
State Estimation for Systems on Lie

Groups with Nonideal

Measurements

Alireza Khosravian Hemami

A thesis submitted for the degree of

Doctor of Philosophy of

The Australian National University

September 2016



c© Alireza Khosravian Hemami 2016



Except where otherwise indicated, this thesis is my own original work.

Alireza Khosravian Hemami

29 September 2016



I conducted this PhD thesis under the supervision of Dr. Jochen Trumpf and

Prof. Robert Mahony. Most of the results in this thesis have been published at top-

tier international conferences and journals. These publications are listed below and

some them have been achieved in collaboration with other researchers.

Journal Papers

• A Khosravian, J Trumpf, R Mahony, C Lageman, "Observers for invariant sys-

tems on Lie groups with biased input measurements and homogeneous out-

puts", Automatica, vol. 55, pages 19-26, 2015 (cited as [86] and its arXive version

as [87]).

• A Khosravian, J Trumpf, R Mahony, T Hamel, "State estimation for invariant

systems on Lie groups with delayed output measurements", vol. 68, pages

254–265, Automatica (cited as [84]).

Conference Papers

• A Khosravian, J Trumpf, R Mahony, C Lageman, "Bias estimation for invariant

systems on Lie groups with homogeneous outputs", IEEE 52nd Annual Con-

ference on Decision and Control (CDC), pages 4454-4460, 2013 (cited as [85]).

• A Khosravian, J Trumpf, R Mahony, T Hamel, "Velocity aided attitude estima-

tion on SO(3) with sensor delay", IEEE 53rd Annual Conference on Decision

and Control (CDC), pages 114-120, 2014 (cited as [82]).

• A Khosravian, J Trumpf, R Mahony, T Hamel, "Recursive attitude estimation

in the presence of multi-rate and multi-delay vector measurements", American

Control Conference (ACC), 2015 (cited as [83]).

Apart from the above publications, I published the following papers during my

PhD education, the results of which are not presented in this thesis.

• A Khosravian, "Stability analysis and near optimal gain tuning of an attitude

estimator on the special orthogonal group", IEEE 52nd Annual Conference on

Decision and Control (CDC), pages 5060-5065, 2013 (cited as [79]).

• A Khosravian, J Trumpf, R Mahony, "State estimation for nonlinear systems

with delayed output measurements", IEEE 54th Annual Conference on Decision

and Control (CDC), pages 6630-6635, 2015 (cited as [81]).



To my dear parents, Badri and Mohammad





Acknowledgments

It is my pleasure to thank those who made this thesis possible. I am indebted to

my supervisors, Dr Jochen Trumpf and Professor Robert Mahony for their countless

valuable advices, for being great teachers and mentors, and for believing on me at

all stages of my PhD. I am incapable of thanking them enough for their immense pa-

tience, strong support, and professional supervision. I would like to thank my panel

advisor Adrian Bishop as well as my collaborators Tarek Hamel, Christian Lageman,

and Mohsen Zamani for their helpful discussions and contributions. I acknowledge

the anonymous thesis examiners for their valuable comments and feedbacks in the

review process. I owe my deepest gratitude to a group of colleges and friends who

helped with conducting the experimental results of the thesis; Sean O’Brien, An-

drew Tridgell, Grant Morphett, Paul Riseborough, Jack Pittar, Evan Slatyer, Benjamin

Nizette, Salim Masoumi, Arash Khodaparastsichani, and Juan David Adarve.

I would like to thank the staff and residents of Graduate House and University

House for making ANU campus feel like home to me. Particularly, Peter, Tony,

Gina, Lyn, and Kaori in the management and all of my very good friends at the stu-

dent leadership team; Anna, Belinda, Channa, Dan, Eleonora, Guanhua, Juan, Kim-

long, Lara, Lauren, Louisa, Maria, Mark, Mohsen, Mojtaba, Ronald, Salim, Wakako,

Zheng, and Zhison. I am also grateful to my amazing group of friends in Can-

berra who where always there for me; Abbas, Alireza K, Alireza M, Anita, Anna,

Arash, Behrooz, Behzad, Ehsan A, Ehsan N, Fatemeh E, Fatemeh R, Fatemeh S, Ha-

jar, Hamid, Ladan, Mahin, Mahmoud, Marzieh, Masoume, Mehdi, Mohammad D,

Mohammad E, Mohammad N, Mohammadreza, Mohsen, Morteza, Mousa, Nojan,

Pegah, Sadegh, Sahba, Salim, Sara M, Sara T, and Zahra. Last but not least, I would

like to thank my parents, Badri and Mohammd, and my siblings, Atefeh and Moham-

mad Hossein, who have supported me during all these years with their continuous

encouragement, incredible patience, immense kindness, and unconditional love.

This work is supported by the Australian National University and the Australian

Research Council through the ARC Discovery Project DP120100316.

vii





Abstract

This thesis considers the state estimation problem for invariant systems on Lie groups

with inputs in its associated Lie algebra and outputs in homogeneous spaces of the

Lie group. A particular focus of this thesis is the development of state estimation

methodologies for systems with nonideal measurements, especially systems with

additive input measurement bias, output measurement delay, and sampled outputs.

The main contribution of the thesis is to effectively employ the symmetries of the

system dynamics and to benefit from the Lie group structure of the underlying state

space in order to design robust state estimators that are computationally simple and

are ideal for embedded applications in robotic systems.

We address the input measurement bias problem by proposing a novel nonlinear

observer to adaptively eliminate the input measurement bias. Despite the nonlinear

and non-autonomous nature of the resulting error dynamics and the complexity of

the underlying state space, the proposed observer exhibits asymptotic/exponential

convergence of the state and bias estimation errors to zero.

To tackle the output measurement delay problem, we propose novel dynamic pre-

dictors used in an observer-predictor arrangement. The observer provides estimates

of the delayed state using the delayed output measurements and the predictor takes

those estimates, compensates for the delay, and provides predictions of the current

state. Separately, we propose output predictors employed in a predictor-observer

arrangement to address the problem of sampled output measurements. The output

predictors take the sampled measurements and provide continuous predictions of

the current outputs. Feeding the predicted outputs into the observer yields estimates

of the current state. Both methods rely on the invariance of the underlying system

dynamics to recursively provide predictions with low computation requirements.

We demonstrate applications of the theory with examples of attitude, velocity,

and position estimation on SO(3) and SE(3). A key contribution of this thesis is the

development of C++ libraries in an embedded implementation as well as experimen-

tal verification of the developed theory with real flight tests using model UAVs.
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Chapter 1

Introduction

This chapter provides an overview of this thesis by presenting motivations for the

subject of this thesis as well as a brief literature review, explaining the problems con-

sidered, and listing the main contributions of the thesis. In depth literature reviews

and detailed explanations of the contributions are given at the beginning of each

chapter.

1.1 Motivation

Many physical systems require the knowledge of their internal states such as their

position, orientation, and velocity for various reasons such as effective control, nav-

igations, fault detection, path planning, etc. In most practical situations, obtaining

a reliable measurement of the internal states of those physical systems directly is

not possible and it is necessary to use state estimators. In many applications, par-

ticularly in the field of robotics, those internal states naturally lives on Lie groups

[17, 32, 40, 71]. For instance, take the attitude estimation problem which is to de-

termine the orientation of a rigid body with respect to a known frame of reference

[34, 55, 69, 80, 89, 101, 105, 120, 124, 130, 136, 144]. In this case, the orientation of a

rigid body is modeled by a 3× 3 orthogonal matrix belonging to the Lie group SO(3).

Apart from the attitude estimation problem, design of state estimator on Lie groups

is also motivated by real world applications such as; attitude estimation on pose es-

timation on SE(3) [25, 63, 65, 116, 121, 135], homography estimation on SL(3) [56],

and motion estimation of chained systems on nilpotent Lie groups [97] (e.g. front-

wheel drive cars or kinematic cars with k trailers). The Special Linear group SL(2)

which arises in some compute vision applications [44, 73, 96], and complex-valued

Lie groups and unitary groups arising in multiantenna transceiver techniques, in

1



2 Introduction

sensor array applications in biomedicine, and in machine learning [51, Section 3] are

other motivating examples.

Work on state estimation on Lie groups dates back to 1970s, see e.g. the seminal

works of Brockett [38, 39] and Willsky [140, 141]. Stochastic filtering methods and

deterministic observers are two competing approaches for designing state estimators.

Stochastic methods rely on stochastic modeling of the sensor noise and system model

uncertainties to design state estimators that are optimal with respect to some metric.

Deterministic observers do not require modeling of stochastic noise. Instead, their

objective is to guarantee the stability of the estimation error in the noise free condi-

tion. There is a rich literature on stochastic state estimation methods on Lie groups

(see e.g. [48, 49, 139] as well as [42, Chapters 14 and 15] and the references therein)

and their applications to real world problems [44, 46, 66, 98, 104, 105, 114, 126]. Nev-

ertheless, this thesis chooses the deterministic setup for modeling and design of state

estimators. Hence, in the context of this thesis, the word "state estimator" refers to

the "state observer" and we use these two words interchangeably.

Systematic observer design methodologies for deterministic state estimation of in-

variant systems on general Lie groups have been proposed that lead to strong stability

and robustness properties [28, 34, 94]. All of these observer design methodologies

require fusing the measurements of both inputs and outputs of systems. In practice,

those input and output measurements are nonideal and may be corrupted by sensor

biases, sensor sampling, and sensor delays. These effects, if not compensated for

properly, might lead to poor performance of the observers or even cause instability

[22, 53, 74, 76, 100, 106, 109, 117, 125].

The effects of nonideal measurements are more significant in robotics applica-

tions involving low cost sensor suites. For instance, low cost MEMS1 gyros usually

exhibit a significant measurement bias which should be compensated to obtain re-

liable estimations of attitude [101, 116, 136]. Commercial GPS units usually exhibit

a significant measurement delay that can be as large as hundreds of milliseconds.

Those GPS units normally provide low sampling rates (less than 5 Hz) [58, 88]. The

effects of these delays and sampling are very significant in commercial UAVs where

onboard navigation algorithms normally run as fast as 50-200 Hz [4]. Similar de-

lay and sampling effects are present in indoor flight environments where the pose

1Micro Electro-Mechanical Systems



§1.1 Motivation 3

data provided by devices such as VICON or OptiTrack are available to the onboard

navigation system of UAVs with variable delays and sampling rates due to the com-

munication channel from those sensors to the UAV. In satellite attitude estimation

applications, sampling effects are present where high accuracy output sensors such

as star trackers or earth sensors provide measurements at low sampling rates (0.5 to

10 Hz) [105].

For the special problem of attitude estimation on SO(3), observers are available in

the literature that adaptively compensate for the gyro bias [101, 116, 136]2. A similar

observer is designed for adaptively estimating both the linear and angular veloc-

ity biases in the pose estimation problem on SE(3) [135]. This naturally raises the

problem of generalizing the concurrent state and input bias estimation to invariant

systems on general Lie groups. This problem is investigated in Chapter 2 where a sys-

tematic observer design methodology is proposed that unifies the SO(3) and SE(3)

examples into a single framework that applies to any invariant kinematic system on

a Lie group.

A particular focus of this thesis is state estimation with output measurement de-

lays and sampling. This problem attracted our attention when a group of autopilot

developers at Canberra UAV [7] reported occasional oscillations leading to instability

of the popular attitude observer of [101]. In his talk at the Australian National Uni-

versity, Andrew Tridgell3 [131] presented flight tests showing that the geometric ob-

server of [101] is prone to instability if accelerometer measurements are aided by GPS

velocity measurements. Reconstructing the flight test using a software-in-the-loop

system, he concluded that the GPS delay and sampling effects are the main causes

of the instability when the UAVs perform high acceleration maneuvers. This is the

main motivation for consideration of the output measurement delay and sampling

problems in Chapters 3 and 4, respectively. We propose predictors to compensate

for the delay and sampling effects for invariant systems on general Lie groups. The

resulting theory is not only applicable to the GPS delay problem discussed above,

it is also applicable to lots of similar practical problems such as the time varying

sampling and delay problem of VICON or OptiTrack in indoor flight environments,

the sampling and delay problem of visual navigation systems, and attitude estima-

2This observer is commonly known as DCM (Direction Cosine Matrix) amongst UAV enthusiasts
and the robotics community [8, 12].

3The main developer of the ArduPilot autopilot system [5].
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tion using star sensors with low sampling rates. Through a close collaboration with

Andrew Tridgell’s team at Canberra UAV and 3DRobotics [1], we implemented the

proposed predictors into the embedded autopilot system of model UAVs and verified

their performance in real flight tests. The main strength of this thesis is to provide a

balance between a very high level of abstraction of the developed theoretical results

(by providing theories applicable to systems on general Lie groups) and justifying

those theories by presenting real world applications and experimental verifications

with real UAVs.

1.2 A first literature review

Systematic observer design methodologies for invariant systems on general Lie groups

have been proposed that lead to strong stability and robustness properties. Partic-

ularly, Bonnabel et al. [33–35] consider observers which consist of a copy of the

system and a correction term, along with a constructive method to find suitable

symmetry-preserving correction terms. The construction utilizes the invariance of

the system and the moving frame method, leading to local convergence properties

of the observers. Also, [28] extends those constructive methods in order to apply

them to a wider class of systems on Lie groups. This leads to development of a

so-called Invariant Extended Kalman Filtering approach with provable local stability

properties. Methods proposed in [92–94] to achieve almost globally convergent ob-

servers. A key aspect of the design approach proposed in [92–94] is the use of the

invariance properties of the system to ensure that the error dynamics are globally

defined and are autonomous. This leads to a straight forward stability analysis and

excellent performance in practice. More recent extensions to early work in this area

was the consideration of output measurements where a partial state measurement

is generated by an action of the Lie group on a homogeneous output space [33–

35, 92, 93, 102]. Also, [123, 143] develop a rigorous theory for designing minimum

energy observers on Lie groups with near optimal performance. Recently, [69, 70]

proposed state estimation methods on the specific Lie groups SO(3) and SE(3) based

on the Lagrange–d’Alembert principle.

Compensation of input measurement bias is studied in the specific cases of at-

titude estimation on SO(3) and pose estimation on SE(3) [101, 135, 136]. These
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methods strongly depend on particular properties of the specific Lie groups SO(3)

or SE(3) and do not directly generalize to general Lie groups.

Deterministic state estimation for systems on Rn with sampled and delayed mea-

surements is a classical problem that has been extensively studied and many results

with strong stability proofs are currently available [16, 18, 19, 30, 41, 41, 53, 74–

76, 134]. Nevertheless, no such results are available (prior to this thesis) for systems

on general Lie groups. The only available publications in this are [24] and [58] that

consider the special case of attitude estimation.

In this thesis, we consider the state estimation for invariant systems on general

Lie groups where input measurement bias, output measurement delay and sampling

are present. In the following, we further describe these problems. In depth literature

reviews and detailed explanations of each problem are given at the beginning of the

associated chapter.

1.3 Problems considered

We consider three classes of nonideal measurements; input measurement corrupted

by unknown bias, output measurement with delay, and output measurement with

sampling.

1.3.1 Unknown input measurement bias

In may applications, measurements of system input are often corrupted by an un-

known additive bias that must be estimated and compensated to achieve good ob-

server error performance. In practice, it is usually possible to approximately model

the sensor bias with unknown additive constants. This way, the underlying observer

design problem is to estimate the state and the unknown input bias concurrently.

In Chapter 2, we provide observer design methodologies for adaptively estimating

the state and input bias for invariant systems on general Lie groups. Moreover, we

provide a detailed example of attitude and position estimation on SE(3) where mea-

surements of the angular and linear velocity are biased to illustrate the applications

of the developed observer design methodology.
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1.3.2 Output measurement delay

In many practical scenarios, measurements of the outputs of the system are usually

available to the user with some delay (due to various reasons including physical

properties of sensors or the environment, slow transients, internal signal processing

of sensors, extensive filtering of sensor measurements for noise reduction, and com-

munication delays from sensors to processing units) while the inputs are measured

without significant delays. For example, in the velocity aided attitude estimation

problem, measurements of the linear velocity (output) provided by commercial GPS

units are usually delayed with respect to the actual velocity of the vehicle. In contrast,

measurements of the vehicle’s angular velocity and linear acceleration provided by an

onboard IMU are almost instantaneous. In Chapter 3, we provide an observer-predictor

methodology to cope with the output measurement delay for invariant systems on

general Lie groups. In this method, the observer takes the delayed measurements

and provides estimates of the delayed state. We propose predictors that take the

estimates of the delayed state, compensate for the delay, and provide predictions of

the current state.

1.3.3 Output measurement sampling

In applications involving state estimation of mechanical systems, measurements of

the input are usually obtained at a very high sampling rate either through odometry

or via inertial sensors. In many applications, however, measurements of the system

outputs are obtained at much lower sampling rate compared to the sampling rate

of system inputs. For instance, in satellite attitude estimation applications, high

accuracy output sensors such as star trackers or earth sensors provide measurements

at low sampling rates (0.5 to 10 Hz) while onboard gyros can easily provide high

bandwidth measurements at kHz rates. In outdoor UAV navigation scenarios, low

cost GPS units provide measurements of position and velocity at around 5 Hz which

is much lower than the rate of input measurements provide by IMUs (gyros and

accelerometers). As explained in the previous Section, these output measurements

are also usually delayed compared to the input measurements. Sensor sampling and

delays can negatively affect the stability and robustness of any observer or filter and

degrade their performance if they are not compensated for properly. In Chapter 4,
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we investigate the problem of state estimation for invariant systems on general Lie

groups where the measurements of outputs are sampled and delayed. We propose

a cascade predictor-observer approach in which the predictor takes the sampled and

delayed output measurements and provides predictions of the current outputs. The

predicted outputs are then fed into an observer or filter to estimate the system states.

Compared to the method proposed in Chapter 3, the method of Chapter 4 provides

stronger tools for state estimation by eliminating both output sampling and delay

effects. Nevertheless, it extensively relies on symmetries of the output maps of the

system and hence is less flexible than the method of Chapter 3 in dealing with diverse

classes of outputs.

1.4 Thesis contributions

The main theoretical contribution of the thesis is to effectively employ the underlying

symmetries of the system dynamics and output maps in order to propose methodolo-

gies to cope with the problems discussed in the previous section. In the following, we

briefly discuss the main contributions of the thesis. More detailed discussions about

the contributions of each chapter is given in the introductory part and the conclusion

of each chapter.

• We study the problem of concurrent state and input bias estimation for invari-

ant systems on general Lie groups with outputs living in (possibly different)

homogeneous spaces. This problem is investigated in Chapter 2. We prove

that any candidate observer that is implementable based on the measurements

of the inputs and outputs of the system produces non-invariant error dynamics

unless the Lie group is Abelian (Theorem 2.3.1). Despite the nonlinear and non-

autonomous nature of the error dynamics, we propose a novel observer and we

prove the exponential stability of its error dynamics (Theorems 2.4.1 and 2.4.3).

The approach taken employs a general gain mapping applied to the differential

of a cost function to generate the innovation term of the observer. We establish

a systematic method for construction of invariant cost functions ensuring that

the resulting observer is implementable and yields desired stability of the error

dynamics (Proposition 2.5.1). The results of Chapter 2 are published in [85–87].
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• We tackle the problem of state estimation for systems on general matrix Lie

groups when measurements of system outputs are delayed. This problem is

investigated in Chapter 3. We propose an observer-predictor methodology for

invariant systems on Lie groups. Given an observer or filter that has desired

stability properties when the system outputs are delay-free, we propose an

observer-predictor methodology that preserves those stability properties when

the system outputs are delayed. We design dynamic predictors that use the

delayed estimates from the observers together with the current inputs in or-

der to predict the current state of the system (Theorems 3.3.3 and 3.3.4). The

proposed predictors are computationally very cheap and demonstrate excel-

lent robustness properties, making them ideal for embedded implementation

on low cost robotics applications. The results of Chapter 3 are presented in

[82, 84].

• We consider the state estimation problem for invariant systems on Lie groups

where sampled and delayed output measurements are available. This problem

is investigated in Chapter 4. We propose a cascade predictor-observer approach

in which the predictor takes the sampled and delayed output measurements

and provides predictions of the current outputs. The predicted outputs are

then fed into an observer or filter to estimate the system states. We prove

that in noise free conditions, the current prediction of the output is indeed

equal to the actual ideal output, independent of the sampling rate and delay

associated with the output measurement (Theorem 4.4.1). This is a very strong

result which enables application of the developed predictors in a wide range

of real world applications involving multi rate sensors with possibly different

and even time-varying delays. A preliminary version of the results of Chapter

4 are presented in [83].

• Along with presenting deep technical results, we provide real world appli-

cations and experimental verification of the developed theory to provide the

reader with a deeper insight. In Chapter 4, we provide an example of output

predictor design for attitude and velocity estimation to cope with the measure-

ment sampling and delay of GPS and magnetometer. A key contribution of this

thesis is embedded implementation and verification of the performance of the
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proposed predictors by presenting real flight tests with model UAVs (Section

4.6.1). We further illustrate the advantages of the proposed method over avail-

able state-of-the-art estimation approaches by offline processing of sensor data

using post-processing tools of the ArduPilot system (Section 4.6.4).

1.5 Notations and definitions

We use the following notations throughout this thesis. Let G be a finite-dimensional

real connected Lie group with associated Lie algebra g. Denote the identity element

of G by I. Left (resp. right) multiplication of X ∈ G by S ∈ G is denoted by

LSX = SX (resp. RSX = XS). The Lie algebra g can be identified with the tangent

space at the identity element of the Lie group, i.e. g ∼= TIG. For any u ∈ g, one

can obtain a tangent vector at S ∈ G by left (resp. right) translation of u denoted

by S[u] := TI LS[u] ∈ TSG (resp. [u]S := TI RS[u] ∈ TSG). The element inside the

brackets [.] denotes the vector on which a linear mapping (here the tangent map

TI LS : g → TSG or TI RS : g → TSG) acts. For convenience, we omit the notation [.]

if there is no risk of confusion. The adjoint map at the point S ∈ G is denoted by

AdS : g → g and is defined by AdS[u] := S[u]S−1 = TSRS−1 [TI LS[u]] = TSRS−1 ◦
TI LS[u] where ◦ denotes the composition of two maps. Choose an inner product

〈〈., .〉〉 on g and denote the corresponding induced norm on g by ‖.‖. Denote by 〈., .〉rS
(resp. 〈., .〉lS) a right-invariant (resp. left-invariant) Riemannian metric at a point S

induced by 〈〈., .〉〉 using right (resp. left) translation of the Lie algebra g. Denote

the corresponding induced right-invariant (resp. left-invariant) norm on TSG by |.|rS
(resp. |.|lS). Denote the geodesic distance with respect to (w.r.t.) 〈., .〉r (resp. 〈., .〉l)
between the points S and X by dr(S, X) (resp. dl(S, X)). For a finite-dimensional

vector space V, we denote its corresponding dual and bidual vector spaces by V∗ and

V∗∗ respectively. A linear map F : V∗ → V is called positive definite if v∗[F[v∗]] > 0

for all 0 6= v∗ ∈ V∗. The dual of F is denoted by F∗ : V∗ → V∗∗ and is defined

by F∗[v∗] = v∗ ◦ F. The linear map F is called symmetric (resp. anti-symmetric) if

v∗[F[w∗]] = w∗[F[v∗]] (resp. v∗[F[w∗]] = −w∗[F[v∗]]) for all v∗, w∗ ∈ V∗, and it is

called symmetric positive definite if it is symmetric and positive definite. We can

extend the above notion of symmetry and positiveness to linear maps H : W → W∗

as well. Defining V := W∗, H is called positive definite if H∗ : V∗ → V is positive
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definite and it is called symmetric if H∗ is symmetric. Positive definite cost functions

on manifolds are also used in the thesis and should not be mistaken with positive

definite linear maps. The notations σ(AdS) and σ(AdS), respectively, denotes the

smallest and the largest singular value of the adjoint map w.r.t. the norm ‖.‖, defined

by σ(AdS) := min
v∈g, ‖v‖=1

‖AdSv‖ and σ(AdS) := max
v∈g, ‖v‖=1

‖AdSv‖, respectively. For a

matrix A ∈ Rm×m, the notations σ(A), σ(A), and cond(A), respectively, denote the

smallest singular value, the largest singular value, and the condition number of that

matrix (with respect to the Euclidean norm on Rm). We say the trajectory a(t) ∈ R+

converges to zero and denote a(t) → 0 if lim
t→+∞

a(t) = 0. We write a(t)
exp−→ 0 and we

say a(t) converges exponentially to zero if there exist positive constants c and α such

that a(t) ≤ c exp (−αt) for all t ≥ 0.

The following standard definitions are used thought the thesis [36, 61, 90]. The

group action h : G×M → M is called transitive if there exists ẙ ∈ M such that every

y ∈ M satisfies y = h(X, ẙ) for some X ∈ G. The space M is called a homogeneous

space of G if there exists a transitive action of G on M. The Lie group G has a faithful

representation as a finite-dimensional matrix Lie group if there exist a positive integer

m and an injective Lie group homomorphism Φ : G → GL(m) into the group GL(m)

of invertible m×m matrices.



Chapter 2

Input Bias Estimation for Invariant

Systems on Lie Groups with

Homogeneous Outputs

This chapter provides a new observer design methodology for invariant systems

whose state evolves on a Lie group with outputs in a collection of related homo-

geneous spaces and where the measurement of system input is corrupted by an

unknown constant bias. The key contribution of the Chapter is to study the com-

bined state and input bias estimation problem in the general setting of Lie groups, a

question for which only case studies of specific Lie groups are available in prior liter-

ature. We show that any candidate observer (with the same state space dimension as

the observed system) results in non-autonomous error dynamics, except in the trivial

case where the Lie group is Abelian. This precludes the application of the standard

non-linear observer design methodologies available in the literature and leads us

to propose a new design methodology based on employing invariant cost functions

and general gain mappings. We provide a rigorous and general stability analysis

for the case where the underlying Lie group allows a faithful matrix representation.

We demonstrate our theory in the example of rigid body pose estimation and show

that the proposed approach unifies two competing pose observers published in prior

literature. The contributions presented in this chapter are published in [85–87].

11
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2.1 Related work

Many mechanical systems carry a natural symmetry or invariance structure ex-

pressed as invariance properties of their dynamical models under transformation

by a symmetry group. For totally symmetric kinematic systems, the system can be

lifted to an invariant system on the symmetry group [102]. Work in this area is

motivated by applications in analytical mechanics, robotics and geometric control of

mechanical systems [17, 32, 40, 71, 105]. Systematic observer design methodologies

for deterministic state estimation of invariant systems on general Lie groups have

been proposed that lead to strong stability and robustness properties [28, 34, 94]. All

asymptotically stable observer designs for kinematic systems on Lie groups depend

on a measurement of system input [28, 33, 68, 94, 102, 123, 143]. In practice, mea-

surements of system input are often corrupted by an unknown bias that must be

estimated and compensated to achieve good observer error performance. The spe-

cific cases of attitude estimation on SO(3) and pose estimation on SE(3) have been

studied independently, and methods have been proposed for the concurrent estima-

tion of state and input measurement bias [101, 135, 136]. These methods strongly

depend on particular properties of the specific Lie groups SO(3) or SE(3) and do

not directly generalize to general Lie groups. To our knowledge, there is no existing

work on combined state and input bias estimation for general classes of invariant

systems.

In this chapter, we tackle the problem of observer design for general invariant

systems on Lie groups with homogeneous outputs when the measurement of system

input is corrupted by an unknown constant bias. The observer is required to be

implementable based on available sensor measurements; the system input in the

Lie algebra, corrupted by an unknown bias, along with a collection of partial state

measurements (i.e. outputs) that ensure observability of the state. For bias free input

measurements, it is always possible to obtain autonomous dynamics for the standard

error [92–94], and previous observer design methodologies for systems on Lie groups

rely on the autonomy of the resulting error dynamics. However, for concurrent state

and input measurement bias estimation, we show that any implementable candidate

observer (with the same state space dimension as the observed system) yields non-

autonomous error dynamics unless the Lie group is Abelian (Theorem 2.3.1). This
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result explains why the previous general observer design methodologies for the bias-

free case do not apply and why the special cases considered in prior works [65, 135]

do not naturally lead to a general theory.

We go on to show that, despite the nonlinear and non-autonomous nature of

the error dynamics, there is a natural choice of observer for which we can prove

exponential stability of the error dynamics (Theorems 2.4.1 and 2.4.3). The approach

taken employs a general gain mapping applied to the differential of a cost function

rather than the more restrictive gradient-like innovations used in prior work [92–94].

We also propose a systematic method for construction of invariant cost functions

based on lifting costs defined on the homogeneous output spaces (Proposition 2.5.1).

To demonstrate the generality of the proposed approach we consider the problem of

rigid body pose estimation using landmark measurements when the measurements

of linear and angular velocity are corrupted by constant unknown biases. We show

that for specific choices of gain mappings the resulting observer specializes to either

the gradient-like observer of [65] or the non-gradient pose estimator proposed in

[135], unifying these two state-of-the-art application papers in a single framework

that applies to any invariant kinematic system on a Lie group.

The Chapter is organized as follows. We formulate the problem in Section 2.2. A

standard estimation error is defined and autonomy of the resulting error dynamics

is investigated in Section 2.3. We introduce the proposed observer in Section 2.4

and investigate the stability of observer error dynamics. Section 2.5 is devoted to the

systematic construction of invariant cost functions. A gradient based observer design

example in Section 2.6 and a non-gradient example in Section 2.7 followed by brief

conclusions in Section 2.8 complete the Chapter.

2.2 Problem Formulation

We consider a class of left invariant systems on G given by

Ẋ(t) = X(t)u(t), X(t0) = X0, (2.1)
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where u ∈ g is the system input and X ∈ G is the state1. We assume that u : R+ → g

is continuous and hence a unique solution for (2.1) exists for all t ≥ t0 [72]. In most

kinematic mechanical systems, u models the velocity of physical objects. Hence, it is

reasonable to assume that u is bounded and continuous.

Let Mi, i = 1, . . . , n denote a collection of n homogeneous spaces of G, termed

output spaces. Denote the outputs of system (2.1) by yi ∈ Mi. Suppose each output

provides a partial measurement of X via

yi = hi(X, ẙi) (2.2)

where ẙi ∈ Mi is the constant (with respect to time) reference output associated

with yi and hi is a right action of G on Mi, i.e. hi(I, yi) = yi and hi(XS, yi) =

hi(S, hi(X, yi)) for all yi ∈ Mi and all X, S ∈ G2. Although the ideas presented in

this chapter are based on the left invariant dynamics with right output actions, they

can easily be modified for right invariant systems with left output actions as was

done for instance in [94]. To simplify the notation, we define the combined output

y := (y1, . . . , yn), the combined reference output ẙ := (ẙ1, . . . , ẙn), and the combined

right action h(X, ẙ) := (h1(X, ẙ1), . . . , hn(X, ẙn)). The combined output y belongs to

the orbit of G acting on the product space M1 × M2 × . . . × Mn containing ẙ, that

is M := {y ∈ M1 × M2 × . . . × Mn| y = h(X, ẙ), X ∈ G} ⊂ M1 × M2 × . . . × Mn.

