one definésr and Aw to be the root mean square (RMS) mea-
sure of approximate time duration and bandwidth of the djgeapectively, then the
theorem says that the product of time duration and bandwat#function is bounded
from below byr /2. Therefore, if the time-spread gets very small, the frequespread
must be large and vice-versa. It therefore validates ouitiah that a function cannot
simultaneously be both time and frequency limited.

Though a very good qualitative tool, this theorem is inadeguor the purposes
of signal processing. The theorem does not for instance emthe question, given a
bandlimited function (i.e.f(w) = 0 for w ¢ [—£,€]), how much of the energy of
f is ‘concentrated’ in any finite duration of time. This would bseful in answering
the question: “given a bandlimited channel, how much of thagmitted signal can a
receiver measure over a finite period of time?”

5.1.3 An Uncertainty Principle for energy concentrations

Landau and Pollak propose that for the purposes of signaegsing, a more rele-
vant uncertainty principle should use sharper measuresmafentrations in time and
frequency than the one used in Heisenberg’s principle [BOJhelp derive their uncer-
tainty principle [30] defineD = {f : f € L*[R], f(t) = 0 V|t| > T//2} to be the class
of all time-limited functions and3 = {f : f € L?[R], f(w) = 0 V|w| > Q} to be
the class of all band-limited functions. Herf(w) is the fourier transform of (¢) as
defined in equatiori{d.7). AlsB, the time duration antl = /27, the bandwidth are
fixed for the remainder of this chapter. It is easy to prové {b&8tD and5 are complete
subspaces af?[R].

We can therefore define the projection operatBrs L*[R] — L2[R] and D :
L?[R] — L*[R] as follows

Df(t) = {fg?’ migg (5.11)
Q
BIW) = o /_ Fwpeds (5.12)

Note that the ranges of operatabsand D are B and D, respectively. Using these
operators we can calculate the fraction of energdypf any functionf € L?[R] in the
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finite duration of timg—1"/2,7'/2].
DfII3
o _IDflg
/113

Similarly, we can calculatei?, the fraction of energy of a function in a finite bandwidth
[_Qa Q]

(5.13)

1813
713

Note thato, 5 < 1.

6% = (5.14)

Prolate Spheroidal Wave Functions

Slepian and Pollak [58] show that the prolate spheroidattions are eigenfunctions of
the finite fourier transform and discuss several interggtitoperties for these functions.
In the following | motivate the usefulness of these funcsi@md list some of their key
properties.

A special case of the UP for energy concentrations arises wieechoose the func-
tions to be time-limited, i.ef € D or equivalentlyn = 1. The UP then puts constraints
on the valueg can take as explained in the following theorem.

Theorem 5.4. Let f(t) € D. Then,3* = || Bf|l3/Ilfll5 < Xo. Equality is achieved
if and only if f(t) = cDiy(t), whereyy(t) is an eigenfunction corresponding to the
largest eigenvalue, of the integral equation

T2 sin Q(t — s)
Af(t :/ —=f(s)dt (5.15)
(t) 7= 9) ()
andc is an arbitrary multiplicative constant.

Proof. Let f(¢) and be as stated in the theorem. Then,

BI(t) = o e s

T/2 '
- / / e s
T/2

T2 sinQ(t — s) s
/T/2 m(t —s) fs)d
Because,
/°° sin Q(t — u) sin Q(u — s) du = sin Q(t — s)
reo T(t—=u)  w(u—s) m(t —s)
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we have

IBFOIE = /“7Bﬂ>Bf@wt
_ / /T/Q/T/zSmQu_t)st(t_S)f(u)@dudsdt

T/2 J-T/2 (u—t m(t —s)

= [ [ ) ) P

T/2 J-T/2 m(u — s)
It is well known that the maximum value of the right hand sigl2, the largest eigen-
value of the integral equatiof(8]15) [59]. The maximum taiatd whenf = cD1)
is the time-limited version of the corresponding eigentiorc Here,c is an arbitrary
multiplicative constant. Note thdtis proportional toD), and not toy, because), is
not time-limited. 0

We can conclude from this theorem that the time-limited fiomcthat has the great-
est fraction of energy in the finite bandwidti is cDvy. From the symmetry of the
fourier transform, we can also deduce that the bandlimitedtfon that has maximum
energy in the finite time interval-7/2,T7/2] is g = chE We therefore have the fol-
lowing corollary.

