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Abstract 
 

An attitude estimation filter, known as the Geometric Approximate Minimum-Energy 

(GAME) filter was proposed by Zamani, Trumpf and Mahony of the ANU in 2012. The 

GAME Filter has been shown to have a lower root-mean-square estimation error than the 

industry standard attitude filter, the Multiplicative Extended Kalman Filter (MEKF), in a 

variety of simulated applications. The next step in developing the GAME Filter is to validate 

its simulation performance on a physical platform. Having an implementation of the GAME 

Filter on a physical platform such as the Jackal UGV will allow researchers to observe 

measurement noises that may not have been accounted for in simulation and begin work on 

the application of the filter to perform collaborative localization. 

 

The Defence, Science and Technology Group (DTSG) have provided the ANU with a mobile 

robot development platform: a Clearpath Jackal UGV. The primary goal of this individual 

project was to scope how the GAME Filter would be implemented into ROS and subsequently 

onto the Jackal UGV. This report provides a breakdown of how filtering algorithms are 

currently implemented on the Jackal UGV and the methodology for implementing the GAME 

Filter onto the Jackal UGV. 
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ROS - Robot Operating System 

EKF - Extended Kalman Filter 

UKF - Unscented Kalman Filter 

MEKF - Multiplicative Extended Kalman Filter 

GAME - Geometric Approximate Minimum-Energy 

DTSG - The Defence, Science and Technology Group 

ANU - The Australian National University 

UGV - Unmanned Ground Vehicle 

UAV - Unmanned Aerial Vehicle 

IMU - Inertial Measurement Unit 

URDF - Unified Robot Description Language. This is an XML dialect for representing a robot 

model.  

Jackal - Shorthand reference to a Clearpath Jackal UGV 

Jackal Project - In reference to the partnership between the DTSG and the ANU, in which 

the ANU has been lent a Clearpath Jackal UGV to aid in the research and development of the 

GAME Filter. 
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Chapter 1 Introduction 
 

This project primarily focussed on the theory of mobile robot localisation. Localisation is the 

process by which a robot determines its location with respect to a known environment. A lack 

of sufficient localization ability will likely result in the robot not being able to accurately 

estimate its position or orientation, known as its pose, with respect to an environment or task-

specific coordinate frame. Most if not all applications requiring mobile robots will rely on a 

robot’s ability to estimate its pose, and it is for this reason that localisation and pose 

estimation algorithms have been at the forefront of robotics research for several decades [1].  

 

Difficulty arises in pose estimation when several stochastic processes add to the modelled 

kinematic motion of the robot. As a result, the modelled motion of the robot based on a known 

input and known dimensions becomes a random noise process. To correct for this, 

measurements are taken by the robot of environmental landmarks with known positions in a 

defined coordinate space. These measurements are also susceptible to noise (interference, 

latency, etc) and are thereby treated with a degree of uncertainty. This uncertainty is generally 

modelled as a noise process. As such, the assumption can be made that the only information 

available to any mobile robot are stochastic random variables.  

  

Currently, the most established way to estimate pose from modelled random variables is using 

a stochastic filter. In robotics, the objective of stochastic filtering is reducing the uncertainty 

of an estimation of the state using partial proprioceptive and exteroceptive observations. The 

development of filters aims to improve the accuracy of estimation in specific mobile robotics 

applications, such as 3D attitude estimation and environmental mapping. More specifically, 

having more robust filtering algorithms allow systems to achieve the desired localization 

accuracy even with cheaper, noisier sensor measurements.  Naturally this is a sought outcome, 

as having cheaper systems that still perform to the system requirements is highly desired for 

any physical engineering project.  
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The research aim of this project is to determine how to implement a second-order minimum-

energy filter proposed by ANU researchers, known as the Geometric Approximate Minimum-

Energy (GAME) Filter onto a physical robot. Currently, the GAME Filter has only been tested 

and validated in simulation with specific parameters and applications and as such there are no 

published works related to a physical implementation of GAME Filter. The next step in the 

filter’s development is to therefore verify that the performance achieved in simulations can be 

replicated on a physical robot. ANU has been provided with a Clearpath Jackal UGV by the 

DTSG to aid in both the validation and development of the GAME Filter.  

 

The primary stakeholders of this project are the partnership representatives of both the DTSG 

and the ANU: Dr Behzad “Mohammad” Zamani and A/Prof Jochen Trumpf, respectively. The 

research partnership is a government-funded initiative to further develop the GAME Filter. 

The respective research groups of each organisation, including ANU PhD candidate Jack 

Henderson, will benefit from the outputs of this report, which directly aid their ability to 

implement the GAME Filter onto physical platforms for testing and development.  

 

Chapter 1 introduces the project by outlining the project context, research aims, stakeholders, 

and provides an overview of the report. Chapter 2 introduces the higher-level theory of this 

project, providing a conceptual foundation for the reviewed literature presented in Chapter 3, 

which summarizes the key underlying concepts necessary to complete this project. The 

concepts are accompanied by the supporting literature that aided in the author’s understanding 

of them. This chapter also introduces the various filters and filtering theory that have led to the 

development of the GAME Filter. Chapter 4 describes the methodology of the project that 

lead to the project outputs, including the derivation of the necessary equations for an Extended 

Kalman Filter implementation specifically for the Jackal UGV. Chapter 5 summarizes the 

outcomes of the project, including the performance results of a custom filter implementation 

on the Jackal and the proposed methodology for implementing the GAME Filter into ROS for 

the Jackal. Chapter 6 concludes the main body of the report and outlines recommendations for 

future works. 
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Chapter 2 Background 
 

The following chapter provides the theoretical context and motivation for this project. The 

information presented in this chapter is a higher-level introduction to the concepts presented in 

Chapter 3.  

 

2.1 Robot Awareness 
When solving problems in the field of robotics, one of the primary complicating factors is that 

robots do not sense the world as we do. As such, seemingly simple hurdles often require 

significant amounts of research in order to comprehend the root of these issues and resolve 

them. Robotic vision is the study of how to translate the physical world into a form that can be 

computationally processed in such a way that robotic systems can “see”. One of the simpler 

cases involves a camera mounted onto a robot and a “vision” algorithm which processes the 

received images in such a way that is specific to a task at hand. Other forms of “vision” 

include a variety of sensors, such as laser (LiDAR), ultrasonic distance sensors or an inertial 

measurement unit (IMU), that can be used to detect nearby objects, surrounding environments 

and/or the movement of the robot; all of which aid the robot to better understand the world 

around it. 

 

2.2 Pose Estimation 
Pose estimation is the determination of the position and orientation of an object (known as its 

“pose”) with respect to a reference frame. A robot’s pose is most commonly estimated using 

proprioceptive motion sensors which capture the change in its translation and rotation. A 

common way of estimating the pose of a mobile robot is to model a robot’s odometry over 

time [1]. Odometry is the use of data from sensors that capture the motion of the robot, such 

as motor encoders and inertial measurement units, to estimate the change in position over 

time. The odometry can be integrated over time using the forward Euler method to determine 

the pose of a robot.  

 

2.3 Localization 
Localization is the process by which intrinsic and extrinsic information is used to determine 

where a mobile robot is located with respect to a known environment. Huang and Dissanayake 

[1] describe localization as “one of the most fundamental competencies required by an 

autonomous robot.” The knowledge of the robot's own location is an essential precursor to 

making decisions about future actions. In a typical robot localization scenario, the 
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environment is known, and the robot is equipped with sensors that observe the environment as 

well as its own motion. The localization problem then becomes one of estimating the robot 

position and orientation within the environment using information gathered from these 

sensors.  

 

2.4 Noise and Uncertainty 
Any robot is a system that can be described as one that combines sensing, actuation, 

computation and communication. As stated by Correll [2], every subsystem of a robot is 

subject to some degree of uncertainty, even if those uncertainties can be considered negligible. 

Some examples of these uncertainties include gyroscope “drift” and bias, electrical noise 

interference, communication disturbances and dropouts, as well as sensor interference and 

miscalibration. Succinctly, no measurement can ever be considered to represent the true state 

of the variable it is measuring: there will always be a degree of uncertainty. 

 

The problem introduced by noise into systems is that with each measurement, more 

uncertainty is introduced into the system. Without effective modelling and filtering of these 

noisy processes, any estimation of a system’s state is likely to continually diverge further from 

its true state over time.  Using statistical estimation algorithms, such as filters, the sensor can 

then be modelled as a noisy process of the true value and the true value can be more 

accurately estimated. These algorithms more commonly take the form of some derivation of 

the Bayes Filter or the Kalman Filter [3]. 

 

2.5 Filter Application 
Filters are prominent in most electronic systems and can be applied in countless ways and 

configurations. Their primary application is to reduce the noise and uncertainty introduced 

into a system by sensor measurements through recursive statistical methods to reduce the 

covariance between the variables that represent the state of a system. 

In the case of robotic pose estimation and localization, these state variables represent the 

coordinates and orientation in space relative to a known reference frame. Therefore, it is 

highly desired to have filtering algorithms that perform this reduction accurately and with 

computational efficiency, particularly when it comes to the field of mobile robotics. Filtering 

algorithms with greater accuracy and efficiency performance allow for lower end systems 

with cheaper sensors and processors to meet more real-world requirements of mobile robotic 

applications. For this reason, improving the performance filtering algorithms has been at the 

forefront of robotics theory research for several decades [1][2]. 
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Chapter 3 Literature Review 
 

This chapter summarizes the literature that has been most relevant to the author’s 

understanding of the required theory and introduces the scope of this project with respect to 

the greater Jackal Project. Section 3.1 summarizes the literature that aided in the author’s 

understanding of necessary filter and kinematics theory as well as an introduction to ROS. 

Section 3.2 describes the greater picture of the Jackal Project and introduces the scope of this 

individual project, including how this project fits into the future development of the Jackal 

Project. This section includes summarizes the previous work on the simulated applications of 

the GAME Filter, performed by Zamani, Trumpf and Mahony, as well as describing the 

motivation and importance for this project to aid in the eventual outcome of testing the GAME 

Filter on a physical platform. 

  
3.1 Reference Literature 
The primary reference literature came in the form of online documents and research papers 

related to the Kalman Filter and the Extended Kalman Filter. These included the derivation of 

these algorithms such that the author could create their own implementation and further 

cement their own understanding. Additionally, the reference literature presented in this section 

describes the theory of mobile robot motion without considering the forces involved 

(kinematics), as well as the literature which introduces the software environment on the 

Jackal: Robot Operating System (ROS). 

 

 

3.1.1 Kalman Filter 

The Kalman filter is an algorithm first derived by Rudolf E. Kálmán in 1960, and is used to 

estimate state variables of a system based on noisy measurement information. The filter 

computes this estimation by taking the known prior system state, performing a prediction of 

the next state of the system and its covariance (Eq 1.1, 1.2), and updates this prediction using 

incoming measurements (Eq 2.1, 2.2). Depending on “noisiness” (the quality and variance) of 

the measurement data, the Kalman filter will weigh how much this new incoming data will 

influence the state prediction. The weighting, known as the Kalman Gain, converges as the 

filter models the variance of incoming measurements. As the algorithm does not need to have 

knowledge of any states except for the one before the current time step, it is recursive and 

very memory efficient [3]. The predict and update step equations [1][2] for the Kalman Filter 

are: 
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Predict Step  

                    (1a) 

                          (1b) 

 

Update Step 

     (2a) 

      (2a) 

            (2c) 

     (2d) 

             (2e) 

 

The standard Kalman filter is a linear, discrete-time, finite-dimensional system. The state of 

the system is represented by the vector at the current time step k,  xk . The state transition 

matrix, which is the model for how the state will change with each time step, is given by Fk. 