Note that the combined action h of G defined above is transitive on M. Hence, M is a

homogeneous space of G while M1×M2× . . .×Mn is not necessarily a homogeneous

space of G [91].

We assume that measurements of the system input are corrupted by a constant

unknown additive bias. That is

uy = u + b (2.3)

1In Chapters 3 and 4 where we consider left-invariant, right-invariant, and mixed-invariant systems,
we denote the states of those systems by Xl , Xr, and Xm, respectively. Since in this chapter we only talk
about the left-invariant system 2.1, for convenience, we omit the subscript l and simplify the notation
to X.

2In Chapters 3 and 4 where we consider both right and left output actions, we denote the associated
actions by hr and hl , respectively. Since in this chapter we only talk about the right output action 2.2,
for convenience, we omit the subscript r and simplify the notation to h. The same arrangement applies
to the notation for the output element yi and its corresponding reference output ẙi.



§2.2 Problem Formulation 15

where uy ∈ g is the measurement of u and b ∈ g is the unknown bias. In practice,

bias is slowly time-varying but it is common to assume that b is constant for observer

design and analysis.

We investigate the observer design problem for concurrent estimation of X and

b. The observer should be implementable based on sensor measurements. This is

important since the actual state X ∈ G and the actual input u ∈ g are not available

for measurement and only the partial measurements y1, . . . , yn and the biased input

uy are directly measured. We consider the following general class of implementable

observers with the same state space dimension as the observed system.

˙̂X = γ(X̂, y, ẙ, b̂, uy, t) (2.4a)

˙̂b = β(X̂, y, ẙ, b̂, uy, t) (2.4b)

where X̂ and b̂ are the estimates of X and b, respectively, and γ : G×M×M× g× g×
R → TG and β : G×M×M× g× g×R → g are parameterized vector fields on G

and g, respectively. Note that X̂, y, ẙ, b̂, uy and t are all available for implementation of

the observer in practical scenarios. We refer to (2.4a) and (2.4b) as the group estimator

and the bias estimator, respectively.

Example 2.2.1 (Attitude Estimation on SO(3)). Attitude estimation is a classical problem

which is still a popular research topic [34, 37, 55, 65, 69, 80, 101, 105, 108, 116, 120, 121,

124, 133, 136, 144]. The attitude of a rigid body can be identified by a rotation matrix

belonging to the Lie group R ∈ SO(3) representing the rotation from body-fixed frame {B}
to the inertial frame {A}. The Lie algebra of SO(3) is identified by the set of skew-symmetric

3× 3 matrices with zero trace denoted by so(3). The attitude kinematics on SO(3) is given

by

Ṙ(t) = R(t)Ω(t) (2.5)

where Ω ∈ so(3) represents the angular velocity of {B} with respect to {A} expressed in

{B}. Assume that partial attitude information is provided by vectorial measurements yi in

{B}. Such a measurement can be provided by an on-board sensor system such as a 3-axis

magnetometer. We recall that in most practical cases, the constant inertial direction ẙi ∈ {A}
associated with yi is known a-priori. The measured direction yi ∈ {B} is related to R and ẙi
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by

yi(t) = R(t)>ẙi. (2.6)

The vectors yi and ẙi are normalized to have unit norms such that the measured output lives

in S2. The output map (2.6) defines a right action of SO(3) on the homogeneous output space

Mi
∼= S2 by hi(R, ẙi) := R>ẙi.

The angular velocity measured by rate gyros is usually disturbed by additive unknown

bias such that

Ωy(t) = Ω(t) + b (2.7)

where Ωy is the measured angular velocity and b denotes the unknown constant bias. The

attitude estimation problem is to use the measurements Ωy and yi, i = 1, . . . , n together with

a-priori knowledge ẙi, i = 1, . . . , n in order to estimate the attitude matrix R and the gyro

bias b.

Example 2.2.2 (Pose Estimation on SE(3)). Estimating the position and attitude of a

rigid body has been investigated by a range of authors during the past decades, see, e.g.,

[25, 65, 116, 135, 138]. The full 6-DOF pose kinematics of a rigid body can be modeled as an

invariant system on the special Euclidean group SE(3) [94, 116, 135, 138]. The Lie group

SE(3) has a representation as a semi-direct product of SO(3) and R3 given by SE(3) =

{(R, p)| R ∈ SO(3), p ∈ R3} [36]. Consider the group multiplication on SE(3) given by

R(S,q)(R, p) = L(R,p)(S, q) = (RS, p + Rq) for any (R, p), (S, q) ∈ SE(3). The identity

element of SE(3) is represented by (I3×3, 03) and the inverse of an element (R, p) ∈ SE(3)

is given by (R, p)−1 = (R>,−R>p). The Lie algebra of SE(3) is identified with se(3) =

{(Ω, V)| Ω ∈ so(3), V ∈ R3}.
Let R represent the attitude matrix of a rigid body, as was discussed in Example 2.2.1,

and suppose that p represents the position of the rigid body with respect to the inertial frame

and expressed in the inertial frame. The left-invariant kinematics of the rigid body on SE(3)

is formulated as

(Ṙ, ṗ) = TI L(R,p)(Ω, V) = (RΩ, RV) (2.8)

where Ω resp. V represent the angular velocity resp. linear velocity of the rigid body with
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respect to the inertial frame expressed in the body-fixed frame. Here, the group element is

X = (R, p) ∈ SE(3) and the system input is u = (Ω, V) ∈ se(3). Denote the measurement

of the system input by (Ωy, Vy) ∈ se(3) and assume that it is corrupted by an unknown

constant bias (bω, bv) ∈ se(3) such that (Ωy, Vy) = (Ω + bω, V + bv). Suppose that

positions of n points with respect to the body-fixed frame are measured by on-board sensors

and denote these measurements by y1, . . . , yn ∈ R3. Denote the positions of these points with

respect to the inertial frame by ẙi, i = 1, . . . , n ∈ R3 and assume these positions are known

and constant. The output model for such a set of measurements is given by

yi = hi((R, p), ẙ1) = R>ẙi − R>p, i = 1, . . . , n (2.9)

where hi is a right action of SE(3) on the homogeneous output space Mi := R3. A practi-

cal example of measurements modeled by (2.9) is vision based landmark readings where the

landmarks are fixed in the inertial frame, leading to constant ẙi, i = 1, . . . , n [135]. The pose

estimation problem is to estimate R and p together with the input biases bω and bv. �

2.3 Error Definition and Autonomy of Error Dynamics

We consider the following right-invariant group error,

E = X̂X−1 ∈ G, (2.10)

as was proposed in [94, 102]. The above error resembles the usual error x̂ − x used

in classical observer theory when x̂, x belong to a vector space. We also consider the

following bias estimation error

b̃ = b̂− b ∈ g. (2.11)

We are interested to see when an observer of the general form (2.4) produces

autonomous error dynamics since that would enable straight-forward stability anal-

ysis. When the measurement of system input is bias free, implementable observers

of the form (2.4a) have been proposed that produce autonomous group error dy-

namics Ė [94]. In this section, we show that when the measurement of system in-

put is corrupted by bias, any implementable observer of the form (2.4) produces
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non-autonomous error dynamics for general Lie groups, and it can only produce au-

tonomous error dynamics for Abelian Lie groups. To prove this result, we note that

the observer (2.4) can be rewritten into the form

˙̂X = X̂[uy − b̂]− αẙ(X̂, y, b̂, uy, t), (2.12a)

˙̂b = βẙ(X̂, y, b̂, uy, t), (2.12b)

where αẙ : G×M× g× g×R→ TG and βẙ : G×M× g× g×R→ g are parameter-

ized vector fields on G and g, respectively, and ẙ is now interpreted as a parameter

for αẙ and βẙ.

Theorem 2.3.1. Consider the observer (2.12) for the system (2.1)-(2.3). The error dynamics

(Ė, ˙̃b) is autonomous if and only if all of the following conditions hold;

(a) αẙ and βẙ do not depend on b̂, uy and t.

(b) The vector field αẙ is right equivariant in the sense that TX̂RZαẙ(X̂, y) = αẙ(X̂Z, h(Z, y))

for all X̂, Z ∈ G and all y ∈ M.

(c) The vector field βẙ is right invariant in the sense that βẙ(X̂, y) = βẙ(X̂Z, h(Z, y)) for

all X̂, Z ∈ G and all y ∈ M.

(d) For all Z ∈ G the adjoint map AdZ : g→ g is the identity map. �

Proof: In view of (2.1) and (2.12), differentiating E = X̂X−1 and b̃ = b̂− b with

respect to time yields

Ė = −TX̂RX−1 αẙ(X̂, y, b̂, uy, t)− TI REAdX̂ b̃ (2.13a)

˙̃b = βẙ(X̂, y, b̂, uy, t). (2.13b)

If the conditions (a) to (d) of the Theorem hold, the error dynamics will be simplified

to

Ė=−αẙ(X̂X−1, h(X−1, y))−TI REb̃=−αẙ(E, ẙ)−TI REb̃, (2.14a)

˙̃b = βẙ(X̂X−1, h(X−1, y)) = βẙ(E, ẙ), (2.14b)

which are autonomous.
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Conversely, assume that the error dynamics (2.13) are autonomous. Then there

exist functions Fẙ : G× g→ TG and Hẙ : G× g→ g such that for all X, X̂ ∈ G, y ∈ M,

b̂, uy ∈ g,

Ė = −TX̂RX−1 αẙ(X̂, y, b̂, uy, t)− TI REAdX̂ b̃ = Fẙ(E, b̃) (2.15a)

˙̃b = βẙ(X̂, y, b̂, uy, t) = Hẙ(E, b̃). (2.15b)

It immediately follows that αẙ and βẙ are independent of uy and t. Moreover,

since the error E = X̂X−1 is invariant with respect to the transformation (X̂, X) 7→
(X̂Z, XZ) for all Z ∈ G and the error b̃ = b̂ − b is invariant with respect to the

transformation (b̂, b) 7→ (b̂ + d, b + d) for all d ∈ g, we have

−TX̂RX−1 αẙ(X̂, y, b̂)− TI REAdX̂ b̃ = Fẙ(E, b̃) (2.16a)

=−TX̂ZR(XZ)−1 αẙ(X̂Z, h(Z, y), b̂ + d)−TI REAdX̂Z b̃,

βẙ(X̂, y, b̂) = Hẙ(E, b̃) = βẙ(X̂Z, h(Z, y), b̂ + d). (2.16b)

From (2.16b) it follows that βẙ is independent of b̂ since the right hand side of (2.16b)

depends on d while the left hand side is independent of this variable. This estab-

lishes condition (a) for βẙ. It also follows that βẙ satisfies the invariance condition

βẙ(X̂, y) = βẙ(X̂Z, h(Z, y)) (condition (c) of the Theorem). We can rearrange (2.16a)

to obtain

−TX̂RX−1 αẙ(X̂, y, b̂)− TI REAdX̂ b̃ + TI REAdX̂Z b̃ = −TX̂ZR(XZ)−1 αẙ(X̂Z, h(Z, y), b̂ + d).

(2.17)

The right hand side of (2.17) is a function of d while the left hand side is not. This

implies that αẙ is independent of b̂ (establishing condition (a) for αẙ). We can then

rearrange (2.17) again to obtain

−TX̂RX−1 αẙ(X̂, y) + TX̂ZR(XZ)−1 αẙ(X̂Z, h(Z, y)) = TI REAdX̂ b̃− TI REAdX̂Z b̃. (2.18)

The right hand side of (2.18) is a linear function acting on b̃ ∈ g while the left hand

side is completely independent of the variable b̃. Since b̃ is arbitrary, this implies that

both sides of (2.18) are zero. In particular, TX̂RX−1 αẙ(X̂, y) = TX̂ZR(XZ)−1 αẙ(X̂Z, h(Z, y))
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and TI REAdX̂Z b̃ = TI REAdX̂ b̃ for all b̃ ∈ g and all E, X̂, Z ∈ G. These equations im-

ply TX̂RZαẙ(X̂, y) = αẙ(X̂Z, h(Z, y)) and AdZ b̃ = b̃ to obtain conditions (b) and (d)

imposed in the theorem, respectively. This completes the proof. �

Remark 2.3.2. If G is a real, finite-dimensional, connected Lie group then condition (d) of

Theorem 2.3.1 implies that G is Abelian [90, Proposition 1.91]. By the structure theorem for

connected Abelian Lie groups [36, Proposition III.6.4.11], this means that G is isomorphic

to a product Rn × (S1)m where Rn is additive and (S1)m denotes the m-dimensional torus.

This class of Lie groups is far more specific than the Lie groups that are encountered in

many practical applications. For robotics applications, the Lie groups typically considered are

SO(3) and SE(3) both of which are non-Abelian. Theorem 2.3.1 in particular implies that

all implementable geometric bias estimators on SO(3) and SE(3) proposed in the literature

produce non-autonomous standard error dynamics (see [101] and [135]). �

2.4 Observer Design and Analysis

We propose the following implementable group estimator,

˙̂X = X̂[uy − b̂]− Kẙ(X̂, y, b̂, uy, t)[D1φẙ(X̂, y)], (2.19)

with X̂(t0) = X̂0 where φẙ : G × M → R+ is a C2 cost function, D1φẙ(X̂, y) ∈ T∗X̂G

denotes the differential of φẙi with respect to its first argument evaluated at the point

(X̂, y) and Kẙ(X̂, y, b̂, uy, t) is a linear gain mapping from T∗X̂G to TX̂G. Note that ẙ

is considered to be a parameter for Kẙ and φẙ. The above group estimator matches

the structure of (2.12a) where the innovation αẙ is generated by applying the gain

mapping Kẙ to the differential D1φẙ. By Theorem 2.3.1, we already know that the

above estimator cannot produce autonomous error dynamics for a general Lie group.

Hence, there is no reason to omit the arguments b̂, uy and t of the gain mapping. If

the gain mapping Kẙ is symmetric positive definite and independent of b̂, uy and t,

the above group estimator simplifies to the gradient-like observers proposed in [94]

for the bias free case, and in the Author’s previous work [85] for the case including

bias.
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We consider the following bias estimator,

˙̂b = Γ ◦ TI L∗X̂[D1φẙ(X̂, y)], b̂(t0) = b̂0, (2.20)

where TI L∗X̂ : T∗X̂G → g∗ is the dual of the map TI LX̂ (see Section 1.5) and Γ : g∗ → g

is a constant gain mapping.

We will require the following assumptions for statement of results.

(A1) The Lie group G has a faithful representation as a finite-dimensional matrix

Lie group. That is, there exist a positive integer m and an injective Lie group

homomorphism Φ : G → GL(m) into the group GL(m) of invertible m × m

matrices. Note that Φ(G) is a matrix subgroup of GL(m).

(A2) [boundedness conditions] Φ(X), Φ(X)−1, u and K(X̂, y, b̂, uy, t) are bounded

along the system trajectories.

(A3) [differentiability conditions] u̇(t), the first differentials of hi(X, ẙi) and K(X̂, y, b̂, uy, t),

as well as the first and the second differential3 of φ(X̂, y) with respect to all of

their arguments are bounded along the system trajectories.

Theorem 2.4.1. Consider the observer (2.19)-(2.20) for the system (2.1)-(2.3). Suppose that

assumptions (A1), (A2) and (A3) hold. Assume moreover that the gain mappings K and Γ,

and the cost function φ satisfy the following properties;

(a) The gain mapping Kẙ: T∗X̂G → TX̂G is uniformly positive definite (not necessarily

symmetric). That is, there exist positive constants k and k and a continues vector norm

|.| on T∗X̂G such that for all v∗ ∈ T∗X̂G we have k|v∗|2 ≤ v∗[Kẙ(X̂, y, b̂, uy, t)[v∗]]≤
k|v∗|2.

(b) The gain mapping Γ: g∗→g is symmetric positive definite.

(c) The cost φẙ is right invariant, that is φẙ(X̂Z, h(Z, y)) = φẙ(X̂, y) for all X̂, Z ∈ G

and all y ∈ M.

(d) The cost φẙ(., ẙ) : G → R+, E 7→ φẙ(E, ẙ) is locally positive definite around E = I

and it has an isolated critical point at E = I.

3Second differential of φ is either in the sense of embedding the Lie group into Rm×m or in the sense
of employing a Riemannian metric.
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Then the error dynamics (Ė, ˙̃b) is uniformly locally asymptotically stable at (I, 0). �

Proof: The following result is used in the development later in this proof.

Lemma 2.4.2. Let φẙ : G×M→ R+ be a right-invariant cost function in the sense defined

in part (c) of Theorem 2.4.1. Then we have

D1φẙ(X̂, y) = TX̂R∗X−1 [D1φẙ(E, ẙ)] (2.21)

D1φẙ(E, ẙ) = D1φẙ(X̂, y) ◦ TERX (2.22)

Proof of Lemma 2.4.2: The right-invariance property of φẙ implies φẙ(X̂, y) = φẙ ◦
RX−1(X̂, y). Differentiating both sides in an arbitrary direction v ∈ TX̂G and using

the chain rule we obtain D1φẙ(X̂, y)[v] = D1φẙ(E, ẙ) ◦ TX̂RX−1 [v]. Since v is arbitrary

and by using the duality we have D1φẙ(X̂, y) = TX̂R∗X−1 [D1φẙ(E, ẙ)] which proves

(2.21). Applying (TX̂RX−1)−1 = TERX from the right to both sides of D1φẙ(X̂, y) =

D1φẙ(E, ẙ) ◦ TX̂RX−1 yields (2.22). This completes the proof of Lemma 2.4.2.

For simplicity, we denote Kẙ(X̂, y, b̂, uy, t) by Kẙ(.). Considering (2.1), (2.3), and

(2.19), the group error dynamics are given by

Ė = ˙̂XX−1 + X̂ ˙X−1 =TX̂RX−1◦TI LX̂[u]−TX̂RX−1◦TI LX̂[b̃]

−TX̂RX−1◦Kẙ(.)[D1φẙ(X̂, y)]−TX̂RX−1◦TI LX̂[u]

=−TX̂RX−1◦TI LX̂[b̃]−TX̂RX−1◦Kẙ(.)◦TX̂R∗X−1 [D1φẙ(E, ẙ)], (2.23)

where E is as in (2.10) and (2.21) is used in the last line of (2.23). Now, consider the

candidate Lyapunov function,

L(E, b̃) = φẙ(E, ẙ) +
1
2

Γ−1[b̃][b̃]. (2.24)

The Lyapunov candidate is at least locally positive definite due to conditions (b) and

(d). The time derivative of L is given by

L̇(E, b̃) = D1φẙ(E, ẙ)[Ė] + Γ−1[ ˙̃b][b̃]. (2.25)
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Recalling that ˙̃b = ˙̂b and substituting Ė form (2.23) in (2.25), we obtain

L̇(E, b̃)=−D1φẙ(E, ẙ)[TX̂RX−1◦Kẙ(.)◦TX̂R∗X−1 [D1φẙ(E, ẙ)]]

−D1φẙ(E, ẙ)[TX̂RX−1◦TI LX̂[b̃]] + Γ−1[ ˙̂b][b̃]. (2.26)

Using (2.22), we conclude

L̇(E, b̃) =−D1φẙ(E, ẙ)[TX̂RX−1◦Kẙ(.)◦TX̂R∗X−1 [D1φẙ(E, ẙ)]]

−D1φẙ(X̂, y)◦TERX◦TX̂RX−1 ◦ TI LX̂[b̃] + Γ−1[ ˙̂b][b̃]

=−D1φẙ(E, ẙ)[TX̂RX−1◦Kẙ(.)◦TX̂R∗X−1 [D1φẙ(E, ẙ)]]

−D1φẙ(X̂, y) ◦ TI LX̂[b̃] + Γ−1[ ˙̂b][b̃]. (2.27)

Now, replacing ˙̂b with (2.20) we obtain

L̇(E, b̃) =−D1φẙ(E, ẙ)[TX̂RX−1◦Kẙ(.) ◦ TX̂R∗X−1 [D1φẙ(E, ẙ)]]

−D1φẙ(X̂,y)◦TI LX̂[b̃]+Γ−1◦Γ◦TI L∗X̂◦D1φẙ(X̂, y)[b̃]. (2.28)

Duality implies D1φẙ(X̂, y) ◦ TI LX̂ = TI L∗X̂ ◦D1φẙ(X̂, y) and (2.28) simplifies to

L̇(E, b̃)=−D1φẙ(E,ẙ)[TX̂RX−1◦Kẙ(.)◦TX̂R∗X−1 [D1φẙ(E,ẙ)]]. (2.29)

Since Kẙ(.) is assumed to be positive definite and the map TX̂RX−1 is full rank, the

map TX̂RX−1 ◦ Kẙ(.) ◦ TX̂R∗X−1 is positive definite. This implies that L̇(E, b̃) ≤ 0 and

hence the Lyapunov function is non-increasing along the system trajectories. We

adopt the proof of [78, Theorem 4.8] to prove uniformly local stability of error dynam-

ics. Recalling assumption (A1), distance to the identity element of G is denoted by

d(.) and is induced by Frobenius norm on Φ(G) ⊂ Rm×m via d(E) := ‖Id−Φ(E)‖F

where Id is the identity matrix. Define the compound error x̃ := (E, b̃) ∈ G× g and

obtain the distance of x̃ to (I, 0) by l(x̃)2 := d(E)2 + ‖b̃‖2
g where ‖.‖g denotes a norm

on g. Using assumption (d), there exist a ball Br := {E ∈ G : d(E) ≤ r} such that

φẙ(., ẙ) is positive definite on Br. Consequently L(x̃) is positive definite on B̄r := {x̃ ∈
G× g : l(x̃) ≤ r}. Choose c < minl(x̃)=rL(x̃) and define Ωc := {x̃ ∈ B̄r| L(x̃) ≤ c}.
Since L̇(t) ≤ 0, any solution starting in Ωc at t0 remains in Ωc for all t ≥ t0. On the
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other hand, since L(x̃) is positive definite on Ωc ⊂ B̄r, there exist class K functions

η1 and η2 such that η1(l(x̃)) ≤ L(x̃) ≤ η2(l(x̃)) for all x̃ ∈ Ωc [78, Lemma 4.3].

Consequently, we have l(x̃(t)) ≤ η−1
1 (L(x̃(t))) ≤ η−1

1 (L(x̃(t0))) ≤ η−1
1 (η2(l(x̃(t0))))

which implies l(x̃(t)) ≤ η−1
1 ◦ η2(l(x̃(t0))). Since η−1

1 ◦ η2 is a class K function (by

[78, Lemma 4.2]), the equilibrium point x̃ = (I, 0) is uniformly stable for all initial

conditions starting in Ωc [78, Lemma 4.5]. Moreover, the error E is bounded by

d(E(t)) ≤ l(x̃(t)) ≤ η−1
1 (L(x̃(t0))) ≤ η−1

1 (c) for such initial conditions.

Boundedness of x̃(t) implies that E(t) and b̃(t) are bounded with respect to d(.)

and ‖.‖g, respectively. Differentiating (2.29) with respect to time and considering

the boundedness of (E(t), b̃(t)) together with assumptions (A2) and (A3), one can

conclude that L̈(t) is bounded and hence L̇(t) is uniformly continuous. By invok-

ing Barbalat’s lemma we conclude that L̇(t) → 0. This together with condition (a)

implies that D1φẙ(E(t), ẙ) → 0. Since φẙ(E, I) has an isolated critical point at E = I,

there exist a ball Bc̄ ⊂ G such that E = I is the only point in Bc̄ where D1φẙ(., ẙ)

is zero. We proved before that E(t) ∈ Bη−1
1 (c) for all initial conditions starting in

Ωc. Choosing c < min(η1(c̄), minl(x̃)=rL(x̃)) ensures that E = I is the only critical

point in Bη−1
1 (c). This implies that E(t) → I for all initial conditions starting in Ωc.

Using (2.1), (2.12a), and (2.23), recalling assumptions (A2) and (A3), and using a lo-

cal coordinate representation, one can verify that Ë(t) is bounded and hence Ė(t) is

uniformly continuous. Thus, by invoking Barbalat’s lemma we have Ė(t) → 0. Con-

sidering E(t), Ė(t)→ 0 together with error dynamics (2.23) implies that b̃(t)→ 0 for

all initial errors starting in Ωc. This completes the proof of uniformly local asymp-

totic stability of the error dynamics. �

The following theorem proposes additional conditions to guarantee local exponen-

tial stability of the error dynamics.

Theorem 2.4.3. Consider the observer (2.19)-(2.20) for the system (2.1)-(2.3). Suppose that

assumptions (A1) and (A2) and conditions (a), (b) and (c) of Theorem 2.4.1 hold. Assume

moreover that;

(d) D1φẙ(I, ẙ) = 0 and Hess1φẙ(I, ẙ) : g→ g∗ is symmetric positive definite.

(e) The condition number of Φ(X(t)) is bounded for all t ≥ t0 (uniformly in t0).

Then, the error dynamics (E(t), b̃(t)) is uniformly locally exponentially stable at (I, 0). �
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Proof: The group error dynamics (2.23) can be rewritten as

Ė=−TX̂RX−1◦Kẙ(X̂,y,b̂,uy,t)◦TX̂R∗X−1 [D1φẙ(E, ẙ)]−TI LEAdX[b̃]. (2.30)

Using (2.21) and (2.20), the bias error dynamics is obtain as

˙̃b = Γ ◦ TI L∗X̂ ◦ TX̂R∗X−1 [D1φẙ(E, ẙ)] = Γ ◦Ad∗X ◦ TI L∗E[D1φẙ(E, ẙ)]. (2.31)

Defining ε, δ ∈ g as the first order approximation of E and b̃ respectively, linearizing

the error dynamics (2.30)-(2.31) around (I, 0), noting D1φẙ(I, ẙ) = 0, and neglecting

all terms of quadratic or higher order in (ε, δ) yields (see e.g. [122])

ε̇=−TXRX−1◦Kẙ(X,y,b,uy,t)◦TXR∗X−1◦Hess1φẙ(I,ẙ)[ε]−AdX[δ], (2.32)

δ̇ = Γ ◦Ad∗X ◦Hess1φẙ(I, ẙ)[ε], (2.33)

where Hess1φẙ(I, ẙ) : g → g∗ denotes the Hessian operator which is intrinsically

defined at the critical point of the cost [15]. In order to investigate the stability of

the linearized error dynamics, we consider a basis for the involved tangent spaces

and rewrite (2.32)-(2.33) in matrix format. To this end, consider a basis {ej} for g

and its corresponding dual basis for g∗. Obtain the basis {ejX} for the vector space

TXG by right translating {ej} and consider its corresponding dual basis {(ejX)∗}
for T∗XG. Denote by [[ε]], [[δ]] the representation of the vectors ε, δ with respect to the

basis {ej}. Denote the matrix representation of the maps Kẙ(X, y, b, uy, t) : T∗XG →
TXG, Γ : g∗ → g, Hess1φẙ(I, ẙ) : g → g∗ and AdX : g → g with respect to the above

bases for their corresponding domain and co-domain by [[K]], [[Γ]], [[H]] and [[AdX]]

respectively. Note that the matrix representation of TX̂RX−1 : TXG → g with respect to

the corresponding basis for its domain and co-domain is the identity matrix. Hence,

the matrix representation of the error dynamics (2.32)-(2.33) is obtained as ˙[[ε]]
˙[[δ]]

 =

 −[[K]][[H]] −[[AdX]]

[[Γ]][[AdX]]
>[[H]] 0

 [[ε]]

[[δ]]

 . (2.34)

Since Γ is symmetric positive definite, there exists a full rank square matrix L

such that [[Γ]] = L>L. Consider the change of coordinates ε̄ := L[[ε]] and δ̄ := L−>[[δ]].
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Using (2.34), the dynamics of the new error coordinates are obtained as ˙̄ε
˙̄δ

 =

 −L[[K]][[H]]L−1 −L[[AdX]]L>

L[[AdX]]
>[[H]]L−1 0

 ε̄

δ̄

 . (2.35)

Consider initial conditions X(t0) for system (2.1) and (X̂(t0), b̂(t0)) for the estimator

(2.19)-(2.20), respectively. Introducing the parameter λ = (t0, X(t0), X̂(t0), b̂(t0)) ∈
D where D := R × G × G × g, the trajectories of X, X̂, b̂ and y can be viewed as

functions of t and λ. Define A(t, λ) := −L[[K]][[H]]L−1, B(t, λ) := −L[[AdX]]
>L>,

and P := L−>[[H]]L−1. The system (2.35) belongs to the following standard class

of parameterized linear time-varying systems discussed extensively in the literature

[99, 110, 111].  ˙̄ε
˙̄δ

 =

 A(t, λ) B(t, λ)>

−B(t, λ)P 0

 ε̄

δ̄

 . (2.36)

We can now verify the conditions of [99, Theorem 1] to prove the stability of sys-

tem (2.35). Both B(t, λ) and its time derivative are bounded due to Assumption

(A2). Since Hess1φẙ(I, ẙ) is symmetric positive definite and L has full rank, the

matrix P is symmetric positive definite and it is bounded by σ(H)σ(L)−2 I ≤ P ≤
σ̄(H)σ̄(L)−2 I where σ(.) and σ̄(.) denote the smallest and largest singular value of a

matrix respectively. Define −Q := Ṗ + A(t, λ)>P + PA(t, λ) = −([[H]]L−1)>([[K]]> +

[[K]])([[H]]L−1). Using condition (a) of Theorem 2.4.1 and recalling assumption (A2),

there exist positive constants k1 and k2 such that 2k1Id ≤ [[K]]>+ [[K]] ≤ 2k2Id where

Id is the identity matrix. This ensures that Q is uniformly symmetric positive definite

and we have 2k1σ(H)2σ(L)−2Id ≤ Q ≤ 2σ̄(H)2k2σ̄(L)−2Id. It only remains to inves-

tigate whether B(t, λ) is λ-uniformly persistently exciting [99, equation (10)]. Using

condition (e), there exists a positive constant c0 such that cond(Φ(X)(t)) ≤ c0. Invok-

ing Lemma 6.2.1 in the Appendix, we have σ(AdX) ≥ c−2
0 . Hence, σ(B(t, λ)B(t, λ)>)=

σ(L[[AdX]]
>[[Γ]][[AdX]]L>) ≥ σ(L)2σ([[Γ]])c−2

0 := c̄0. Integrating both sides yields∫ t+T
τ B(τ, λ)B(τ, λ)>dτ ≥ c̄0TId which completes the requirements of [99, Theorem

1]. Hence, the equilibrium (0, 0) of the (2.35) is uniformly exponentially stable. This

implies that the equilibrium (0, 0) of the linearized system (2.35) is uniformly expo-

nentially stable and consequently the equilibrium (I, 0) of the nonlinear error dy-
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namics (2.30)-(2.31) is uniformly locally exponentially stable [78, Theorem 4.15]4.