Corollary 5.4.1. Let f(t) € B. Then,a? = ||Df||3/]If|I3 < A\o. Equality is achieved if
and only iff(t) = cio(t), whereyy(t) is an eigenfunction corresponding to the largest
eigenvalue\, of the integral equation

T/2 Ot —

A(t) = / St = 5) (5.16)
—T/2 7T(t — S)

andc is an arbitrary multiplicative constant.

The integral equatio{5.115) is the defining equation fottedate spheroidal wave
functions. Therefore they play an important role in the wsialof time/frequency lim-
ited functions. Slepian and Pollak [58] prove that thereseaicountably infinite set of
functionsy(t), 11(t), ¥2(t), ... and a set of positive real numbexg > A\, > Ay > ...
that satisfy the integral equatidn(5l 15), that is

T2 sin Q(t — s)
)\iit:/ ———Yi(s)dt 5.17
SR e e O (5.17)
Equivalently, we can write this equation in terms of our gpersB and D

Aithi(t) = BDyy(1)

3In fact the symmetry argument tells us that cBvy. But, it turns out thai)y is band limited, i.e.

B = 1o
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Hence,\; and); are eigenvalues and eigenfunctions of the oper&tDr respectively.
The functionsy; are called the prolate spheroidal wave functions. They lsaveral
interesting properti@s

1. The set of functiongy(t), ¢ (t),...} is bandlimited, complete i8 and or-
thonormal inL?[R]:

whereJ;; is the Kronecker-Delta.

2. The set of functiong Dv(t), Dy (t), ...} is time-limited, complete irD and
orthogonal inL?[R]:

This implies that the energy af; in the time interval—T"/2, T /2] is ;.

3. The dependance af; and \; on 7" and (2 has been suppressed in the notation
used. In facty;(t) = ¢y (t, T, c) andX; = X\;(c), wherec = QT'/2. The fact that
A; only depends of7T" and not ort2 and7" separately becomes significant when
one discusses the dimensionality of the time-bandwidtdyct

4. For alli, \; < 1. Also, the eigenvalues fall off rapidly to zero once- 2¢/m =
WT. Therefore, foi > WT,1); has little energy in the time-intervat7'/2, 7'/2].
Further, for fixed;, \; increases with increasing values«qsee [58] for tabulated
values of);). That is, the greater the time-bandwidth product, the tgrethe
concentration of energy af;(¢) in [-T/2,T/2].

For the remainder of this chapter tetdenote the prolate spheroidal wave functions and
let \; denote the corresponding eigenvalues.

The Uncertainty Principle

Let f € L2[R] be a nonzero function. We already know that= 12/l andg = ””
cannot simultaneously be equal to 1. Landau and Pollok [l?o@]vsthata andg cannot
simultaneously be arbitrarily close to 1. Specificallyytipeove

Theorem 5.5. [30, theorem 2] Let) < «, (3 < 1. Then there exists a functigh
L*[R], ||f]la = 1 with || Df]|s = a and||Bf]|, = §if and only if (o, 3) # (0,1) and
(a, B) # (1,0) and

cos ta+4cos 3> cost v/ o,

4See [30,58] for more details
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where) is the largest eigenvalue of the equation
M) = BD)

This theorem constrains the possible values ahdj because\, < 1 [58]. There-
fore, we can conclude that any function cannot have arbytdarge fractions of energy
in both a finite time duration and a finite frequency bandwidth

Alternatively, if 2 = 1 — 3% then f is said to be:-concentrated to the frequency
interval [—W, WW]. Similarly, if e = 1 — 3? then f is said to be;-concentrated to the
time interval[—7"/2,T'/2]. Also, f is said to have ‘fraction out of band energy’ (FOBE)
bandwidthi’ and FOBE time duratiofi’. The UP then impIieE

sin™' ¢, +sin e, > cos™! /A (QT)

The principle constrains the range of values the profXictan take exactly like in the
classical principle.

We will show in the next section that this theorem is a spexaak of a more general
theorem just like Heisenberg’'s UP is a special case of tresidal uncertainty principle
as alluded to by [30]. We show that this more general theomybeaused to understand
certain fundamental limits on communication through asoyt channels.