The influence the system inputs uk  have on each of the state variables is defined by the input 

control matrix Bk. The incoming measurement/observation zk is then weighted against the 

estimated model 𝐱ො𝐤|𝐤ି𝟏 multiplied by the matrix Hk, which describes the mapping between the 

measurement zk and the state xk. The difference between the measurement and the predicted 

state estimate (2a)  is known as the innovation.  

The amount of influence either the predicted step or the external measurement has on the 

system state estimate is determined by the Kalman Gain, Kk. The uncertainty, or noise, 

associated with both the state transition model and the observed measurement are represented 

by the zero-mean Gaussian processes wt  and vt , respectively:  

 

                        (3a) 

                      (3b) 

 

Where Qt  and Rt are the process and measurement noise covariance matrices, respectively.  
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3.1.2 Non-Linear (Extended) Kalman Filter 

State transitions and measurements are rarely linear in practice. For example, one could not 

apply the linear Kalman Filter to a system measuring the horizontal displacement of a 

pendulum, as its motion is harmonic and thereby nonlinear. In order to use a Kalman Filter to 

estimate the state of a nonlinear system, the state equations must be linearized at each time 

step. This is performed by the Extended Kalman Filter (EKF), which calculates a Gaussian 

approximation of the state’s probability function by linearizing the system about its current 

mean (state estimate) using a Taylor series expansion at the mean. 

 

Extended Kalman Filter (equivalent to 1a, 2a) 

                  (4) 

                (5) 

 

Unlike the linear case, the state estimate 𝐱ො𝐤|𝐤ି𝟏 is given by the non-linear function f(xk ,uk) and 

depends on the current state and the inputs to the system. Whilst the state prediction and 

output can be calculated using the non-linear model, the system error covariances require the 

state equations to be linearized. The linearized state and output functions are given by their 

Jacobians, Fk and Hk , which are linearized using a first-order Taylor expansion around the 

current state mean (k-1). 

 

         (6a) 

                         (6b) 

 

The Taylor expansion linearization around the state mean within these Jacobians is only an 

approximation of the state. This approximation, while small in variance from the true state 

estimate, introduces another error to the system. The severity of this linearization error will 

differ depending on the implementation of the model and how accurately the model can be 

linearized. In the extreme cases where the process and measurement models have high non-

linearities and/or high amounts of process noise, the EKF performs poorly and tends to 

diverge from the true state [5]. For this reason, there is an entire field of research dedicated to 

developing extensions of the EKF which better account for linearization error and other more 
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specific errors. Examples of these extensions are the Unscented Kalman Filter and the 

Multiplicative EKF (MEKF) [5]. 

 

3.1.3 The Multiplicative Extended Kalman Filter 

The MEKF is considered the industry standard filter for the majority of modern robotics 

applications, in particular for aerial and spacecraft attitude estimation (systems that are 

represented in R3) [10]. In such an application, the attitude (the relative orientation of a 

vehicle with respect to some reference, usually the ground) of an aerial vehicle is represented 

by unit quaternions. Quaternions are a mathematical notation used to represent orientations 

and rotations of objects in three dimensions.  The primary advantages to using quaternions 

over Euler angles to represent attitude is that they can be composed without much difficulty 

and avoid the problem of gimbal lock1. [7]  

 

The derivation of the MEKF resulted from the fact that the “linearization” approach of the 

EKF does not respect the geometry of the quaternion space. According to Widodo and Wada 

[8], the standard linear correction terms do not preserve the norm of the quaternion and the 

derivation of a linear innovation term does not make sense to calculate for quaternions. As 

such, modifications were made to the EKF to respect the geometry of the quaternion space, by 

using the quaternion estimation for a multiplicative correction term which preserves the unit 

norm and changes the way the innovation term was derived. [8]. As a result, the MEKF 

effectively addresses the quaternion and attitude estimation limitations of the EKF.  

 
1Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-plane Euler angle space that occurs when the 

axis of two of the three gimbals are driven into a parallel configuration, that is “locked” to the same plane. When the system 

is in this state, the two gimbals represent the same axis rotation, “locking” the system into rotation in a two-dimensional space 

[5]. 

 

 

3.1.4 Minimum-Energy Filtering 

The “energy” of a system refers to the total magnitude of variation between an estimated state 

trajectory and the measurements made over a time interval of interest. The cost function 

J(t; ...) is a measure of the aggregate energy stored in the unknown initialised state estimate 

and measurement signals [9]. Given measurements and velocity inputs made over all time, the 

goal of minimum-energy filtering is to obtain an estimate (𝑋(𝑡)) of the true state (𝑋(𝑡)) by 

minimizing the cost function. This is achieved by seeking a combination of an initial state and 

a set of velocity inputs (with their respective modelled noise processes) over all time that are 

compatible with the measurements and velocity inputs, such that the state estimate 𝑋(𝑡) still 
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fulfils the system’s kinematic constraints. By minimizing the cost function, we produce an 

initial state and noise models that contain minimum collective energy. In an attitude 

minimum-energy filter, such a cost function is defined for attitude estimation error [9]. A 

Value function (7) is also defined [10], which is the minimum cost function given the control 

input at a given time.  

 

          (7) 

 

Where J(t; …)  is the cost function, R is an SO(3) state signal and 𝛿 is the input measurement 

error. When the derivative of the Value function equals zero, we have located a local minima 

amongst the energy of the state. At this point, the state estimate produced by the filter is the 

closest representation of the true state.  

 

3.1.5 The GAME Filter 

The Geometric Approximate Minimum Energy (GAME) filter is a second order attitude filter 

for estimation on the special orthogonal rotation group in three dimensions (SO(3)). It was 

first proposed by Zamani [10] and has been further tested, developed and modified in 

conjunction with Jochen Trumpf and Robert Mahony [10, 11, 23-26]. 
 

 

Figure 1: Graphical description of the trajectory 𝑋ത of a rigid body fixed frame {B} with respect to a fixed frame {I} [11]. 
 

Under the kinematic constraints of an aerial mobile robot Ẋ(t) = X(𝑡) ∙  U(𝑡) (where X is the 

attitude rotation matrix and U is the angular velocity), there exists a trajectory 𝑋ഥ  (Figure 1) in 

which the landmark measurement and velocity input noise processes are at a minima. This 

trajectory is considered the best estimate of the SO(3) motion of the state. This is determined 

by the cost function, which represents the state transition trajectory with the minimum noise 
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processes (or minimum-energy). We find this minimum-energy cost function trajectory by 

calculating the derivative of the value function V(X,t), where 
ௗ

ௗ௧
 = 0. When solving for the 

covariance of the state following the state transition, P-1, it is assumed that the matrix P is 

quadratic. Under this assumption, a closed form solution to P can be calculated through a 

Taylor series expansion to the second derivative. As such, the covariance estimate calculated 

by the filter is only an approximation, although it is a higher order approximation than the 

first-order linearization of other nonlinear filters. As demonstrated by Zamani [9], the 

approximation order of the proposed method has the potential to be extended to arbitrary 

higher orders. 

 

The quaternion state observers and Riccati equations for the GAME Filter and MEKF [11] 

are: 

GAME Filter 

   (7) 

       (8) 

 

 

MEKF 

                                            (9) 

                                                (10) 

 

Where 𝑃 is given by the Riccati equation of the filters, equivalent to the inverse of the 

weighting matrix which represents the state covariance, and 𝐴 is the state transition matrix. 

The MEKF and the GAME Filter share the same observer equations. However, the term -ℙs 

∑ (𝑃(𝑦 × 𝑦పෝ்))×  that appears in the Riccati equation of the GAME Filter (8) does not appear 

in the MEKF’s Riccati equation (10). This term favours the quadratic term in GAME’s Riccati 

equation over the MEKF’s by utilizing not only the information contained in the estimates (𝑦ො) 

but also the information in the measurements (𝑦). This term will also be small once the filter 

has converged and 𝑦ොூ  is close to 𝑦. The current belief is that this term assists with curvature 

correction when traversing in SE(3) [9]. As a result, several simulations have indicated better 

transient and asymptotic behaviour of the GAME Filter compared to the MEKF [11].  
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The GAME Filter has also been shown to be near-optimal in performance, meaning that the 

cost function attained by the GAME Filter is close to the minimum-energy cost [10].  

 

3.1.6 Mobile Robot Kinematics 

Kinematics refers to the study of the motion of points, objects, and groups of objects with 

respect to a reference frame or space without considering the causes of its motion (such as 

forces). [12] As described by Siegwart and Nourbakhsh [13], the modelling of a mobile 

robot’s kinematics depends on the properties of the robot and what points on the robot are of 

interest to the application. Such properties include the type of wheel, the type of steering and 

the types of actuation. These properties not only provide the context for modelling the 

kinematics of the robot but also determine the degrees of freedom and actuation, which will 

also influence the kinematic model of the robot in the form of motion constraints.   

 

 

 
 

Figure 2: Modelling kinematic equivalence between front and rear pairs of wheels and left and right centre wheels. [14] 
 

The Clearpath Jackal UGV is a skid-steer differential drive robot, in that it has four wheels but 

each pair of wheels on either side are actuated by a single motor. For this reason, the Jackal 

can be modelled as a standard two-wheel differential drive system (Figure 2) with additional 

terms to account for the individual motion and slip of each wheel. As discussed in Section 4.2, 

based on the future testing surfaces, these additional terms for slip can be ignored for when 

modelling the Jackal for a GAME Filter implementation. 

 

 

 

 

 



12 
 

3.1.7 Robot Operating System (ROS) 

The operating system on the Clearpath Jackal UGV used for the Jackal Project is Ubuntu 

16.04. Subsequently, all software packages for the Jackal are written for and executed within 

the environment known as Robot Operating System (ROS), an open-source, meta-operating 

system for robots [15]. The primary advantage to ROS is both its modularity with executable 

code, commonly in the form of packages, and its easy integration of and communication 

between pieces of software and robot hardware.  

 

Given that the author had no previous experience with ROS prior to embarking on this project, 

extensive research into literature, resources and tutorials, in addition to the hours of trial and 

error, were required to confidently navigate ROS. The most straightforward way to learn the 

fundamentals of ROS was to follow the tutorial series on the ROS wiki page [16]. The 

YouTube series by Tiziano Fiorenzani [17] aided with the setup of the ROS environment in 

Ubuntu, as well as providing a visual tutorial into the basics of ROS that supplemented the 

ROS wiki page. A guide published by Griffith University [18] aided in the learning of 

commands needed to navigate and manipulate the ROS file system structure. 

Documentation and instructions on how to simulate and manipulate the Jackal in ROS were 

provided by the Jackal’s manufacturer, Clearpath Robotics [19]. The Jackal simulation 

packages and installation instructions for ROS Kinetic are publicly accessible and open-source 

[20]. The current Extended Kalman Filter used to fuse odometry and measurement 

information on the Jackal was also developed by Clearpath [21] and is embedded into the 

package used for controlling the Jackal’s motion [22].  