Owing to the parameter-dependent analysis, the obtained exponential stability is

uniform with respect to the choice of all initial conditions in λ and not only with

respect to the choice of E(t0) and b̃(t0) for a given X̂. �

Remark 2.4.4. For the stability analysis, we assume that G allows a matrix Lie group rep-

resentation (by assumption (A1)). Nevertheless, the actual formulas of the proposed observer

(2.19)-(2.20) can be computed without requiring any matrix structure for the Lie group,

owing to the representation-free formulation of the proposed observer. We only require the

matrix Lie group representation of G to interpret the boundedness conditions on Φ(X),

Φ(X−1), and cond(Φ(X)). We will illustrate this point further with an example in Sec-

tion 2.7. Boundedness of Φ(X(t)) and Φ(X−1(t)) are usually mild conditions in practice.

Moreover, it is easy to verify that cond(X(t)) is bounded (uniformly in t0) if Φ(X(t)) and

Φ(X−1(t)) are bounded (uniformly in t0). For the special case where the considered Lie

group is SO(3), all of these boundedness conditions are satisfied automatically since we have

‖Φ(X(t))‖2
F = tr(Φ(X)>Φ(X)) = tr(I3×3) = 3 for all X ∈ SO(3). In Section 2.7, we

interpret the boundedness requirements for the Lie group SE(3) as well. �

It is possible to replace the requirement for boundedness of Φ(X(t)), Φ(X−1(t)),

and cond(Φ(X(t))) respectively with the boundedness of Φ(X̂(t)), Φ(X̂−1(t)), and

cond(Φ(X̂(t))) in Theorems 2.4.1 and 2.4.3 and still prove the same stability results.

Boundedness conditions on X̂ are always verifiable in practice.

Theorem 2.4.1 does not necessarily require a symmetric gain mapping Kẙ. Also,

we do not impose any invariance condition on this gain mapping. Condition (a)

of Theorem 2.4.1 only requires the symmetric part of Kẙ, denoted by Ks
ẙ, to be uni-

formly positive definite. Considering a basis for TX̂G and the corresponding dual

basis for T∗X̂G, condition (a) of Theorem 2.4.1 implies that the matrix representation

of Ks
ẙ(.) : T∗X̂G → TX̂G with respect to these bases is uniformly symmetric positive

definite. In practice, we will use this property to design a suitable gain mapping and

obtain the innovation term of the observer. We will illustrate this method with an

example in Section 2.7.

Condition (d) of Theorem 2.4.1 is milder than condition (d) of Theorem 2.4.3 or

similar conditions imposed in [94] and in the Author’s previous work [85]. This

4What is referred to as uniform exponential stability here is the same as exponential stability in the
sense of [78])
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allows the choice of much larger class of cost functions to generate innovation terms

that guarantee the asymptotic stability of error dynamics.

Remark 2.4.5. In the special case where Kẙ is uniformly symmetric positive definite and

is independent of the arguments b̂, uy and t, the term Kẙ(X̂, y)[D1φẙ(X̂, y)] simplifies to

grad1φẙ(X̂, y) where grad1 denotes the gradient with respect to the Riemannian metric on

G induced by the gain mapping. In this case, the observer (2.19)-(2.20) simplifies to the

following gradient-like observer discussed in the Author’s previous work [85, equations (7)-

(8)].

˙̂X = X̂(uy − b̂)− grad1φẙ(X̂, y), (2.37)

˙̂b = −γAd∗X̂
[

grad1φẙ(X̂, y)X̂−1
]

, (2.38)

where the gain mapping Γ is simply replaced by the scalar gain γ and Ad∗X̂ : g→ g denotes the

Hermitian adjoint of AdX̂ w.r.t. the induced Riemannian metric on g such that 〈〈Ad[u], v〉〉 =
〈〈u, Ad∗[v]〉〉 for all u, v ∈ g. If in addition we assume that Kẙ satisfies the invariance

condition TX̂RZ ◦ Kẙ(X̂, y) ◦ TX̂R∗Z = Kẙ(X̂Z, h(Z, y)), the induced Riemannian metric

on G would be right-invariant. In this case, the error dynamics (2.30)-(2.31) correspond

to the perturbed gradient-like error dynamics given by [85, equations (17)-(18)]. Algebraic

derivations associated with deriving an observer on a special Lie groups is usually simpler by

employing an invariant Riemannian metrics and working with the gradient representation

(2.37)-(2.38) of the observer (see an example in Section 2.6). Nevertheless, the larger class of

gain mappings together with the larger class of cost functions proposed in this chapter ensures

that the proposed observer allows a much larger class of observers compared to [92, 94] and the

Author’s previous work [85]. The discussion presented here shows also that a non-invariant

Riemannian metric can be employed for the bias-free case to design the innovation term of

the gradient-like observers the in [85, 92, 94]. In this case, the resulting error dynamics

would be stable as long as the conditions on the cost function are satisfied, but the error

dynamics would be non-autonomous. Non-invariant gains also lead to observers that are not

symmetry-preserving in the sense of [35].
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2.5 Constructing Invariant Cost Functions on Lie Groups

In Section 2.4, we propose the observer (2.19)-(2.20) that depends on the differential of

the cost function φẙ : G×M→ R+ as its innovation term. The cost function φẙ must

be right invariant, and it should satisfy condition (d) of Theorem 2.4.1 (or condition

(d) of Theorem 2.4.3) in order to guarantee asymptotic (or exponential) stability of

the observer error. Designing such a cost function can be challenging since M is an

orbit in the product of different output spaces which can generally be a complicated

manifold. In this section, we propose a method for constructing a cost function φẙ

on the Lie group by employing single variable cost functions on the homogeneous

output spaces Mi. Finding a suitable cost function on each output space is usually

easy, especially when the output spaces are embedded in Euclidean spaces.

Proposition 2.5.1. [102] Suppose f i
ẙi

: Mi → R+, yi 7→ f i
ẙi
(yi) are single variable C2 cost

functions on Mi, i = 1, . . . , n. Corresponding to each f i
ẙi

, construct a cost function φi
ẙi

: G×
Mi → R+ using φi

ẙi
(X̂, yi) := f i

ẙi
(hi(X̂−1, yi)). Obtain the cost function φẙ(X̂, y) :=

∑n
i=1 φi

ẙi
(X̂, yi).

(a) The cost function φẙ is right invariant in the sense defined in part (c) of Theorem 2.4.1.

(b) Assume that each f i
ẙi

, i = 1, . . . , n is locally positive definite around ẙi ∈ Mi. Assume

moreover that
⋂n

i=1 stabhi(ẙi) = {I} where stabhi(ẙi) denotes the stabilizer of ẙi with

respect to the action hi, defined by stabhi(ẙi) := {X ∈ G : hi(X, ẙi) = ẙi}. Then

φẙ(., ẙ) : G → R+ is locally positive definite around I ∈ G.

(c) If D f i
ẙi
(ẙi) = 0 for all i = 1, . . . , n then D1φẙ(I, ẙ) = 0. If additionally the Hes-

sian operators Hess f i
ẙi
(ẙi) : Tẙi Mi → T∗ẙi

Mi are symmetric positive definite for all

i = 1, . . . , n and
⋂n

i=1 TIstabhi(ẙi) = {0}, then Hess1φẙ(I, ẙ) is symmetric positive

definite. �

Proof:

Part (a): For any arbitrary Z ∈ G we have

φẙ(X̂Z, h(Z, y)) =
n

∑
i=1

f i
ẙi

(
hi((X̂Z)−1, hi(Z, y))

)
=

n

∑
i=1

f i
ẙi
(hi(ZZ−1X̂−1, y))

=
n

∑
i=1

f i
ẙi
(hi(X̂−1, y)) = φẙ(X̂, y).
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This shows that φẙ is right invariant.

Part (b): Since f i
ẙi
(yi) is positive definite around yi = ẙi, there exists a neighbor-

hood Ni ⊂ Mi of ẙi such that f i
ẙ(yi) ≥ 0 and f i

ẙi
(yi) = 0 ⇒ yi = ẙi for all yi ∈ Ni.

Corresponding to each Ni, define the set Ni := {E ∈ G : hi(E−1, ẙi) ∈ Ni} ⊂ G

and consider the set N :=
⋂n

i=1 Ni. It is easy to verify that N ⊂ G is a neighbor-

hood of I and we have φẙ(E, ẙ) = ∑n
i=1 f i

ẙi
(hi(E−1, ẙi)) ≥ 0 for all E ∈ N. Moreover,

for any E ∈ N, φẙ(E, ẙ) = ∑n
i=1 f i

ẙi
(hi(E−1, ẙi)) = 0 yields f i

ẙi
(hi(E−1, ẙi)) = 0 for

all i = 1, . . . , n. This in turn implies that hi(E−1, ẙi) = ẙi, i = 1, . . . , n and hence

E ∈ ⋂n
i=1 stabhi(ẙi). We assumed

⋂n
i=1 stabhi(ẙi) = {I} which ensures that E = I and

hence φẙ(E, ẙ) is positive definite on N.

Part (c): Define the map hẙi : G → Mi by hẙi X := hi(X, ẙi). Differentiating both

sides of φẙ(E, ẙ) = ∑n
i=1 f i

ẙi
(hi(E−1, ẙi) in an arbitrary direction v ∈ TEG and using

the chain rule we have

D1φẙ(E, ẙ)[v] = −
n

∑
i=1

D f i
ẙi
(h(E−1, ẙi)) ◦ TE−1 hẙi ◦ TI LE−1 ◦ TERE−1 [v].

Evaluating the later relation at E = I and omitting the arbitrary argument v we

obtain D1φẙ(I, ẙ) = −∑n
i=1 D f i

ẙi
(ẙi) ◦ TIhẙi . Hence, D f i

ẙi
(ẙi) = 0, i = 1, . . . , n implies

D1φẙ(I, ẙ) = 0. Under this condition, standard computations shows that

Hess1φẙ(I, ẙ) =
n

∑
i=1

Hess1φi(I, ẙi) =
n

∑
i=1

TIh∗ẙi
◦Hess f i

ẙi
(ẙi) ◦ TIhẙi ,

where TIh∗ẙi
: T∗ẙi

Mi → T∗I G denotes the dual of TIhẙi . If all of Hess f i
ẙi
(ẙi), i = 1, . . . , n

are symmetric positive definite, then Hess1φẙ(I, ẙ) is symmetric positive semi definite

with ker(Hess1φẙ(I, ẙ)) =
⋂n

i=1 ker(TIhẙi). Since, ker(TIhẙi) = TIstabhi(ẙi), we have

n⋂
i=1

ker(TIhẙi) =
n⋂

i=1

TIstabhi(ẙi) = {0}.

Consequently, ker(Hess1φẙ(I, ẙ)) = {0} which implies that Hess1φẙ(I, ẙ) is full rank

and hence symmetric positive definite. �

Proposition 2.5.1 suggests a systematic method to construct a cost function which

satisfies the requirements of Theorem 2.4.1 or Theorem 2.4.3. The differential of this

function can be employed to design the innovation term of the observer. We will
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illustrate this method with examples in sections 2.6 and 2.7.

The method proposed in Proposition 2.5.1 to construct the cost function φẙ is fun-

damentally different from the one presented in the Author’s prior work [85, Proposi-

tion 2]. The method proposed in [85, Proposition 2] employs invariant cost functions

on Mi ×Mi while the method presented here only requires single variable cost func-

tions on each Mi. Implementability of the proposed observer in [85] is guaranteed

when the homogeneous output spaces are reductive. The method presented in this

Chapter guarantees the implementability of resulting observer without imposing any

reductivity condition.

The condition
⋂n

i=1 stabhi(ẙi) = {I} (imposed in part (b) of Proposition 2.5.1) is

sufficient to ensure
⋂n

i=1 TIstabhi(ẙi) = {0} (imposed in part (c) of the Proposition).

This condition can be interpreted as an observability criterion. In particular, for the

attitude estimation problem with vectorial measurements, this condition is equiv-

alent to the availability of two or more non-collinear reference vectors, as will be

shown in Section 2.6. As will be discussed in Section 2.7, for the pose estimation

problem with landmark measurements, this condition corresponds to the availability

of three or more landmarks which are not located on the same line.

The method presented in this chapter suits the systems with constant reference

outputs. Time varying reference outputs have been investigated in [29, 54, 80, 89, 133]

for attitude estimation problem on SO(3). Nevertheless, in most practical cases,

the reference outputs are approximately constant [37, 101, 135] and the proposed

observer design methodology applies.

2.6 Example: Attitude Estimation Using Biased Angular Ve-

locity Measurement

Recall the attitude estimation problem discussed in Example 2.2.1. We aim to em-

ploy the gradient formulation of the observer (2.37)-(2.38) to design an attitude and

gyro bias observer. Since the Lie group SO(3) is compact, the boundedness con-

ditions imposed by Assumption (A2) and part (e) of Theorem 2.4.3 are automati-

cally satisfied. It is easy to verify that the requirements
⋂n

i=1 stabhi(ẙi) = {I} and⋂n
i=1 TIstabhi(ẙi) = {0} (respectively, imposed by parts (b) and (c) of Proposition

2.5.1) are satisfied if there are at lease two vector measurements whose correspond-
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ing reference vectors are non-collinear.

Suppose f i
ẙi

: Mi → R+, yi 7→ f i
ẙi
(yi) are single variable C2 cost functions on

Mi, i = 1, . . . , n. Corresponding to each f i
ẙi

, construct a cost function φi
ẙi

: G ×
Mi → R+ using φi

ẙi
(X̂, yi) := f i

ẙi
(hi(X̂−1, yi)). Obtain the cost function φẙ(X̂, y) :=

∑n
i=1 φi

ẙi
(X̂, yi).

Consider f i
ẙi
(yi) = li

2‖yi − ẙi‖2 where ‖a‖ = a>a is induced by the standard

Euclidian norm on R3 and li is a positive scalar. It is easy to see that f i
ẙi

, i = 1, . . . , n

are locally positive definite around ẙi ∈ Mi and they have symmetric positive definite

Hessians, hence satisfying the requirements of Proposition 2.5.1. Obtain φẙ(R̂, y) :=

∑n
i=1 f i

ẙi
(hi(X̂−1, yi)) = ∑n

i=1
li
2‖R̂yi − ẙi‖2 = ∑n

i=1
li
2‖R̂>ẙi − yi‖2. Consider the inner

product 〈〈Ω1, Ω2〉〉 = tr(Ω>1 Ω2), ∀Ω1, Ω2 ∈ so(3) induced by the standard inner

product in R3×3 obtain the following right-invariant Riemannian metric on SO(3)

using the right translation of the Lie algebra so(3).

〈Ω1R̂, Ω2R̂〉R̂ := 〈〈Ω1, Ω2〉〉 = tr(Ω>1 Ω2).

Recalling that grad1φẙ(X̂, X) can be identified using the differential of φẙ(X̂, y) with

respect to the first coordinate in an arbitrary tangential direction Ω̂R̂ ∈ TR̂SO(3), we

have

D1φẙ(R̂, y)[Ω̂R̂] = 〈grad1φẙ(R̂, y), Ω̂R̂〉R̂ = 〈〈grad1φẙ(R̂, y)R̂>, Ω̂〉〉, (2.39)

We also have

D1φẙ(R̂, y)[Ω̂R̂] =
n

∑
i=1

liẙ>i Ω̂R̂(R̂>ẙi − yi) = −tr

(
Ω̂>R̂

n

∑
i=1

li(R̂>ẙi − yi)ẙ>i

)
.

Using the notation Pso(3)(A) = 0.5(A− A>) for the matrix projection from R3×3 onto

so(3) we have

D1φẙ(R̂, y)[Ω̂R̂] = −tr

(
Ω̂>Pso(3)(R̂

n

∑
i=1

li(R̂>ẙi − yi)ẙ>i )

)

= 〈〈−Pso(3)(R̂
n

∑
i=1

li(R̂>ẙi − yi)ẙ>i ), Ω̂〉〉. (2.40)



§2.7 Example: Pose Estimation Using Biased Velocity Measurements 33

Comparing (2.39) and (2.40), we infer

grad1φẙ(R̂, y) = −Pso(3)(R̂
n

∑
i=1

li(R̂>ẙi − yi)ẙ>i )R̂. (2.41)

Using the property Pso(3)(R̂A) = R̂Pso(3)(AR̂)R̂> for A ∈ R3×3, we have

grad1φẙ(R̂, y) = −R̂Pso(3)(
n

∑
i=1

li(R̂>ẙi − yi)ẙ>i R̂) = −R̂Pso(3)(
n

∑
i=1

li(R̂>ẙi − yi)(R̂>ẙi)
>)

= −R̂
n

∑
i=1

li(R̂>ẙiy>i − yiẙ>i R̂). (2.42)

Using (2.37), the attitude estimator is given by

˙̂R = R̂(Ωy − b̂) + R̂
n

∑
i=1

li(R̂>ẙiy>i − yiẙ>i R̂) (2.43)

Since SO(3) ⊂ GL(3) is a matrix Lie group and our considered Riemannian metric

is induced by the standard inner product on GL(3), we can explicitly formulate the

map Ad∗R̂ : so(3) → so(3) by Ad∗R̂v = Pso(3)
(

R̂>vR̂
)

for all v ∈ so(3). So, the bias

estimator (2.38) becomes

˙̂b=γPso(3)(R̂>R̂
n

∑
i=1

li(R̂>ẙiy>i − yiẙ>i R̂)R̂−1R̂) = γ
n

∑
i=1

li(R̂>ẙiy>i − yiẙ>i R̂). (2.44)

Using the property ab> − ba> = (a× b)×, one can concludes that (2.43)-(2.44) corre-

sponds to the complementary passive attitude estimator proposed in [101, 136] where

almost globally asymptotic and locally exponentially convergence of the estimation

error to (I, 0) has been proved.

2.7 Example: Pose Estimation Using Biased Angular and Lin-

ear Velocity Measurements

Recalling the pose estimation problem discussed in Example 2.2.2, here we employ

our observer (2.19)-(2.20) to derive the pose estimators proposed in [65] and [135]

and we generalize them. As opposed to the attitude estimation example, here we do

not employ the gradient formulation of the observer and we work directly with the
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observer formulation (2.19)-(2.20).

Apart from the semi-direct product representation of SE(3) discussed in Ex-

ample 2.2.2, it is known that SE(3) has also a matrix Lie group representation as

a subgroup of GL(4) (see e.g. [65]). We use this matrix Lie group representa-

tion only to interpret the required boundedness conditions (see Assumption (A2))

but we employ the semi-direct product representation to derive the observer for-

mulas (see remark 2.4.4). The Lie group homomorphism Φ which maps an ele-

ment (R, p) ∈ SE(3) to its corresponding matrix representation in GL(4) is given

by; Φ : (R, p) 7→

 R p

0 1

 . The Frobenius norm of Φ((R, p)) ∈ GL(4) is given

by ‖Φ((R, p))‖2 = tr(Φ((R, p))>Φ((R, p))) = 4 + ‖p‖2. Hence, Φ((R(t), p(t))) is

bounded if p(t) is bounded. Similarly, one can verify that Φ((R(t), p(t)))−1 and

cond((R(t), p(t))) are bounded (uniformly in t0) if p(t) is bounded (uniformly in t0).

This characterizes the boundedness conditions imposed by Assumption (A2) and

part (e) of Theorem 2.4.3.

From here after, we only consider the semi-direct product representation of SE(3) '
SO(3) n R3. We aim to employ the observer developed in Section 2.4 and use

the guidelines presented in Section 2.5 to design an observer to estimate the pose

X = (R, p) and the bias b = (bω, bv). Let us first evaluate the observability con-

dition imposed by part (b) and (c) of Proposition 2.5.1. We have
⋂n

i=1 stabhi(ẙi) =

{(R, p) ∈ SE(3) : R>ẙi − R>p = ẙi, i = 1, . . . , n} = {(R, p) ∈ SE(3) : R>p =

R>ẙi − ẙi, R(ẙi − ẙj) = ẙi − ẙj i, j = 1, . . . , n, i 6= j} which implies that ẙi − ẙj is

an eigenvector of R. Hence, a necessary and sufficient condition which guarantees⋂n
i=1 stabhi(ẙi) = {(I3×3, 03)} (and consequently

⋂n
i=1 T(I,0)stabhi(ẙi) = {(03×3, 03)})

is the existence of at least three reference outputs ẙi, ẙj, ẙk such that ẙi − ẙj is not

parallel to ẙj − ẙk. Note that this condition is independent of the choice of inertial

frame. Specifically, when landmark measurements are employed to provide outputs

yi, i = 1, . . . , n, this condition is equivalent to the existence of at least three landmarks

which are not located on the same line [65, 135].

In order to design the innovation terms of the estimator (2.19)-(2.20), we resort to

choose a basis for each tangent space to obtain matrix representations for the linear

mappings Kẙ, Γ, TI L∗X̂ and use simple matrix calculus. For the sake of clarity, we

denote the matrix representation of a linear mapping F : U → W with respect to the
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basis {u} for its domain and basis {w} for its co-domain by the notation [[F]]wu . Also,

the Rn representation of a vector a ∈ U with respect to the basis {u} is denoted

by [[a]]u. Denote the standard bases of R3 and so(3) by {e} and {e×}, respectively.

Using these bases, one can obtain a standard basis for se(3) denoted by {e}. We

obtain a basis for T(R̂,p̂)SE(3) using the right translation of {e}. Denote this basis of

T(R̂,p̂)SE(3) by {eX̂} and its corresponding dual basis of T∗
(R̂,p̂)SE(3) by {(eX̂)∗}.

In order to use Proposition 2.5.1, we start by designing suitable costs f i
ẙi

: Mi →
R+. A simple cost function is constructed by f i

ẙi
(yi) := li

2‖yi − ẙi‖2, li > 0 where

‖.‖ denotes the Euclidean distance. It is straight forward to verify that f i
ẙi

satisfies

the requirements imposed by part (c) of Proposition 2.5.1, i.e. D f i
ẙi
(ẙi) = 0 and

Hess f i
ẙi
(ẙi) is symmetric positive definite. The cost functions φi

ẙi
: SE(3) × Mi →

R+, i = 1, . . . , n are obtained as φi
ẙi
(X̂, yi) =

li
2‖hi((R̂, p̂)−1, yi)− ẙi‖2 = li

2‖R̂yi + p̂−
ẙi‖2. Denoting an arbitrary element of se(3) by (Ω̂, V̂), we have T(I,0)R(R̂,p̂)[(Ω̂, V̂)] =

(Ω̂R̂, Ω̂ p̂ + V) ∈ T(R̂,p̂)SE(3). One can obtain D1φẙ((R̂, p̂), y) : T(R̂,p̂)SE(3)→ R as

D1φẙ((R̂,p̂),y)[(Ω̂R̂,Ω̂ p̂+V̂)]=∑n
i=1liα>i (Ω̂R̂yi+Ω̂ p̂+V̂). (2.45)

where

αi := (R̂yi + p̂− ẙi) ∈ R3.

The R6 representation of D1φẙ(X̂, y) ∈ T∗X̂SE(3) is the transpose of the matrix repre-

sentation of D1φẙ(X̂, y) : TX̂SE(3) → R, i.e. [[D1φẙ(X̂, y)]](eX̂)∗ =
(
[[D1φẙ(X̂, y)]]1

eX̂

)>
.

Employing (2.45) and using the basis {eX̂}, we obtain

[[D1φẙ(X̂, y)]]1eX̂ =
n

∑
i=1

liα>i [e
1
×R̂yi + e1

× p̂, e2
×R̂yi + e2

× p̂, e3
×R̂yi + e3

× p̂, e1, e2, e3]

=
n

∑
i=1

li[−α>i (R̂yi + p̂)×, α>i ] =
n

∑
i=1

li[ẙ>i (R̂y + p̂)×, α>i ], (2.46)

where {e} = {e1, e2, e3} and −α>i (R̂yi + p̂)× = −(R̂yi + p̂ − ẙi)
>(R̂yi + p̂)× =

ẙ>i (R̂y + p̂)× is used in the last step of (2.46). We choose [[Kẙ(X̂, y, b̂, uy, t)]]eX̂
(eX̂)∗

=

diag(lω I3×3, lv I3×3) where lω, lv are positive scalars and ensure that the resulting gain

mapping

Kẙ(X̂, y, b̂, uy, t) : T∗
(R̂,p̂)SE(3)→ T(R̂,p̂)SE(3),
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is uniformly positive definite. Using (2.46) we have

[[Kẙ(.)[D1φẙ(X̂, y)]]]eX̂ = [[Kẙ(.)]]eX̂
(eX̂)∗

[[D1φẙ(X̂, y)]](eX̂)∗

=
(
∑n

i=1 li[lω ẙ>i (R̂yi + p̂)×, lvα>i ]
)>

where the argument (X̂, y, b̂, uy, t) of Kẙ has been omitted for brevity. We use (6.2),

from Lemma 6.1.1 in the Appendix, to obtain

Kẙ(.)[D1φẙ(X̂, y)] =∑n
i=1li

(
−lω((R̂yi + p̂)×ẙi)×R̂,−lω((R̂yi + p̂)×ẙi)× p̂+lvαi

)
(2.47)

In order to design the innovation term of the bias estimator, we first need to

obtain a matrix representation for the map [TI L(R̂,p̂). Suppose [a>, b>]> ∈ R6 as the

first column of [[TI L(R̂,p̂)]]
eX̂
e and denote by ai, bi, i = 1, . . . 3 the elements of a, b ∈ R3.

We have

TI LX̂[(e
1
×, 0)] = (R̂e1

×, 0) =
3

∑
i=1

ai(ei
×R̂, ei

× p̂) + bi(0, ei) =
3

∑
i=1

(aiei
×R̂, aiei

× p̂ + biei).

This implies that R̂e1
× = ∑3

i=1 aiei
×R̂ and 0 = ∑3

i=1 aiei
× p̂ + biei which together form 6

linear equations with 6 unknowns. Solving this set of equations yields a = R̂e1 and

b = p̂×R̂e1. Consequently, the first column of [[TI L(R̂,p̂)]]
eX̂
e is [(R̂e1)>, ( p̂×R̂e1)>]>. One

can use the same procedure as was explained above to obtain the second and third

column of [[TI L(R̂,p̂)]]
eX̂
e as [(R̂e2)>, ( p̂×R̂e2)>]> and [(R̂e3)>, ( p̂×R̂e3)>]> respectively.

Suppose [c>, d>]> as the forth column of [[TI L(R̂,p̂)]]
eX̂
e . We have, TI LX̂[(0, e1)] =

(0, R̂e1) = ∑3
i=1 (ciei

×R̂, ciei
× p̂ + diei). This implies that 0 = ∑3

i=1 ciei
×R̂ and R̂e1 =

∑3
i=1 ciei

× p̂ + diei which again form 6 linear equations with 6 unknowns. Solving this

set of equations yields c = 0 and d = R̂e1. Hence the forth column of [[TI L(R̂,p̂)]]
eX̂
e is

given by [0, (R̂e1)>]>. We can apply the same procedure to obtain the fifth and sixth

column as well. Combining all of the columns together yields

[[TI L(R̂,p̂)]]
eX̂
e =

 R̂e1 R̂e2 R̂e3 03 03 03

p̂×R̂e1 p̂×R̂e2 p̂×R̂e3 R̂e1 R̂e2 R̂e3

 =

 R̂ 03×3

p̂×R̂ R̂

 .
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Now, choosing the gain [[Γ]]ee∗ = diag(γω I3×3, γv I3×3), we have

[[Γ◦TI L∗X̂[D1φẙ(X̂,y)]]]e = [[Γ]]ee∗
(
[[TI L(R̂,p̂)]]

eX̂
e

)>
[[D1φẙ(X̂, y)]](eX̂)∗

=

γω I3×3 03×3

03×3 γv I3×3

 R̂ 03×3

p̂×R̂ R̂

>−∑n
i=1 li(R̂yi + p̂)×ẙi

∑n
i=1 liαi


= ∑n

i=1 li

 γωyi×(R̂>ẙi − R̂> p̂)

γvR̂>αi

. (2.48)

We employ (2.48) and (6.1), from Lemma 6.1.1 in the Appendix, to obtain

Γ◦TI L∗X̂[D1φẙ(X̂,y)]=∑n
i=1li(γω(yi×(R̂>ẙi−R̂>p̂))×, γvR̂>αi) (2.49)

Using (2.47) and (2.49), the observer is summarized as

˙̂R = R̂(Ωy − b̂ω) + lω ∑n
i=1 li((R̂y + p̂)×ẙi)×R̂ (2.50a)

˙̂p= R̂(Vy−b̂v)+
n

∑
i=1

li(lω((R̂y + p̂)×ẙi)× p̂−lv(R̂yi+ p̂−ẙi)) (2.50b)

˙̂bw = γω ∑n
i=1 li(yi×(R̂>ẙi − R̂> p̂))× (2.50c)

˙̂bv = γv(R̂> p̂− R̂>ẙi + yi) (2.50d)

Notice that the resulting observer formula (2.50) do not depend on the chosen basis.

Omitting the bias estimator, the group estimator (2.50a)-(2.50b) has a similar form

as the gradient-like observer proposed in [65, equation (35)] since the chosen gain

mapping Kẙ is symmetric positive definite and yields a gradient innovation term.

The pose estimator of [135] has a different form from (2.50). Here, we derive the

observer of [135] by choosing different gain mappings and output maps. Similar to

[135, equation (8)], consider the new set of outputs zj, j = 1, . . . , n given by

zj := ∑n−1
i=1 aij(yi+1 − yi), j = 1, . . . , n− 1 (2.51a)

zn := − 1
n ∑n

i=1 yi. (2.51b)

We assume that aij ∈ R are such that the matrix A := [aij] ∈ R(n−1)×(n−1) is full rank.

This requirement guarantees that no information is lost by applying the linear trans-
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formation (2.51) to the measurements. Substituting yi from (2.9) into (2.51) and defin-

ing new reference outputs z̊j := ∑n−1
i=1 aij(ẙi+1 − ẙi), j = 1, . . . , n− 1, z̊n = − 1

n ∑n
i=1 ẙi

yields

zj = gj((R, p), z̊j) := R> z̊j, j = 1, . . . , n− 1 (2.52a)

zn = gn((R, p), z̊n) := R> z̊n + R>p (2.52b)

where gj, j = 1, . . . , n are right output actions of G. Consider the new combined

output z := (z1, . . . , zn) and the combined reference output z̊ := (z̊1, . . . , z̊n). One

can show that the necessary and sufficient condition for
⋂n

j=1 stabgj(z̊j) = {I} is the

existence of at least two non-collinear reference outputs z̊j, z̊k. Assuming that A =

[aij] is invertible, it is straight forward to show that the above mentioned condition

on z̊ is equivalent to the condition on ẙ we derived before.