5.2 A General Uncertainty Principle

Though the UP derived in the previous section is for a fumctiefined on the real line
and its fourier transform, the principle can be extendechétude arbitrary transforms
defined orR™. To derive results similar to those in the previous two s&difor general
transformations we need to ask what are the essential piepef the operator® and
D. 1t turns out that the key property is that the subspagesd D form a nonzero
minimum angle. Before deriving these results, we explagnphysical model.

5.2.1 Physical Problem and Notation

Let 2" and# be two Hilbert spaces with inner-produgcts-) x and(-, -)y and norms
I-lx = (-, )Y and||- ||y = (-,-)i/*, respectively. Let : 2 — % be a linear operator
and let

~

f=rf. (5.18)

LetD Cc # and A C Z". Also letB = I'(A) be the image of the sed underT".
Physically, we can interpre®” to be a set of possible transmitter functions aido

5See property 3 of the prolate spheroidal functions in seffid.3
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be a set of possible receiver functions dndo be some operator which determines
what receiver function each transmitter function genasrateso, because of physical
constraints (e.g. transmitted signals must be bandlimttezltransmitter might not be
able to generate all the functions in the transmitter fuurcspaceZ’. So one can
interpretA to be the set of transmitter functions that a physical tratientan generate.
Therefore 5 is the set of functions that the transmitter can generateeateceiver and
will also be referred to as the space of transmitter funstio8imilarly, the receiver
might not be able to measure all functions that are in thewvecspace due to physical
constraints (e.g. received signals can only be measureddivate time-duration). One
can think of the seD as the set of functions that the receiver can measure and dewi
referred to as the space of receiver functions.

Let us also assume that the sBtandB3 are complete subspaces#t We can then
define projection operato® : % — % andB : % — % such thatD(#) = D and
B(#') = B. We can also define an angle between these two subspace®asfol

0B, D)= inf 0(f,q). (5.19)
feB,geD
J#0,97#0

Finally, given any linear operatdr : % — % we can define the operator norm

L
||L||Y = sup ” y”Y
vew |ylly
5.2.2 An Uncertainty Principle for arbitrary subspaces

One can think of| f||2- as the energy of a functioh € #. Thena? = || Df||3 /| f|?

is the fraction of energy of in the space of receiver functions aftil= || Bf||% /| 1|3

is the fraction of the energy gf in the space of transmitter functions. In order to prove
the Uncertainty Principle, we need the following lemma.

Lemmab.6.Letf, g, h € . Then,

0(f,9) <O0(f, h)+0(g,h). (5.20)
Proof. Let f = f/||f|ly andj = g/||¢||y. Then

LRSI lgllva))
0 = CoSs
(/:9) Flvlally

= cos T R{(,9))
~ 0(/.9) (5.21)
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Letd(f,g) # 0. Otherwise, there is nothing to prove. Also, let= span{f, g} be the
space of all functions spanned lfyandg. Then this space is complete and we can write
h = h/||h|y as [48]

h=hl+nt

whereh! € S andh! is orthogonal to bothf andg. Because|hll||y < |||y = 1 we
have

0(f.h) = 0(f.h)

v

(@]

O

53

—
=
—
==
—| =
~ =
——

= 0(f, ") (5.22)
Similarly,

0(g,h) > 6(g, Ll (5.23)
Now, if (g, hll) = 0 then the proof is complete becaue, g) = 0(f,§) = 0(f,hll) <
O(f, h) <O(f,h)+0(g,h).

If 6(g, ) # 0, let
he = By, (5.24)
b = L= luloh) (5.25)

(g — ha(g, ha)lly
be two unit vectors that are orthogonal to each other and evBpan isS. We can
therefore write,

A

f = a1ﬁ1+a2ﬁ2 (526)
g = bihy+ bahy (5.27)

wherea; = a +iaj,ay = ay +iay, by = by + ibj andby = by + b, are complex
numbers. From the orthogonality bf andh, we have

cosO(f, Y = d| (5.28)
cosf(g, by = ¥ (5.29)
cosO(f,9) = R{atby + aiby} (5.30)
= a}b + aybl, + alb] + ajby (5.31)
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Here,q; is the complex conjugate af.. From the orthogonality ok, andh, and the
fact thatf andg have unit norm, we have

af +ad+al+ap =1 (5.32)

VPV + 0y = 1 (5.33)
We can think of(a!, @), a%) and (b}, b, b)) as two three dimensional vectors. Then the
Cauchy-Schwarz inequality gives us