 

3.2 Project Scope 
This section provides a summary of the prior research progress of the GAME Filter and how 

the goals of this research formulated the scope for this individual project. This section also 

presents the commercial advantages and applications of improving filtering methods, 

specifically the GAME Filter. 

 

3.2.1 Summary of Prior Research  

The GAME Filter was first proposed by Zamani in 2012 [10, 25] and formed the main result 

of his PhD dissertation [9]. In his dissertation, Zamani introduces the attitude estimation 

problem on the 3D rotation and special Euclidean groups along with nonlinear vectorial 

measurement models. The theory of minimum-energy filtering (Section 3.1.4) is adapted to 

respect the geometry of the problem and reduce state linearization error. This approach results 

in the geometric approximate minimum-energy (GAME) filter which, in a range of Monte 
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Carlo simulations, outperforms all current state-of-the-art attitude filters including the MEKF 

[26]. Zamani [9] also demonstrates that the proposed filter is shown to be near-optimal by 

deriving a bound on the optimality error of the filter that is proven to be small in simulations. 

The superior performance of the proposed GAME Filter in simulations was further supported 

with a least-squares analysis.  

 

Throughout the research period of Zamani’s dissertation, several journal and conference 

papers were published. Each of these papers focussed on aspects of the development of the 

algorithm, including validating the near-optimal cost when attitude filtering [23] and 

observing the filter’s performance when performing a higher order differentiation of the value 

function [24]. Concluding the dissertation research, Zamani, Trumpf and Mahony derive the 

GAME Filter equations based on a cost function dependent on the Hessian (second-order 

approximation) of the Value function. [10]  

In the specific simulations performed for each of these papers, the GAME Filter is compared 

to and outperforms industry standard quaternion version derivations of the EKF, including the 

MEKF. 

 

 
 Figure 3 (left): Comparing the estimation errors of the proposed (GAME) filter and the MEKF. [10] 

Figure 4 (right): The integral of the estimation error of the MEKF minus the estimation error of the proposed (GAME) filter. 
[10].  

 

Figure 3 shows that the GAME Filter has equivalent performance to the MEKF but with faster 

estimation convergence. Figure 4 shows the integral is slowly growing in time, which 

indicates the proposed filter also has a slight advantage in asymptotic behaviour compared to 

the MEKF. This behaviour difference is observed in most of the simulation tests with differing 

initial conditions and measurement errors.  
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Zamani, Trumpf and Mahony [25] then applied the GAME Filter to filter attitude kinematics 

and introduced an extension of the GAME Filter for slowly time-varying bias in gyroscope 

measurements. As shown in Figure 5, this derived extension achieved a lower root-mean-

square rotation angle estimation error than the MEKF. 

 

 
Figure 5 (left): The rotation angle estimation error performance of the proposed filter compared against the MEKF. [25] 

Figure 6 (right): The average of the integrand of W(t) over 100 repeats plotted against time [11].  
 

Zamani, Trumpf and Mahony [11] derived the equation for the optimality gap, W(t), which quantifies the difference between 
the numerical optimal minimum-energy cost and the cost attained by the GAME Filter when approximating the expansion of 

the Value function to the second-order derivative.  

Figure 6 demonstrates that the GAME Filter achieves a cost that is close to the minimum-

energy cost, with an average integrand of W(t) < 0.01.  

 

A comparison of nonlinear filtering methods applied to attitude estimation was performed by 

Zamani, Trumpf and Mahony [26] to compare the GAME Filter to several widely 

implemented, well-performing filters. The filters were compared for their performance in 

reducing root-mean-square rotation estimation error and handling gyroscope bias over time. 

The GAME Filter was shown to have the best performance of all the presented filters. 

 

Earlier this year, Zamani and Hunjet [27] present a collaborative localization algorithm, aimed 

at achieving accurate localization for all robots in a swarm with minimal landmark 

measurements. The aim of the paper was to demonstrate the accuracy of the algorithm even 

when measurements are noisy or non-existent (due to interference, poor-quality sensors, 

dropouts, etc). This was achieved by deriving the algorithm such that the covariance matrices 

could be flexibly tuned based on contextual and/or environmental knowledge, the covariance 

of the other robots in the swarm, and covariance intersection. The GAME Filter is used as the 

pose estimation algorithm on all robots. Even with no external landmarks, the four simulated 

robots were able to achieve a localization error of less than half a meter for a short period of 
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time becoming overconfident (Figure 7). With limited external landmarks, the proposed 

algorithm matched the estimation error performance of established collaborative localization 

algorithms whilst reducing the number of required communications and the distributed 

processing load of the swarm (Figure 8). All three plots are of the proposed algorithm with 

minor variations in their implementation.  

 

 
Figure 7 (left): Average estimation error of the proposed collaborative localization method with no external landmarks. 

Figure 8 (right): Average estimation error of the proposed collaborative with limited external landmark measurements. 

 

Zamani and Hunjet [27] have demonstrated the potential performance of their proposed 

collaborative localization algorithm, using the GAME Filter for pose estimation, with noisy 

and/or minimal landmark measurements available. Their results demonstrate that, in a 

collaborative swarm, robots carrying noisier sensor hardware can still accurately locate 

themselves within unknown environments. A potential application is one of the robots in a 

swarm carries far more sophisticated measurement hardware than the others, but the pose 

estimation error of each robot in the swarm still meets the requirements for the application. 

 

Overall, the performance of the GAME Filter in a variety of applications is promising. 

However, in order to validate the real-world performance of the GAME Filter, it will need to 

be implemented onto a physical robot to be tested under real-world conditions. Having this 

implementation will allow researchers to observe how the filter performs processing variances 

in the noise processes that may not have been accounted for in simulation. A hardware 

implementation will also provide a baseline for future physical application of the filter and 

allow the algorithm to be developed such that it can be used on a variety of mobile robots for a 

wide array of applications.  
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Following this validation, the next goal of the Jackal Project is to implement the collaborative 

localization algorithm proposed by Zamani and Hunjet [27] onto a Jackal. If the filter can be 

shown to replicate a similar performance to the simulation, it can be applied to multiple 

mobile robots (such as more Jackal) to improve the overall localization performance of the 

system. As demonstrated by shown by Roumelitis and Bekey [28], the localization ability of a 

swarm of mobile robots is far greater than that of a single robot.  

 

3.2.2 Development of Project Scope 

To aid the validation and development of the GAME Filter on physical platforms, the DSTG 

obtained several Clearpath Jackal UGV robots. The research partnership between the DSTG 

and the ANU resulted in the university being provided a Jackal to be used as a physical 

development platform for validation and research. The Jackal is an ideal initial hardware 

platform for validating the GAME Filter. As an UGV, it has fewer degrees of actuation and 

freedom than a UAV, making it easier the kinematic motion and estimate process noises. The 

Jackal itself is a thoroughly pre-configured development platform with tuned measurement 

covariances for its proprioceptive sensors.  

 

The original scope of this project was to develop a general implementation of the GAME 

Filter as a ROS package. This implementation would then be installed onto the provided 

Jackal to compare the performance of the GAME Filter to other state-of-the-art filters in a 

variety of single and multi-robot situations. As this project developed, it was determined that 

this was a far larger task than initially anticipated. Achieving the original goals set for the 

project requires an understanding of the theory behind what is trying to be achieved and 

sufficient background knowledge of the software platform to implement the filter. This 

included developing a thorough understanding of stochastic filters and how to implement 

them and becoming proficient enough in ROS to develop nodes and packages that integrate 

with the Jackal. Gaining this required background knowledge took up a large portion of this 

project. The scope was then altered to focus on laying the groundwork for others to work 

towards achieving the original scope.  

 

3.2.3 Final Project Scope 

The scope of this individual project is to develop a method for implementing the GAME Filter 

onto the Clearpath Jackal UGV. Primarily, this involved working through available literature 

to gain an understanding of how filtering algorithms are currently implemented in Robot 

Operating System (ROS) and on the Jackal. 
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The first milestone of this project was to develop an Extended Kalman Filter (EKF) for the 

Jackal. The EKF is arguably the most renowned filtering algorithm for nonlinear dynamical 

systems, as most industry-leading filtering algorithms some extension on the EKF. To achieve 

this required learning the theory behind both linear and nonlinear (extended) Kalman filtering 

and mobile robot kinematics. This understanding of filtering theory was both tested and 

expanded by developing my own Kalman filter scripts for a variety of dynamic systems in 

MATLAB and Python. The project also involved learning how to translate robot actuation to 

the motion of a mobile robot and extend previously acquired knowledge of coordinate frames 

and dynamic systems to transform a robot’s motion between arbitrary coordinate frames. 

Using this acquired knowledge, an equivalent kinematic model for the Jackal would be 

developed to then fuse with simulated noisy sensor measurements to estimate a Jackal’s pose 

using an EKF in Python.  

 

The second milestone was to understand how to implement a filter into ROS (specifically, for 

the Clearpath Jackal UGV) and then develop a custom filter package to be implemented onto 

the Jackal. This involved learning about how filtering algorithms are currently implemented 

into ROS and reviewing the literature related to the packages that run these filters. The next 

step was to review literature related to the Jackal and how the robot initializes and publishes 

relevant information (such as sensor measurements) to the onboard filtering package. The 

outcome was an EKF implementation in ROS which relied on the sensor information 

published from the Jackal. 

 

The final milestone and major goal of the project was to develop an implementation of the 

GAME Filter using the acquired knowledge and methods from the first two milestones. This 

milestone was considered a stretch goal and was not able to be achieved within the project 

time. The final project output was rescoped to use the knowledge acquired throughout the 

project to develop a method for a future implementation of the GAME Filter onto the Jackal. 

The outputs of this project will aid the eventual implementation of a GAME Filter onto the 

Jackal, which will subsequently assist the ANU’s future research and development of the 

filter. 
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Chapter 4 Methodology 
 

This chapter outlines the method undertaken to establish an understanding of the required 

background theory and construct the equations needed for an EKF implementation to be used 

for estimating the pose of a Jackal. 

 

4.1 Understanding Filtering Theory 
An established understanding of the underlying filtering theory was required in order to gain 

an understanding of the project’s proposed scope. Chapters 1-3 of Optimal Filtering by 

Anderson and Moore [3] established a basis of knowledge of linear Kalman filters such that, 

whilst not entirely understood initially, was the primary reference for other explanations and 

derivations of the linear Kalman filter [29][30][31][32].  

 

To apply the knowledge gained from the literature, a linear Kalman filter model was created 

to solve a basic estimation problem: modelling the displacement of a ball rolling down a slope 

using noisy ultrasonic sensor measurements. Figure 9 shows the position as estimated by the 

filter.  

 

 
Figure 9: First implementation of a linear Kalman filter in Python, estimating the position of a ball rolling down a hill. 

 

Having a fundamental understanding of linear Kalman filters allowed the author to delve into 

resources that described how to filter nonlinear systems. Out of many available papers and 

online resources describing nonlinear filters, there were a handful of resources that provided 

an effective introduction to the most popular and standardized non-linear implementation of 

the Kalman Filter, the Extended Kalman Filter (EKF) [33][34][35][36].  
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To cement the author’s understanding of a nonlinear filter, an EKF was applied to estimate the 

position of an inverted pendulum using noisy horizontal displacement measurements. Figure 

10 shows the position of the pendulum as estimated by the filter.  