We employ the cost functions f j
z̊j
(zj) := lj

2 ‖zj− z̊j‖2, lj > 0 and we choose the gain

mappings [[Kz̊(X̂, y, b̂, uy, t)]]eX̂
(eX̂)∗

= diag(lω I3×3, lv I3×3) + diag(03×3, (R̂(Ωy − b̂ω))×)

and [[Γ]]ee∗ = diag(γω I3×3, γv I3×3). It is easy to verify that this choice of cost functions

and gain mappings satisfies the requirements of our method. Notice that Kz̊ is non-

symmetric and depends also on Ωy and b̂ω unlike the previous part. In particular,

this implies that the observer innovation is not a gradient innovation. Nevertheless,

the symmetric part of Kz̊ is diag(lω I3×3, lv I3×3) which implies that the resulting gain

mapping Kz̊ is uniformly positive definite. Following the same procedure as was

done to derive (2.50), we obtain the following observer.

˙̂R= R̂(Ωy−b̂ω)−lωkn( p̂×z̊n)×R̂+lω ∑n
j=1ljR̂

(
(R̂>z̊j)×zj

)
× (2.53a)

˙̂p= R̂(Vy−b̂v)+kn
(
lv I3×3 + (R̂(Ωy−b̂ω))×

)
(R̂zn − p̂− z̊n)

− lωkn( p̂× z̊n)× p̂ + lω ∑n
j=1 lj

(
(R̂zj)× z̊j

)
× p̂ (2.53b)

˙̂bw =γωkn

(
R̂> p̂×(R̂zn− p̂)

)
×
+ γω ∑n

j=1 lj

(
(R̂> z̊j)×zj

)
×

(2.53c)

˙̂bv = −γvknR̂>(R̂zn − p̂− z̊n) (2.53d)

In [135], it is assumed that the origin of inertial frame is located at the geometric

center of the landmarks. In this case we have z̊n = 0 which simplifies the observer
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(2.53) to the observer designed in [135]5. Compared to [135], the observer (2.53)

has the advantage that it is well-defined even if only some of the measurements yi

are unavailable at some period of time. In this case, the reference output z̊n can be

recalculated using the reference outputs corresponding to the remaining available

measurements. Also, we only require A = [aij] to be full rank but [135] necessarily

requires that aij are chosen such that [z̊1, . . . , z̊n−1][z̊1, . . . , z̊n−1]
> = I3×3.

2.8 Summary

In this chapter, we investigate the problem of observer design for invariant systems

on finite-dimensional real connected Lie groups where the measurement of system

input is corrupted by an unknown constant bias. We show that the corresponding

standard error dynamics are non autonomous in general. We propose an observer

design methodology that guarantees the uniform local asymptotic (or exponential)

convergence of the observer trajectories to the system trajectories. We employ a gain

mapping acting on the differential of a cost function to design the innovation term of

the group estimator. The bias estimator is then designed using a Lyapunov method.

The notion of homogeneous output spaces is generalized to multiple outputs, each of

which is modeled via a right action of the Lie group on an output space. A systematic

method for constructing invariant cost functions on Lie groups is proposed, yielding

implementable innovation terms for the observer. A verifiable condition on the stabi-

lizer of the reference outputs associated with the output spaces ensures the stability

of the observer. This condition is consistent with the observability criterion discussed

in [93]. Our proposed method omits the limiting reductivity condition imposed in

the Author’s previous work [85] and in [92]. As a case study, pose estimation on the

Lie group SE(3) was investigated where our observer design methodology unifies

the state-of-the-art pose estimators of [135] and [65] into a single framework that ap-

plies to any invariant kinematic system on a Lie group. Extension of the proposed

observer design methodology to the (co)tangent bundle of a Lie group could be con-

sidered by assigning a Lie group structure to the (co)tangent bundle noting that the

(co)tangent bundle is trivial (see e.g. [123]).

5Here, the position vector p is expressed in the inertial frame but in [135] the position vector is
expressed in the body-fixed frame. One can transform the system of [135] to the form presented here
using the change of variable p 7→ Rp.
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Chapter 3

State Estimation for Systems with

Delayed Output Measurements;

Observer-predictor approach

This chapter proposes a state estimation methodology for invariant systems on Lie

groups where outputs of the system are measured with delay. The proposed method

is based on a cascade of an observer and a predictor. The observer uses delayed

measurements and provides estimates of delayed states. The predictor uses those

estimates together with the current inputs of the system to compensate for the delay

and to provide a prediction of the current state of the system. We consider three

classes of left-invariant, right-invariant, and mixed-invariant systems and propose

predictors tailored to each class. The key contribution of the Chapter is to exploit

the underlying symmetries of systems to design novel predictors that are computa-

tionally simple and generic, in the sense that they can be combined with any stable

observer or filter. We provide a rigorous stability analysis demonstrating that the

prediction of the current state converges to the current system trajectory if the ob-

server state converges to the delayed system trajectory. The good performance of the

proposed approach is demonstrated using a sophisticated Software-In-The-Loop sim-

ulator indicating the robustness of the observer-predictor methodology even when

large measurement delays are present. This chapter is based on the contributions

presented in [82, 84].

41
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3.1 Related work

State observers for systems on general Lie groups rely on fusing the measurements

of inputs and outputs of systems to estimate their internal states [28, 33, 68, 94, 102,

123, 143]. All of the above mentioned observer design methodologies require delay

free measurement of the current outputs and inputs of the system. In many practical

scenarios, however, measurement of the outputs of the system are inherently delayed

(compared to the ideal outputs of the system) while the inputs are measured with-

out significant delays. For example, in the velocity aided attitude estimation scenario,

measurements of linear velocity (output) provided by commercial GPS units are usu-

ally delayed with respect to the actual velocity of the vehicle. The delay can be several

hundred milliseconds (and even up to half a second) due to various environmental

effects and in-sensor processing delays [58, 88]. In contrast, measurements of the

vehicle’s angular velocity and linear acceleration provided by an onboard IMU are

almost instantaneous. Another example is attitude estimation for satellites using star

trackers and gyros. The image processing inside a star-tracker sensor can cause sig-

nificant delays in the order of tens of milliseconds while gyroscope measurements on

the satellite are obtained without significant delays. Similar delay problems occur in

attitude estimation for aerial robots when vision based sensors compute landmarks.

Even in instrumented indoor flight environments, the attitude data from devices such

as VICON or OptiTrack are delayed by the communication channel from these sen-

sors to the onboard attitude estimation system of the vehicle. Finally, heavy filtering

of noisy sensor measurements before data fusion can introduce significant delays in

the filtered data. This is particularly important, for example, for obtaining air veloc-

ity measurements from noisy air pressure readings [119]. It is well understood that

measurement delays can negatively affect the stability and robustness of observers

or filters and degrade their performance [16, 19, 30, 41, 53, 75, 76, 134].

The classical approach to tackle sensor delay in estimation problem is to take an

estimator that has the desired performance for delay free measurements, and modify

its innovation term such that it compares each delayed measurement with its corre-

sponding backward time-shifted estimate. If the delay-free estimator has a Lyapunov

stability proof, the stability analysis for the modified estimator is approached by us-

ing Lyapunov-Krasovskii or Lyapunov-Razumikhin functions [16, 18, 24, 41, 134].
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Although commonly used in practice, such modified estimators require complicated

stability analyses and careful and conservative gain tuning which may lead to poor

transient responses. Combined observer-predictor design is an alternative method

that has received recent interests, see e.g. [19, 30, 53, 75, 76] and the references

therein. These methods take observers that use delayed measurements to provide

estimates of the delayed state and combine them with appropriate predictors to com-

pensate for the delay. An observer-predictor combination is proposed in [58] for at-

titude, velocity, and position estimation of flying vehicles and its good performance

is verified in practice. The predictor of [58] (which is called a fast simulator in the

context of that paper) relies on buffering the IMU measurements and employing a

nonlinear observer to approximate the velocity and position kinematics by a double

integrator system. This approximation enables forward integrating the buffered IMU

data each time a new GPS measurement is received to obtain predictions of the cur-

rent position and velocity. To our knowledge, there is currently no state estimation

methodology (with stability proof) for systems on general Lie groups when output

measurements are affected by delay.

In this chapter, we tackle the problem of state estimation for systems on general

matrix Lie groups when measurements of system outputs are delayed. We propose

an observer-predictor methodology for three classes of systems on Lie groups; left-

invariant, right-invariant, and mixed-invariant. Our proposed methodology employs

observers that use the delayed output measurements and estimate the delayed state

of the system. We propose dynamic predictors that use the delayed estimates from

the observers together with the current estimates of the inputs in order to predict the

current state of the system (see Fig. 3.1). The key contribution of the Chapter is effec-

tive use of the underlying symmetry of systems in order to design the predictors such

that the observer-predictor pairs are co-stable meaning that the observer-predictor

combination provides (asymptotically/exponentially) stable estimates of the current

state if the observer itself provides (asymptotically/exponentially) stable estimates of

the delayed state. It turns out that the convergence rate of the combined predictor-

observer depends only on the convergence rate of the observer independent of the

magnitude of the delay (in contrast to what is common for the predictors for gen-

eral systems on Rn [19, 30, 53, 75, 76, 81]). We ensure separation of the observer

design problem from the predictor design problem which gives us the freedom of
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employing any stable observer or filter without affecting the proposed co-stability

analysis. An advantage of this approach is that the gain tuning process of the ob-

server is independent of the magnitude of the delay, yielding robust performance

of the observer-predictor pairs even with large delays. Rather than assuming the

availability of current input measurements, we consider a more general case where

only estimates of the current inputs of the system are available. This generaliza-

tion is particularly useful when the input measurements have unknown biases and

scaling factors that are adaptively estimated at the observer stage. The proposed

predictors are recursive and hence computationally cheap making them ideal for

embedded implementation in real-world applications. As an example, we consider

the velocity aided attitude estimation problem and we provide realistic numerical

simulations using a sophisticated Software-In-The-Loop (SITL) system designed for

ArduPilot/APM1[2, 5, 7, 11, 14]. Using the SITL simulator, we demonstrate robust-

ness of the observer-predictor approach in practical situations even when large GPS

delays are present.

The Chapter is organized as follows. We formulate the problem in Section 3.2.

The observer-predictor approach is discussed in Section 3.3 where the proposed pre-

dictors are introduced and their co-stability properties are investigated. The relation

of the proposed recursive predictors to the non-recursive predictors of [113] is dis-

cussed in Section 3.4. Realistic simulation studies in Section 3.5 and brief conclusions

in Section 3.6 complete the Chapter.

3.2 Problem formulation

We consider three classes of invariant systems on the Lie group G given by

Ẋl(t) = Xl(t)ul(t), Xl(0) = Xl0 (3.1)

Ẋr(t) = ur(t)Xr(t), Xr(0) = Xr0 (3.2)

Ẋm(t) = Xm(t)ul(t) + ur(t)Xm(t), Xm(0) = Xm0 , (3.3)

1ArduPilot is a comprehensive open source autopilot software that is widely used amongst the UAV
enthusiast community.
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where Xl , Xr and Xm ∈ G are internal states of the systems (3.1), (3.2), and (3.3),

respectively, and ul , ur ∈ g are input signals. We drop the subscripts l, r and m

wherever this is possible without causing confusion. Similar to [28, 94], we call the

systems (3.1) and (3.2) left-invariant and right-invariant, respectively. We call the

system (3.3) mixed-invariant since its vector field is composed of a left-invariant term

Xm(t)ul(t) and a right-invariant term ur(t)Xm(t), but the combined vector field is in

general neither right nor left invariant. We assume that the inputs ul(t) and ur(t)

are admissible in the sense that corresponding solutions for the relevant systems

exist for all initial conditions and that these solutions are unique and continuously

differentiable for all time. In the context of mechanical systems, equation (3.1) is

typically used to model the kinematics when the system input ul is measured in

the body-fixed reference frame of the system. Similarly, the system model (3.2) is

typically employed when the system input ur is measured in the inertial frame of

reference. In the cases where some of the system inputs are measured in the body-

fixed frame while other inputs are measured in the inertial frame, the system model

(3.3) might be employed.

Assume that either direct measurements of current system inputs or an estimate

of those inputs are available but the measurement of the outputs of the system en-

counter a delay of τ seconds. Such a situation occurs in many applications involving

state estimation of mobile robots where inputs of the system are typically angular

velocities and accelerations obtained almost delay-free using high rate sensors such

as gyros and accelerometers while partial measurements of states (i.e system outputs

which are position and orientation in this example) are obtained using magnetome-

ters, cameras, GPS, etc. which are usually subject to considerable amounts of delay.

In some practical scenarios direct measurements of inputs are not available but an

(asymptotically stable) estimate of those inputs can be obtained using adaptive esti-

mation techniques. The problem we discuss in this chapter is to use the estimates of

current inputs together with delayed measurements of outputs in order to estimate

the current state of systems of the form (3.1), (3.2), or (3.3), assuming that the amount

of the output delay is known.

Example 3.2.1. Recall the attitude estimation problem discussed in Example 2.2.1. In mo-

bile robotics applications, when a vehicle performs low acceleration maneuvers, a 3-axis ac-

celerometer typically employed as an inclinometer to measure the Earth’s gravitational di-
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rection for use as a vector measurement of the form (2.6). When a vehicle performs high

acceleration maneuvers, however, accelerometer measurements do not accurately match the

model (2.6). In this situation, it is common to consider a more accurate model of the ac-

celerometer and enhance the attitude estimation algorithm by employing measurements of the

linear velocity of the vehicle. Such algorithms are called velocity aided attitude estimators

[20, 55, 62, 64, 107, 120]. To this end, the motion of a flying rigid body in the Earth’s

gravitational field is described by the following equations [62, 107, 120].

Ṙ(t) = R(t)Ω(t), R(0) = R0 (3.4)

v̇(t) = ge3 + R(t)a(t), v(0) = v0 (3.5)

where R ∈ SO(3) and Ω ∈ so(3) are the attitude matrix and the angular velocity as in

Example 2.2.1, v ∈ R3 is the linear velocity of body-fixed frame {B} w.r.t. the inertial frame

{A} expressed in {A}, a ∈ R3 is the so-called specific acceleration of the rigid body which

represents the sum of all non-gravitational forces applied to the body divided by its mass and

is expressed in {B}, and ge3 is the (constant) gravitational acceleration vector expressed in

{A}. The internal states of the dynamical system (3.4)-(3.5) are the attitude matrix R(t) and

the velocity vector v(t) and its inputs are the angular velocity vector Ω(t) and the specific

acceleration a(t).

Similar to [28], we rewrite the dynamics (3.4)-(3.5) as a mixed-invariant system on the

Lie group SE(3) with inputs living on its Lie algebra se(3). Defining X =

 R v

0 1

 ∈
SE(3) , ul =

 Ω a

0 0

 ∈ se(3), and ur =

 0 ge3

0 0

 ∈ se(3), it is straight-forward

to verify that Ẋ(t) = X(t)ul(t) + ur(t)X(t) where the group product is simply given by

matrix multiplication. If the angular velocity Ω(t) and the acceleration a(t) are directly

measured (by a 3-axis gyro and accelerometers), then the inputs ul(t) and ur(t) would be

available and can be used to estimate the state X(t). However, in practice, measurements

of angular velocity and linear acceleration are sometimes corrupted by unknown biases and

scaling factors. As was discussed in Chapter 2, it is common practice to assume that these

biases and scaling factors are constant and that they are adaptively estimated with observers

[24, 55, 86, 101, 107, 137, 144]. These estimates then can be used to obtain estimates of Ω(t)

and a(t).
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In outdoor environments, a measurement of linear velocity is usually obtained using GPS

units attached to the rigid body. Due to the internal processing time of GPS chips, the

velocity measurement is usually delayed w.r.t. the actual linear velocity v(t) of the vehicle.

The amount of this delay can be up to hundreds of milliseconds and hence is not negligible.

Assume that the GPS velocity measurement is given by vm(t) = v(t−τv) where τv is a known

constant delay. A magnetometer is another type of sensor usually employed for attitude

estimation. A 3-axis magnetometer measures the magnetic field of the earth in the body-fixed

frame. An ideal magnetometer output yb(t) is related to the attitude matrix via yb(t) =

R(t)>ẙb where ẙb is the vector of the Earth’s magnetic field at the position of the rigid

body expressed in {A}. Assume that the magnetometer measurement is given by yτ
b (t) =

R(t−τb)
>ẙb where τb is a known constant delay. In practice, the magnetometer delay is

much shorter compared to the GPS delay. Defining τ := max(τv, τb) both outputs (i.e. GPS

velocity and magnetometer measurements) at time t−τ are available at time t. The velocity

aided attitude estimation problem is to use the estimates (or measurements) of current inputs

Ω(t) and a(t) together with the delayed GPS velocity and magnetometer measurements in

order to estimate the current states R(t) and v(t). �

3.3 Observer-predictor approach

The approach that we take in this chapter to tackle the problem defined in Section 3.2

is to employ an observer that uses the delayed output measurements and artificially

delayed input measurements (denoted by uy(t−τ)) and provides an estimate of the

delayed state X(t−τ), denoted by X̂τ(t). We then design a predictor that uses the

delayed estimate X̂τ(t) together with measurements or estimates of the current input

u(t) (denoted by û(t)) and provides "predictions" of the current state X(t) denoted

by Xp(t). This observer-predictor scheme is illustrated in Fig. 3.1. In the special case

where measurements of the true input u(t) are available, one can replace uy(t−τ) and

û(t), respectively, with u(t−τ) and u(t) in Fig 3.1. Otherwise, û(t) can be provided by

an adaptive observer which estimates bias, scaling, and other unknown parameters

of the input. This adaptive observer can sometimes be a part of the observer block of

Fig. 3.1, in which case û(t) is indeed fed to the predictor from the observer block.

When outputs of the system are measured delay-free, various observer design

methodologies, including those presented in Chapter 2, are available that are capa-
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Figure 3.1: Proposed observer-predictor methodology.

ble of asymptotically/exponentially estimating the system state [20, 28, 34, 55, 56, 62,

64, 65, 69, 86, 94, 97, 101, 102, 107, 116, 120, 121, 135, 136, 144]. If a given observer

is time-invariant2, one can simply feed that observer with delayed outputs and de-

layed inputs of the system to obtain an estimate of the delayed state X(t−τ). Most

observers employed in control design are formulated by a set of ODEs that does

not explicitly depend on time. These observers are naturally time-invariant systems

and hence the method described above is applicable to obtain an estimate of X(t−τ)

for the systems (3.1)-(3.3). Hence, in this chapter, we focus only on designing the

predictor block of our proposed observer-predictor approach for the case of systems

in the form (3.1), (3.2), or (3.3). Roughly speaking, the predictor’s job is to use the

information provided by the input signal in order to compute how much the state

has changed in the period t−τ to t and use the result of this computation together

with the estimate of X(t−τ) to provide a prediction of the current state X(t).

We propose the following predictor for the left-invariant system (3.1)

∆̇l(t) = ∆l(t)ûl(t), ∆l(0) = ∆l0 , (3.6a)

Xp
l (t) = X̂τ

l (t)∆l(t−τ)−1∆l(t), t ≥ τ (3.6b)

where ∆l(t) ∈ G is the internal state of the predictor, ûl(t) ∈ g is an estimate of

the input ul(t), and Xp
l (t) ∈ is the prediction of Xl(t). If direct measurements of

ul(t) are available, those measurements can replace ûl(t). The predictor dynamics

(3.6a), which is a copy of the system dynamics (3.1), generates the trajectory of ∆l(t).

This trajectory is stored in a buffer for the period [t−τ, t] in order to compute the

prediction Xp
l (t) using the static equation (3.6b). The term ∆l(t−τ)−1∆l(t) in (3.6b)

is a prediction of the "increment" of the state X(t) from the time t−τ to the time t.

The predictor recursively computes this increment using the information provided

2Time-invariant is in the sense of considering the system inputs and outputs altogether as the input
of the observer and considering the state estimate as the output of the observer.
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by the input via (3.6a). Note that this increment (and hence Xp
l (t)) is independent of

the choice of the initial condition ∆l0 of the predictor. Since the predictor dynamics

(3.6a) is left-invariant, multiplying its initial condition by an arbitrary S ∈ G from

the left results in (S∆l(t−τ))−1(S∆l(t)) = ∆l(t−τ)−1∆l(t). This independence from

the choice of initial condition is a strong property which prevents aggregation of

error due to input measurement noise or numerical integration in practice. This also

enables periodic resetting of the initial condition to keep ∆l(t) bounded for all time

(see Lemma 3.3.6).

Similar to (3.6a)-(3.6b), we propose the following predictor for the system (3.2)

∆̇r(t) = ûr(t)∆r(t), ∆r(0) = ∆r0 , (3.7a)

Xp
r (t) = ∆r(t)∆r(t−τ)−1X̂τ

r (t), t ≥ τ (3.7b)

where ∆r(t) ∈ G and Xp
r (t) ∈ G are the internal state of the predictor and the

prediction of Xr(t), respectively, and ûr(t) ∈ g is an estimate of ur(t). Again, we

need to buffer ∆r(t) for the period [t−τ, t]. Note that this time, the increment of

the state is predicted by the term ∆r(t)∆r(t−τ)−1 such that it is compatible with the

right-invariant nature of system (3.2). Similar to the left-invariant case, the predictor

trajectory Xp
r (t) is independent of the choice of the initial condition ∆r0 .

The internal dynamics of the predictor that we propose for the mixed-invariant

system (3.3) consists of both (3.6a) and (3.7a). The trajectories ∆l(t) and ∆r(t) are then

buffered for [t−τ, t] and are used in the following equation to provide the prediction

Xp
m(t) ∈ G of Xm(t).

Xp
m(t) = ∆r(t)∆r(t−τ)−1X̂τ

m(t)∆l(t−τ)−1∆l(t), t ≥ τ (3.8)

The term ∆l(t−τ)−1∆l(t) in (3.8) takes into account the increment of the state Xm(t)

(from t−τ to t) due to the left-invariant vector field Xm(t)ul(t) while the term

∆r(t)∆r(t−τ)−1 takes into account the increment due to the right-invariant vector

field ur(t)Xm(t). Note that the effects of the left and the right-invariant parts of the

mixed-invariant vector field are combined in (3.8) through multiplicative calculus.

Assuming ur = 0 in (3.1), ∆r(t) is constant for all t ≥ 0 and hence ∆r(t)∆r(t−τ)−1 =

I. This simplifies the predictor equation (3.8) to (3.6b). This is because ur = 0 sim-
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plifies the mixed-invariant system (3.3) to the left-invariant form (3.1). A similar

observation can be made by assuming ul = 0 and simplifying the mixed-invariant

case to a right-invariant form. Similar to the left and right-invariant cases, the pre-

dictor trajectory Xp
m(t) is independent of the initial conditions ∆l0 and ∆r0 .

Note that all of the above predictors can be implemented recursively together with

any observer algorithm that provides the estimate X̂τ(t).

In the observer-predictor arrangement, the trajectory of the predicted state Xp(t)

inherently depends on the trajectory of the observer Xτ(t). Hence, rather than dis-

cussing the stability of the predictor, we need a notion of stability that relates the

stability properties of the predictor to the stability properties of its corresponding

observer. The following definition formalizes this notion.

Definition 3.3.1. Consider a distance d(., .) on G. With respect to this distance, we say an

observer-predictor pair is

• co-stable if d(X̂τ(t), X(t−τ)) bounded for all t ≥ τ yields that d(Xp(t), X(t)) is

bounded for all t ≥ τ.

• asymptotically co-stable if it is co-stable and d(X̂τ(t), X(t−τ))→0 yields

d(Xp(t), X(t))→0.

• exponentially co-stable if it is co-stable and d(X̂τ(t), X(t−τ))
exp−→ 0 yields

d(Xp(t), X(t))
exp−→ 0.

We say a predictor is universally (asymptotically/exponentially) co-stable w.r.t. d(., .)

if the combination of that predictor with any (asymptotically/exponentially) stable observer

yields a (asymptotically/exponentially) co-stable observer-predictor pair w.r.t. d(., .). �

The following Theorem summarizes the co-stability properties of the predictor

(3.6) (resp. (3.7)) for the left-invariant system (3.1) (resp. right-invariant system

(3.2)).

Theorem 3.3.2. Consider system (3.1) with the predictor (3.6) (resp. system (3.2) with

the predictor (3.7)). Assume that cond(Xl(t)) and ‖ûl(t)− ul(t)‖ (resp. cond(Xr(t)) and

‖ûr(t)− ur(t)‖) are bounded for all t ≥ 0. For all τ ≥ 0 and all choices of ∆l0 ∈ G (resp.

∆r0 ∈ G) we have;

(a) The predictor is universally co-stable w.r.t. the distance dr(., .) (resp. dl(., .)).
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(b) If ‖ûl(t)− ul(t)‖ → 0 (resp. ‖ûr(t)− ur(t)‖ → 0) then the predictor is universally

asymptotically co-stable w.r.t. dr(., .) (resp. dl(., .)).

(c) If ‖ûl(t)− ul(t)‖
exp−→ 0 (resp. ‖ûr(t)− ur(t)‖

exp−→ 0), then the predictor is universally

exponentially co-stable w.r.t. dr(., .) (resp. dl(., .)).

�

Proof: We prove parts (a)-(c) of Theorem 3.3.2 for the left-invariant system (3.1)

with the predictor (3.6a)-(3.6b). The proof for the right-invariant case can be obtained

similarly.

Consider the observer error

Eτ
l (t) = X̂τ

l (t)Xl(t−τ)−1 (3.9)

and the total prediction error

Ep
l (t) = Xp

l (t)Xl(t)−1. (3.10)

Using (3.6b) and (3.10) we have

Ep
l (t)= X̂τ

l (t)∆l(t−τ)−1∆l(t)Xl(t)−1= X̂τ
l (t)Xl(t−τ)−1Xl(t−τ)∆l(t−τ)−1∆l(t)Xl(t)−1.

Defining Ξl(t) := Xl(t)∆l(t)−1 and using (3.9) we have

Ep
l (t) = Eτ

l (t)Ξl(t−τ)Ξl(t)−1 (3.11)

It is easy to verify that the distance dr(., .) is right-invariant such that dr(XZ, YZ) =

dr(X, Y) for all X, Y, Z ∈ G. Hence, using (3.11) and (3.9) we have

dr(Xp
l (t), Xl(t)) = dr(Ep

l (t), I) = dr(Eτ
l (t)Ξl(t−τ)Ξl(t)−1, I)

= dr(Eτ
l (t), Ξl(t)Ξl(t−τ)−1)

≤ dr(Eτ
l (t), I) + dr(Ξl(t)Ξl(t−τ)−1, I)

= dr(Xτ
l (t), Xl(t−τ)) + dr(Ξl(t), Ξl(t−τ)) (3.12)

The above inequality relates the scalar prediction error dr(Xp
l (t), Xl(t)) to the scalar
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observer error dr(Xτ
l (t), Xl(t−τ)) and the virtual error dr(Ξl(t), Ξl(t−τ)) which in-

directly depends on the input estimation error ‖ûl(t)− ul(t)‖. Using (3.1) and (3.6a),

the dynamics of Ξl is given by Ξ̇l(t) = Ẋl(t)∆l(t)−1 − Xl(t)∆l(t)−1∆̇l(t)∆l(t)−1 =

−[AdXl(t)(ûl(t)− ul(t))]Ξl(t). So,

Ξ̇l(t) = ub
l (t)Ξl(t), ub

l (t) := −AdXl(t)(ûl(t)− ul(t)) ∈ g (3.13)

Lemma 6.4.1 in the Appendix summarizes the convergence properties of the error

dr(Ξl(t), Ξl(t−τ)) based on eq (3.13). Also, according to Lemma 6.2.1, σ(AdXl ) is

bounded if cond(Xl) is bounded. Hence, invoking both Lemma 6.2.1 and Lemma

6.4.1, the proof of parts (a)-(c) for the left invariant system directly follows from

inequality (3.12).

For the right-invariant system (3.2) with the predictor (3.7), the proof of parts (a)-

(c) can be obtained by direct adaptation of the proof of the left-invariant part using

the following alternative error definitions.

Eτ
r (t) = Xr(t−τ)−1X̂τ

r (t), (3.14)

Ep
r (t) = Xr(t)−1Xp

r (t), (3.15)

Ep
r (t) = Ξr(t)−1Ξr(t−τ)Eτ

r (t), (3.16)

where Ξr(t) := ∆r(t)−1Xr(t). �

In order to discuss the co-stability properties of the predictor (3.6a), (3.7a), (3.8)

for the mixed-invariant system (3.3), we rewrite this system as a combination of a

right-invariant and a left-invariant system. Consider the systems

Żl(t) = Zl(t)ul(t), Zl(0) = Zl0 ∈ G, (3.17)

Żr(t) = ur(t)Zr(t), Zr(0) = Zr0 ∈ G (3.18)

where the initial conditions Zl0 and Zr0 are chosen such that Xm0 = Zr0 Zl0 . We

have d
dt (Zr(t)Zl(t)) = Żr(t)Zl(t) + Zr(t)Żl(t) = ur(t)Zr(t)Zl(t) + Zr(t)Zl(t)ul(t) =

Xm(t)ul(t) + ur(t)Xm(t). This proves that Xm(t) = Zr(t)Zl(t) for all t ≥ 0. Using this

decomposition, the following Theorem summarizes the co-stability properties of the

proposed predictor for the mixed-invariant system.
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Theorem 3.3.3. Consider system (3.3) with the predictor (3.6a), (3.7a), (3.8). Assume that

‖ûl(t) − ul(t)‖, ‖ûr(t) − ur(t)‖, cond(Zr(t)), cond(Zl(t)), and cond(∆r(t)∆r(t−τ)−1)

(resp. cond(∆l(t−τ)−1∆l(t))) are bounded for all t ≥ 0. For all τ ≥ 0 and all choices of

∆l0 ∈ G and ∆r0 ∈ G we have;

(a) The predictor is universally co-stable w.r.t. the distance dr(., .) (resp. dl(., .)).

(b) If ‖ûl(t) − ul(t)‖ → 0 and ‖ûr(t) − ur(t)‖ → 0 then the predictor is universally

asymptotically co-stable w.r.t. dr(., .) (resp. dl(., .)).

(c) If ‖ûl(t) − ul(t)‖
exp−→ 0 and ‖ûr(t) − ur(t)‖

exp−→ 0, then the predictor is universally

exponentially co-stable w.r.t. dr(., .) (resp. dl(., .)). �

Proof: We prove the Theorem for the right-invariant distance dr(., .). The proof

for the left-invariant distance follows similarly. Define the following observer and

prediction errors for the mixed-invariant system (3.3).

Eτ
m(t) = Zr(t−τ)−1X̂τ

m(t)Zl(t−τ)−1, (3.19)

Ep
m(t) = Zr(t)−1Xp

m(t)Zl(t)−1. (3.20)

Using (3.8) and (3.20), we have

Ep
m(t) =Zr(t)−1∆r(t)∆r(t−τ)−1(Zr(t−τ)Zr(t−τ)−1)X̂τ

m(t).