12 12 12 //2 //2 /2 "y AN ! 1/
ay” + ay” + as \/bl + by° + by > |ay by + aybly + aybh]

Here,| - | denotes the absolute value of a real number. Therefore,
1"y 1"y I _ 12 12 2 /12 112 /2
ay by + asby + ayby > al® 4 ai? + ak\/bF + bi= + b (5.34)
Now,
cos(0(f, h1) +6(g, hl) (5.35)
= cos(9(f, k') cos(8(g, h'))
—sin(6(f, b)) sin(8(g, b)) (5.36)
= ayb, — /1 — a2y /1 -1 (5.37)
= ab, — a4 ag? a4 g0 (5.38)
< ayb + ajby] + asbly + ayby (5.39)
= cos(0(f, §)) (5.40)

We get equatiof{5.37) from equatiofs{$.28) dnd {5.29).akqus [5.3R) and (5.B83)
are used to ge[{5.B8) and finally we use inequalify (5.34etq§.39). Now, from the
monotonicity ofcos, we have

6(f.9) < 6(f.nl) +6(3.n"). (5.41)
Substituting inequalitied (5.P2) and(5.23) into the abawe using equatiol(5.R21)
proves the lemma. ]

The uncertainty principle constrains the range of valuasdhand 5 can take pro-
vided the subspacésandD form a non-zero minimum angle.

Theorem 5.7.[The Uncertainty Principle] If the two subspac8sand D form a non-
zero minimum anglé, then

cos ' a+cos™! B> 6. (5.42)
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Proof. From the definition of( f, g) we have

R{{f.Df)}

IDflIv [ flly

R{DS, D)}

IDfIvIflly

1D fly

1f1ly
= Q.
We get the second step in the above derivation from the fatfte- Df + f — D f and
(f = Df,Df) = 0. Similarly we have = cos(0(f, Bf)). Therefore from lemmga35.6
we get

cos Ta+cos B = O(f,Df)+0(f, Bf)

cos(0(f, Df))

> 0(Df.Bf)

> bp.
We get the last step from the fact thatf € D andBf € B and these two subspaces
have the minimum anglé,. ]

We can calculate the minimum angle between the two subspgoesculating the
norm of the operatoB D and this is the subject of our next theorem.

Theorem 5.8. The angle between two complete subspdgemd D with projection
operatorsB and D is

0(B,D) = cos " ||BD|ly (5.43)
Proof. The angle between the two subspaces is given by
0(B,D) = inf  0(f,9) (5.44)
feB,geD
f#0,97#0
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Usingcos 6( f, g) from the proof of the last theorem, we can write
cosf(B,D) = sup R{(f.9)}

feB,geD
1flly=1,]lglly=1
- sup R{(Bf,Dg)}
fEY g%
Iflly=Lllglly=1
- sup R{(f, BDg)}
fEY g%
Iflly=1,]lglly=1

= [IBDlly
Here, we get the second to last step from the fact thet self adjoint and the last step
from the definition of the operator norm. O

5.2.3 Discussion

The UP in theore Bl 7 has a very simple physical interpaidiased on a very simple
geometric idea. If the space of all the functions that a tratier can generate and the
space of all the functions a receiver can receive form a mwa-minimum angle then
there exist no functions that can have arbitrarily largetfoams of energy in these two
spaces of functions. Also, one can find the minimum angle éetvthese two subspaces
using projection operators as explained in thedrem 5.8.

Note that becaus® and D are projection operators we have, 8rD # {0},
|Blly = ||D|ly = 1. Therefore,|BD|y < [|B|y||DP|ly = 1. If |BD|| = 1 then
the uncertainty principle is not very useful because fonadind 3 we havecos ™ o +
cos™' 3 > cos~ 1 = 0. So the theorem is only useful if we can prove th&D|y < 1
which is the case for the time-bandwidth problem considbyddandau and Pollak [27].

In order to find|| BD||y one still needs to evaluate the projection operaidendD.

It is fairly easy to do this for the projection operatorif the subspace’ is known. For
instance if% is L*[R] and if the receiver can only measure functions for a timextiomn
of T' seconds, then the projection operator can be defined as atieqiE.11).