 

 

 
 

Figure 10: First implementation of an Extended Kalman Filter in MATLAB, estimating the horizontal position of a 
pendulum. 

 

One key conclusion that came from creating the inverted pendulum filter was the importance 

of tuning the noise covariance matrices. In most Kalman filter implementations, noise is 

modelled as either process noise or measurement noise. Process noise is the possible variance 

the observation model has from the true state of the system, usually given by stochastic 

disturbance to the system. In the example of the inverted pendulum, should this have been a 

system implemented in the real world, the process noise covariance matrix would account for 

physical properties that would make the model differ from the real system (such as the effect 

of air resistance and string tension). Measurement noise is an estimated uncertainty of the 

measurements made by sensors. These uncertainties are often given by the manufacturers of 

higher-end sensors to be modelled and accounted for. Each of these noise errors are described 

by their potential variance from the expected values. Figure 11 shows the same filter with 

slightly higher initial state and noise covariance values. The observation is made that even 

very slight modifications to these noises covariance values results in a large variance in the 

behaviour of the system.  
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Figure 11: EKF estimating the horizontal position of a pendulum with slight variances in the initial state and measurement 
covariances. 

 

These experiments demonstrated that it is vital to the performance of a filter that these noise 

covariance matrices are set or “tuned” as accurately as they can be. Even slight derivations in 

the values had a great impact on the accuracy and robustness of the system, both immediately 

and over time.  

 

4.2 Kinematic Modelling of the Clearpath Jackal UGV 
The Clearpath Jackal UGV is a four wheeled, skid-steer differential drive robot. Both pairs of 

wheels on each side are actuated by single motors. In a skid-steer robot, there is no explicit 

steering mechanism. Steering is accomplished by actuating the wheels on each side at a 

different rate or in a different direction, causing the wheels or tracks to slip, or “skid” on the 

ground. [37]  

 

The kinematic description for a skid-steer robot are given by: 

 

                                (11) 

 

Where 𝑣௫, 𝑣௬ and 𝜔௭ are the linear and angular velocities of the robot with respect to its body 

fixed coordinate frame, 𝜔 and 𝜔 are the angular velocities of the left and right wheel, r is the 

radius of each wheel and B is the distance between adjacent wheels and 𝜒 is a surface 

coefficient [38].  
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 Equation (11) describes the relationship between the angular velocity of each wheel to the 

linear and angular velocity of the Jackal’s body fixed frame [38]. Equation (12) performs the 

transform between the velocity of the robot’s body fixed frame to the global coordinate frame.     

 

    (12) 

 

On ideal surface conditions (where the 𝜒≈ 1), the skid steer differential drive robot model is 

kinematically equivalent to the standard differential drive robot model, as illustrated in Figure 

12. The difference between the models is that the two-wheel differential drive model assumes 

constant and coincident wheel contact points with the ground, whilst the contact points of a 

skid-steer robot are dynamics-dependent and always lie outside of the tread centrelines 

because of slippage [39]. Depending on the linear and angular velocities of the robot, in 

addition to the surface conditions, the contact area on the wheels of the skid-steer robot also 

changes. This results in a small difference in motion from the two-wheel model. On ideal 

surfaces, this difference is very small and can be ignored. The two-wheel model also holds 

true for the rolling non-slipping constraints, meaning that the linear motion of the robot is 

always in the X direction of the robot and therefore ignoring slip. 

 

 
Figure 12: Geometric equivalence between skid-steer model and two-wheel differential drive model under rolling non-

slipping assumptions [13]. 
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Future experiments involving the Jackal will likely be performed on carpet and on concrete 

which can be assumed to be ideal surface conditions with minimal slip. As a result, it can be 

stated that the Jackal can be considered kinematically equivalent to a two-wheel differential 

drive robot, including the non-Holonomic rolling non-slipping constraints of the model. 

 

4.2.1 EKF Model for the Jackal UGV 

Let �̇�𝒌  =  [Ẋ୩, Ẏ୩, θ̇୩]𝑻 be the velocity of the Jackal in a global coordinate frame and 𝒖𝒌 =

 [v୶ౡ , ωౡ
] 𝑻 (v୷ౡ

= 0) represent the control input matrix, using the variables from (12). 

Performing a forward Euler integration on �̇�𝒌 and giving equivalence to (4) yields: 

 

𝐱ො𝐤|𝐤ି𝟏 = x୩ିଵ|୩ିଵ + (�̇�𝒌 ∗ 𝜕t) = 𝒇൫xିଵ|ିଵ, 𝑢൯       (13) 

 

𝒇(xିଵ|ିଵ, 𝑢)  = 

Xିଵ|ିଵ  +  𝑣௫ೖ
∗ 𝑐𝑜𝑠(𝜃ିଵ|ିଵ) ∗ 𝜕𝑡

Yିଵ|ିଵ + 𝑣௫ೖ
∗ sin(𝜃ିଵ|ିଵ) ∗ 𝜕𝑡

𝜃ିଵ|ିଵ + 𝜔௭ೖ
∗ 𝜕𝑡

    (14) 

 

Where 𝐱ො𝐤|𝐤ି𝟏 (13) is an estimate of the pose of the robot in the global coordinate frame at 

time k based on the state of the previous time step k-1. We linearize the current state estimate 

by solving for F (6a) and B, which are the derivatives (Jacobians) of 𝒇(xିଵ|ିଵ, 𝑢) with 

respect to the previous state estimate and the control input matrix, respectively. We solve for 

these derivatives by performing a first-order Taylor expansion at the previous state estimate 

and current control input. 

 

𝑭𝒌 =

⎣
⎢
⎢
⎢
⎢
⎡

డభ

డೖషభ|ೖషభ

డభ

డೖషభ|ೖషభ

డభ

డఏೖషభ|ೖషభ

డమ

డೖషభ|ೖషభ

డమ

డೖషభ|ೖషభ

డమ

డఏೖషభ|ೖషభ

డయ

డೖషభ|ೖషభ

డయ

డೖషభ|ೖషభ

డయ

డఏೖషభ|ೖషభ⎦
⎥
⎥
⎥
⎥
⎤

=  

1 0 𝜕𝑡 ∗ 𝑣௫ೖ
∗ −sin(𝜃ିଵ|ିଵ)

0 1 𝜕𝑡 ∗ 𝑣௫ೖ
∗ cos(𝜃ିଵ|ିଵ)

0 0 1

     (15) 

 

𝑩𝒌 =
డ

డ௨ೖ
ቚ

୶ೖషభ|ೖషభ,௨ೖ

=
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⎢
⎢
⎢
⎢
⎡

డభ

డ୴౮ౡ 

డభ
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డனౡ
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⎥
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⎥
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⎤

=  

𝜕𝑡 ∗ 𝑐𝑜𝑠(𝜃ିଵ|ିଵ) 0

𝜕𝑡 ∗ sin(𝜃ିଵ|ିଵ) 0

0 1

            (16)                                       
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Let 𝑙  =  [𝑙௫
ଵ , 𝑙௬

ଵ , 𝑙௫
ଶ, 𝑙௬

ଶ . . . 𝑙௫
, 𝑙௬

] represent the positions of known n landmarks in the global 

coordinate frame and 𝑧  =  [𝑙መ௫
ଵ, 𝑙መ௬

ଵ , 𝑙መ௬
ଶ , 𝑙መ௬

ଶ  . . .  𝑙መ௫
, 𝑙መ௬

] be the measurements of each landmark 

made by the robot in the body fixed frame. The output or innovation of the system is then 

given by (5), where ℎ(𝑥ො|ିଵ, 𝑙
) maps the known landmark positions to the variables of the 

state.  

 

ℎ(𝑥ො|ିଵ,𝑙
) =  ቈ

−cos൫𝜃𝑘|𝑘−1൯൫𝑋|ିଵ − 𝑙𝑥,𝑛൯ − sin(𝜃𝑘|𝑘−1)൫𝑌|ିଵ − 𝑙𝑦,𝑛൯

sin൫𝜃𝑘|𝑘−1൯൫𝑋|ିଵ − 𝑙𝑥,𝑛൯ − cos(𝜃𝑘|𝑘−1)൫𝑌|ିଵ − 𝑙𝑦,𝑛൯
     (17) 

 

Solving for the Jacobian of ℎ(𝒙ෝ𝒌|𝒌ି𝟏) using (6b) gives: 

 

𝑯𝒌 = ቈ
−cos(𝜃|ିଵ) sin(𝜃|ିଵ) (sin൫𝜃|ିଵ൯൫𝑥ො|ିଵ − 𝑙௫,൯ − cos(𝜃|ିଵ)൫𝑦ො|ିଵ − 𝑙௬,൯

sin(𝜃|ିଵ) −cos(𝜃|ିଵ) (cos൫𝜃|ିଵ൯൫𝑥ො|ିଵ − 𝑙௫,൯ + sin(𝜃|ିଵ)൫𝑦ො|ିଵ − 𝑙௬,൯
  (18) 

 

Using these equations, we can then iteratively update the state by solving for (2a – 2e) after 

each exteroceptive measurement of a known landmark. These equations make up the EKF for 

estimating the pose of a differential drive robot with respect to a global coordinate frame, 

using known landmarks as update measurements. Equations (17) and (18) can be manipulated 

for other measurement devices, such as sensors, to provide additional information to the filter 

when updating the state. 

 

4.3 The Clearpath Jackal UGV in ROS  
The Clearpath Jackal UGV (Figure 13) was provided to the ANU by the DSTG as part of the 

collaboration between the two organisations, to aid in the research and development of the 

GAME Filter. The Jackal is, as described by the manufacturer, a “small, fast, entry-level field 

robotics research platform. It has “an on-board computer, GPS and IMU fully integrated with 

ROS for out-of-the-box autonomous capability” [40] and is compatible with a variety of 

sensors, vision systems and actuators. The Jackal is running Ubuntu 16.04 and is programmed 

using ROS. 
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Figure 13: The Clearpath Jackal Unmanned Ground Vehicle (UGV) [40] 

 

4.3.1 Updating the software and firmware on the Clearpath Jackal 

Upon its arrival to the ANU, the Jackal was found to have been running Ubuntu 14.04.5 and, 

subsequently, ROS Indigo. This was the configuration of the robot as sent to the DSTG by the 

manufacturer. The developers of the ROS platform state on their website that the Indigo 

distribution was to be considered “end-of-life” as of May 2019 [41]. The tutorial pages 

published by the manufacturer, Clearpath, for setting up and simulating the Jackal [42] 

referred only to their packages made for ROS Indigo. Clearpath updated their Jackal packages 

to include support for ROS Kinetic in June of 2018 [17]. As ROS Kinetic was only primarily 

targeted to run on Ubuntu 16.04 [43], this meant that our Jackal required a complete 

reinstallation of its operating system. 

 

With the assistance of Glen Pearce from the DSTG, the Jackal was updated to Ubuntu 16.04 

and new firmware was installed to allow for the onboard GPS module to function. The GPS 

module is believed to be functional and publishing to a topic (see Section 5.2) but does not 

appear to be producing valid location information due to not being able to find a satellite fix 

whilst inside its resident building.  