(Zl(t−τ)−1Zl(t−τ))∆l(t−τ)−1∆l(t)Zl(t)−1.

Defining Ξz
l (t) := Zl(t)∆l(t)−1 and Ξz

r(t) := Zr(t)−1∆r(t) and using (3.19) yields

Ep
m(t) = Ξz

r(t)Ξ
z
r(t−τ)−1Eτ

m(t)Ξ
z
l (t−τ)Ξz

l (t)
−1 (3.21)

Using (3.19), (3.20), (3.21), and Lemma 6.3.1 in the Appendix and dropping the argu-
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ment t, we have

dr(Xp
m, Xm) = dr(Xp

m, ZrZl)

≤ σ(AdZr)dr(Z−1
r Xp

m, Z−1
r (ZrZl))

= σ(AdZr)dr(Z−1
r Xp

mZ−1
l , I) = σ(AdZr)dr(Ep

m, I)

= σ(AdZr)dr(Ξz
r Ξz

r(t−τ)−1Eτ
mΞz

l (t−τ)Ξz
l
−1, I)

= σ(AdZr)dr(Ξz
r Ξz

r(t−τ)−1Eτ
m, Ξz

l Ξz
l (t−τ)−1)

≤ σ(AdZr)
(

dr(Ξz
r Ξz

r(t−τ)−1Eτ
m, I) + dr(Ξz

l Ξz
l (t−τ)−1, I)

)
= σ(AdZr)

(
dr(Ξz

r Ξz
r(t−τ)−1Eτ

mΞz
r(t−τ)Ξz

r
−1, Ξz

r(t−τ)Ξz
r
−1) + dr(Ξz

l Ξz
l (t−τ)−1, I)

)
≤ σ(AdZr)

(
dr((∆r(t−τ)∆−1

r Zr)
−1X̂τ

m(Zr(t−τ)Zl(t−τ))−1(∆r(t−τ)∆−1
r Zr), I)

+ dr(Ξz
r(t−τ)Ξz

r
−1,I) + dr(Ξz

l , Ξz
l (t−τ))

)
= σ(AdZr)

(
σ(AdZ−1

r ∆r∆r(t−τ)−1)dr(X̂τ
mXm(t−τ)−1∆r(t−τ)∆−1

r Zr, ∆r(t−τ)∆−1
r Zr)

+ dr(Ξz
r(t−τ)Ξz

r
−1, I) + dr(Ξz

l , Ξz
l (t−τ))

)
≤ σ(AdZr)

(
σ(AdZ−1

r ∆r∆r(t−τ)−1)dr(X̂τ
m, Xm(t−τ))+dr(Ξz

r(t−τ), Ξz
r) + dr(Ξz

l , Ξz
l (t−τ))

)
(3.22)

Similar to (3.13), one can verify that

Ξ̇z
l (t) = uz

l (t)Ξ
z
l (t), uz

l (t) := −AdZl(t)(ûl(t)− ul(t)) (3.23a)

Ξ̇z
r(t) = uz

r(t)Ξ
z
r(t), uz

r(t) := AdZr(t)−1(ûr(t)− ur(t)). (3.23b)

Lemma 6.4.1 summarizes the stability properties of the scalar errors dr(Ξz
r(t−τ), Ξz

r(t))

and dr(Ξz
l (t), Ξz

l (t−τ)) based on eq. (3.23). Also, using Lemma 6.2.1 in the Appendix

we have that if cond(Zr(t)), cond(Zl(t)), and cond(∆r∆r(t−τ)−1) are bounded, then

σ(AdZr(t)−1), σ(AdZl(t)), and σ(AdZ−1
r (t)∆r(t)∆r(t−τ)−1) are bounded. Hence, invoking

both Lemma 6.2.1 and Lemma 6.4.1, proof of parts (a)-(c) for the right-invariant dis-

tance dr(., .) follows directly from inequality (3.22). �

In the following, we consider a particular case where the measurements of the

actual inputs ul(t) and ur(t) (instead of their estimates ûl(t) and ûr(t)) are used in

the predictors. The following Theorem shows that in this case the total prediction

error of the current state exactly equals the observer error of estimating the delayed
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state. This shows that the proposed predictors do not change the estimation error

behavior of the corresponding observer that feeds the predictor, even though the

predictor fully compensates for the effect of sensor delays.

Theorem 3.3.4. Consider system (3.1) with the predictor (3.6), or system (3.2) with the

predictor (3.7), or system (3.3) with the predictor (3.6a), (3.7a), (3.8). Assume that ûl(t) =

ul(t) and ûr(t) = ur(t) for all t ≥ 0. Consider the observer errors (3.9), (3.14) and (3.19)

and their corresponding total prediction errors (3.10), (3.15), and (3.20), respectively. We

have Eτ
l (t) = Ep

l (t), Eτ
r (t) = Ep

r (t), and Eτ
m(t) = Ep

m(t) for all t ≥ τ, all τ ≥ 0, and all

choices of ∆l0 , ∆r0 ∈ G. �

Proof: The proof follows from the derivations made in the proof of Theorem 3.3.2.

According to (3.13), if ûl(t) = ul(t) then Ξ̇l(t) = 0 and hence Ξl(t) is constant which

in particular implies Ξl(t) = Ξl(t−τ) for all t ≥ τ. This together with (3.11) yields

Ep
l (t) = Eτ

l (t) for all t ≥ τ. A similar argument for the right-invariant case shows

that Ξ̇r(t) = 0 if ûr(t) = ur(t) and proves that Ep
r (t) = Eτ

r (t) for all t ≥ τ. Also, the

same argument is applicable to (3.23) and (3.21) to conclude Ep
m(t) = Eτ

m(t) if both

ûl(t) = ul(t) and ûr(t) = ur(t). �

Remark 3.3.5. Using Theorems 3.3.2 and 3.3.3 and resorting to the proof of Lemma 6.4.1,

one can show that the convergence rate of the combined observer-predictor depends only on

the convergence rate of the corresponding observer and is independent of the magnitude of the

delay. This is straight-forward to see under the conditions of Theorem 3.3.4 where the total

estimation error is exactly equal to the observer error alone. This is in contrast to most general

predictors designed on Rn where the total convergence rate decreases as the delay increases

[19, 30, 53, 75, 76, 81]. �

The internal dynamics of the predictors (3.6a) and (3.7a) are simple forward inte-

gration. One possible drawback of using these pure forward integrators is that their

internal states ∆l(t) and ∆r(t) can become larger and larger (due to the input mea-

surement noise or numerical integration inaccuracies) as we continue the integration

procedure. One possible way to overcome the above issue is to periodically reset the

initial condition of dynamics (3.6a) and (3.7a) to a constant value so that the trajecto-

ries of ∆l(t) ∆r(t) remain bounded for all times. An arbitrary resetting of the initial

conditions of (3.6a) and (3.7a) can potentially destroy the co-stability properties of
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the predictors. However, owing to the invariance of the systems (3.6a) and (3.7a),

the following Lemma proposes a resetting methodology that keeps the trajectories

of the internal states of the predictors bounded while maintaining their co-stability

properties.

Lemma 3.3.6. Consider the system

∆̇s
l (t) = ∆s

l (t)ûl(t), (3.24)

and assume that the trajectory ∆s
l (t) is stored in a buffer for the period [t−τ, t] (i.e. the last

τ seconds). Assume that the initial condition of the system (3.24) resets to a fixed value ∆l0

every Ts seconds where Ts ≥ τ (i.e. ∆s
l (nTs) = ∆l0 for n = 0, 1, . . .). For t ∈ [nTs, (n+1)Ts),

compute the following variable that depends only on the buffered values of ∆s
l .

∆b
l (t) :=

 ∆l0 ∆s
l (nT−s )−1∆s

l (t−τ), for all t ∈ [nTs, nTs + τ),

∆s
l (t−τ), for all t ∈ [nTs + τ, (n+1)Ts)

(3.25)

Then, we have ∆b
l (t)

−1∆s
l (t) = ∆l(t−τ)−1∆l(t) for all t ≥ τ (i.e. we can replace ∆l(t−

τ)−1∆l(t) with the bounded signal ∆b
l (t)

−1∆s
l (t) in (3.6b)). Similarly, consider the system

∆̇s
r(t) = ûr(t)∆s

r(t), (3.26)

and buffer the trajectory ∆s
r(t) for [t− τ, t]. Reset the initial condition of the system (3.26)

to a fixed value ∆r0 every Ts ≥ τ seconds. For t ∈ [nTs, (n+1)Ts), compute the following

variable.

∆b
r (t) :=

 ∆s
r(t−τ)∆s

r(nT−s )−1∆r0 , for all t ∈ [nTs, nTs + τ),

∆s
r(t−τ), for all t ∈ [nTs + τ, (n+1)Ts)

(3.27)

Then, we have ∆s
r(t)∆b

r (t)−1 = ∆r(t)∆r(t−τ)−1 for all t ≥ τ (i.e. we can replace ∆r(t)∆r(t−
τ)−1 with the bounded signal ∆s

r(t)∆b
r (t)−1 in (3.7b)). �

Proof: We prove the Lemma for the left-invariant case. The right-invariant

case can be proved similarly. Consider the systems (3.6a) and (3.24), both with the

same initial condition ∆l0 . We have ∆s
l (t) = ∆l(t) for all t ∈ [0, Ts) and clearly

∆b
l (t)

−1∆s
l (t) = ∆s

l (t−τ)−1∆s
l (t) = ∆l(t−τ)−1∆l(t) holds for all t ∈ [τ, Ts). In
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the following, we show that the statement of the Lemma also holds for all t ∈
[nTs, (n + 1)Ts), n = 1, 2, . . .. Using (3.6a) and (3.24), we have d

dt (∆
s
l (t)∆l(t)−1) =

∆s
l (t)ûl(t)∆l(t)−1−∆s

l (t)ûl(t)∆l(t)−1=0 for all t ∈ [nTs, (n+1)Ts). Hence, ∆s
l (t)∆l(t)−1

is constant for all t ∈ [nTs, (n + 1)Ts) and we have

∆s
l (t1)∆l(t1)

−1 = ∆s
l (t2)∆l(t2)

−1 for all t1, t2 ∈ [nTs, (n+1)Ts). (3.28)

Choosing t1 = t ∈ [nTs, (n+1)Ts) and t2 = nTs we obtain

∆s
l (t) = ∆s

l (nTs)∆l(nTs)
−1∆l(t) = ∆l0 ∆l(nT−s )−1∆l(t) (3.29)

where we used the continuity of ∆l(t) at t = nTs to replace ∆l(nTs) by ∆l(nT−s ). One

can use the same method as was done to derive (3.28) to conclude ∆s
l (t1)∆l(t1)

−1 =

∆s
l (t2)∆l(t2)−1 for all t1, t2 ∈ [(n−1)Ts, nTs). Choosing t1 = t− τ ∈ [nTs−τ, nTs) ⊂

[(n−1)Ts, nTs) and t2 = nT−s we obtain

∆s
l (t− τ)−1∆s

l (nT−s ) = ∆l(t−τ)−1∆l(nT−s ). (3.30)

Using (3.25) and (3.29), for all t ∈ [nTs, nTs + τ) we have

Λ(t)−1∆s
l (t) = ∆s

l (t−τ)−1∆s
l (nT−s )∆l(nT−s )−1∆l(t) (3.31)

Substituting (3.30) into (3.31) yields ∆b
l(t)
−1∆s

l(t)=∆l(t−τ)−1∆l(t) for all t ∈ [nTs, nTs +

τ). For t ∈ [nTs + τ, (n + 1)Ts), we chose t1 = t−τ ∈ [nTs, (n + 1)Ts − τ) and

t2 = t and recall (3.28) to obtain ∆s
l (t−τ)−1∆s

l (t) = ∆l(t−τ)−1∆l(t). Using (3.25) for

t ∈ [nTs + τ, (n + 1)Ts) we have ∆b
l (t)

−1∆s
l (t) = ∆s

l (t−τ)−1∆s
l (t) = ∆l(t−τ)−1∆l(t).

Consequently, the Lemma holds for all t ∈ [nTs, (n+1)Ts). This completes the proof.

�

Lemma 3.3.6 proposes a resetting technique that keeps the trajectories of the in-

ternal states of the predictor bounded while not affecting the trajectory of the pre-

diction Xp(t). This implies that the predictors with and without switching are input-

output equivalent (considering u(t) and X̂(t) as inputs and Xp(t) as the output of

the predictors). Consequently, switching does not affect the co-stability properties

of the predictors presented in Theorems 3.3.2, 3.3.3, and 3.3.4. An alternative reset-
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ting technique has been proposed in the Author’s previous work [82, Lemma 1] to

bound the internal states of predictors while maintaining their stability. That method

involves employing two copies of the internal dynamics of the predictor and appro-

priately resetting the initial conditions of those copies and also switching between

the trajectories of those copies such that the final predictions (3.6a) and (3.7a) do not

change. The method proposed here requires less computational power compared to

[82, Lemma 1] since it employs only one copy of the predictor’s internal dynamics.

Remark 3.3.7. Theorem 3.3.3 assumes that cond(Zr(t)), cond(Zl(t)), cond(∆r(t)∆r(t−
τ)−1), and cond(∆l(t−τ)−1∆l(t)) are bounded for all t ≥ 0. If G is a compact group,

then these conditions are automatically satisfied. Nevertheless, for general Lie groups these

conditions may not hold in general. One way to address this issue is to resort to Lemma 3.3.6

and periodically switch the initial conditions of (3.32), (3.34), (3.17) and (3.18) such that the

trajectories of ∆l(t), ∆r(t), Zl(t), and Zr(t) remain bounded for all t ≥ 0. It is possible

to show that switching can be done in a way that does not change the trajectory of Xp
m(t)

while the trajectories of the switched Zl(t) and Zr(t) still satisfy Xm(t) = Zr(t)Zl(t) for all

t ≥ 0, and Ξz
l (t) and Ξz

r(t) remain continuous. That is to say, with the resetting scheme

of Lemma 3.3.6, we can replace the boundedness conditions of cond(Zr(t)), cond(Zl(t)),

cond(∆r(t)∆r(t−τ)−1), and cond(∆l(t−τ)−1∆l(t)) with cond(Xm(t)) being bounded and

the results of Theorem 3.3.3 still remain valid for general Lie groups. �

Example 3.3.8. As was shown in Example 3.2.1, the velocity-aided attitude estimation prob-

lem with GPS delay can be formulated as a special case of predictor design for a mixed-

invariant system on the Lie group SE(3). Hence, one can directly employ the predictor (3.6a),

(3.7a), (3.8). Nevertheless, here we show that the specific structure of dynamics (3.4)-(3.5)

allows reducing the dimension of the mixed-invariant predictor. We assume that an estimate

of X(t−τ) ∈ SE(3) is available and we decompose it into X̂τ(t) =

 R̂τ(t) v̂τ(t)

0 1


where R̂τ ∈ SO(3) and v̂τ ∈ R3. Decompose ∆l and ∆r into ∆l =

 ∆̄l δl

0 1

 and

∆r =

 ∆̄r δr

0 1

 where ∆̄l , ∆̄r ∈ SO(3) and δl , δr ∈ R3. We need estimates of the inputs

ul(t) and ur(t) to formulate the predictor. As was shown in Example 3.2.1, ur(t) is a known
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constant in this scenario. So, we simply choose ûr(t) = ur =

 0 ge3

0 0

 ∈ se(3). We

assume that estimates of â(t) and Ω̂(t) of the current specific acceleration and angular ve-

locity are available and we choose ûl(t) =

 Ω̂(t) â(t)

0 0

 ∈ se(3). If accelerometers and

gyros directly measure a(t) and Ω(t), we use those direct measurements as â(t) and Ω̂(t).

Otherwise, if the accelerometers and gyros have constant unknown biases and scaling factors,

the observer part of Fig 3.1 estimates those values and provides estimates of â(t) and Ω̂(t).

Substituting for ∆r and ur in (3.6a) we have ˙̄∆l(t) δ̇l(t)

0 0

 =

 ∆̄l(t) δl(t)

0 1

 Ω̂(t) â(t)

0 0

 =

 ∆̄l(t)Ω̂(t) ∆̄l(t)â(t)

0 0

 .

(3.32)

Also, we have

∆l(t−τ)−1∆l(t) =

 ∆̄l(t)> −∆̄l(t)>δl(t)

0 1

 ∆̄l(t) δl(t)

0 1


=

 ∆̄l(t−τ)>∆̄l(t) ∆̄l(t−τ)>(δl(t)− δl(t−τ))

0 1

 (3.33)

Similarly, substituting for ∆r and ur in (3.7a) we have ˙̄∆r(t) δ̇r(t)

0 0

 =

 0 ge3

0 0

 ∆̄r(t) δr(t)

0 1

 =

 0 ge3

0 0

 . (3.34)

This yields ˙̄∆r(t) = 0 and δ̇r(t) = ge3, implying ∆̄r(t−τ) = ∆̄r(t) and δr(t)− δr(t−τ) =

τge3. These together yield

∆r(t)∆r(t−τ)−1 =

∆̄r(t) δr(t)

0 1

∆̄r(t−τ)> −∆̄r(t−τ)>δr(t)

0 1

 =

 I τge3

0 1

 .

(3.35)

Since the right hand side of (3.35) is a known constant, we do not actually need to implement

the right-invariant part of the predictor (i.e. the dynamics (3.34)). We can use the known
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value given by the right hand side of (3.35) to obtain the prediction (3.8). This reduces the

dimension of the predictor to the same dimension as the actual system. Decomposing Xp into

Xp =

 Rp vp

0 1

 and replacing (3.33) and (3.35) into (3.8) and dropping the argument t,

we have Rp vp

0 1

 =

I τge3

0 1

R̂τ v̂τ

0 1

∆̄l(t−τ)>∆̄l ∆̄l(t−τ)>(δl − δl(t−τ))

0 1


=

R̂τ∆̄l(t−τ)>∆̄l v̂τ + τge3 + R̂τ∆̄l(t−τ)>(δl − δl(t−τ))

0 1

 (3.36)

Finally, using (3.32) and (3.36), we simplify the predictor (3.6a), (3.7a), and (3.8) to

˙̄∆l(t) = ∆̄l(t)Ω̂(t), ∆̄l(0) = ∆̄l0 ∈ SO(3), t ≥ 0 (3.37)

δ̇l(t) = ∆̄l(t)â(t), δl(0) = δl0 ∈ R
3, t ≥ 0 (3.38)

Rp(t) = R̂τ(t)∆̄l(t−τ)>∆̄l(t), t ≥ τ (3.39)

vp(t) = v̂τ(t) + τge3 + R̂τ(t)∆̄l(t−τ)>(δl(t)− δl(t−τ)), t ≥ τ. (3.40)

The attitude predictor (3.37) and (3.39) has exactly the same form as the attitude predictor

proposed in the Author’s previous work [82, Eq. (6)-(7)], however, the velocity predictor

(3.38) and (3.40) has an essentially different form compared to [82, Equ. (8)-(9)]. It is easy to

verify that the predictor of [82] is an example of predictor (3.6a)-(3.6b) when the underlying

Lie group is SO(3)×R3 and the group multiplication is simply given by (R1, v1)(R2, v2) =

(R1R2, v1 + v2).

Remark 3.3.9. Since SO(3) is a compact manifold, there is no concern regarding the bound-

edness of the internal state ∆̄l(t). However, the state δl(t) might grow larger and larger as

it lives in R3. Hence, we need to employ the resetting technique proposed in Lemma 3.3.6

to bound the trajectory of δl(t). If we periodically reset the initial condition of (3.38) to δl0

every Ts seconds (and do not reset (3.37)), Lemma 3.3.6 still applies since not resetting (3.37)

is equivalent to resetting ∆̄l(t) to its current value every Ts seconds. In this case, (3.25)

simplifies to adding δl0 − δl(nT−s ) to the term δl(t− τ) in (3.40) for all t ∈ [nTs, nTs + τ),

n = 1, 2, . . ., and does not require modifying 3.39. This resetting scheme ensures the co-

stability of the predictor as long as v(t) is bounded (see Remark 3.3.7). �
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3.4 Recursive implementation of non-recursive predictors

The predictor design methodologies presented in the previous sections only suit

invariant systems on Lie groups. For a general system of the form

Ẋ(t) = F(X(t), u(t)), (3.41)

where X ∈ G and u belongs to an input manifoldMu and F : G×Mu → TG, F(X, u) ∈
TXG, a simple predictor with desirable co-stability properties was presented in [113].

At time t, this predictor uses the estimate X̂τ(t) as the initial condition of a copy of

the system dynamics at time t−τ. Then it forward integrates the system dynamics

from t−τ to t using the information of the input u(t) to obtain a prediction of X(t).

This procedure is mathematically formulated as follows

d
ds

Xp
t (s) = F(Xp

t (s), u(s)), s ∈ [t−τ, t], (3.42a)

Xp
t (t−τ) = X̂τ(t), (3.42b)

Xp(t) = Xp
t (t). (3.42c)

where Xp
t is the internal state of the predictor and Xp is the prediction of X(t). The

subscript t of Xp
t emphasizes that the predictor (3.42) is non-recursive in the sense

that at each time t, the forward integration of dynamics (3.42a) from s = t−τ to

s = t should be completely performed in order to compute the final value Xp
t (t) and

obtain the prediction Xp(t). This non-recursive nature of predictor (3.42) is in fact

its major drawback which prevents its application in practical scenarios involving

real-time implementations in on-board computers of robots. Despite this drawback,

universally asymptotic and exponential co-stability of this predictor has been shown

in [113] for systems on Rn and this result can be generalized for systems whose states

evolve on differentiable manifolds, including Lie groups.

There is an interesting link between the non-recursive predictor (3.42) and the

recursive predictors we proposed in Section 3.3. When the underlying system (3.41)

is of the form (3.1), (3.2), or (3.3), the following lemma shows that the resulting

predictor (3.42) produces exactly the same prediction trajectory as is produced by

the recursive predictors we proposed in this Chapter. In other words, for the case
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where the vector field F(X, u) is left, right, or mixed-invariant, the non-recursive

predictor (3.42) can be recursively realized using the method we presented in this

chapter.

Proposition 3.4.1. Consider the predictor (3.42) for the system (3.41).

(a) (left resp. right-invariant case) Assume that the system (3.41) is left-invariant (resp.

right-invariant) in the sense that F(X, u) = XFg
l (u) (resp. F(X, u) = Fg

r (u)X) where

Fg
l : Mu → g (resp. Fg

r : Mu → g) is a known map. Define ul := Fg
l (u) (resp. ur :=

Fg
r (u)), rewrite the system dynamics as Ẋ(t) = X(t)ul(t) (resp. Ẋ(t) = ur(t)X(t)),

and obtain the corresponding predictor (3.6) (resp. (3.7)) for this system assuming that

ûl = ul (resp. ûr = ur). If both predictors (3.42) and (3.6) (resp. (3.7)) are fed with the

same observer trajectories i.e. X̂τ(t) = X̂τ
l (t) (resp. X̂τ(t) = X̂τ

r (t)), then the prediction

Xp(t) of (3.42c) equals Xp
l (t) of (3.6b) (resp. Xp

r (t) of (3.7b)) for all t ≥ τ.

(b) (mixed-invariant case) Assume that the system (3.41) is mixed-invariant in the sense that

F(X, u) = XFg
l (u) + Fg

r (u)X where Fg
l , Fg

r : Mu → g are known maps. Define ul :=

Fg
l (u) and ur := Fg

l (u), rewrite the system dynamics as Ẋ(t) = X(t)ul(t) + ur(t)X(t),

and obtain the corresponding predictor (3.6a), (3.7a), and (3.8) for this system (assuming

ûl = ul and ûr = ur). If both predictors are fed with the same observer trajectories (i.e.

X̂τ(t) = X̂τ
m(t)), then the prediction Xp(t) of (3.42c) equals Xp

r (t) of (3.8) for all t ≥ τ.

�

Proof: We prove part (a) for the left-invariant system. Proof for the right-invariant

case can be obtained similarly. We suggest that the solution Xp
t (s), s ≥ t−τ of

(3.42a)-(3.42b) is given by Xp
t (s) = X̂τ(t)∆l(t−τ)−1∆l(s) where d

ds ∆l(s) = ∆l(s)ul(s).

To show this, we note that this solution satisfies the initial condition requirement

Xp
t (s)|s=t−τ = X̂τ(t)∆l(t−τ)−1∆l(t−τ) = X̂τ(t) and the derivative requirement

d
ds Xp

t (s) = X̂τ(t)∆l(t−τ)−1 d
ds ∆l(s) = X̂τ(t)∆l(t−τ)−1∆l(s)ul(s) = Xp

t (s)ul(s) =

F(Xp
t (s), ul(s)). By (3.42c) we have Xp(t) = Xp

t (s)|s=t = X̂τ(t)∆l(t−τ)−1∆l(t) which

is equal to (3.6b). Proof of part (b) is obtained similarly by verifying that the solu-

tion of (3.42a)-(3.42b) is given by Xp
t (s) = ∆r(s)∆r(t−τ)−1X̂τ(t)∆l(t−τ)−1∆l(s) with

d
ds ∆l(s) = ∆l(s)ul(s) and d

ds ∆r(s) = ur(s)∆r(s) and by evaluating this solution at

s = t. �

It immediately follows from Proposition 3.4.1 that the proposed recursive pre-

dictors are practically stable with respect to input measurement noise; that is any
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bounded input measurement noise yields a bounded prediction error [59]. Not-

ing that [113] implies universally asymptotic/exponential co-stability of the non-

recursive predictor (3.42), Proposition 3.4.1 provides an alternative proof for asymp-

totic/exponential co-stability of the recursive predictors proposed in this paper, at

least for the case where true input measurements are fed into the predictors. The

results of [113] suggest that recursive implementability of the predictor (3.42) is es-

sentially (up to a change of variable) restricted to the systems of the form (3.1), (3.2),

or (3.3).

3.5 Simulations

A predictor for the velocity-aided attitude estimation problem with GPS delay is

proposed by (3.37)-(3.40) in Example 3.3.8. In this section, we provide extensive sim-

ulation studies to evaluate the performance of the predictor (3.37)-(3.40) in practical

situations where there are inaccuracies such as numerical integration errors, sensor

noises, biases, sampling, etc. To discretize the predictor dynamics (3.37), we assume

that the angular velocity is approximately constant during each IMU sampling pe-

riod and simply employ the exponential map (see e.g. [65, Section V.B.]). According

to Fig. 3.1, the total observer-predictor estimation error (i.e. the difference between

Xp(t) and X(t)) is a combination of the pure error due to the observer (i.e. the dif-

ference between X̂τ(t) and X(t − τ)) and the pure error due to the predictor (i.e.

the difference between Xp(t) and X(t) if the predictor is fed with X(t− τ) instead

of X̂τ(t)). We first provide a set of simulations to evaluate the pure predictor error.

Then we present realistic simulations using a sophisticated Software-In-The-Loop

(SITL) system to demonstrate the total observer-predictor error.

3.5.1 Pure prediction error

Using MATLAB R©, we feed the predictor (3.37)-(3.40) with the true R(t − τ) and

v(t− τ) instead of R̂τ(t) and v̂τ(t), respectively. We add Gaussian noises with the

high standard deviation of 2.5 (deg/s) and 1.5 (m/s2) to each axis of the gyro and

accelerometer, respectively. We consider various amounts of delay ranging from a

small delay of 0.2 (s) to a large delay of 1 (s). We consider a plane that is flying in

a circular trajectory with a linear velocity of 22.5 (m/s). In order to demonstrate the
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effects of both low acceleration and high acceleration maneuvers, we perform sep-

arate simulations with different values for the radius of the plane’s flight trajectory

(smaller radius implies higher acceleration maneuvers). For each value of GPS delay

and each flight radius, we perform 100 simulations and we average the attitude pre-

diction error3 and the velocity prediction error4 during each simulation. The IMU

sampling time is 20 (ms) and each simulation is performed over a flight time of 100

(s) where the initial condition of (3.38) is reset every 2 seconds. Fig. 3.2 summarizes

the results by showing an error bar for the results of each set of 100 simulations.

According to Fig. 3.2, the average error due to the predictor is small even with large

delays and even though we considered high gyro and accelerometer noises. The er-

ror increases as the amount of delay becomes larger. This is because the predictor

relies on the forward integration of noisy gyro and accelerometer data from t− τ to

t and hence the larger this period is, the more noise aggregates in the final predic-

tion. Also, the errors increase when the flight radius decreases (i.e. when the plane

performs higher acceleration maneuvers). The attitude prediction error is much less

sensitive to this effect than the velocity prediction error.

3.5.2 Total observer-predictor error

Here we aim to provide realistic simulations to demonstrate that the observer-predictor

approach is indeed capable of providing good estimates in practical situations. To

this end, we use a comprehensive open source SITL system designed mostly by a

group of ArduPilot/APM developers and CanberraUAV team [5, 7, 11, 14]. This sim-

ulator allows building the ArduPilot/APM5 autopilot code using an ordinary C++

compiler, making a native executable that allows testing the autopilot code without

implementing on an actual hardware. The native executable emulates the hardware

of the APM board at the register level, so the key low level hardware drivers (such

as gyros, accelerometers, GPS, ADC, etc.) all run in the same way that they would

run in a real flight. The SITL consists of three main modules that interact with each

other to simulate the whole system. The first module is JSBSim, an open source flight

3The attitude error between two rotation matrices R1 and R2 is computed using the angle of rotation
in the angle-axis representation of the error matrix R1R>2 given by 180

π arccos(1− 0.5tr(I − R1R>2 )).
4The error between two velocity vectors is simply computed using the Euclidean norm of the differ-

ence of two velocity vectors.
5An open-source autopilot system that is widely used among the UAV enthusiasts community.
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Figure 3.2: Pure attitude and velocity prediction errors. The error bars show two
standard deviations. The linear velocity of the plane is 22.5 (m/s).

dynamics model [9] that simulates the trajectory of the vehicle. The second module is

the ArduPilot/APM code that emulates the onboard autopilot software of the robot

(including the estimation, control, navigation algorithms, etc.). The third module is

MAVProxy which is a MAVLink ground station written in python [11]6.

For navigation purposes, SITL is capable of emulating various sensor measure-

ments including GPS (longitude/latitude/linear velocity vector), accelerometers, gy-

ros, etc. We setup the SITL parameters such that the GPS measurements are delayed.

Here, we aim to demonstrate the performance of the observer-predictor approach

when ArduPilot’s native EKF [2] is used as an observer that takes the delayed mea-

surements and provides the estimates R̂τ(t) and v̂τ(t) to the predictor (3.37)-(3.40)7.