There seems to be no general way in which one can define thecpomj operator
B. One exception to this is the case whéres compact. In this case one can use the
singular value decomposition (SVD) for the operatoto define the operataB. We
can write [47]

L= ) (- )xT(e))

J

= ;) () xt; (5.45)

J
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Here,q; is the j singular value of” and¢; and1; are the;*" left and right singular
functions ofT’, respectively. From equatiofp(5145) it is obvious that ifiadtion belongs
to B then it must be in the span of the set of right singular fumstia); } of I'. Moreover,
because the functions; are orthonormal irt#" we can define the projection operator
B:% — % as

Bf = Z(f, Vi) y ;.

5.3 A Second General Uncertainty principle

In this section | prove a second general UP that can be useshstrain the total amount
of energy that can be concentrated in the receiving volunespidve a slightly modified
version of the general uncertainty theorem proved in Donahdtark [60]. In the
following L'[V], L?*[V] and L>[V] are the spaces of real or complex valued functions
defined onV C R* with finite Ly (|| - [y = [, |- ), L2 (| - [ = [, ] - |*) and Lo

(Il - llsc = supy, | - |) norms, respectively.

Theorem 5.9.Suppos¢ € L![R?| N L*[R? andl : f — f, wheref € L2[R%] () L=[R?|
and satisfies

L[ flla = el fll2
2. | flloe < B

Let Vr and Vi be two compact subsets EP with empty intersection. Suppogeis
er-concentrated td/ in the L, norm andf is ez-concentrated td’x in the L, norm.
Then,

Vi ||[VRla® 8% > (1 — er)*(1 — €3,)
Proof.

715 = I3
a2(1 _ 6%)71 JE2
Vr
(1 —eg) " VR fI1%
a®(1 — ) Vel 17
(1= ) YWalBPA—er) 2 | |f]
Vi
(1 — €)Y ValBA(L — er) 2|V l|| f|12

We get the last step using the Cauchy-Schwarz inequalityreByranging the above
inequality we get the required result. ]

IN

IA NN

VAN
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The theorem has a very simple physical interpretation fonroanication between
finite volumes. Firstly, by requiring f||, = | f||2, we ensure that the energy of the
received signal is proportional to that of the transmittéignal. Soa determines the
attenuation in the signal and we expect it to be greater th&edondly]| /|| < 5/ f |
can be thought of as a stability condition (i.e. bounded iignes bounded output).

Also, if the transmitting volume is finite, thefimust be perfectly concentrated in
Vr and soer = 0. The theorem then implies

Vrl[Vela®5* = (1 — ep)

That is, the maximum fraction of energy that can be insidergoeiving volume is
bounded from above. Note that this bound increases if timstnéting and receiving
volumes get bigger. This statement is valid for arbitrararatels provided the two
conditions in the above theorem are satisfied.

5.4 Chapter Conclusion

In this chapter | reviewed the classical UP and examinedoms@ilation in operator
theoretic terminology. | then reviewed the time-bandwigitbblem studied by Slepian,
Landau and Pollak in a series of papers [27,30,58]. | geisedhkheir results to ar-
bitrary operators on Hilbert spaces and gave a physicalpratation of the resulting
generalised Uncertainty Principle for SWCs. | also devetba second generalised UP.
The main contributions of this chapter are:

1. Review of the classical and time-bandwidth UP.

2. Two new generalised UPs in Theordms 5.7[and 5.9
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Chapter 6

Conclusion

In this chapter, | present the conclusions drawn from myyafdWCs. In each chap-
ter, a summary of the work and the contributions made waspted. Here a summary
of the thesis is followed by possible future research dioest

6.1 Thesis Summary

1. In chaptefR | give a novel definition for SWCs that has sidffit structure to
model the different physical constraints imposed on MIMGteyns. According
to definition2Z1 an SWC is a tripleXr, Yz, I'). Here, X models the space of all
the transmitter current densities ariggmodels the space of electromagnetic fields
at the receiver anfl : X; — Ypx is a bounded linear operator that determines
the electromagnetic field in the receiving volume given theent density in the
transmitter volume. The spac&s- andY are normed spaces and the norms on
these spaces can be physically interpreted as energy or.pbwso establish
several properties of SWCs for finite power and finite enefggnoels.