 

4.3.2 Simulating the Jackal using ROS Gazebo 

For the majority of this project, development in ROS was performed on a simulated Jackal on 

a virtual machine running Ubuntu 16.04 and ROS Kinetic. The packages, services, nodes and 

topics available in the provided Gazebo simulation packages were observed to be near-

identical to the configuration of the actual Jackal. Installing the software packages and 

dependencies for the Jackal were done so following the instructions provided by Clearpath 

[42].  
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The ROS package jackal_gazebo aims to replicate of some of the packages on the physical 

Jackal in how it mimics the publication of sensor hardware data onto topics. The best method 

for understanding the ROS integration and packages for the Jackal, both in simulation and the 

physical robot, was to view each topic, node, and service individually. Any of those relevant 

to filtering were analysed more closely. This allowed for a thorough understanding of how the 

Jackal provides sensor information to its EKF node, to then aid my own filter implementation. 

The filter presented in Chapter 5 of this report was primarily developed in the simulated 

environment shown in Figure 14. 

  

 
Figure 14: The default Gazebo simulation environment for the Jackal, with the two middle walls removed in order to allow 

the Jackal to traverse further distances from the origin. 

 

4.3.3 Understanding Current Pose Filtering Implementations in ROS 

The most popular open-source nonlinear filter ROS package currently available for ROS 

Kinetic is the robot_localization package, written and maintained by Clearpath Robotics [44]. 

The package contains a collection of state estimation nodes which allow a user to implement 

non-linear state estimators for mobile robot systems without the need to formulate the filter 

themselves. The state estimation nodes implement either an EKF or UKF to produce an 

estimate of the robot’s pose with respect to a defined global coordinate frame. The nodes take 

measurements from an arbitrary number of defined sensors, including multiples of the same 

type of sensor. This allows the filter nodes to perform effective sensor fusion; taking full 

advantage of the standardized ROS message types for odometry and IMU data, such as 

nav_msgs/Odometry and sensor_msgs/Imu.  
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The parameter or “configuration” files allow for the flexible definition of several aspects of 

the filter, including the initial states, covariances and measurement data sources.  The output 

of these nodes is an odometry message (of type nav_msgs/Odometry), which describes the 

state of the robot (as instantaneous pose, linear and angular velocity) and the covariance 

matrix of the state. The robot_localization package is integrated into the jackal ROS packages 

from Clearpath. It the default filtering package shipped with the Jackal and publishes the 

filtered state estimate to the /odometry/filtered topic. 

 

4.4 Developing the EKF for the Jackal UGV 
Using the EKF equations derived in Section 4.2.1, a Python implementation of an EKF for a 

differential drive robot was developed. This was developed outside of the ROS environment at 

first to make the code easier to debug, but very similar functions were then used in a ROS 

Python node for a custom ROS EKF implementation.  

 

 
Figure 15: The state estimate of a modelled differential drive robot produced by an EKF in Python.  

 

Figure 15 demonstrates the accuracy of the EKF model with Gaussian random linear and 

angular velocity inputs and noisy landmark measurements. Once the differential drive EKF 

model equations had been validated in a Python IDE, a ROS package was developed to 

implement the python script in a ROS node and to be simulated on the Jackal. The input 

velocities were taken from the /jackal_velocity_controller/odom topic and represented not the 

control inputs to the Jackal, but the velocity of the robot at a given time. This was a choice 

made in order to replicate the information used by the EKF implementation already on the 

Jackal.  The results and more detailed method of the development of the ROS package created 

to implement an EKF on the Jackal is discussed in Chapter 5. 
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Chapter 5 Results and Analysis 
 

This chapter contains a summary of the information that is relevant to implementing a filter 

onto the Clearpath Jackal UGV in ROS, specifically the GAME Filter. Section 5.1 

summarizes how the Jackal captures and relays both preconfigured proprioceptive and desired 

exteroceptive sensor information, and how to command the movement of the robot. Section 

5.2 demonstrates how an EKF was implemented onto the Jackal using the information 

presented in Section 5.1. Section 5.3 summarizes how the GAME Filter would be 

implemented into ROS and onto one or more Jackals based on the information from Sections 

5.1 and 5.2. 

 

5.1 Summary of Available Information from the Jackal 

The Jackal is configured by the manufacturer, Clearpath Robotics, such that the way with 

which the installed packages and scripts gather hardware-level information, such as from the 

sensor hardware, is to be of minimal concern to the user. These packages and scripts are made 

up of the jackal [45], jackal_base [46] and jackal_description [47] packages and subpackages; 

all of which are installed on the Jackal in the same layout they are presented within their 

respective github repositories. These packages produce relevant information about the 

intrinsic state of the robot and its sensors as standard message types. Such messages are then 

published by these lower level scripts (executed as ROS nodes to construct and publish these 

messages) onto topics that a user can then subscribe their own nodes to. An example of this 

process is presented in Section 5.2, which demonstrates how a custom node can subscribe to 

these topics and use the published information to perform localization and pose estimation 

using an Extended Kalman Filter.  

 

This project focussed on the base configuration of the Jackal UGV; the base configuration 

referring to a Jackal without a declared payload (commonly, additional proprioceptive sensors, 

such as camera or front laser scanner). This is the default configuration. When installing a 

payload, the desired configuration of the robot can be declared in the jackal_description 

launch file (description.launch) with the parameters for each configuration presented in [47]. 

When simulating the Jackal, the parameter for enabling the front laser configuration is in the 

launch file that modifies the description.launch file when it creates an instance of the Jackal in 

Gazebo (jackal_gazebo/launch/jackal_world.launch). As such, it can be enabled by adding a 

config parameter when performing the roslaunch of the Jackal in Gazebo [48].  
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The most relevant information produced by the Jackal to a filter node are those that; contain 

information about the state; provide proprioceptive or exteroceptive measurements and; 

provide physical parameters about the robot such that it aids the robot’s process model within 

the filter. The relevant topics on the base configuration of the Jackal that produce this 

information are presented in Table 1. These topics relate to information that is produced by 

the wheel encoders that reflect the odometry of the robot, the IMU and GPS modules and the 

velocity commands given to the robot.  

 
The messages published to the topic /jackal_velocity_controller/odom provide an estimate of 

the robot’s pose (quaternion orientation), linear and angular velocity of the robot, based on its 

odometry. This information is gathered from the wheel encoders by the diff_drive_controller 

node; a member of the standardized robot controller package, ros_controllers [49]. The 

diff_drive_controller node performs an estimate of the odometry through forward Euler 

integration of the wheel (encoder) velocities [50, lines 140-169], and is believed to be the 

source of the robot’s raw odometry values. The node is modelling the robot as a standard two-

wheel differential drive robot. The odometry process covariance matrix diagonal elements for 

the internal EKF are declared in the jackal_control/config/control.yaml file and can be tuned 

accordingly. 

 

The covariance diagonal values for the odometry and the IMU on the physical Jackal are very 

precise and differ from the Jackal model in simulation, which makes it highly likely that the 

covariance of these sensors have been finely tuned by the manufacturer. The IMU and GPS 

covariance diagonal values are declared in jackal_base/launch/base.launch file, which is 

launched on the robot’s startup, and can be modified if needed. It is worth noting that the GPS 

module currently onboard the Jackal, the Gtop GMM-U2P, only has a position accuracy of 3 

metres [51]. It is recommended that those involved with any future development of the Jackal 

seek a more accurate third-party module and have it publish to a new, separate topic. 
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The input velocity command topics differ dependent on application. The Jackal is pre-

configured to be controlled using a Playstation 4 Bluetooth joystick controller, which 

publishes the controller’s input values onto the /bluetooth_teleop/cmd_vel topic. The standard 

/cmd_vel topic also allows the user to publish messages onto it to control the robot. The open-

source keyboard input command package, teleop_twist_keyboard, publishes to /cmd_vel and 

was used during the simulated testing and development of the implementation presented in 

Section 5.2.1. The Jackal’s preconfigured EKF (/ekf_localization) node does not subscribe to 

any direct input command topic and instead relies purely on the instantaneous velocity of the 

robot, provided by the odometry and IMU topics.  

 

Another key ROS feature and source of information provided by the Jackal are the 

relationships between all known coordinate frames over time. ROS uses a package known as tf 

to maintain the relationship between known coordinate frames, including the frames of all 

payload accessories and even each of the wheels of the robot. This package provides the user 

with a tree structure overview of all system coordinate frames and allows for the 

transformation of points, vectors, etc between any two frames at a given time [52][53]. This 

will become increasingly more prevalent as the project moves into developing for movement 

around larger areas and for collaborative localization application.  

 

Appendix A is the tf tree diagram (based on a generated tree diagram from ROS) that 

describes the relationships and hierarchy of all coordinate frames on the base Jackal. It is 

important to note that, as depicted, the EKF node is responsible for mapping the Jackal body 

fixed frame to the global (odom) reference frame. Aside from the transformation/updates 

between the body fixed frame and the frame link of each wheel, the no other transformations 

occur on the base Jackal. 

 

The version of the Jackal’s software; a disk image sourced from Clearpath [54]; can be found 

in the VERSION text file in the Jackal’s home directory. The jackal_firmware package is 

where one will find the firmware version of the Jackal. It is not recommended to modify this 

package without prior consultation with the manufacturer, Clearpath Robotics. 

 

 

 

 

 

 



31 
 

5.2 EKF Implementation  
Using the topics outlined in Table 1, an EKF was developed to estimate the Jackal’s pose. The 

primary motivation for developing this custom implementation was ensure that the data 

published by the Jackal to the available topics were enough to create an accurate pose 

estimation filter. The implementation comes in the form of a package (my_ekf) which is made 

up in a file structure similar to other common ROS packages: 

 

● A launch folder, which contains the “launch” file that calls an instance of the EKF node 

script (with declared parameters, if desired).  

● A config folder, which contains the parameter (aka “param” or “YAML”) file that 

declares the values of referenced parameters within the node. Having these parameters in 

a param file that allow for easier manipulation of variables, such as covariance values, 

subscribed data topics and the publishing frequency, without having to modify them in 

the node each time.  

● A src folder, which contains the source files for the node. The primary node file, ekf.py, is 

called upon launch with the parameters of the declare param file.  

 

This modular file structure is recommended for any future filter implementation. The primary 

node file receives messages from the declared topics and performs an EKF prediction and/or 

update, dependent on the information received. For proof of concept, three landmark locations 

are declared within the param file. With each time step, the filter node mimics a measurement 

from a landmark by calculating the distance and orientation from the body fixed frame to the 

known landmark coordinate and adds a small amount of Gaussian noise. These measurements 

are then used to update the current state estimate. The updated state is published to the topic 

/filter_output. 

 

In addition to the EKF node, a pose estimation comparison node was created to examine the 

performance of the internal pose estimation filter. The node subscribes to the raw, unfiltered 

odometry topic (/jackal_velocity_controller/odom), the filtered odometry topic 

(/odometry/filtered) and the topic produced by the custom EKF node (/filter_output) and 

graphs the pose estimate from each in real time. This comparison node also publishes the 

results to a text document that can be imported into Microsoft Excel for further analysis.  
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5.2.1 Gazebo Simulation 

The following experiments were performed in a virtual machine Gazebo simulation of a 

Jackal. The Jackal was driven around in an approximate square, stopping and making 90 

degree turns at each corner. The custom comparison node was used to record the pose 

estimation of the robot from the published topics of all the filtered and unfiltered odometry. 