We take the estimates of gyro and accelerometer bias from the observer and use them

along with the current gyro and accelerometer measurements to obtain estimates of

current inputs Ω̂(t) and â(t) fed into the predictor. We setup SITL to use ArduPlane

(a fixed wing plane simulator) which tries to follow a desired square path of about

700 (m) by 200 (m) with the desired linear velocity of about 22.5 (m/s). Except for

the GPS delay, all other simulation parameters (including the sensor sampling rates,

6See Sections 4.6 and 4.6.1 for more explanations about the ArduPilot system.
7For the simulation studies of this chapter, we omit the delay compensation parts of the ArduPilot’s

native EKF and turn it into a standard EKF before we combine it with the proposed predictor.
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Figure 3.3: Pure observer error and total observer-predictor error. The error bars
show two standard deviations.

noises, biases, EKF gain matrices, etc.) are set to the SITL’s default values which

correspond to typical low cost sensor suites. The flight time for each simulation is

about 120 to 140 (s) during which the IMU measurements are fused every 20 (ms)

and the initial condition of (3.38) is reset every 2 seconds according to Remark 3.3.9.

We choose various amounts of GPS delays and for each amount, we perform the sim-

ulation 20 times where in each simulation the plane’s path is slightly different from

other simulations8. We average the error trajectory during each flight simulation

and then we compute the mean and standard deviation of all 20 flights. Repeating

this procedure for various amounts of GPS delay, Fig. 3.3 summarizes the results

by showing an error bar for the results of each set of 20 simulations. This figure

shows that the observer-predictor remains stable even for large amounts of delay,

which demonstrates the robustness of the proposed approach. A large portion of the

total observer-predictor error is due to the observer itself. The average pure error

due to the predictor is roughly the difference between the means of the red and the

green plots of Fig. 3.3. This difference increases as the amount of delay increases,

8This is because the ArduPilot system implements closed-loop control based on noisy data
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which is compatible to the results of Fig. 3.29. Nevertheless, even when large GPS

delay is present, the total error is within a very reasonable range for navigation and

control using low cost sensor suites. It is worth noting that alternative estimation

methods that either do not compensate for the delay or compensate with Lyapunov-

Krasovskii terms perform poorly (or even become unstable) with large delays while

the proposed observer-predictor approach remains stable for all amounts of delay,

demonstrating the robustness of the proposed approach.

3.6 Summary

In this chapter, we consider a state estimation problem for invariant systems on Lie

groups where measurements of the outputs of the system are delayed. Given an

observer or filter that has the desired stability properties when the system outputs

are delay-free, we propose an estimation methodology that preserves those stability

properties when the system outputs are delayed. The proposed approach relies on

combining the observer with a predictor that compensates for the delay. The delayed

measurements are fused in the observer to obtain estimates of the delayed state.

Those delayed estimates are then fed into the predictor to obtain the prediction of

the current state. We employ invariance of the underlying systems together with the

Lie group structure of the state space in order to design recursive predictors that are

computationally simple and demonstrate strong co-stability properties ensuring that

the observer-predictor combination preserves the stability properties of the observer.

Using a sophisticated Software-In-The-Loop simulator, we demonstrate the robust-

ness of the proposed predictors in practical situations even when large sensor delay

is present.

9The pure predictor error of Fig. 3.3 is larger than Fig. 3.2 since the observer’s estimation error of
gyro and accelerometer biases (in addition to the input noise and plane’s acceleration) contribute to the
prediction error.
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Chapter 4

State Estimation for Systems with

Sampled Output Measurements;

Predictor-observer approach

In this chapter, we investigate the problem of state estimation for invariant systems

on Lie groups where the output measurements are sampled and are prone to delay

effects. We propose a predictor-observer approach in which the predictor takes the

delayed and sampled output measurements and provides predictions of the current

output. The predicted outputs can then be fed into any arbitrary observer or filter

to estimate the current states. Preliminary results of this chapter is presented in [83],

though we extensively rely on the theory presented in Chapter 3 to extend those

results. We demonstrate the advantages of the predictor-observer approach over

traditional Lyapunov-Krasovskii methods via MATLAB simulations. We present an

open source C++ library of the proposed predictor for attitude, velocity, and position

prediction and we provide experimental test results verifying the performance of the

predictor by implementation on the autopilot system of a model plane.

4.1 Related work

Invariant systems on Lie groups, their importance, and their applications for state

estimation and control of mechanical systems are discussed in Chapter 1. In appli-

cations involving state estimation of mechanical systems, measurements of the in-

put are usually obtained almost instantaneously at a very high sampling rate either

through odometry or via inertial sensors. In many applications, however, measure-

69
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ments of the system outputs are obtained at much lower sampling rate compared to

the sampling rate of system inputs. Output samples are also usually available to the

user with some delay due to various reasons including physical properties of sen-

sors (e.g. slow transients) or the environment, internal signal processing of sensors,

extensive filtering of sensor measurements for noise reduction, and communication

delays from sensors to processing units. For example, in satellite attitude estima-

tion applications, high accuracy output sensors such as star trackers or earth sensors

provide measurements at low sampling rates (0.5 to 10 Hz) [105]. In contrast, the

onboard gyroscope can easily provide high bandwidth measurements at kHz rates,

potentially two orders of magnitude faster than the direction information is obtained.

The image processing inside a star-tracker sensor can cause significant delays in the

order of tens of milliseconds, leading to the star-tracker measurement being delayed

with respect to the gyroscope measurements. Similar sampling and delay problems

also occur in attitude and position estimation for aerial robots when vision based

sensors such as cameras and landmarks are employed. Also, in indoor flight envi-

ronments, the attitude data from devices such as VICON or OptiTrack are delayed

by the communication channel from these sensors to the onboard attitude estimation

system of the vehicle. In outdoor environments, low cost GPS units provide measure-

ments of position and velocity at around 5 Hz which is much lower than the rate of

input measurements provide by IMUs (gyros and accelerometers) [58, 119, 132]. GPS

measurements are also usually delayed by up to hundreds of milliseconds largely

due to the internal processing time of GPS chips.

Sensor sampling and delays can negatively affect the stability and robustness

of any observer or filter and degrade their performance if they are not compen-

sated for properly [19, 23, 47, 57, 60, 75, 77]. Typical estimator design methodolo-

gies to tackle the measurement sampling and delay problem are; estimator design

with Lyapunov-Krasovskii modification, stochastic filtering with Out-Of-Sequence

Measurements (OOSM), and compound observer-predictor design. The classical ap-

proach to tackle the sensor delay is to take an estimator that has the desired per-

formance for delay free measurements, and modify its innovation term such that it

compares each delayed measurement with its corresponding backward time-shifted

estimate. If the delay-free estimator has a Lyapunov stability proof, the stability

analysis for the modified estimator can be undertaken using Lyapunov-Krasovskii
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functions [18, 24, 125]. Although these modified estimators are commonly used in

practice (see e.g. [2]), they require complicated stability analyses and careful and con-

servative gain tuning, leading to poor transient responses of the resulting estimators.

Stochastic filtering with OOSM has been extensively studied [26, 27, 31, 103, 145], al-

beit most of this literature focuses on target tracking applications. Although OOSM

filtering approaches are flexible, easily dealing with sampled and delayed data as

well as out-of-sequence measurements, they usually have significant memory and

processing requirements that are unrealistic for most embedded observer design ap-

plications, except for linear system models where simpler OOSM filters are available

[27, 77]. For the specific problem of attitude estimation with sampled and delayed

measurements, a modified extended Kalman filter with a novel real time implemen-

tation architecture is proposed in [88]. Despite its good performance in practice,

this algorithm suffers from major drawbacks such as unclear convergence proper-

ties and high computational load due to the required propagation stages associated

with sensor delay compensation. An alternative method is used in [58] for attitude,

velocity, and position estimation of flying vehicles and its good performance is veri-

fied in practice. This method uses a corrector-predictor representation of a nonlinear

observer [52] to handle the sensor sampling and benefits from an predictor to com-

pensate for the sensor delay. The predictor of [58] (which is called a fast simulator

in the context of that paper) relies on buffering the IMU measurements and employ-

ing a nonlinear observer to approximate the velocity and position kinematics by a

double integrator system. This approximation enables employing the state transition

matrix of the double integrator system to obtain predictions of the current position

and velocity by forward integrating the buffered IMU data each time a new GPS

measurement is received. Combined observer-predictor design methods for general

nonlinear systems on Rn have been developed in [19, 53, 75]. These methods take

observers that have the desired stability properties for continuous delay-free mea-

surements and combine them with appropriate predictors that compensate for the

effects of sensor sampling and delays, such that the combined observer-predictor

maintains the stability properties of the observer. In Chapter 3, we proposed a cas-

cade observer-predictor approach to handle output measurement delay for invariant

systems on general Lie groups. The proposed predictor is capable of predicting

current states recursively without needing to reprocess the whole stack of buffered
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sensor measurements at each time. Although the resulting observer-predictor com-

bination is stable, this method requires continuous availability of sensor outputs and

is not directly applicable to the sampled measurement case. Moreover, the observer

part of this approach should be fed with delayed input and output measurements.

This requires buffering of all of the sensor measurements up to the largest amount

of delay amongst all of the sensors. Hence, large memory should be allocated to

this buffering. In addition, it is not usually straightforward in practice to modify

the time horizon off-the-shelf observers developed for industrial systems such that

they provide an estimate of the delayed state required for the observer part of the

observer-predictor. This is because industrial observers usually include additional

code such as consistency checks and fail safe modes that relies on the assumption

that the observer estimates correspond to the current state. Consequently, modifying

the time horizon of those observers requires implementing compatible modifications

to the additional code as well. To our knowledge, there is no recursive state estima-

tion methodology (with stability proof) for systems on general Lie groups available

that considers both sampled and delayed measurements.

In this chapter, we consider the state estimation problem for invariant systems on

Lie groups where sampled and delayed output measurements are available. We pro-

pose a cascade predictor-observer approach in which the predictor takes the sampled

and delayed output measurements and provides predictions of the current outputs.

The predicted outputs are then fed into an observer or filter to estimate the system

states. Although we make use of the predictors designed in Chapter 3 to develop

parts of the theory in this chapter, the approach that we take here to employ the

predictors is essentially different from the one proposed in Chapter 3 in that we

predict system outputs in this chapter (rather than system states). The main con-

tribution of this chapter is to effectively employ the symmetries of the underlying

system dynamics and the output maps to predict the current outputs of the system

in a computationally cheap way. The predicted outputs can then be fed into any

observer or filter that has asymptotically stable estimation error in ideal conditions

(i.e. when it is fed with continuous time delay-free output measurements) and the

predictor-observer combination maintains those stability properties when delay and

sampling effects do exist. We assume that the delay in each output measurement

is known, that is we require accurate time-stamping of data, however, this is the
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only condition on the data. Given this assumption, the gain tuning process and

the stability of the observer is independent of the size of the delay and valid even

for time varying delays or out-of-sequence measurements. The proposed approach

directly extends to the multi-rate measurement case without further modification.

Via a MATLAB simulation example, we show that our predictor-observer method

performs significantly better than approaches based on Lyapunov-Krasowskii mod-

ifications. Through a collaboration with the developers of the ArduPilot system, we

implement the developed predictor as a C++ library and verify its performance in

practice. Our experimental test results indicate that combining the predictors with

the original navigation algorithm of the ArduPilot system does indeed increase the

robustness of state estimation against gain tuning, making it suitable for a wider

range of sensor sets and environmental conditions.

The structure of this chapter is as follows. A simple framework for modeling

sensor sampling and delays is given in Section 4.2. The problem formulation and

motivating examples are given in Section 4.3. The proposed predictor-observer ap-

proach is described in Section 4.4 where the main result of this chapter is given

by Theorem 4.4.1. The performance of our method is demonstrated via MATLAB

simulations in Section 4.5. Section 4.6 is devoted to the predictor designed for the

ArduPilot system and to the experimental test results.

4.2 Sensor modeling with samples and delays

In this section, we describe two ways for modeling the sampling and delay effects

on sensor measurements. The first model is inspired by physical sources of delays in

real sensors, while the second model is a simplified model which is input-to-output

equivalent to the first model while it is simpler to use in design and analysis.

4.2.1 Physically inspired modeling of sampling and delays

We propose the model illustrated in Fig. 4.1 to include the effect of sampling and

delays on the output of sensors. This model is inspired by the physical process that

takes place in sensors during measuring a physical quantity. This model consists

of a zero-order-hold (ZOH) block that models the effect of sampling and two de-

lay blocks before and after the ZOH that, respectively, model the pre-sampling and
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post-sampling delays. The pre-sampling delay on the left side of Fig. 4.1 models ρi

seconds of delay from when the physical quantity yi(t) occurs to when it is observed

by the i-th sensor. We have yρ
i (t) = yi(t− ρi) for all t. In practice, this delay is usually

due to the physical properties of the environment or the sensors. For instance, a star

tracker requires that its imaging sensor is exposed to light from stars for a specific

amount of time so that it can produce an image of the stars. This is known as ex-

posure time and can be as large as hundreds of milliseconds [129]. The ZOH block

in Fig. 4.1 takes the delayed signal and produces a sample at time tki . This sample

is latched at the output of ZOH until the next sample is taken at time tki+1. Hence

we have zρ
i (t) = yρ

i (tki) = yi(tki − ρi) for t ∈ [tki , tki+1). For clarity in presentation,

we assume that the sequence (tki)
∞
ki=1 is an ordered monotonically non-decreasing

sequence, i.e. tki−1 ≤ tki ≤ tki+1. However, this assumption is not necessary for our

proposed method and our method is also applicable to the case where the measure-

ments are out-of-sequence, although the necessary modifications to the notation are

rather cumbersome. For a star tracker, the sequence (tki)
∞
ki=1 corresponds to the spe-

cific times when the star tracker obtains an image of stars. This sampling frequency

can be as low as only 0.5 Hz up to 10 Hz for practical star trackers. The post-sampling

delay on the right side of Fig. 4.1 models σi seconds of delay from when a sample

of the physical variable becomes available to the sensor to the time when the new

output zi(t) becomes available to the user. We have

zi(t) = zρ
i (t− σi) = yi(tki − ρi), t ∈ [tki + σi, tki+1 + σi) (4.1)

In practice, the post-sampling delay models the delay due to the internal signal pro-

cessing of sensors or due to the communication delay for transmitting information

from the sensor to the user. For a star tracker, the post-sampling delay is mainly due

to the processing time associated with image processing algorithms that analyze the

images taken by the star tracker to recognize stars in the image and associate each

recognized star with its corresponding star in the on-board star catalog. The post-

sampling delay can also model the lag due to the communication delay from VICON

or OptiTrack systems to the onboard attitude estimation system of flying vehicles

in indoor flight environments. It also can model the measurement delay associated

with internal processing in GPS modules, which in practice is the main source of
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Figure 4.1: Modelling the effect of sampling and delays in attitude sensors
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Figure 4.2: Simplified input-to-output equivalent model of Fig. 4.1

delay affecting GPS measurements.

4.2.2 An input-to-output equivalent model

Although the model illustrated in Fig. 4.1 is suitable at the modeling stage to care-

fully describe the effect of sampling and various delays, it might not be convenient

to be employed for compensation of delays and sampling effects at the design stage.

The main disadvantage of this model is that even if the user knows the value of σi,

the value of tki is only available from the time tki + σi onwards. That is, the sensors

usually do not inform the user when exactly they obtain samples of measurements.

Instead, they inform the user when they finish processing the samples and the pro-

cessing result (i.e. the sensor output) is ready to be collected by the user. This is

why we discuss a simpler model here which is input-to-output equivalent to Fig. 4.1,

but is more convenient to use for compensation of the effect of sampling and delays.

Later on in this section, we discuss the condition under which these two models are

equivalent.

Assume that at time t′ki
, ki = 1, 2, . . ., we receive the most recent output of the

i-th sensor denoted by zi(t′ki
). We assume that this output is delayed τi seconds with

respect to the measured physical quantity yi(t′ki
). This output is latched until the

next output arrives at t′ki+1. This procedure is equivalent to a cascade combination of

a delay operator and a ZOH, as sketched in Fig. 4.2. We have

zi(t) = zi(t′ki
) = yi(t′ki

− τi), t ∈ [t′ki
, t′ki+1). (4.2)

Each sequence (t′ki
)∞

ki=1 is ordered monotonically non-decreasing (again, this assump-

tion is not necessary for our method but it is imposed for clarity in presentation). The



76 State Estimation for Systems with Sampled Output Measurements

main difference compared to the model discussed in Section 4.2.1 is that here the se-

quence (t′ki
) is known to the user and can be used for compensating the effect of

sampling and delays. It is obvious that the outputs of Fig. 4.1 and Fig. 4.2 can be dif-

ferent in general. However, the following simple calculations show that both models

are input-to-output equivalent. If the output zi(t) of both (4.1) and (4.2) are the same

for all t, then we have yi(tki − ρi) = yi(t′ki
− τi) and [tki + σi, tki+1 + σi) = [t′ki

, t′ki+1).

These equalities hold if and only if τi = ρi + σi and (t′ki
)∞

ki=1 = (tki + σi)
∞
ki=1. That is

the output zi(t) of both models are equal for all t, where both models measure the

same physical quantity yi(t), if and only if τi = ρi + σi and (t′ki
)∞

ki=1 = (tki + σi)
∞
ki=1.

The delay τi in Fig. 4.2 represents the combination of the delays ρi and σi of Fig. 4.1

and the sampling sequence (t′ki
)∞

ki=1 in Fig. 4.1 is equivalent to the sequence of times

by which the user receives the outputs zi(t) of Fig. 4.2. Given a model in the form of

Fig. 4.1, we are always able to simplify that model to the form of Fig. 4.2 by proper

choice of the delay and sampling sequence in Fig. 4.2. This in particular means that,

as far as the input-to-output characteristics of the sensors are concerned, there is no

need to separately know the value of the pre-sampling and post-sampling delays. In

fact, as we show in Section 4.4, only the knowledge of the total delay τi between the

physical value yi(t) and the sensor output suffice to reproduce the physical quantity

yi(t) from the sampled and delayed sensor output.

4.3 Problem formulation

Consider the left-invariant, right-invariant, and mixed-invariant systems given by

(3.1), (3.2), and (3.3), respectively. Assume that the output measurement models

corresponding to the systems (3.1) and (3.2) are, respectively, given by

yri = hri(Xl , ẙri), (4.3)

yli = hli(Xr, ẙli), (4.4)

where ẙri ∈ Mri (resp. ẙli ∈ Mli ) is the constant1 reference output associated with yri

(resp. yli ) and hri (resp. hli ) is a right (resp. left) action of G on the homogeneous out-

put manifold Mri (resp. Mli ), i.e. hri(I, yri) = yri and hri(XS, yri) = hri(S, hri(X, yri))

1Constant with respect to time.
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(resp. hli(I, yli) = yli and hli(XS, yli) = hli(S, hli(X, yli))) for all yri ∈ Mri (resp.

yli ∈ Mli ) and all X, S ∈ G. Note that we consider the left-invariant system with

right output actions or right-invariant systems with left output actions. These types

of symmetries correspond to the type II symmetry discussed in [102] and are known

to be beneficial for observer design and estimation purpose. Assume that the out-

puts of system (3.3) are such that they can be modeled by both right and left actions.

That is, for a given output ymi belonging to the output manifold Mmi , there exist a

reference output ẙmi ∈ Mmi and right and left actions hr and hl such that the output

yli is modeled by

ymi = hri(Xm, ẙmi) = hli(Xr, ẙmi), (4.5)

for all Xm ∈ G. The output model (4.5) characterizes a special class of measurements.

We will provide an example of a physical system with such an output model later

(see Example 4.3.2).

The sampled and delayed output measurements corresponding to (4.3)-(4.4) are,

respectively, given by

zri(t) = yri(t
′
ki
− τi), t ∈ [t′ki

, t′ki+1), (4.6)

zli(t) = yli(t
′
ki
− τi), t ∈ [t′ki

, t′ki+1), (4.7)

zmi(t) = ymi(t
′
ki
− τi), t ∈ [t′ki

, t′ki+1), (4.8)

where τi ≥ 0 is the delay corresponding to the i-th output measurement and {t′ki
}∞

k=1

is its corresponding measurement sequence. We drop the subscript i if we only have

one output.

The problem at hand is to design an estimation methodology that uses the con-

tinuous measurements of the input ul(t) and ur(t) of the systems (3.1), (3.2), and

(3.3) together with their corresponding sampled and delayed output measurements

zri(t), zli(t), and zmi(t) and provides continuous estimates of the system states Xl(t),

Xr(t), and Xm(t).

Example 4.3.1 (Attitude estimation problem with vector measurements). Recall the

attitude estimation problem discussed in Example 2.2.1. The attitude kinematics (3.4) belongs

to the class of left-invariant systems (3.1) on the Lie group SO(3). In practice, the angular
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velocity Ω(t) is measured at a high sampling rate. Partial attitude information is obtained in

the form of vector measurements (2.6) which belongs to the class of output models (4.3). One

can replace yi(t) from (2.6) into (4.6) to obtain the sampled and delayed vector measurement

model zi(t) corresponding to Fig. 4.2. The problem at hand is to use the sampled and delayed

vector measurements together with the continuous measurement of the angular velocity to

estimate the attitude of the vehicle. �

Example 4.3.2 (Velocity aided attitude estimation). We recall the velocity aided attitude

estimation problem discussed in Example 3.2.1 where the underlying system dynamics are

given by (3.4)-(3.5) as a mixed-invariant system of the form (3.3) on the Lie group SE(3).

The system inputs Ω(t) and a(t) are measured at a very high sampling rate using acelerom-

eters and gyros. In indoor flight environments, measurement samples of attitude and velocity

are obtained using a VICON system and are passed to the onboard autopilot system of the

flying vehicle via a communication link. These samples are received by the autopilot system

with some delay mostly due to the communication link (but also due to the processing time

of the VICON system). Both the sampling rate at which the measurements are received by

the onboard autopilot system and the delays associated with measurements are time-varying.

Nevertheless, it is possible to accurately compute the sampling sequence and the correspond-

ing delays if the VICON measurements are carefully time-stamped before passing to the vehi-

cle through the communication link (this requires synchronization of the clock of the onboard

autopilot system with the VICON ground station). In this case, the underlying measurement

model is simply

Ym(X(t)) = X(t) =

 R(t) v(t)

0 1

 . (4.9)

Assuming the reference output Y̊m = ym(I) = I, the output model (4.9) can be thought of as

either the right action of the Lie group SE(3) on itself via hr(X, Y̊m) = Y̊mX or a left action

hl(X, Y̊m) = XY̊m. Hence, the output model (4.9) is an example that satisfies the condition

(4.5). The sampled and delayed measurements received by the onboard autopilot system are

modeled by (4.8). Denote the sampled and delayed attitude and velocity measurements by

Rz(t) = R(t′k − τ) and vz(t) = v(t′k − τ) for all t ∈ [t′k, t′k+1), respectively. The output

measurements model is then given by Zm(t) =

 Rz(t) vz(t)

0 1

. The estimation problem



§4.4 Predictor-observer Approach 79

Predictor 

Observer 

( ),  1,...,p
iy t i n

ˆ( )X t

( ),  ( ),  ,  1,...,
ii k iu t z t i n

( )u t

Figure 4.3: Illustration of the proposed predictor-observer approach.

is to use the sampled and delayed measurements Zm(t) together with the continuous mea-

surements of the inputs (Ω(t), a(t)) to obtain continuous estimates of the system states (i.e.

attitude and velocity).

4.4 Predictor-observer Approach

Due to the reasons discussed in Section 4.2.2, we opt to work with the simplified sen-

sor model (4.2) to design an algorithm that compensates for the effects of sampling

and both pre and post-sampling delays combined. The approach that we propose

here to tackle the problem formulated in Section 4.3 is illustrated in Fig. 4.3. We

first propose a predictor that takes the sampled and delayed measurements zi(t) and

provides current predictions of yi(t) denoted by yp
i (t). The predictor relies on the

knowledge of the input u(t) in continuous time (or practically at high frequency)

and the total delay τi = ρi + σi to predict the outputs such that yp
i (t) = yi(t) for all

t ≥ t′1i
in noise-free conditions (i.e. when there is no measurement noise in zi(t′ki

) or

u(t) and the integration procedure within the predictor is also exact). The predicted

outputs yp
i (t), i = 1, . . . , n are then fed into an observer to compute an estimate of

the state denoted by X̂(t). Our proposed predictor is generic in the sense that it is

independent of the employed observer algorithm, i.e., the predictor can be coupled

with any asymptotically stable observer or filter to estimate the state.

We propose the following output predictor for the system (3.1) with the outputs
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(4.6).

∆̇l(t) = ∆l(t)ul(t), ∆l(0) = ∆l0 , (4.10)

yp
ri(t) = hri(∆l(t′ki

− τi)
−1∆l(t), zri(t)), t ∈ [t′ki

, t′ki+1), (4.11)

where ∆l ∈ G is the internal state of the predictor and ∆l0 ∈ G is an arbitrary initial

condition. The trajectory ∆l(t) of the predictor dynamics (4.10) needs to be stored in

a buffer for the previous t′ki+1 − t′ki
+ τi seconds in order to compute the prediction

yp
i (t) (4.11) at each time. Similarly, we propose the following output predictor for the

system (3.2) with the outputs (4.7).

∆̇r(t) = ∆r(t)ur(t), ∆r(0) = ∆r0 , (4.12)

yp
li
(t) = hli(∆r(t)∆r(t′ki

− τi)
−1, zri(t)), t ∈ [t′ki

, t′ki+1), (4.13)

where ∆r ∈ G is the internal state of the predictor. For the mixed-invariant system

(3.3) with the outputs (4.8), the dynamics of our propose predictor consists of both

(4.10) and (4.12). The trajectories of ∆l(t) and ∆r(t) are buffered and used in the

following static output predictor.

yp
mi(t) = hri(∆l(t′ki

− τi)
−1∆l(t), hli(∆r(t)∆r(t′ki

− τi)
−1, zmi(t))), t ∈ [t′ki

, t′ki+1).

(4.14)

Due to the assumption (3.3), the output predictor (4.14) can equivalently be written

as

yp
mi(t) = hli(∆r(t)∆r(t′ki

− τi)
−1, hri(∆l(t′ki

− τi)
−1∆l(t), zmi(t))), t ∈ [t′ki

, t′ki+1).

(4.15)

The following theorem summarizes the properties of the proposed predictors.

Theorem 4.4.1. Consider

(a) the predictor (4.10)-(4.11) for the system (3.1) and the output measurements (4.6) with

(4.3).

(b) the predictor (4.12)-(4.13) for the system (3.2) and the output measurements (4.7) with

(4.4).



§4.4 Predictor-observer Approach 81

(c) the predictor (4.10), (4.12), and (4.14) (or (4.15)) for the system (3.3) and the output

measurements (4.8) with (4.5).

The predicted outputs yp
ri(t), yp

li
(t), and yp

mi(t) are, respectively, equal to the ideal outputs

yri(t), yli(t)), and ymi(t) for all i = 1, . . . , n, all t > t1i , all τi ≥ 0, and all choices of

∆l0 , ∆r0 ∈ G. �

Proof: The proof is obtained by adapting the proof of Theorem 3.3.2 and The-

orem 3.3.4. To prove part (a), use (3.1) and (4.10) to obtain d
dt (Xl(t)∆l(t)−1) =

Xl(t)ul(t)∆l(t)−1−Xl(t)∆l(t)−1∆l(t)ul(t)∆l(t)−1 = 0. This implies that Xl(t1)∆l(t1)
−1

= Xl(t2)∆l(t2)−1 or equivalently Xl(t2) = Xl(t1)∆l(t1)
−1∆l(t2) for all t1 and t2. Using

(4.3) we have

yri(t2) = hri(Xl(t2), ẙri) = hri(Xl(t1)∆l(t1)
−1∆l(t2), ẙri)

= hri(∆l(t1)
−1∆l(t2), hri(Xl(t1), ẙri)) = hri(∆l(t1)

−1∆l(t2), yri(t1)). (4.16)

Choosing t1∈{tki}∞
k=1 and t2= t and using (4.6) we have yri(t)=hri(∆l(t1)

−1∆l(t2), zri(t))

for all t ∈ [tki , tki+1). Resorting to (4.11), this implies that yp
ri(t) = yri(t) for all

t ∈ [tki , tki+1) and hence for all t ≥ t1i . Part (b) is proved similarly. In order to prove

part (c), we employ (3.3), (4.10), and (4.12) to obtain

d
dt
(∆r(t)−1Xm(t)∆l(t)−1)

= −∆r(t)−1∆̇r(t)∆r(t)−1Xm(t)∆l(t)−1

+ ∆r(t)−1Ẋm(t)∆l(t)−1 − ∆r(t)−1Xm(t)∆l(t)−1∆̇l(t)∆l(t)−1

= −∆r(t)−1ur(t)∆r(t)∆r(t)−1Xm(t)∆l(t)−1

+∆r(t)−1(Xm(t)ul(t)+ur(t)Xm(t))∆l(t)−1−∆r(t)−1Xm(t)∆l(t)−1∆l(t)ul(t)∆l(t)−1

= 0.

Hence ∆r(t1)
−1Xm(t1)∆l(t1)

−1 = ∆r(t2)−1Xm(t2)∆l(t2)−1 or equivalently Xm(t2) =
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∆r(t2)∆r(t1)
−1Xm(t1)∆l(t1)

−1∆l(t2) for all t1 and t2. Using (4.5) we have

ymi(t2) = hri(Xm(t2), ẙmi) = hri(∆r(t2)∆r(t1)
−1Xm(t1)∆l(t1)

−1∆l(t2), ẙmi)

= hri(∆l(t1)
−1∆l(t2), hri(∆r(t2)∆r(t1)

−1Xm(t1), ẙmi))

= hri(∆l(t1)
−1∆l(t2), hli(∆r(t2)∆r(t1)

−1Xm(t1), ẙmi))

= hri(∆l(t1)
−1∆l(t2), hli(∆r(t2)∆r(t1)

−1, hli(Xm(t1), ẙmi))

= hri(∆l(t1)
−1∆l(t2), hli(∆r(t2)∆r(t1)

−1, ymi(t1)).

Choosing t1 ∈ {tki}∞
k=1 and t2 = t and using (4.8) concludes the proof. �

Note that in order to implement the proposed predictor-observer methodology, it

is only required to implement one copy of the predictor dynamics even though we

might have several output measurements zi(t), i = 1, . . . , n with possibly different

delays τi and possibly different sampling sequences (t′ki
)∞

ki=1. Only a fixed duration

buffer for the predictor state ∆(t) is needed.