2. In chaptelB | prove that for a compact operdt@n some normed space, for any
given numbere > 0 there is a unique numbéY,,;(e) which is the number of
degrees of freedom of the operaloat levele. Physically we can interpret this
number as the maximum number of linearly independent fansta receiver that
has noise level proportional tacan measure. | prove that one can use this defini-
tion for degrees of freedom to define generalised singulalegavhich are gen-
eralisations of the commonly accepted singular values e@fiar Hilbert space
operators. These generalised singular values can be usedrterically com-
pute the degrees of freedom of SWCs. In this chapter, | altinduish between
the terms “degrees of freedom” and “essential dimensiootg they have been
used interchangeably in the literature. In the situatioemstthe singular values
of an operator change rapidly from being large to small, thetpn of the “knee”
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in the singular values is unique for a given channel. In si@noels, the number
of degrees of freedom at leveldepends very little on the actual value «f |
define the essential dimension of an operator as the smallesver of singular
values after which the difference between two consecuthgudar values is at a
maximum.

3. In chaptefl | showed that it is possible to use perturhdtieory to calculate
the essential dimension of the scalar waveform channeiestuny Miller [26]. In
most situations, it is not possible to use such techniquesabytically compute
the singular values. | therefore developed numerical tiegi®s to compute gen-
eralised singular values of compact operators defined omragtbspace that has
a complete Schauder basis similar to Galerkin’s method.ovent theoreni 411
that shows that the singular values of finite dimensionat@admations of an op-
erator approach those of the original operator if the doro&the operator has a
complete Schauder basis. | used this numerical technig@ntgute the singular
values, degrees of freedom and essential dimension ofadeSMICs.

4. In chaptefDb | reviewed the classical Uncertainty Prilec{/P) and examined its
formulation in operator theoretic terminology. | then ewed the time-bandwidth
problem studied by Slepian, Landau and Pollak in a seriegjoérs [27,30,58]. |
generalised their results to arbitrary operators on Hilpgaces and gave a phys-
ical interpretation of the resulting generalised UP for 3V Calso developed a
second generalised UP.

6.2 Future Directions

In this thesis | mainly concentrated on deterministic clesinHowever, several prac-
tical communication systems are random in nature and aodiate varying. It would
therefore be useful to extend the definition of SWCs to ineltahdom operators that
depend on the positions of arbitrarily placed scatteremsil&ly, the definitons of es-
sential dimension and degrees of freedom could be genedalts random variables
instead of the deterministic ones studied in this thesis.

A second important extension would be to assume arbitramy tiependence instead
of exponential time-dependance for the finite energy cdddislis done then one can
study the number of linearly independent signals availabeeMIMO system that can
radiate any waveform.

Finally, properties of generalised singular values woeddto be studied to develop
more numerical techniques to calculate them. For instahcé,is ann x m matrix,
then the singular values of can be calculated from the stationary points%ﬂ. If
generalised singular values satisfy a similar conditibantthis condition could be used
to compute the generalised singular values.
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Appendix A

Proofs Used In Theorems

A.1 Upper Bound on||A|| used in sectiori4l

The original Green’s function is:

exp{[x — y + esrol}

G(x,y) = A.l
(z,9) T ——— (A.1)
Because&~(x,y) is only a function ofA = x — y, we can rewrite it as
exp{\A —+ 7’0€3|}
G = A2
(z,9) A T rocs] (A.2)
Now let
F(A) = /A2 + AZ + (Ag + 1)’ (A.3)

In the following | will calculate all the partial derivatigeof up to order 3 and for ease
of notation | will usef instead off(A). | show brief working for the calculation of
derivatives w.r.tA; and then we can use symmetry to calculate derivativesMsrand
substitution/symmetry to calculate derivatives wst

of A

oA f

of Ay
08y f
of _ (As+10)
O f
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>f

OA?

2f
DA2
>f
OA2

9% f
BINGIN)

O f
0A30A,
0*f
OA30A,

Pf

DA

>f
A3
>f

A}

f3
_AQ (Ag + 7"0)
f3

o 1A
oA, | f F}
OA2 3

__18f _ fgaﬁl_A%g—L
1?2 0A, f6
—A, JP200 - AR
I3 f6
37, [A?
it ol S|
S
37, [A2
it e S|
S E
3(A3+T’0)

f3

f2

(Ag + 7’0)2 _ 1]
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0 f

o (1 A
o i 7

NSO
—Ay P55 oar — A 3&
f? fe
JAD) 3A2
I 7 !
oI A ]
OA20A, IZANE
83f (Ag + TQ) 3A% 1
RINCYEN, 3 72
0 f A [3(As 1)
OAZOA, 13 f?
83f (Ag + TQ) 3A§ 1
OA30N2 13 12
83f & 3(A3+T0)2 1
OAZOA, 13 12
B 0 [ —AuA,
PINGINGIN PINR G

30=A1A9 of3
f BN + AQAI BN

f6
3A1A2 (Ag + TQ)

f5

If « € V — W, using Taylor’s theorem we can write

—1
n=0

fla)=>Y"

1
n!