 

 
 

Figure 16: Plotting the estimated robot position of the unfiltered, Jackal EKF and the custom EKF outputs it travels in a 
square. 

 

 
Figure 17: Euclidean distance between the estimated robot position produced by the custom EKF and the Jackal EKF. 
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As discussed in Section 5.1, the raw odometry node publishes a pose that is calculated using 

forward integration (Runge-Kutta method), while the robot’s filter node takes the linear and 

angular velocities of the robot and estimates the pose using a polished EKF implementation. 

Figure 17 shows that, over time, the pose estimate of the custom EKF greatly diverges from 

the EKF pose estimate, which is considered to be a more accurate estimate of the true pose. 

What is immediately noticeable when comparing the integrated EKF and the custom model in 

is the difference in velocities. This is particularly notable during linear travel. The difference 

in position between time steps when comparing the custom EKF plot to the other plots is 

significant and shows that the amount of linear and angular velocity the robot is estimated to 

be experiencing is significantly higher than what the other two estimation methods are 

producing. Also observable in Figure 16 is the inconsistency in the difference in distance 

between points and the sample time is far more in the custom implementation than in either 

the unfiltered or Jackal EKF’s pose estimation.  

 

Given the process models of both the EKF and GAME Filters rely on a linear (x direction) and 

angular (yaw) velocity inputs, this variation between the expected velocity and the actual 

velocity will need to be considered when attempting to implement a filter. A way that was 

found to improve the performance of the custom filter and minimize the velocity difference 

was to apply a gain (0.5~0.7) to the velocity vector u(t).  

 

 
 

Figure 18: Plotting the estimated robot position of the unfiltered, Jackal EKF and the custom EKF outputs it travels in a 
square, with an applied custom EKF velocity gain of 0.64. 
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Figure 19: Euclidean distance between the estimated robot position produced by the custom EKF and the Jackal EKF, with an 
applied custom EKF velocity gain of 0.64. 

 

Figure 18 and Figure 19 show the pose estimation performance of the custom EKF 

implementation. The velocity gain value of 0.64 was derived through trial and error, first 

starting at 0.5 and observing performance. When comparing Figures Figure 17 and Figure 19, 

the velocity gain appears to have greatly improved the pose estimation ability of the custom 

EKF. A potential reason for this is that the kinematic model and subsequent EKF model of the 

Jackal described in Section 4.2 may be incorrectly incorporating the velocity gain. The 

elements of the EKF process noise covariance matrix, Q, were experimentally tuned to 

observe their effects on the velocity discrepancy, but any change to the matrix made no 

impact. The exact cause of the velocity differences could not be determined. 

 

5.2.2 On the Jackal UGV 

The following experiments were performed on the Jackal UGV robot. Using a Playstation 4 

controller as velocity input, the Jackal was driven around in an approximate square, stopping 

and making 90 degree turns at each corner. For the first three straights, the Jackal was given 

the normal speed value (no “boost” button (R1) press). Between the third and fourth corner, 

the Jackal was given the maximum throttle input (boost button press). After it had roughly 

returned to its origin, the robot would rotate to face the middle of the square, and again 

accelerate at full throttle to the middle of the square. The custom EKF update step was based 

on the input from simulated, noisy measurements to three landmarks in arbitrary positions 

(<10 metres in either axis direction). Measurements from the IMU were not integrated into the 

custom EKF implementation. Figure 15 describes the testing motion of the Jackal. 
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Figure 20: Experimental route performed by Jackal (with minor deviations due to manual control). Double chevrons indicate 

where maximum throttle input was applied. Note the y axis is pointed in the negative direction. 

 
Following on from the results of the simulation experiments, the Jackal implementation was given the same velocity gain value of 

0.64.  

Figure 21 shows the Jackal’s first completed run of the circuit and compares the pose 

estimation performance of the internal EKF to the custom EKF with the aforementioned 

velocity gain.  
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Figure 21: Plotting the estimated robot position of the Jackal EKF and the custom EKF outputs it travels in a rough square. 

Eight further runs of the square route were performed. Like the simulation experiments, the 

velocity gain was experimentally tuned throughout these runs. The observation was made that 

when the gain was set right for the linear velocity, the angular velocity was slightly off, and 

vice versa. Figure 22 demonstrates how the gain value, whilst providing a good estimation of 

the true linear velocity, is providing too much of an increase to the angular velocity.  

 

 
Figure 22: Plotting the estimated robot position of the Jackal EKF and the custom EKF with a tuned gain for the linear 

velocity only. 

 

The single velocity gain was then substituted for individual gains applied to both the linear 

and angular velocities within the control input matrix u(t). Additionally, the measurement and 

process noise covariances were tuned based on observed performances. These tunings 

primarily consisted of a slight increase in the robot’s orientation process covariance value and 

decrease in initial position covariances.  
 
 

Figure 23 shows the final run of the Jackal with tuned covariances and linear and angular 

velocity gains. Only the custom EKF output is shown as the internal EKF had, for an 

unknown reason, initialised its orientation to have changed, skewing the pose output. This 

may have occurred due to a measurement from the IMU when the robot was moved from the 

desk to its starting position, even though the robot had not been orientated around its Z axis.  
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Figure 23: Plotting the estimated robot position of the custom EKF outputs with tuned velocity input gains and noise process 
covariances. 

 

With the tuned velocity gains, the pose estimation accuracy of the Jackal greatly improves. As 

such, any future filter implementation on the Jackal UGV should ensure that the state 

transition model or process noise covariance matrix accounts for a potential difference in 

control input and actual actuated linear and angular velocity. It is recommended that the 

source of this velocity difference be determined and accounted for in simulation prior to any 

filter implementation being installed onto the Jackal UGV. 

 

5.3 Preparing the Jackal 
Future filter implementation experiments will likely involve additional sensors and other 

hardware. This section provides information and sources on how to configure the Jackal for 

additional hardware and ensure the Python version currently installed on the Jackal meets the 

requirements of a future GAME Filter implementation.  

 

5.3.1 Configuring the Jackal  

At boot, the Jackal runs the launch files declared in the file /opt/ros/kinetic/ros.d. Currently, 

only two files are being executed on ROS startup: base.launch (from the jackal_base package) 

and accessories.launch (from the jackal_bringup package). These files are responsible for 

connecting launching the key Jackal software packages and hardware drivers, respectively. 

Given the necessary nodes and topics of the Jackal relevant to a filtering implementation are 
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not running until these scripts have launched, it is not recommended to add additional launch 

scripts to the ros.d file unless the custom package directly impacts or is in addition to the 

Jackal/ROS boot sequence. A more detailed outline of how the Jackal boots and how to 

modify this sequence is presented in [56]. The contained launch files, however, can be 

modified to run the drivers for added accessories, such as a camera, front laser or another 

accessory [40]. There are four configurations that are pre-configured for the more popular 

accessories. These configurations can be called by changing the config argument in the 

base.launch file from “base” to one of the configurations stated in Section 3 of [57].  

 

The base.launch script launches the foundation packages for the Jackal. The first is the 

description.launch file (from jackal_description), which is responsible for declaring to ROS 

the hardware configuration of the Jackal. This information is primarily stored in the /urdf 

folder of this package, contained in .xacro files. The configurable information in these files 

includes individually enabling accessories and configuring their locations on the robot (with 

respect to the body fixed frame). The jackal.urdf.xacro file declares the locations and 

properties of all intrinsic properties of the Jackal, including the location and geometry of each 

wheel. This is the primary file to modify to reflect any physical changes made to the Jackal, 

should there be any. A more detailed explanation of how to configure the Jackal for additional 

accessories can be found at [58][59].  

 

The second and third scripts that are launched from the base.launch file are the control.launch 

and teleop.launch scripts, both from the jackal_control package. These launch files are both 

run with configuration files, also located in the jackal_control package. The control.launch 

file first declares a control configuration file, control.yaml. This file contains the diagonal 

elements for the initial pose covariance and the process noise (twist_covariance_diagonal) 

covariance matrix. This file also contains other hardware parameters relating to maximum 

velocity and acceleration of the Jackal, and a boolean variable to allow for the active 

publishing of the frames of each of the wheel encoders. While most of these values are pre-

configured by the manufacturer, they can be modified as is seen fit for purpose. The 

control.launch file also calls an instance of an EKF node from the robot_localization package.  

The input parameters for the EKF node, including what sensor data topics (same as declared 

in Table 1) to feed into the filter, are declared in the robot_localization.yaml. The method and 

considerations to add additional topics to this filter are outlined in [59]. The teleop.launch file 

launches the nodes relating to the input control of the robot; particularly, to the mapping of a 

joystick to velocity inputs for the Jackal. The launch file calls an instance of the 

teleop_twist_joy node [60], with the parameters for the node set by the teleop_ps4.yaml or 
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teleop.yaml file; depending on whether the user is controlling the robot with a Playstation 4 

controller or a different controller, respectively.  

Appendix B provides a graphical representation of the boot sequence of the Jackal and how 

each of the primary packages relevant to the filtering applications are launched. Michael 

Wiznitzer of Northwestern University [61] provides an example of how he modified all these 

configuration files for a desired SLAM application.  

 

5.3.2 Updating Jackal Python Distribution  

Several ROS dependencies currently installed on the Jackal, including several packages 

required to use the Jackal from Clearpath, contain scripts that have been developed using 

Python 2.7. This issue was faced in my Linux virtual machine running the same ROS version 

and packages, when it was advised that all development should be performed on Python 3.7.3. 

This was because the GAME Filter simulations are currently being developed using Python 

3.7.3 and respective dependencies. For this reason, the virtual machine that was used for 

development was updated to accommodate this newer Python version. Upon installing the 

newer dependencies, a large majority of the jackal packages were automatically removed to 

accommodate the underlying update. They were then reinstalled on top of the Python 3.5.2 

dependencies from their subsequent git repositories. Due to time constraints, the Jackal was 

not updated to the required Python version. The package was successfully loaded onto the 

Jackal and the primary EKF node script was rewritten with Python 2.7 syntax so that it could 

be compiled using the Python distribution installed on the Jackal. Instructions on how to 

update the ROS packages on the Jackal to Python 3.7.3 will be included in the handover 

repository.  

 

5.4 Implementing a Filter onto the Jackal 
This section outlines the requirements and method for a future GAME Filter implementation 

for both a physical and simulated Jackal.  

 

5.4.1 GAME Filter Implementation Requirements 

The system requirements for a future GAME Filter implementation were declared based on 

discussions with ANU PhD candidate Jack Henderson, who will be leading the future 

implementation and validation of the GAME Filter on the Jackal. 
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The requirements of a GAME Filter implementation are as follows: 

● The implementation must be its own standalone package that can be installed onto an 

arbitrary number of robots.  

● The package must have a param file for configuring the filter’s static parameters, such as 

initial covariance values and process/noise covariance values can be modified without 

needing to modify the primary GAME Filter node script.  