Remark 4.4.2. Our proposed method is also applicable to the case where the delay τi is

time-varying and out-of-sequence measurements do potentially occur. In this case, we should

replace the notation τi with τki (forming the sequence (τki)
∞
ki=1) and each measurement delay

τki should be known to the user at time t′ki
. It is easy to verify that Theorem 4.4.1 still holds

in this case. �

Remark 4.4.3. For the very special case where the underlying Lie group is Rn and the

group multiplication is addition, the kinematic system is simply the linear integrator ẋ(t) =

u(t) where x(t) ∈ Rn is the state and u(t) ∈ Rn is the input. The output is given by

y(t) = Cx(t) ∈ Rm where C ∈ Rm×n, and the sensors provide the delayed measurement

z(t) = y(t− τ). In this case, the proposed predictor simplifies to

δ̇(t) = u(t), (4.17)

yp(t) = C(δ(t)− δ(t− τ)) + z(t). (4.18)

This corresponds to the well-known Smith predictor [127] originally designed for output

feedback control of linear systems with delayed measurements. Note however that the Smith

predictor is in fact a model predictive control approach for linear systems and not a predictor

aimed at a state estimation problem outside of a control loop. In a general linear system setup,
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an application of a sole Smith predictor outside a control feedback loop might not yield a stable

method for compensation of delay for state estimation. �

Example 4.4.4. Recalling Example 4.3.1, one can directly apply (4.10)-(4.11) to obtain the

following predictor for vector measurements.

∆(t) = ∆(t)Ω(t), ∆(0) = ∆0 ∈ SO(3) (4.19)

yp
i (t) = ∆(t)>∆(t′ki

− τi)zi(t), t ∈ [t′ki
, t′ki+1) (4.20)

where ∆(t) ∈ SO(3) is the internal state of the predictor and yp
i (t) ∈ R3 is the prediction of

current output yi(t).

Example 4.4.5. Recalling Example 4.3.2, here we aim to apply the predictor (4.10), (4.12),

and (4.14) proposed for general mixed-invariant systems and obtain a predictor tailored for

predicting the current attitude and velocity of the vehicle using delayed and sampled attitude

and velocity measurements (provided for instance by a VICON system). As explained in

Example 4.3.2, only the predictor dynamics (4.10) need to be implemented since the input

signal to the predictor dynamics (4.12) is a known constant and hence the predictor state

∆r(t) can be computed analytically. Hence, the predictor dynamics simplifies to the dynamics

(3.37)-(3.38). Using the output model (4.9) and resorting to the definition of the right and

left output action models explained in Example 4.3.2, the output predictor (4.14) simplifies to

Yp
mi(t) = ∆r(t)∆r(t′k − τ)−1Zm(t)∆l(t′k − τ)−1∆l(t) for all t ∈ [t′ki

, t′ki+1). Using the same

simplifications as done to derive (3.37)-(3.40), one can summarize the resulting attitude and

velocity predictor as follows.

˙̄∆l(t) = ∆̄l(t)Ω(t), ∆̄l(0) = ∆̄l0 ∈ SO(3), t ≥ 0 (4.21)

δ̇l(t) = ∆̄l(t)a(t), δl(0) = δl0 ∈ R
3, t ≥ 0 (4.22)

Rp(t) = Rz(t)∆̄l(t′k−τ)>∆̄l(t), t ∈ [t′k, t′k+1) (4.23)

vp(t) = vz(t) + (t− t′k+τ)ge3 + Rz(t)∆̄l(t′k−τ)>(δl(t)− δl(t′k−τ)), t ∈ [t′k, t′k+1).

(4.24)

4.5 Simulation results

In this section, we provide a set of simulations to illustrate the performance of our

proposed predictor-observer methodology. Recalling Example 4.3.1, we simulate the



84 State Estimation for Systems with Sampled Output Measurements

attitude kinematics (3.4) with Ω(t) = ω× with ω = [0 0 8]> (deg/s) and we choose

the initial attitude R0 corresponding to the initial roll 14 (deg), pitch 0 (deg), and

yaw 0 (deg) to generate the trajectory of R(t). We suppose that the attitude sensors

provide the vector measurements corresponding to the reference directions ẙ1 =

[1 0 0]> and ẙ1 = [0 1 0]>. Although in practice the number of vector measurements

can be high and their directions are not necessarily pairwise perpendicular (e.g. for

star trackers), here we consider only two vector measurements with perpendicular

directions to avoid unnecessary discussions on gain tuning and focus only on the

sampling and delay effects. To model z1(t) and z2(t), the ideal vector measurements

y1(t) and y2(t) are obtained by (2.6) and then fed to the block diagram of Fig. 4.1

with pre and post-sampling delays of ρ1 = ρ2 = 0.1 (s) and σ1 = σ2 = 0.3 (s),

respectively, yielding a total delay of τ1 = τ2 = 0.4 (s), and a sampling rate of 5 (Hz).

Zero mean Gaussian noise processes with a standard deviation of 0.01 are added

to each axis of the vector measurements z1(t) and z2(t) which approximately adds

perturbations with the standard deviation of 1 (deg) to the directions of z1(t) and

z2(t). The angular velocity Ω(t) is sampled at 100 (Hz) and perturbed by an additive

noise of 0.05 (deg/s) in each axis.

For the simulation, we combine the predictor (4.19)-(4.20) with a bias-free version

of the constant gain geometric observer developed in Example 2.6 which is similar to

those proposed in [34, 101, 116, 136]. The observer dynamics reads

˙̂R(t) = R̂(t)
(
Ω(t) + (l1yp

1(t)×ŷ1(t) + l2yp
2(t)×ŷ2(t)

)
×) (4.25)

with ŷi(t) := R̂(t)>ẙi(t) and li > 0, i = 1, 2. We compare the performance of this

combined predictor-observer with an ad-hoc adaptation of the constant gain observer

to the case of sampled and delayed vector measurements. The dynamics of the ad-hoc

observer is given by ˙̂Rad(t) = R̂ad(t)
(
Ω(t) + α(t)×) where R̂ad(t) is the estimate of

R(t) and α(t) is the innovation term. When the attitude sensor provides the measured

sample z1(t′k1
) at time t = t′k1

, the innovation term of the ad-hoc observer is inspired

by the constant gain observer as α(t′k1
) = l̄1z1(t′k1

)×R̂ad(t′k1
− τ1)

>ẙ1 with l̄1 > 0. This

innovation term compares the newly received measurement z1(t′k1
) with its estimate

R̂ad(t′k1
− τ1)

>ẙ1 in which the effect of the measurement delay τ1 is considered2.

2Due to the consideration of the effect of delay in the innovation term, it can be thought of as a
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Similarly, at time t = t′k2
when the measurement z2(t′k2

) is delivered by the attitude

sensors, the innovation term is α(t′k2
) = l̄2z2(t′k2

)×R̂ad(t′k2
− τ2)>ẙ2 with l̄2 > 0. If t′k2

happens to be equal to t′k1
for some pair (k1, k2), then the innovation term is simply

the sum l̄1z1(t′k1
)×R̂ad(t′k1

− τ1)
>ẙ1 + l̄2z2(t′k2

)×R̂ad(t′k2
− τ2)>ẙ2. For the times where

no sample of any vector measurement is available (i.e. for all t /∈ (tk1)
∞
ki=1 ∪ (tk2)

∞
ki=1),

the innovation term is zero which simplifies the observer to a forward integration of

attitude kinematics. This innovation term is mathematically formulated as follows.

α(t) =


l̄1z1(t′k1

)×R̂ad(t′k1
− τ1)

>ẙ1, t = t′k1
6= t′k2

l̄2z2(t′k2
)×R̂ad(t′k2

− τ2)>ẙ2, t = t′k2
6= t′k1

∑2
i=1 l̄izi(t′ki

)×R̂ad(t′ki
− τi)

>ẙi, t = t′k1
= t′k2

0 t 6= t′ki

This ad-hoc method adaptation of observers is commonly used in engineering ap-

plications to handle sensor sampling and delay effects (see e.g. [2] for an EKF ex-

ample). Also, the Corrector-Predictor Representation of Nonlinear Observers (exten-

sively used in implementation of EKFs) uses similar technique to cope with multi-rate

sensors [52].

The initial conditions of the combined predictor-observer (i.e. R̂(0.4) and ∆(0))

and the initial condition of the ad-hoc observer (i.e. R̂ad(t), t ∈ [0, 0.4]) are set to

the identity matrix. The attitude estimation error of the combined predictor-observer

is illustrated in Fig. 4.4, where the observer gains are chosen as l1 = l2 = 0.5. In

this figure, the error θ̃ is the angle of rotation in the angle-axis representation of

the attitude estimate error R̂(t)R(t)> and is given by θ̃(t) = 180
π arccos(1− 0.5tr(I −

R̂(t)R(t)>)). Note that the observer trajectories are available after the first sample of

the vector measurements have been provided by the attitude sensors. The red plot

shows the steady state estimation error which illustrates the good performance of our

proposed method even with high sensor delay, low sampling rate, and high noise.

Fig. 4.5 shows the estimation error θ̃ad(t) = 180
π arccos(1− 0.5tr(I − R̂ad(t)R(t)>)) of

the ad-hoc observer when its gains are chosen as l̄1 = l̄2 = 42.5 such that the error

trajectory of this observer has approximately the same transient convergence rate as

Fig. 4.4. Comparing Fig. 4.4 and Fig. 4.5, the steady state error of our predictor-

Lyapunov-Krasovskii term [18, 24, 53].
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Figure 4.4: Attitude estimation error of the combined predictor-observer. The red
plot is the enlarged steady state estimation error.

Figure 4.5: Attitude estimation error of the ad-hoc observer. The red plot is the
enlarged steady state estimation error.

observer is almost an order of magnitude less than the steady state error of the ad-hoc

observer. Next, we increase the sensor delays to ρ1 = ρ2 = 0.5 (s) and σ1 = σ2 =

1.5 (s) yielding a total sensor delay of 2 (s). With the same gains and initial conditions

as in the previous simulation, the error trajectories of the predictor-observer and the

ad-hoc observer are illustrated in Fig. 4.6 and Fig. 4.7, respectively. These plots show

the convergence of the estimation error of our proposed predictor-observer while

the estimation error of the ad-hoc observer diverges. The small degradation of the

steady state estimation error of Fig. 4.6 compared to Fig. 4.4 is due to the fact that the

predictor relies on noisy gyro measurements to compensate for the delay in vector

measurements. Hence, a larger delay means longer integration of gyro noise which

increases the estimation error3. Nevertheless, the steady state estimation error of Fig.

4.6 is less than twice the corresponding error in Fig. 4.4 even though the sensor delay

is increased by a factor of five.

Next, consider the same condition as the first simulation scenario, but, assume

that there is uncertainty in knowledge of the amount of delay. To this end, we con-

sider the sensor model of Fig. 4.1 with the same parameters as the first simulation

but we consider two examples where the amount of the total delay that is used in

3The effect of input noise on the performance of the predictors is discussed via simulation in Chapter
3, Section 3.5.
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Figure 4.6: Attitude estimation error of the combined predictor-observer (large sensor
delay). The red plot is the enlarged steady state estimation error.

Figure 4.7: Attitude estimation error of the ad-hoc observer (large sensor delay).

Figure 4.8: Attitude estimation error of the combined predictor-observer (with delay
uncertainty). The small plots are the steady state estimation errors.

the predictor (4.10)-(4.11) is either 10 or 50 percent more than the total delay in the

simulated sensor model (i.e. τ1 = τ2 = 0.44 (s) or τ1 = τ2 = 0.6 (s), respectively). Fig.

4.8 shows that the estimation error is practically stable in both cases although the

steady state estimation error is increased compared to the previous simulation (see

Fig 4.4). The steady state estimation errors are less than 0.5 (deg) and 1.8 (deg) re-

spectively for 10% and 50% delay uncertainties which still demonstrates a very good

performance considering the high values of noise and delay uncertainties.
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4.6 Embedded Software Development and Experimental Ver-

ification

In this section, we provide experimental results to demonstrate the performance of

the predictor-observer approach proposed in this chapter. To this end, we introduce

a predictor based on Example 4.4.5 and we implement it in the embedded autopilot

system of a plane. We use ArduPilot/APM as the autopilot software system which

is developed mostly by a group of developers at 3DRobotics and CanberraUAV team

[1, 5, 7, 11, 14]. ArduPilot is compatible with multiple autopilot boards such as

Pixhawk, PX4FMU, Arsov AUAV-X2, APM2, etc, and is by far the most popular

autopilot system used among the UAV enthusiast community including both hobby-

ist and commercial users [3]. This autopilot system is also equipped with software

packages for off-line testing of newly developed software before real flight tests. A

comprehensive open source software-in-the-loop (SITL) simulator and a Replay fa-

cility are examples of these software packages for testing ArduPilot’s Attitude and

Heading Reference Systems (AHRS). As far as testing the estimation algorithms for

navigation is concerned, the difference between SITL and Replay is that SITL relies

on simulating the sensor outputs while the Replay module uses experimentally gath-

ered sensor logs from real flights to test the navigation algorithm. An advantage of

SITL is that it is capable of testing the estimation algorithm in a closed loop scenario

where the output of the estimation algorithm is fed into the controller to perform the

mission. The advantage of the Replay facility is that it uses real flight data (instead

of simulated sensor data) which is more accurate, but it is unable to perform closed

loop tests. The code developed in this section is tested with both SITL and Replay

modules before performing real flight tests.

The experimental results presented in this section verify effective performance of

the predictor-observer approach in real flight tests. We also demonstrate advantages

of the predictor-observer approach over classical Lyapunov-Krasovskii modifications

for sensor delay compensation using off-line processing of flight data with the Replay

module.

Through a collaboration with the ArduPilot developers, the predictor code de-

veloped in this section will be merged into the master code of the ArduPilot/APM

system and will be publicly available as a C++ library. A copy of the ArduPilot
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Figure 4.9: Photo taken at Canberra Model Aircraft Club. People in the photo
(right to left): Alireza Khosravian, Sean O’Brien (an undergraduate student at ANU
who helped with development of the predictor library during his internship with

3DRobotics), Jack Pittar (a pilot with Canberra Model Aircraft Club).

Figure 4.10: Photo taken at Canberra Model Aircraft Club. People in the photo (right
to left): Sean O’Brien, Andrew Tridgell (the main developer of the ArduPilot), Adam

Kroll (a pilot with Canberra Model Aircraft Club).

code including the primary version of the predictor library is available in the CD

attached to this thesis and is also accessible online at [13]. Brief explanations about

the predictor library are given in the Appendix.
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4.6.1 Autopilot software and experimental platform

In this section, we briefly explain the navigation algorithm of the ArduPilot system.

For more detailed explanations, the reader is referred to the ArduPilot developers’

website [3].

ArduPilot’s state estimation consists of two separate algorithms that run in par-

allel; a geometric attitude estimator on SO(3) (which is called DCM4 in ArduPilot),

and an Extended Kalman Filter (EKF). Generally speaking, the geometric observer is

more robust than the EKF (meaning that it is less prone to divergence with various

environmental or sensor setups) but is less accurate. Using the MAVLink5 parame-

ter "AHRS_EKF_USE", it is possible to choose which algorithm is fed into the flight

controller for instant using MAVProxy6. By default, ArduPilot uses the EKF as the

primary state estimation method while it still runs the DCM in the background for

initializing the EKF, monitoring its convergence and triggering a failsafe mode if the

EKF diverges. For the study in this section, we use the EKF as the observer that we

combine with the predictor. For this reason, we explain the ArduPilot EKF in more

detail.

The EKF is able to fuse sensory information from the following types of sen-

sors; primary IMU (3-axis gyro and accelerometer), secondary IMU, primary GPS,

secondary GPS, barometer, magnetometer, airspeed sensor, down facing camera (op-

tical flow data). The user is able to select which types of sensors are available by

setting the corresponding MAVLink parameters. Only North and East (NE) com-

ponents of the GPS position measurements are used in the EKF while a barometer

provides measurements of the Down component of the position7.

The state vector of the ArduPilot EKF consists of 34 elements which provide es-

timates of the following variables [4]; quaternion vector representing the vehicle’s

attitude (4 elements), linear velocity in the North-East-Down (NED) frame8 (3 ele-

4Direction Cosine Matrix
5MAVLink is a very lightweight, header-only message marshalling library for micro air vehicles [10].
6MAVProxy is a command line based ground station for UAVs. The intent is for a minimalist,

portable and extendable ground control system for any UAV supporting the MAVLink protocol [11].
7This is because the hight measurement of the barometer is more accurate than the GPS hight

measurement.
8If two IMUs are available, this velocity is updated in the filter using a weighted average of both

IMUs.
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ments), position vector in the NED frame9 (3 elements), gyro bias10 (3 elements), bias

of the z-axis of the first accelerometer (1 element), wind velocity in North and East

directions (2 elements), magnetic field vector in the NED frame (3 elements), bias

of the magnetometer (3 elements), bias of the z-axis of the second accelerometer (1

element), velocity vector using only the first IMU measurements (3 elements), down

element of the position vector using the first IMU measurements (3 elements), veloc-

ity vector using only the second IMU measurements (3 elements), down element of

the position vector using the second IMU measurements (3 elements), angular rate

vector11 (3 elements).

We tested the code with various model planes, although in this chapter we only

provide the test results done with an electric motor drive foam plane. The plane

is equipped with Pixhawk as the autopilot hardware and ArduPilot is used as the

autopilot software. The available navigation sensors on the plane are two IMUs, a

magnetometer, a GPS, and a barometer.

4.6.2 Employed predictor

We adapt the predictors proposed by (4.19)-(4.20) and (4.21)-(4.24) and combine them

with the ArduPilot’s EKF. Using those predictors, we aim to compensate for the de-

lays of linear velocity and position measurements from GPS, the magnetometer delay,

and the barometer delay. We rewrite the predictors using minor modifications in or-

der to take full advantage of the predictors in practice. The resulting predictor is

divided into two parts. The first part is the predictor dynamics which update the

internal states of the predictor and add the updated state to a buffer. This dynamic

update is performed each time a new IMU measurement is received and the pre-

diction part of the EKF is performed. The second part of the predictor is the static

equations which take output measurements (i.e. GPS measurements, magnetometer

measurements, and barometer measurements) and compensate for their delays using

the buffered states of the predictor and provide a prediction of the current values of

those measurements. These static equations are employed at the fusion stage of the

9If two IMUs are available, this position is updated in the filter using a weighted average of both
IMUs.

10When two IMUs are used, the gyro bias estimate represents the estimate of the bias in the weighted
average of both gyros.

11This estimated angular rate is based on blending both IMUs and is used in the optical flow fusion.
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EKF where new output measurements are fused. This separation of the dynamics

of the predictor from its static part allows performing data fusion only when new

output measurements are received (as opposed to performing the fusion whenever

new output predictions are available). This reduces the computational complexity

of the whole predictor-observer and results in more or less the same computational

complexity as the original ArduPilot EKF. As an additional advantage, this separa-

tion allows the user to easily switch between the original innovation terms of the

EKF and the modified innovation terms provided by the predictor without needing

to modify the rest of the algorithm.

Apart from the above explained modifications, a few minor modifications are also

done on the predictor itself. These modifications are explained after providing the

predictor equations. Denote the current time by t. This is the time at which the most

recent IMU measurement is used in the prediction stage of the EKF. The predictor

dynamics are given by

∆̇(t) = ∆(t)Ω̂(t), ∆(0) = ∆0 ∈ SO(3), t ≥ 0 (4.26)

δ̇v(t) = ∆(t)â(t), δv(0) = δv0 ∈ R3, t ≥ 0, (4.27)

δ̇p(t) = v̂(t), δp(0) = δp0 ∈ R3, t ≥ 0, (4.28)

were ∆, δv, and δp are the internal states of the predictor associated with the predic-

tion of attitude, velocity, and position, respectively. Ω̂ and â are angular velocity and

linear acceleration measurements that are obtained by compensating the bias of IMU

measurements using the bias estimates provided by the EKF12. v̂ is the estimate of

the linear velocity of the vehicle provided by the EKF. For the embedded implemen-

tation in ArduPilot, a very simple discrete time quaternion based formulation of the

predictor dynamics (4.26)-(4.28) is implemented as follows.

qk+1 = qk ⊗

 cos(0.5‖Ω̃k+1‖)
sin(0.5‖Ω̃k‖)
‖Ω̃k‖

Ω̃k

 , (4.29)

δvk+1 = δvk + T∆k âk, (4.30)

δpk+1 = δpk + Tv̂k. (4.31)

12As the test vehicle is equipped with two IMUs, we use the blended IMU measurements rather than
individual IMU measurements.
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where T is the update interval of predictor states13, k = 1, 2, 3, . . ., ⊗ denote the

quaternion multiplication, and Ω̃k :=
∫ t

t−T vex(Ω̂(s))ds ≈ Tvec(Ω̂k) ∈ R3 where

vex(.) : so(3) → R3 is the inverse of the transformation (.)×. Here, q denotes

the quaternion representation of ∆ ∈ SO(3)14 with the conversion equation ∆ =

I3 + 2qsqv + 2qv
×

2 where qs and qv denote the scalar and vector parts of the quater-

nion vector q, respectively. The discretization is obtained using the exponential map

assuming that Ω̂, â, and v̂ are approximately constant in an interval of T seconds15.

Denote by tb the time at which the new magnetometer measurement yb(tb) ∈ R3

is received and denote the magnetometer delay by τb, meaning that the magnetome-

ter measurement is taken at time tb− τb. Assume that the fusion of the magnetometer

data is performed at t̄b
16. As proposed by (4.20), the prediction yp

b ∈ R3 of the mag-

netic field at time t̄b is given by

yp
b (t̄m) = ∆(t̄b)

>∆(tb − τb)yb(tb). (4.32)

The prediction yp(t̄b) is then used in the fusion stage of the EKF (instead of yb(tb)).

Similarly, denote by tg the time at which new GPS velocity vm(tg) ∈ R3 and NE

position pm
ne(tg) ∈ R2 measurements are received. Assume that the measured GPS

velocity and NE position are delayed by τv and τp seconds, respectively17. Assume

that the fusion of GPS data is performed at t̄g. We adapt (4.24) to obtain the following

prediction of the velocity vp ∈ R3, and we extend the prediction to NE position

pp
ne ∈ R2.

vp(t̄g) = vm(tg) + (tg − τgg)e3 + R̂(tg − τg)∆(tg − τg)
>(δv(t̄g)− δv(tg − τg)),

(4.33)

pp
ne(t̄g) = pm

ne(tg) + δp(t̄g)− δp(t̄g − tg + τg), (4.34)

13For our experimental tests on a plane, the update interval is 20 (ms) since the navigation algorithm
of ArduPlane runs at 50 Hz.

14The quaternion vector is renormalized every T seconds to maintain its unit norm.
15More accurate discretization can be obtained using Lie group variational integrators and assuming

higher order variations of the input signals Ω̂, â, and p̂ [67, 95, 112, 124].
16ArduPilot’s EKF performs fusion of outputs axis by axis. This means that the fusion time associated

with the first axis of an output sensor (such as the magnetometer) will be different from the second
axis. Here, we use the same notation for the fusion time of all the axes of the same sensor, but, in
practice we use a separate fusion time for each axis.

17Depending on the GPS chip, the delay associated with the velocity measurement can be different
from the position measurement delay.
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where R̂ denotes the estimated attitude provided by the EKF, g is the constant gravi-

tational acceleration of the Earth, and e3 = [0 0 1]>. Denote by td the time at which

a new down element of the position is measured (for instance by barometer) and

denote its associated measurement delay by τd. Similar to (4.34), a prediction pp
d of

the down element of the position pm
d (which is negative of the hight) at time t̄d is

obtained as

pp
d(t̄d) = pm

d (td) + δp(t̄d)− δp(td − τd). (4.35)

4.6.3 Experimental results

In order to test the predictor-observer approach, several flight tests are done with

various model planes at the Canberra Model Aircraft Club [6]. In the following, we

provide test results of the electric motor drive foam plane shown in Fig. 4.10. The

original EKF of ArduPilot runs in parallel to a similar EKF combined with the pre-

dictor onboard the plane. The original EKF of ArduPilot uses a Lyapunov-Krasovskii

method to compensate for sensor delays. In the Lyapunov-Krasovskii approach, the

output measurements (with know delays) are compared with their delayed estimate

to form the innovation term of the EKF in the fusion stage. This approach is similar

to what is explained as the "ad-hoc" approach in Section 4.5. In the implemented

predictor-observer, a similar EKF as the original ArduPilot EKF is employed. The

only difference is that the Lyapunov-Krasovskii innovation term of the original EKF

is replaced by a new innovation term that compares the prediction of the outputs

at the current time (given by equations (4.32)-(4.35)) with their current estimate. Al-

though both EKFs run in parallel, the estimate provided by the predictor-observer

is fed to the onboard flight controller of the plane during the entire flight (and the

estimates of the original EKF are logged only for comparison and analysis after the

flight). For the EKF that is combined with our predictor, we use the same default

gains of the original ArduPilot EKF (i.e. we do not do any gain tuning for our EKF).

For comparison purposes, this condition favors the original EKF because the default

gains have been very carefully tuned for the original EKF (using thousands of flight

logs analyzed by the ArduPilot developers over the past two years).

For this flight test, IMU measurements are taken at high rate but are passed to the

EKFs at 50 Hz (this is the rate at which the prediction stage of the EKF is performed).
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Figure 4.11: Flight path of the plane according to GPS measurements. Way-points 1
to 5 are used for autonomous flight and Way-points 7 to 11 are used for autonomous
landing. Different colors indicate various flight modes; green: AUTO, red: MAN-

UAL, blue: FLY BY WIRE A (FBWA).

GPS measurements are taken approximately at 5 Hz and the GPS delay is set to 220

(ms) in both EKFs18. Magnetometer and barometer measurements are both passed

to the EKFs at 10 Hz and their associated delays are considered as 40 (ms) and 60

(ms) respectively.

Fig 4.11 shows the flight path of the vehicle using GPS measured positions (differ-

ent colors indicate various flight modes; green: AUTO19, red: MANUAL20, orange:

18The value of 220 (ms) for GPS delay is suggested by the ArduPilot developers according to their
post-flight analysis of the employed GPS chip.

19In AUTO mode the plane flies fully autonomously and follows a mission (a set of GPS waypoints
and other commands) set by the ground station configuration.

20In MANUAL mode, the pilot is able to control the plane just like a regular RC control with no
stabilization. That is, all RC control inputs are passed to the motors and actuators of the plane.
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Figure 4.12: Estimates of the Euler angles of the plane provided by the original EKF
versus the estimates provided by the predictor-observer.

FLY BY WIRE A (FBWA)21). Fig. 4.12 compares the estimates of the Euler angles

21FBWA is the most popular mode for assisted flying of planes, and is the best mode for inexpe-
rienced pilots. In this mode, the plane will hold the roll and pitch specified by the control sticks.
So if the pilot holds the aileron stick hard right then the plane will hold its pitch level and will
bank right by the angle specified in the LIM_Roll_CD option. It is not possible to roll the plane
past the roll limit specified in LIM_ROLL_CD, and it is not possible to pitch the plane beyond the
LIM_PITCH_MAX/LIM_PITCH_MIN settings.
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Figure 4.13: North position of the plane provided by GPS versus its prediction pro-
vided by (4.34), and its estimate provided by the combined predictor-EKF. The bot-
tom figure is an enlarged portion of the top figure specified by the dashed black

rectangle.

of the vehicle provided by the original ArduPilot EKF with the estimates provided

by the predictor-observer. The estimates provided by both EKFs are very close to-

gether (the difference is less than 1 degrees in each axis for all times). We recall that

the EKF gains are tuned for the original ArduPilot EKF. Fig. 4.12 shows that the

predictor-observer approach works as good as the original EKF (we later on provide

examples of cases where the predictor-observer demonstrates advantages over the

original EKF).

In order to show the performance of the predictor alone, Fig. 4.13 and Fig. 4.14

show the North and East positions of the plane as measured by GPS versus their pre-

dicted values and the estimates provided by the combined predictor-observer and

the original ArduPilot EKF. Note that the predicted values are computed only at the
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Figure 4.14: East position of the plane provided by GPS versus its prediction pro-
vided by (4.34), and its estimate provided by the combined predictor-EKF. The bot-
tom figure is an enlarged portion of the top figure specified by the dashed black

rectangle.

fusion stage of the EKF (i.e. when new sensor measurements arrive approximately

every 200 (ms)). The top figures show that the estimates provided by the original

EKF as well as the combined predictor-observer both are close to GPS measurements

meaning that both filtering methods are stable during the whole flight. The bottom

figures show that the predicted positions are shifted forward in time (by about 22

(ms)) compared to the measured positions, indicating that the predictor has effec-

tively compensated for the GPS delay. Notice that the predicted positions are closer

to the estimated positions (which are much more accurate because they are the result

of fusing multiple sensor measurements) compared to the measured positions.
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Figure 4.15: North position estimates provided by the original ArduPilot EKF versus
the combined predictor-EKF and GPS measurements (default EKF gains are used).

The bottom plot shows an enlarged portion of the top plot.

4.6.4 Predictor-observer approach versus original ArduPilot EKF: robust

gain tuning

In the previous Section, the difference between the estimates provided by the original

ArduPilot EKF and the proposed predictor-observer was negligible in our experimen-

tal tests. As was explained before, the innovation terms of the original ArduPilot EKF

use a Lyapunov-Krasovskii modification to cope with the sensor delay. It is known

that Lyapunov-Krasovskii modifications reduce the stability margin of observers or

filters and require careful and conservative gain tuning [16, 18, 24, 41, 134]. The rea-

son that we do not observe any sign of instability of the original ArduPilot EKF in

the experimental tests of the previous Section is that the EKF gains have been very

carefully tuned for specific sensor boards and also separately for each type of vehicle

using tens of hundreds of flight logs that the ArduPilot developers and users gath-

ered over the past two years. This gain tuning process is very time consuming and

can also be challenging, especially for the ArduPilot system where there is a very

large body of users that fly their UAVs in different environments and with various
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hardware. Problems may arise when users employ the original ArduPilot EKF in en-

vironmental conditions or with sensor setups that have different characteristics (e.g.

noise, bias, etc.) than what matches the EKF gains. In this section, we demonstrate

that the use of the predictor-observer approach instead of the Lyapunov-Krasovskii

modification largely reduces the dependency of the EKF stability on the gain tuning.

To this end, we employ a flight log that has been shown to have high sensitivity to

the tuning of the EKF22. We process the flight log off-line using the Replay facility23

of the ArduPilot system. With this flight log, the original ArduPilot EKF becomes un-

stable when its default gains are used. We show that retuning the EKF gains resolves

the problem of the original EKF (though the new gains might not suit a large por-

tion of other ArduPilot users). We then show that the predictor-observer preserves

its stability both with the default gains and with the new gains, demonstrating the

robustness of the proposed method against gain tuning.

To simplify the comparison, we only show the estimates of the vehicle’s North

and East positions. Fig. 4.15 and Fig. 4.16, respectively, show the North and East

position estimates when the default EKF gains are used. The original ArduPilot EKF

estimates are up to 150 (m) away from the GPS measurements while the predictor-

observer provides estimates close to the GPS measurements. The discontinuities in

the black plot are due to the fail-safe system of ArduPilot AHRS that reinitializes EKF

states when it recognizes that the filter has diverged. Without the fail-safe system,

the original EKF estimates would have moved much further away from the GPS

measurements.