(a- V)" f(0) + Ex(a) (A.4)

and the remaindeRy (a) satisfies

Ry(a) < su
N()_aevaN'

L@ 9V f (). (A5)
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To calculate a bound on this remainder, define

b = sup |xy|,i=1,2,3
zeV-W
b = maxb;
— inf
! J:El\gl—Wf<x)
u = sup ro+ax3=19+ b3 <rg+b.
zeV-W

Now, if x € V — W then we have the following inequalities if we assuin€ [ (Note
that in these inequalities,= 1, 2 or 3):

fle)] = 1
T3+ 1o < u
f(z) !
< T‘O—b+2b
- l
20
< 1+T
3a? 3v?
i F_l'
< 9
2 2
20\ °
< |3 1—1—7 —1
< 24

Now if we further assume thaf' is much smaller than 1, for example if

2-13
23’

then we can get tighter bounds for the last two inequalities:

b/l < (A.6)

312
Jf’;—1‘§1

2
il
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Assuming [[A.6) we prove the bounds for each term in the redeifR;(A).

N A3 [ad
LOAY |4, f? I?
3b*
=B
Pf 3b*
A < —
’ 28A% A=« l3
’Agﬁ _ 'A§-3(a3+ro) [(a3+ro)2 _1”
38A§ A=« f3 f2
30w
< T 3
Pf 3AZA, -y [3a2
AQA _ 12 2 1
354 200002 | ' IE 72 !
3b*
< =
S B
Pf 3b*
3NN —L < =
TLOAZON || T B
Df 3A2A; - (a3 +10) [3ad
AQA — 143 3 0 1
G0, ‘ I r!
< W
- 2
Pf 30 u
3AZA;—— L < 2.
TEONONL (| T
Pf 3A3A; - ay [3(as + 1)?
3AZA ——2 — = 3 —1
I e e il
3b*
< 7 3
Pf 3b*
AN, —— L < —.
83f 6A3A2A1 . 3(0(3 -+ 7"0)0&20(1
6 A3 AN\ ———— -
' ISV NY NG N N ' IE
< 18 u
-
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Therefore,

[R3(A)] < %{10?}—T+53l_f.%+%5 ﬂ
- g [oreste ]
< 3-2[5”0%6;—21 (A7)
- g'[l)—zq (A.8)

Here,c; is constant which, assuming the validity of equatlon 1As® 58. If a different
condition is imposed o/l then we will get a different value for;. Now we will
calculate the error in the approximate Green’s functigriz, y):

exp {ikfr,(r —y)}

Gr(zr,y) = A.9

) = ) (A9)
Here, fr, is thei'" order Taylor series expansion 6f From Taylor’s theorem, we have

fr(A) = f(A) = Ry(A) (A.10)

For ease of notation, | will usk,, andé,,, instead off (x—y) andR3(x—y) respectively.

efika(zfx)eika(yfz) tk[hy=—hzz] eik[ézzfzgyz}
iklhyz—hza] | [1 + €ai/{7<5zx . 5yz)] (All)

— eik[hyz_hzw} + Re (A12)

(&
(&

Here, we get equatioh (AL 1) from the Taylor’'s theorem fgyanential functiona € C
satisfiega| < k0., — dyz| and R, is the remainder term and is a functionzofy and

z. From equationd{A.12) anfl{A.8) we get
- |€Yik (0,0 — 6y2)|
< e R(]0z] + 0yz1)
k%%cl i
ez . kbl—201
2 bv?
L. 27TXZ—2C1 (A13)
Here,\ = 27 /k is the wavelength under consideration.
Similarly we can calculate the error term in the denomindtet

|Re| _ leik[hyz_h”}

IN

‘ <o

4By

|

1

e

1
g(A) = Ta) (A.14)
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Then the first order derivatives gf= g(A) are