● The package must be able to subscribe to an arbitrary amount of topics for input 

information. By default, they must be configured to subscribe to the relevant information 

provided by the Jackal. 

● The filter’s process model takes an input vector u, a 6x1 vector which contains the 3-

dimensional linear and angular velocity inputs of the robot as its entries. 

● The filter processing and output must conform to the ROS coordinate frame standards as 

per REP-105: Coordinate Frames for Mobile Platforms [55] 

● The package must be able to publish the state estimation output onto a topic.  

 

Appendix B provides a graphical representation of the boot sequence of the Jackal and how 

each of the primary packages relevant to the filtering applications are launched. Michael 

Wiznitzer of Northwestern University [61] provides an example of how he modified all these 

configuration files for a desired SLAM application.  

 

5.4.2 Creating a GAME Filter Package  

When creating a GAME Filter package, it is recommended that the package be developed, 

troubleshooted and simulated on a Ubuntu 16.04 virtual machine running ROS Kinetic [43] 

with all of the relevant Jackal packages installed [62] and a catkin workspace initialized [63]. 

This section will detail the process what a GAME Filter package should look like and how to 

create one from scratch. A skeleton package will be provided in the handover repository for 

further development. 

 

The first step is to create and configure a blank ROS catkin package [64]. Additional blank 

directories should be created within the package such that the package directory contains the 

same subdirectory layout as outlined at the beginning of Section 5.2. Once subsections 5.3.3a) 

- 5.3.3c) have been completed, it is important to run the compile the package in the catkin 

workspace using the catkin_make command and source the catkin setup file as instructed in 

[64]. 
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 a) Configuration (YAML) File 

Create a file with the .yaml extension within the /config subdirectory. This configuration file 

should ideally contain the parameters and variables of filter that are most likely to be 

manipulated. This will allow the manipulation and editing of the script implementing the 

GAME Filter, which will be significantly larger than the configuration file, without having to 

edit the filter script itself. Suggested parameters are to be the input topics for measurement 

data, initial, process and measurement covariances and the refresh rate of the filter and/or the 

callback functions for the topics. It is recommended to include the topics listed in Table 1 as 

variables in the configuration file.  

 

The configuration file that was used for the custom EKF can be found in Appendix C. More 

detailed examples of the format for a parameter file can be found within the config folder of 

the jackal_control package [64]. Parameters in the local configuration file are called within 

scripts between single quotes and with a tilde prior to the parameter name (e.g. 

‘~pose_covariance_matrix’). The configuration file will need to be declared as a rosparam 

when launching the node script in order for the reference variables within the node script to 

relate to the configuration file. This process is explained for this application in more detail in 

Section 5.3.3c, and a more general explanation of the use of the YAML format in launch files 

is detailed in [65].  

 

b) GAME Filter Node 

Create a Python file in the /src subdirectory. This script is where the class for the GAME 

Filter will need to be implemented. Like with many filter implementations, such as the GAME 

Filter simulation scripts currently being developed by Jack Henderson, this class will likely 

include predict and update functions. This script should also contain a function that subscribes 

to all topics outlined in Table 1, and another function to publish the state output from the filter 

onto a new topic.  

 

Appendix D is an example of a skeleton for a node script as described above. The start 

function creates an instance of the GAME Filter; setting the initial state and covariance values 

and initializes a thread for the testingThread function to ensure continuous state publishing. 

The start function also initializes the subscriptions to the desired data topics, based on the 

parameters declared in the configuration file, and the topic on which to publish the state. The 

callback functions are required for the subscribed topics to execute the filter functions based 

on incoming topic information, such as performing a state prediction from a velocity input 

from the odometers, IMU or teleop controller, or a prediction update from an external 
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measurement topic such as a LiDAR accessory. On each iteration set by a refresh frequency, 

the testingThread function extracts the state from the filter object and compiles a 

nav_msgs/Odometry message, which is then published the declared topic. The stop function is 

triggered by a user input or when the node is killed and ceases the testingThread thread.  

 

 c) Launch File   

Create a file with the .launch extension within the /launch subdirectory. ROS launch files are 

written in XML format. The launch file should call an instance of the GAME Filter node using 

the node tag. The name of the node as it appears in ROS is declared in this tag. Within the 

node tag, the desired configuration file should be declared using the rosparam tag. 

Additionally, individual parameters can be declared for a node script using the param tag. 

Whether these individual parameters override any parameters a declared configuration file 

was not verified. Multiple instances of a filter node can be launched within the launch file. 

Clearpath and others [66][67] provide a more detailed explanation of launch files and the use 

of tags. Appendix E contains the launch file used for the custom EKF implementation. 

 

5.4.3 Launching a GAME Filter Node 

On a Ubuntu virtual machine running ROS with the configuration outlined in Section 5.3.3, an 

instance of the Jackal can be launched into a Gazebo simulation environment [42]. Once the 

Gazebo simulation has finished initializing, the GAME Filter package can be launched using 

the command: 

 
roslaunch *name of package* *name of launch file (including .launch extension)* 

 

To view the output of the filter in a terminal window, echo the declared topic that was being 

published: 
rostopic echo *name of topic* 

 

Instructions on how to install and run the package onto the Jackal will be outlined in more 

detail within the handover repository.  
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Chapter 6 Conclusions and Further Work 
 

A second-order minimum-energy filter, referred to as the GAME Filter, has been proposed by 

Zamani, Trumpf and Mahony of the ANU. The filter has shown to perform promisingly in 

simulation, specifically when utilised for attitude estimation. In 2019, the ANU entered a 

research partnership with the Defence, Science and Technology Group (DSTG) to further 

develop the applicable capabilities of the filter. This partnership resulted in the ANU being 

lent a Clearpath Jackal UGV mobile robot development platform. The next step in the 

development of the GAME Filter was to validate the previously simulated performance on a 

physical platform and observe real-world variances that may not have been accounted for in 

the simulation. 

 

This thesis outlines how to implement a nonlinear filter onto the Clearpath Jackal UGV. This 

includes providing a summary of the background knowledge in filtering theory, mobile robot 

kinematics and ROS that was obtained in order to implement a filter onto the Jackal. A 

method of how to develop and implement a filter in ROS based on the sensor and hardware 

information published by the Jackal. Using this method, an Extended Kalman Filter (EKF) 

was implemented onto the Jackal to estimate the pose of the robot in a local, arbitrary 

coordinate frame. The performance of this custom implementation was compared to the 

internal, more refined EKF implementation that was developed by the manufacturer of the 

Jackal. The performance differences provided considerations for a future GAME Filter 

implementation. A skeleton ROS package was developed for a future GAME Filter 

implementation for the Jackal and will be provided in the handover repository for future 

development.  

 

The author highly recommended that those who wish to develop pose and attitude estimation 

filters for the Jackal UGV have an equivalent background related to the theory presented in 

this report.  
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Using the method, skeleton package and implementation considerations presented by this 

report, the next step in the GAME Filter’s development is to implement a GAME Filter class 

into a ROS node. This node can then be used to construct a subsequent package. This package 

should be tested and troubleshooted in simulations of the Jackal using Gazebo prior to 

implementation on the physical Jackal. The node should also aim to utilize other forms of 

measurement data published by the Jackal that were not utilized during this project. This 

includes the data published by the IMU and GPS, despite the poor position accuracy of the 

latter. Additional sensors and payloads should also be added to the Jackal to provide any 

future filter implementation with additional measurement information.  

 

Once a GAME Filter package has been developed, the ANU’s VICON testing space can be 

used to ensure the filter is functional and that the performance is not drastically dissimilar to 

the EKF currently implemented on the Jackal from the manufacturer. Having a functional 

implementation of a pose estimation GAME Filter on a Jackal will then allow for several 

possible experimental paths. One such path includes validating the collaborative localization 

algorithm proposed by Zamani and Hunjet; a stretch goal of the original scope of this project 

and a primary research topic of the Jackal Project.  
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Appendix A 

 
Appendix A - tf Tree Diagram 

 

odom (global coordinate frame, declared on start-up, default: origin at start-up pose.) 
 | 
├── Broadcaster: /ekf_localization 
├── Average rate: 49.969 Hz 
├── Most recent transform: 1572579936.88 (0.016 sec old) 
├── Buffer length: 4.903 sec 
 | 
└──>base_link (body fixed frame (BFF)) 
     | 
    ├── Broadcaster: /robot_state_publisher 
    ├── Average rate: 10000.00 Hz 
    ├── Most recent transform: 0.00 (no transform) 
    ├── Buffer length: 0.000 sec 
     | 
    └──> chassis_link (BFF, default: middle of robot) 

    | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 10000.00 Hz 
          ├── Most recent transform: 0.00 (no transform) 
          ├── Buffer length: 0.000 sec 
           | 
          └──> front_fender_link (front payload mount point, default: BFF) 
           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 10000.00 Hz 
          ├── Most recent transform: 0.00 (no transform) 
          ├── Buffer length: 0.000 sec 
           | 
          └──> mid_mount (middle of robot mount point, default: BFF) 
                 | 
                ├── Broadcaster: /robot_state_publisher 
                ├── Average rate: 10000.00 Hz 
                ├── Most recent transform: 0.00 (no transform) 
                ├── Buffer length: 0.000 sec 
                 | 
                └──> front_mount(rear payload mount point, default: BFF) 
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                 | 
                ├── Broadcaster: /robot_state_publisher 
                ├── Average rate: 10000.00 Hz 
                ├── Most recent transform: 0.00 (no transform) 
                ├── Buffer length: 0.000 sec 
                 | 
                └──> rear_mount (rear payload mount point, default: BFF) 
           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 10000.00 Hz 
          ├── Most recent transform: 0.00 (no transform) 
          ├── Buffer length: 0.000 sec 
           | 
          └──> imu_link (location of IMU module w.r.t BFF, default: BFF) 
           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 10000.00 Hz 
          ├── Most recent transform: 0.00 (no transform) 
          ├── Buffer length: 0.000 sec 
           | 
          └──> navsat_link (location of GPS module w.r.t BFF, default: BFF) 
 
           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 10000.00 Hz 
          ├── Most recent transform: 0.00 (no transform) 
          ├── Buffer length: 0.000 sec 
           | 
          └──> rear_fender_link (rear payload mount point, default: BFF) 
           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 31.021 Hz 
          ├── Most recent transform: 1572579936.88 (0.002 sec old) 
          ├── Buffer length: 4.900 sec 
           | 
          └──> front_left_wheel_link (front left wheel w.r.t BFF) 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 31.021 Hz 
          ├── Most recent transform: 1572579936.88 (0.002 sec old) 
          ├── Buffer length: 4.900 sec 
           | 
          └──> front_right_wheel_link (front right wheel w.r.t BFF) 
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           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 31.021 Hz 
          ├── Most recent transform: 1572579936.88 (0.002 sec old) 
          ├── Buffer length: 4.900 sec 
           | 
          └──> rear_left_wheel_link (rear left wheel w.r.t BFF) 
           | 
          ├── Broadcaster: /robot_state_publisher 
          ├── Average rate: 31.021 Hz 
          ├── Most recent transform: 1572579936.88 (0.002 sec old) 
          ├── Buffer length: 4.900 sec 
           | 
          └──> rear_right_wheel_link (rear right wheel w.r.t BFF) 
 
 
To adjust the values/connections of these frames, and for the wheel frame origin locations 

with respect to the BFF, see file /jackal/jackal_description/urdf/jackal.urdf.xacro 

 

Appendix A: A transform or tf tree diagram describing the relationships between all declared 

coordinate frames running on the Jackal UGV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D 
 

Appendix B 
Appendix B: Code Flow Diagram describing the nodes related to filtering that launch on ROS 

start-up, the launch arguments and their respective subscribed and published topics.  
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Appendix C 
GAME Filter Node Skeleton Script (game.py) 

 
1. #!/usr/bin/env python3.5   
2.    
3. __author__ = 'Alex Ollman'   
4.    
5. import sys   
6. import math   
7. import time   
8. from threading import Thread   
9.    
10. import rospy   
11. import numpy as np   
12.    
13. from geometry_msgs.msg import PoseWithCovarianceStamped, Vector3Stamped, Twist   
14. from nav_msgs.msg import Odometry   
15. from sensor_msgs.msg import Imu, NavSatFix   
16.    
17.    
18. class GAMEFilter:   
19.    
20.     def __init__(self, x_0, P_0, Q, R):   
21.     # Initial state   
22.         self._x = x_0   
23.         self._P = P_0   
24.    
25.         self.Q = Q   
26.                      
27.         self.R = R   
28.                   
29.     def predict(self, u, dt):   
30.            
31.         #GAME Predict   
32.         return self._x, self._P   
33.    
34.    
35.     def update(self, H, z):   
36.        
37.         #GAME Update   
38.         return self._x, self._P   
39.            
40.            
41. class quaternionConversion:   
42.        
43.     def euler_to_quaternion(self,roll, pitch, yaw):   
44.    
45.         qx = np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) - np.cos(roll/2) * np.sin

(pitch/2) * np.sin(yaw/2)   
46.         qy = np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.cos

(pitch/2) * np.sin(yaw/2)   
47.         qz = np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2) - np.sin(roll/2) * np.sin

(pitch/2) * np.cos(yaw/2)   
48.         qw = np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.sin

(pitch/2) * np.sin(yaw/2)   
49.    
50.         return [qx, qy, qz, qw]   
51.    
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52.    
53. class FilterNode:   
54.    
55.    
56.     def cmdvelCallBack(self, cmd_vel):   
57.         self.cmd_vel = cmd_vel   
58.            
59.     def odomCallBack(self, odom):   
60.         self.odom = odom   
61.            
62.         #Odometry (message type: nav_msgs/Odometry)   
63.         self.odomTimeStamp, self.odomLinVel, self.odomAngVel = self.odom.header.stamp, 

self.odom.twist.twist.linear, self.odom.twist.twist.angular   
64.            
65.         new_time = float('{}.{}'.format(self.odomTimeStamp.secs, self.odomTimeStamp.nse

cs))   
66.         self.dt = new_time - self.stateTime   
67.         if self.dt > 0:   
68.             #Declare filter input vector from current robot velocity.          
69.             u = np.array([[velGain*self.odomLinVel.x], [angGain*self.odomAngVel.z]])   
70.    
71.             #Run Filter   
72.             self.filter.predict(u,self.dt)   
73.            
74.         self.stateTime = new_time   
75.    
76.     def imuCallBack(self, imu):   
77.         self.imu = imu   
78.            
79.         #IMU (message type: sensor_msgs/IMU)   
80.         self.imuTimeStamp, self.imuQuatOrient,self.imuAngVel,self.imuLinVel = self.imu.

header.stamp, self.imu.orientation, self.imu.angular_velocity, self.imu.linear_accelera
tion   

81.    
82.     def GPSCallBack(self, gps):   
83.         self.gps = gps   
84.            
85.         #GPS (message type: sensor_msgs/IMU)   
86.         self.gpsTimeStamp,self.gpsLat,self.gpsLong,self.gpsPosCov = self.gps.header.sta

mp, self.gps.latitude, self.gps.longitude, self.gps.position_covariance   
87.            
88.        
89.        
90.     def testingThread(self):   
91.    
92.         rate = rospy.Rate(self.frequency)    
93.    
94.         while not self.stopping:   
95.            
96.             #Extracting desired variables from each of the input data streams. View the

 resources to see how to extract the desired data.      
97.    
98.                
99.             x_t = self.filter._x   
100.             P_t = self.filter._P   
101.                
102.             #Construct the Odometry message to publish   
103.             self.odom.header.stamp = self.odomTimeStamp   
104.             self.odom.header.frame_id = "odom"   
105.    
106.             self.odom.pose.pose.position.x = x_t[0]   
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107.             self.odom.pose.pose.position.y = x_t[1]   
108.             self.odom.pose.pose.position.z = 0   
109.                
110.             #convert euler angles to quaternions (if required)   
111.             quat = quaternionConversion()   
112.             odom_quat = quat.euler_to_quaternion(0,0,float(x_t[2]))   
113.             self.odom.pose.pose.orientation.x = odom_quat[0]    
114.             self.odom.pose.pose.orientation.y = odom_quat[1]    
115.             self.odom.pose.pose.orientation.z = odom_quat[2]   
116.             self.odom.pose.pose.orientation.w = odom_quat[3]   
117.    
118.             #Setting the velocity. Can use odom or imu for this.    
119.             self.odom.child_frame_id = "base_link"   
120.             self.odom.twist.twist.linear.x = self.odomLinVel.x   
121.             self.odom.twist.twist.linear.y = self.odomLinVel.y   
122.             self.odom.twist.twist.angular.z = self.odomAngVel.z   
123.    
124.             #Publish the message and update time step variable.   
125.             self.publisher.publish(od)   
126.                
127.             #Wait until next cycle.    
128.             rate.sleep()   
129.    
130.    
131.     def start(self, s = 1.0):   
132.            
133.         #Subscribing node to desired topics.    
134.            
135.         self.cmd_vel = Twist()   
136.         self.cmdSub = rospy.Subscriber('~teleop_vel',   
137.         Twist,   
138.         self.cmdvelCallBack,   
139.         queue_size=1)   
140.            
141.         #Odometry Topic    
142.         self.odom = Odometry()   
143.         self.odomSub = rospy.Subscriber('~odom0',   
144.         Odometry,   
145.         self.odomCallBack,   
146.         queue_size=1)   
147.            
148.         #IMU Topic   
149.         self.imu = Imu()   
150.         self.imuSub = rospy.Subscriber(rospy.get_param('~imu0'),   
151.         Imu,   
152.         self.imuCallBack,   
153.         queue_size=1)   
154.    
155.         #GPS Topic   
156.         self.gps = NavSatFix()   
157.         self.gpsSub = rospy.Subscriber(rospy.get_param('~gps0'),   
158.         NavSatFix,   
159.         self.GPSCallBack,   
160.         queue_size=1)   
161.            
162.         #Declaring Publisher and Output Topic    
163.         self.od = Odometry()   
164.         self.publisher = rospy.Publisher('filter_output',   
165.         Odometry, queue_size=1)   
166.    
167.    
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168.         #Intialization of Global Variables and Filter Object   
169.            
170.         x_0 = np.array(['~initial_state'])   
171.         p_0 = np.array(['~initial_cov']   
172.         Q = np.array(['~measurement_cov'])   
173.         R = np.array(['~process_cov'])   
174.            
175.         self.filter = GAMEFilter(x_0,P_0)   
176.            
177.         #Declaring arbituary landmarks from configuration file   
178.         self.landmarks = np.array(['~landmarks'])   
179.        
180.         self.frequency = rospy.get_param('~frequency')   
181.            
182.         self.u = np.array([[0],[0]])   
183.    
184.         self.stopping = False   
185.         self.thread = Thread(target = self.testingThread)   
186.         self.thread.start()   
187.    
188.         print ('GAME Filter - Started')   
189.    
190.     def stop(self):   
191.         self.stopping = True   
192.         while self.thread.isAlive():   
193.             time.sleep(0.1)   
194.    
195.             self.cmdSub.unregister()   
196.             self.odomSub.unregister()   
197.             self.imuSub.unregister()   
198.             self.gpsSub.unregister()   
199.    
200.             print ('GAME Filter - Stopped')   
201.    
202. if __name__ == "__main__":   
203.        
204.     rospy.init_node('game_node');   
205.        
206.     filterNode = FilterNode()   
207.     filterNode.start()   
208.     try:   
209.         rospy.spin()   
210.     except KeyboardInterrupt:   
211.         print('GAME Filter Stopped: Keyboard Interrupt')   
212.     finally:   
213.         filterNode.stop()   

 

 

Appendix C: GAME Filter node file skeleton, game_node.py. This file is the main node that 

will run the functions of the GAME Filter upon new published measurements on subscribed 

topics. The functions of the GAMEFilter class have been left intentionally blank. 
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Appendix D 
GAME Filter Configuration File Example 

 
1. #Configuation for GAME Filter node   
2.    
3. #referesh frequency (Hz)   
4. frequency: 50   
5.    
6. #REFERENCE FRAMES   
7. #https://www.ros.org/reps/rep-0105.html   
8. odom_frame: odom   
9. base_link_frame: base_link   
10. world_frame: odom   
11.    
12. #State and Covariances   
13. initial_state: [0,0,0]   
14. initial_cov: [0.01,0,0],[0,0.01,0],[0,0,0.01]   
15.    
16. process_cov: [0.05,0,0],[0,0.05,0],[0,0,0.05]   
17. measurement_cov: [0.1,0,0],[0,0.1,0],[0,0,0.1]   
18.    
19. teleop_vel: /bluetooth_teleop/cmd_vel   
20.      
21. #Robot odometry (linear and angular velocity) stream   
22. odom0: /jackal_velocity_controller/odom   
23.    
24. #IMU data steam   
25. imu0: /imu/data_raw   
26.    
27. #GPS data stream   
28. gps0: /navsat/fix   
29.    
30. #GPS velocity stream   
31. gps_vel0: /navsat/fix   
32.    
33. #Landmarks   
34. landmarks: [1,1],[3,7]   

 

Appendix D: A mock-up configuration file for a future GAME Filter package, based on the 

one used for the custom ROS EKF implementation. 
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Appendix E 
ROS Launch File Example  

 
1. <launch>   
2.      
3.      
4.     <node pkg="my_ekf" type="ekf.py" name="custom_ekf_localization">   
5.         <rosparam file="$(find my_ekf)/config/game.yaml" />   
6.            
7.     </node>    
8.     <!--   
9.     <node pkg="robot_localization" type="navsat_transform_node" name="navsat_transform_

node" respawn="true" output="screen">   
10.    
11.         <param name="magnetic_declination_radians" value="0.244346"/>   
12.    
13.         <param name="yaw_offset" value="0.01"/>   
14.         <param name="publish_gps" value="true"/>   
15.    
16.         <remap from="/imu/data" to="/imu_data" />   
17.         <remap from="/navsat/fix" to="/tcpfix" />   
18.         <remap from="/odometry/filtered" to="/odom" />   
19.     </node>    
20.     -->   
21.    
22. </launch>   

 

Appendix E: The launch file used to create an instance of the custom EKF node, declaring the 

parameters for the node to be from the game.yaml configuration file. This file also provides an 

example of how to launch other internal packages with parameters, such as the GPS node 

from navsat_transform_node. 
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