Jg o —A
oA, fB

Jdg B —Ay
9N, fP

dg = (As+m)
0A3 f3

From Taylor’'s theorem, we can write

1
9(A) = — + Raa
T'o

and the remaindeR A is bounded. Shown below are bounds for each term in the

remainder.
dg —0
Ay —— = |Ay  —
18A1 A=« ‘ ' f3
b2
= B
dg b?
Ay—— < —
‘ 200Ny |\ T OB
dg —0u
Ag—— = |Ay,  —=
' 38A3 A=q ’ ’ f3
< bou
- 2 ]
Therefore,
¥ v b u
< 44— .=
Rl = FHE+E"T
< bl
- 2 l
b
= —02

Here,c, is a constant and if < [ thenl < ¢y < 5.
Now let Rgy. = Ryy—») andRg., = Rq.—,). Then we have

1 1 Rdz:r Rdyz
= + + + Ray:Raza
fT(y - Z)fT(Z - .T) hyzhzx hyz hzm dyz 7t
1
= R
By
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The remainder?,;, which is a function ofr, y andz is bounded:

Rdz:v Rdyz
R < R ZR zZT
‘ d‘ — hyz _'_ hzm _'_‘ dy d |
202b Czb
i b e Al
< [ + o } (A16)
c3b
= lig (A.17)
Here,cs is a constant andle, < c3 < 1+ ¢2b/l. Therefore, we have
G*(2,2)G(y, 2) — Gp(z,2)Gr(y, 2)|
Re  iklfeotty]
+ ezl R+ RoR
fzxfyz ¢ ¢
ﬂ—_ﬁc b b2 1 Cgb Cgb 7r——c b 62
SenEAmIEa - gt Oy T et 2mya
b b2 bb b b2 b b?
= l_?’ |:67"A 12 ¢ 277'} lCl +c3+ 036 xz€ QWXZ_201:| (A18)

Therefore we have

lka(z,y)| < /|G*zx (z,2) — Gp(2z,2)Gr(z, x)|dz

y\@

< L L T P L /d
z€ ~- 2T 2m——cC z
~ l3 6 7T>\l01 C3 Cc3€ 1

(2

wbe o bb et 220 beC
2 -C C cze” e T——

€ )\l 1 3 3 2 1

bu(W)
[3
Hereu (W) is the Lebesgue measure of the volubite

<

A.2 Bound onthe Energy Stored in the Electromagnetic
Field

In the finite energy case, we assume that the source curreekipanential time depen-
dance and is zero outside some time intefal)] C R?. Let

6= { ) Oiheraie

0 Otherwise

Let T be some compact subsetf®fand let] € £*(T, C?) be such thal{J (r)e’'¢,, (¢)}
is the source current. Here,is the angular frequency of oscillation of the source cur-
rent. Then the magnetic field is the real part of [44, pp. 247]

Joto [ [emikli—r| ikl - .
H(r,t) = & / [e + = } & <t0 _lror |) J(r') x Rar.
A Jr c

TP -]
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Here,c is the speed of lighty = # is the wave number anR is a unit vector in the
direction ofr — r’. Because: < oo and¢;,(t) = 0 for t < 0, the magnetic field] is
zero outside the s¢f" + B,,.zs(0)) which has finite measure . Also if there existsean
such that

inf [r —1'| > ¢ (A.19)

r’'eT
then there exists a constatit) < oo such that

efjk\rfrq kjefjkh'fr’\

< c.
|r — 1/|? r—r/| |~

Therefore, a simple application of the Holder’s ineqyatitoves that there is a constant
c1(€e) such that

H(r, to)| < ci(€) ||| 227,03y

Now, if € is some closed surface the interior of which contaihghen becausé’ is
compact, there exists an> 0 such that for alk’ € T andr € Q,,;,

r—1'| > e
Therefore for allr € 4,
[H(r, 20)| < ci()l| T c2(r,c3)-

Also, becausé] is zero outside a set of finite measure,

| el )P < a3y
Qe HO

Herec(¢), ca(€) < ooVe > 0. Therefore, the energy stored in the magnetic field is less
than a bound proportional lip]H%Q(T,CS). Because in free space, with exponential time
dependence, the electric field is proportional to the magffietd, we have a similar
condition for the energy stored in the electric field. Theref there exists some constant

b = b(e) < oo such that for alll € £*(T, C?)

[Eraa(3)](to) < b INIZ2 (r.c5)-

HereE,.q is as defined in equatiof (2.6) ahib a constant that only depends Brand
2 and not onJ.
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