We re-tune the original EKF gains by increasing some of the gains associated

with gyro measurement noise so that the original EKF becomes stable24. We then use

the same re-tuned gains for the EKF part of the predictor-observer combined. Fig.

22The employed flight log has been provided to us by Andrew Tridgell [131] (the main developer of
the ArduPilot System) and Paul Riseborough [118] (the main developer of the ArduPilot EKF).

23The Replay facility allows building the ArduPilot/APM autopilot code using an ordinary C++
compiler, making a native executable that allows testing the attitude and heading reference system
(AHRS) of ArduPilot without implementing on an actual hardware. The native executable emulates
the AHRS (including the EKFs), processes the flight log off-line, and feeds the sensor measurements to
the AHRS as though the AHRS was implemented onboard the vehicle during the flight. A secondary
log is generated by Replay containing the results of the off-line processed data.

24For the example demonstrated in Fig. 4.15 and Fig. 4.16, the following EKF gain
variables are used in both "AP_NavEKF.cpp" (original EKF code) and "AP_NavEKF2.cpp"
(the EKF combined with our predictor) library of ArduPilot; "GBIAS_PNOISE_DEFAULT=
10−7" and "GYRO_BIAS_UNCERTAINTY= 0.01". For the results of Fig. 4.17, the values
"GBIAS_PNOISE_DEFAULT= 10−6" and "GYRO_BIAS_UNCERTAINTY= 0.1" are chosen.
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Figure 4.16: East position estimates provided by the original ArduPilot EKF versus
the combined predictor-EKF and GPS measurements (default EKF gains are used).

The bottom plot shows an enlarged portion of the top plot.
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Figure 4.17: North and East position estimates provided by the original ArduPilot
EKF versus the combined predictor-EKF and GPS measurements (re-tuned EKF gains

are used).
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Figure 4.18: North position estimates provided by the original ArduPilot EKF versus
the combined predictor-EKF and GPS measurements (high EKF gains are used). The

bottom plot shows an enlarged portion of the top plot.
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Figure 4.19: East position estimates provided by the original ArduPilot EKF versus
the combined predictor-EKF and GPS measurements (high EKF gains are used). The

bottom plot shows an enlarged portion of the top plot.
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4.17 demonstrates the North and East position estimates versus GPS measurements

showing that both filters are stable.

We continue to increase the gains for both the original ArduPilot EKF and the

predictor-observer25. Fig. 4.18 and 4.19 show that the original EKF becomes un-

stable and produces large errors at some points26 while the predictor-observer pro-

vides stable estimates for high gains as well. This shows that the predictor-observer

demonstrates more robust behavior and provides a larger margin of stability.

4.7 Summary

In this chapter, we propose a combined predictor-observer methodology for state es-

timation of invariant systems on Lie groups in the presence of sampled and delayed

output measurements. Exploiting the symmetries of the underlying system and out-

put maps, our proposed predictor is capable of providing predictions of the current

outputs. The proposed predictor is generic and can be combined with arbitrary ob-

servers or filters. When combined with a geometric attitude observer, our proposed

predictor-observer approach shows improved performance in simulation compared

to Lyapunov-Krasovskii methods. We develop the predictor as an open source C++

library for the ArduPilot system and we verify its performance in practice. Our ex-

perimental results show that the predictor-observer approach is more robust against

gain tuning compared to traditional approaches, making it applicable to a wider

class of vehicles with different sensor setups, various environmental conditions, and

diverse flight trajectories.

25For the example of Fig. 4.18 and 4.19, we choose the following EKF gain variables in both
"AP_NavEKF.cpp" (original EKF code) and "AP_NavEKF2.cpp" (the EKF combined with our predictor)
library of ArduPilot; "GBIAS_PNOISE_DEFAULT= 8× 10−6" and "GYRO_BIAS_UNCERTAINTY= 1".

26It is worth noting that such large errors if fed into the control algorithm cause instability and might
cause the vehicle to crash. In the off-line re-processing of sensor data, of course the estimates are not
fed back into the control.
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Chapter 5

Conclusions and Future Work

In this thesis, we investigate the state estimation problem for invariant systems on Lie

groups by fusing the measurements of the input, living in the associated Lie algebra,

and outputs, living in homogeneous spaces of the Lie group. Most of the prior

literature on observer design for invariant systems on general Lie groups assumes

availability of the direct measurements of the system inputs and outputs. This is not a

case in many practical scenarios where nonideal measurements due to the sensor bias

or measurement delays are present. Inspired by those practical scenarios, this thesis

aimed at filling the gap in the literature by providing a framework for state estimation

where the following nonideal measurements are present; input measurement with

additive unknown bias, output measurement delays, and output sampling effects.

Assuming that the input measurements are corrupted by an unknown additive

bias, we propose an observer design methodology for adaptively eliminating the bias.

Such a problem is motivated by attitude and position of mechanical systems where

measurements of inertial sensors (gyros or accelerometers) are prone to unknown

bias. We show that the corresponding standard error dynamics are non autonomous

in general, except for the trivial case where the underlying Lie group is Abelian. We

design the innovation terms of the observer by systematically constructing cost func-

tions on the associated homogeneous spaces. A verifiable condition on the stabilizer

of the reference outputs associated with the output spaces ensures the stability of the

observer.

To tackle the output measurement delay problem, we propose an observer-predictor

methodology. This problem is motivated by real world applications such as GPS de-

lay problem in pose estimation of vehicles, attitude estimation using optical sensors

with signeficiant delay, or indoor navigation using a VICON system or OptiTracks

105
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with communication delays. Given an observer that has the desired stability proper-

ties when the system outputs are delay-free, we effectively employ the invariance of

the system dynamics and propose novel predictors such that the combined observer-

predictor preserves those stability properties when the measurements are delayed.

We also investigate the problem of state estimation with sampled output mea-

surements when the system input is measured with a significantly larger sampling

rate compared to the outputs. Such a scenario is motivated by pose estimation of

UAVs equipped with high rate IMUs and low cost GPS units with low sampling

rates. We propose output predictors to tackle the sensor sampling problem. The

output predictors take the sampled (and delayed) measurements, employ the con-

tinuous input measurements, and provide predictions of the current outputs of the

system. The proposed output predictors can then be fed into an observer in a cascade

predictor-observer arrangement to estimate the current state.

The proposed state estimation methodologies in this thesis are computationally

very cheap and are robust in practice, making them ideal for embedded implemen-

tation on low cost robotics systems. We demonstrate applications of the proposed

methods by applying them to real world application scenarios involving attitude, ve-

locity, and position estimation of UAVs. We provide test results with realistic simula-

tions using Matlab and the software-in-the-loop system of ArduPilot, post-processing

of offline sensory data, as well as implementation on real UAVs and performing real

flight test with the ArduPilot system.

In the following, we discuss three problems that can be investigated as potential

future works.

5.1 Reverse predictor theory

In Chapter 3, we identify three classes of systems on Lie groups for which we are

able to propose recursive predictors. Those classes are; left-invariant, right invariant,

and mixed-invariant systems. One might now ask, are there more general classes of

systems with symmetry for which recursive predictors exist? What are the symmetry

requirements of a dynamical system and the structure of its underlying symmetry

groups that yield existence of a recursive predictor? Tackling these questions requires

development of a reverse theory for predictor design. In this section, we formulate
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the reverse predictor design problem in a general case and we provide highlights on

possible solutions to this problem in a simplified case.

Let X and U be finite dimensional smooth real manifolds that are termed, respec-

tively, the state and input spaces. Consider the system

ẋ(t) = fx(x(t), u(t)), x(0) = x0, (5.1)

where fx : X × U → TX is a smooth vector field. A recursive predictor that takes

the delayed state x(t− τ) and the input measurements u(t) (together with the past

trajectories of these measurements) and predicts the current state is given by

δ̇(t) = fδ(δ|[0,t], x|[0,t−τ], u|[0,t]), (5.2)

xp(t) = hp(δ|[0,t], x|[0,t−τ], u|[0,t]), (5.3)

where δ ∈ Mδ is the internal state of the predictor (living in the manifold Mδ) and

xp(t) ∈ X is the prediction of x(t). Note that in general the dynamics (5.2) is a

delayed differential equation since its right hand side may depend on the past tra-

jectory of δ. Also, note that all of the available information, including the history

of the trajectories x|[0,t−τ] and u|[0,t], are used in the structure of the predictor. The

predictors that we proposed in this thesis are all special cases of the general form

(5.2)-(5.3). In fact, the right-invariant, the left-invariant, and the mixed-invariant pre-

dictors proposed in Chapter 3 are all examples where the function fδ is independent

of the trajectory x|[0,t−τ] and depends only on the current input measurement u(t)

and the current predictor state δ(t). In this case, the predictor dynamics (5.2) sim-

plifies to an ordinary differential equation. Also, the function hp depends only on

x(t− τ), δ(t), and δ(t− τ). It is worth mentioning that the predictor proposed in the

Author’s previous work [81] for systems on Rn is also a special case of the general

form (5.2)-(5.3) where the function fδ depends on x(t − τ), δ(t), δ(t − τ), and u(t)

yielding a delayed differential equation as the predictor’s internal dynamics. In that

example, the function hp depends only on x(t− τ), δ(t), and δ(t− τ).

Obtaining general classes of system (5.1) for which a general predictor of the form

(5.2)-(5.3) exist is a complicated problem. Let us consider a more specific case where

the manifolds X and Mδ are copies of the same Lie group, the predictor dynamics
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depend only on the variables δ(t), u(t), and u(t− τ), and the function hp is a simple

group multiplication. In this conditions, interesting insight for tackling the recursive

predictor theory is obtained by adopting the ideas presented in [28, Theorem 1] for

the observer design problem. Consider the system

Ẋ(t) = f (X(t), u(t)), X(0) = X0, (5.4)

where X ∈ G, u ∈ Mu, and f (X, u) ∈ TXG. Assume that the system (5.4) is control-

lable in a sense that for any given initial condition X0 ∈ G and final state X f ∈ G

there exist an input trajectory that can take the state from X0 to X f in finite time.

Choose a trajectory X(t) of system (5.4) for t ≥ τ (with a constant τ) and obtain

the trajectory X(t− τ). Define

η(t) := X(t− τ)−1X(t), t ≥ τ. (5.5)

In general, dynamics of η(t) may depend on the variables X(t), X(t− τ), η(t), u(t),

and u(t− τ). If the dynamics of η(t) depends only on the variables η(t), u(t), and

u(t− τ) as

η̇(t) = g(η(t), u(t), u(t− τ)), (5.6)

one can employ this dynamics to generate the trajectory of η(t) (using only the input

information) and then resort to (5.5) to obtain the prediction of the current state by

Xp(t) = X(t − τ)η(t). Of course this condition on the dynamics of η(t) is only

a necessary condition for existence of a recursive predictor since one should also

ensure that the initial condition of (5.6) can be chosen appropriately (independent of

the knowledge of the current state) such that Xp(t) = X(t) for all t ≥ τ. This is an

additional requirement that should be investigated late. Let us now focus only on the

requirement that the dynamics of η(t) is of the form (5.6). We show that, dynamics

of η(t) has the form (5.6) for all τ ≥ 0, all t ≥ τ, and all given trajectories X(t) of the

system (5.4) with their corresponding input signal u(t), if f satisfies

f (X(t− τ)η(t), u(t)) (5.7)

= f (X(t− τ), u(t− τ))η(t)− X(t− τ) f (I, u(t− τ))η(t) + X(t− τ) f (η(t), u(t)).
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Moreover, the function g (defining the dynamics of η(t)) is given by

g(η(t), u(t), u(t− τ)) = f (η(t), u(t))− f (I, u(t− τ))η(t). (5.8)

To show the above claims, we differentiate the sides of (5.5) with respect to time to

obtain

g(η(t), u(t), u(t− τ)) = η̇(t) (5.9)

= −X(t− τ)−1 f (X(t− τ), u(t− τ))X(t− τ)−1X(t) + X(t− τ)−1 f (X(t), u(t)).

This should hold for all choices of u(t) and all τ ≥ 0. Since the system is assumed

controllable and τ is arbitrary, we can choosing X(t− τ) = I in (5.9) while X(t) and

hence η(t) are still arbitrary. This yields

− f (I, u(t− τ))η(t) + f (η(t), u(t)) = g(η(t), u(t), u(t− τ)).

as claimed in (5.8). Substituting for g(η(t), u(t), u(t− τ)) into (5.9) we have

−X(t− τ)−1 f (X(t− τ), u(t− τ))X(t− τ)−1X(t) + X(t− τ)−1 f (X(t), u(t)) (5.10)

= − f (I, u(t− τ))η(t) + f (η(t), u(t)).

Multiplying the sides by X(t− τ) from the left and rearranging the variables yields

(5.7).

It is not easy to intemperate the condition (5.7) as the trajectory of η(t) depends

on X(t− τ) and also u(t− τ) is certainly not independent of u(t). Nevertheless, the

condition (5.7) is a good starting point to investigate the recursive predictor theory.

For instance, if we know that f (X(t), u(t) is linear on u(t) (i.e. (5.4) is a kinematic

system), and u(t) is arbitrary signal such that u(t) 6= u(t− τ) for some t, then the

condition (5.7) implies that f is essentially a left-invariant vector field. To prove this,

we rearranging (5.7) to obtain

f (X(t− τ)η(t), u(t))−X(t− τ) f (η(t), u(t)) (5.11)

= f (X(t− τ), u(t− τ))η(t)− X(t− τ) f (I, u(t− τ))η(t).
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The left hand side is a linear function of u(t) while the right hand side is a linear

function on u(t − τ). Since u(t) is arbitrary such that u(t) 6= u(t − τ) for some t,

(5.11) can hold only if both sides are equal to zero. Hence we have

f (X(t− τ)η(t), u(t)) = X(t− τ) f (η(t), u(t)) (5.12)

which by choosing η(t) = I yields that f (X, u) = XF(u) for F(u) := f (I, u(t)) ∈ g.

Notice that this automatically yields that the right hand side of (5.11) is zero.

We can extend the above methodology by assuming that the predictor state has

two parts, denoted by η1(t) ∈ G and η2(t) ∈ G, such that the predicted state is given

by

Xp(t) = η2(t)X(t− τ)η1(t). (5.13)

Now, one can investigate the conditions ensuring the existence of some functions

g1 : G × G ×Mu ×Mu → TG and g2 : G × G ×Mu ×Mu → TG such that the

predictor dynamics are given by

η̇1(t) = g1(η1(t), η2(t), u(t), u(t− τ)),

η̇2(t) = g2(η1(t), η2(t), u(t), u(t− τ)).

One could try to replicate the computations done to drive (5.7)and (5.8) to obtain

conditions on the system dynamics and propose general structure of the functions g1

and g2 based on a given f . Our expectation is that by imposing further assumptions

such as linearity os f w.r.t. u, one might be able to conclude that (5.4) has a similar

form as a mixed-invariant system (3.3). Note that in this case, the functions g1 and

g2 are respectively independent of η2 and η1 and both do not depend on u(t− τ).

5.2 Stochastic propagation properties of predictors

In ideal conditions where there is no measurement noise and the numerical integra-

tions are exact, the predictors proposed in Chapters 3 and 4 are able to predict the

current state for arbitrary large measurement delay or arbitrary low sampling rate.

In practice, however, the larger the delay is and the lower the sampling rate is the
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larger is the prediction error of the current state. This is because the proposed pre-

dictors rely on forward integration of the input measurements to obtain a prediction

of the current state (see Proposition 3.4.1). Large delays or low sampling rates imply

that the predictor should rely on the forward integration of the input for a longer

period of time, yielding aggregation of more errors due to the input noise and nu-

merical integration errors. Although in the previous chapters, we formulated the

problem in deterministic setup, it is practically very useful to investigate the effect

of stochastic input measurement noise on the accuracy of the predicted state. For ex-

ample, consider the predictor (4.19)-(4.20) and assume that the vector measurements

zi are obtained using magnetometer. The covariance of the measurement noise of

magnetometers and gyros can be obtain by off-line processing of sensor data. If the

predicted measurements yp are used instead of z(t) in a Kalman filter (in a predictor-

observer arrangement), the covariance noise associated with yp should be used to

optimally tune the gains of the Kalman filter. Such a covariance matrix necessarily

depends on the noise covariance of the gyro as well as magnetometer measurements

and also on the delay and sampling time of the magnetometer. Having an analytical

relationship for the covariance noise of yp as a function of the mentioned quantities

also help system engineer designers to choose between faster magnetometer with

higher measurement noise and slower magnetometer with lower measurement noise.

It also provides guidelines to system engineers for choosing gyros with lower mea-

surement noise to compensate for the effect of magnetometers with low sampling

rate. Yet another application of such an analytical relation is in sensor fault detection

and isolation. When a new magnetometer measurements is obtained, one can com-

pare that with the predicted value of that measurement using the previous (valid)

magnetometer measurement. If the new measurement falls within the uncertainty

ellipsoid of the predicted value (which is obtained using the noise covariance of the

predicted output), the new measurement is identified as being valid. Otherwise, it is

identified as being faulty and will not be used1.

Although the structure of the predictors proposed in this thesis are simple, for-

mulating their statistical propagation properties might not be straight-forward since

their underlying state space is a Lie group (and not an Euclidean space). There is

1A similar fault detection system is used in the ArduPilot EKF for identifying faulty sensor mea-
surements.
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a rich literature for stochastic filtering on Lie groups [48, 49, 139], including numer-

ous references with focus on the attitude/pose estimation application [44, 46, 66, 98,

104, 105, 114, 126], and text books are available that provide guideline for analysis

of stochastic systems on general Lie groups [42, 43]. Some guidelines tailored to the

specific Lie groups SO(3) and SE(3) are given in [115, 128]. Here, we provide an

analysis when the underlying Lie group is simply Rn. Consider the system

ẋ(t) = u(t), (5.14)

where x ∈ Rn and u ∈ Rn are the state and input, respectively. Assume that the

input measurement is given by

yu(t) = u(t) + nu(t), (5.15)

where nu(t) is a zero mean Gaussian noise with covariance matrix Pn ∈ Rn×n. As-

sume that the delayed measurement of state is obtained as

yx(t) = x(t− τ) + nx(t), (5.16)

where nx(t) is a zero mean Gaussian noise with covariance matrix Px ∈ Rn×n. Re-

sorting to Remark 4.4.3, a predictor for the current state x(t) is given by

δ̇(t) = yu(t), (5.17)

xp(t) = δ(t)− δ(t− τ) + yx(t). (5.18)

We aim to obtain the statistics of xp(t). According to Section 3.4, the prediction xp(t)

of the recursive predictor (5.17)-(5.18) is equivalent to the predictions provided by

the following non-recursive predictor.

d
ds

xp
t (s) = yu(s), s ∈ [t−τ, t], (5.19)

xp
t (t−τ) = yx(t), (5.20)

xp(t) = xp
t (t). (5.21)

The dynamics (5.19) is an example of a linear time-invariant stochastic system with
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a stochastic initial condition (5.20). Statistics of such a system is found in any classic

stochastic estimation textbook [21]. Namely, it can be known that the covariance of

the stochastic variable xp
t (t) follows the dynamics

d
ds

Pp
t (s) = Pu, (5.22)

Pp
t (t−τ) = Px. (5.23)

Assuming that Pu is constant, the solution of (5.22)-(5.23) is given by Pp
t (s) = (s− t +

τ)Pu + Px. Evaluating this solution at s = t yields the covariance of the xp(t) as

Pp := Pp
t (t) = τPu + Px. (5.24)

Hence, the covariance of xp linearly depend on the amount of delay τ as well as the

covariance of the input measurement noise and the output (delayed state) measure-

ment noise.

Solving the statistic propagation problem is not straight-forward in the general

case when the underlying Lie group is not Rn. This is however possible to obtain in-

sight into what the answer might look like without completely solving the problem.

compared to the Rn scenario, one important difference in the solution of this prob-

lem in the general case is that we expect that the statistics of Xp(t) depend on the

trajectory of X(t) (or equivalently the input signal u(t)) as well. This intuition comes

from the simulations undertaken in Section 3.5.1 where pure prediction error due

to the input measurement noise is presented. According to Fig. 3.2, the prediction

error does depend on the trajectory of the state X(t). This dependency is verified

by recalling the equations (3.11)-(3.13). In fact, assuming ûl(t) = ul(t) + nu(t) where

un(t) is the input measurement noise, and using the same derivation that is done to

drive (3.11)-(3.13), one can show that when the underlying Lie group is Abelian (e.g.

Rn), the term AdXl is canceled out in (3.13) and hence the trajectory of Xl(t) does not

affect the resulting statistics of the prediction error Ep
l (t) for the left-invariant case.

Similar result is obtained for the right-invariant case or the mixed invariant case.
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5.3 Predictor-observer with input measurement bias

In Chapter 4, we presented a predictor-observer methodology that is able to com-

pensate the effect of output sampling and delays for state estimation of invariant

systems on Lie groups. Co-stability of the proposed predictor is proved when direct

measurements of system inputs are available. In some applications, however, mea-

surements of system inputs are corrupted by unknown biases that should be com-

pensated adaptively, as was explained in Chapter 2. Although the presented stability

proofs in Chapter 4 do not cover the case where input measurement bias is present,

we demonstrated both via simulation and practical experiments in Section 4.6 that

the resulting predictors provide good estimates when we feed the predictors with

bias compensated inputs provided by the observers used in the predictor-observer

arrangement. Stability analysis of the resulting system is not straight forward since

injecting the bias estimates of the observer back to the predictor in the predictor-

observer arrangement creates a feedback loop which might potentially cause insta-

bility (though we did not observer this potential instability in our tests)2. This raises

the possibility that the resulting feedback loop might be indeed stable, at least locally

and for careful tuning of the observer gains. So, as a future work in this section, we

propose to theoretically investigate the stability of the resulting feedback system3.

Let us recall the simplified example of the integrator system on Rn given by (5.14).

Assume that measurements of x(t) are delay-free, but measurements of u(t) are cor-

rupted by unknown constant bias as yu(t) = u(t) + b. The simple linear adaptive

observer

˙̂x(t) = yu(t)− b̂(t)− k(x̂(t)− x(t)), (5.25)

˙̂b(t) = γ(x̂(t)− x(t)) (5.26)

2Note that this feedback loop does not appear in the observer-predictor arrangement and that is
why we are able to provide stability analysis even in presence of input bias (and scaling) in Chapter 3.

3There is also another point of view for tackling the input bias problem; is there an alternative
method for compensating the input bias in the predictor-observer arrangement, other than directly
feeding the bias estimates of the observer back into the predictor? Is there a method that does not
create a feedback loop or has a simple stability analysis? The answer to these questions are not clear
to the Author at the time of writing this chapter, but it would be very interesting to consider designing
a bias estimation methodology that is independent of the structure of the observer employed in the
predictor-observer arrangement. Such a methodology may benefit from the inherent input to output
stability properties of the predictors of Chapter 4 for stability analysis. Note that the mentioned input
to output stability properties can be mathematically formulated by employing the inequalities (3.12)
and (3.22) and resorting to Lemma 6.4.1.
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with k, γ > 0 ensures globally exponential convergence of x̂(t) and b̂(t) to x(t) and

b, respectively. Where the delayed measurements x(t− τ) are available (instead of

x(t))4, we use this observer in a predictor-observer arrangement as follows.

δ̇(t) = yu(t)− b̂(t), (5.27)

xp(t) = x(t− τ) + δ(t)− δ(t− τ), (5.28)

˙̂x(t) = yu(t)− b̂(t)− k(x̂(t)− xp(t)), (5.29)

˙̂b(t) = γ(x̂(t)− xp(t)) (5.30)

Defining the estimation errors x̃(t) = x̂(t)− x(t) and b̃(t) = b̂(t)− b we have

˙̃x(t) = −b̃(t)− k(x̂(t)− x(t− τ) + δ(t)− δ(t− τ)), (5.31)

˙̃b(t) = γ(x̂(t)− x(t− τ) + δ(t)− δ(t− τ)). (5.32)

Integrating the sides of (5.14) and (5.27) we have x(t− τ) = x(t)−
∫ t

t−τ u(s)ds and

δ(t)− δ(t− τ) =
∫ t

t−τ u(s)ds−
∫ t

t−τ b̃(s)ds, respectively. Substituting for x̂(t)− x(t−
τ) + δ(t) − δ(t − τ) = x̃(t) −

∫ t
t−τ b̃(s)ds into (5.31) and (5.32) yields the following

error dynamics.

˙̃x(t) = −b̃(t)− kx̃(t) + k
∫ t

t−τ
b̃(s)ds, (5.33)

˙̃b(t) = γx̃(t)− γ
∫ t

t−τ
b̃(s)ds. (5.34)

Interestingly, the error dynamics (5.33)-(5.34) has the form of a Lyapunov-krasovskii

type dynamics where the right hand side depends on the integral of the error in addi-

tion to linear error terms. Stability of such error dynamics can be investigated by em-

ploying the Lyapunov-krasovskii function W(t) = 1
2‖x̃(t)‖2 + 1

γ‖x̃(t)‖2 + w
∫ t

t−τ(s−
t + τ)‖b̃(s)‖2ds with w > 0 (see e.g. [134]). One can try to show that the error dy-

namics (5.33)-(5.34) is asymptotically stable to (x̃(t), b̃(t)) = (0, 0) if the constants

k, γ, w are chosen appropriately. Extending the above analysis to the general case

where the underlying Lie group is not Rn is obviously not straight-forward. The

major technical difficulty in this case is that an analytical solution to the dynamics

(3.1), (3.2), or (3.3) does not exist in general. Nevertheless, one may be able to resort

4For simplicity, we don’t consider sampled outputs for the analysis.
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to the derivations made in the proofs of Theorem 3.3.2 and 3.3.3 and try to replicate

the above proof without employing the analytical solution of the system dynamics.

5.4 Application examples to other Lie groups

From the application point of view, an strong focus of this thesis is applications to

navigation and control of mechanical systems evolving on the Lie groups SO(3) and

SE(3), although the presented theory is developed for general Lie groups. Inves-

tigation of systems on SO(n) and SE(n) seem to be very popular in the geometric

observer design literature, and have demonstrated successful applications. There has

been efforts in investigating application example of other Lie groups, such as the ho-

mography estimation on the special linear group SL(3) [56] and the state estimation

on the multiplicative group R?
+ with application to a chemical reactor [34]. Never-

theless, investigate application examples of the developed state estimation theory to

systems evolving on other Lie groups would be a very interesting topic. Lie groups

surely have wide range of applications in areas other than navigation and control

of mechanical systems. For instance, the Special Linear group SL(2) arises in some

compute vision applications [44, 73, 96]. Also, complex-valued Lie groups and uni-

tary groups arise in multiantenna transceiver techniques [142], wave propagation and

scattering involving polarized waves [45], holographic memory design and analysis

[146], complex-valued artificial neural networks learning [50], and in signal process-

ing is blind source separation [51], to mention a few. Investigating applications of

the geometric observer design techniques to such problems is of high value and is

highly encouraged as a potential future work.



Chapter 6

Appendix

6.1 Lemma 6.1.1

Lemma 6.1.1. Suppose that the R6 representation of u ∈ se(3) and w ∈ T(R̂,p̂)SE(3) with

respect to the basis {e} and {eX̂} are respectively given by [[u]]e = [u>ω , u>v ]> and [[w]]eX̂ =

[w>ω , w>v ]> where uω, uv, wω, wv ∈ R3. Then u and w can be written in terms of their R6

representation as follows.

u = (uω×, uv) (6.1)

w = (wω×R̂, wω× p̂ + wv). (6.2)

�

Proof:

w =w>ωe1(e1
×R̂, e1

× p̂) + w>ωe2(e2
×R̂, e2

× p̂) + w>ωe3(e3
×R̂, e3

× p̂)

+ w>v e1(03×3, e1) + w>v e2(03×3, e2) + w>v e3(03×3, e3)

=
(
(w>ωe1e1

× + w>ωe2e2
× + w>ωe3e3

×)R̂,(
w>ωe1e1

×+w>ωe2e2
×+w>ωe3e3

×
)

p̂+w>v e1e1+w>v e2e2+w>v e3e3
)

=(wv×R̂, wv× p̂ + wv)

where we used the standard equation a = a>e1e1 + a>e2e2 + a>e3e3 once for a = wω

and once for a = wv to obtain the last line. This proves (6.2). Choosing (R̂, p̂) =

(I3×3, 0), it is easy to verify that (6.1) holds too. �

117
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6.2 Lemma 6.2.1

Lemma 6.2.1. We have σ(AdX) ≥ cond(X)−1 and σ(AdX) ≤ cond(X) for all X ∈ G. �

Proof: Embed g into Rm×m. Denote the matrix representation of AdX : Rm×m →
Rm×m w.r.t. the standard basis for its domain and co-domain by [[AdX]]. Since

dim(g) ≤ m2 we have σ(AdX) ≥ σ([[AdX]]) and σ(AdX) ≤ σ([[AdX]]). Invok-

ing the property vec(XwX−1) = X−> ⊗ Xvec(w) where vec(w) ∈ Rm2
is the vec-

torization of the matrix w ∈ Rm×m and ⊗ denotes the Kronecker product, one

can conclude that [[AdX]] = X−> ⊗ X. This implies that σ(AdX) ≥ σ([[AdX]]) =

σ(Φ(X)−>)σ(Φ(X)) = σ(Φ(X))−1σ(Φ(X)) = cond(Φ(X))−1. Similarly, we have

σ(AdX) ≤ σ([[AdX]]) = σ(X−>)σ(X) = σ(X)−1σ(X) = cond(X). This completes the

proof. �

6.3 Lemma 6.3.1

Lemma 6.3.1. We have dr(X, Y) ≤ σ(AdZ)dr(Z−1X, Z−1Y) for all X, Y, Z ∈ G. �

Proof: Define a right-invariant distance between X, Y ∈ G as the infimum of the

lengths of the curves connecting X and Y w.r.t. the metric 〈., .〉r, such that dr(X, Y) =

inf
γ(0)=X, γ(1)=Y

∫ 1
0 |γ̇(s)|

γ(s)
r ds. Using a change of variable γ̄(s) := Z−1γ(s) we have

dr(X, Y) = inf
γ̄(0)=Z−1X, γ̄(1)=Z−1Y

∫ 1

0
|Z ˙̄γ(s)|Zγ̄(s)

r ds

= inf
γ̄(0)=Z−1X, γ̄(1)=Z−1Y

∫ 1

0
‖Z ˙̄γ(s)γ̄(s)−1Z−1‖ds

≤ σ(AdZ) inf
γ̄(0)=Z−1X, γ̄(1)=Z−1Y

∫ 1

0
‖ ˙̄γ(s)γ̄(s)−1‖ds

= σ(AdZ) inf
γ̄(0)=Z−1X, γ̄(1)=Z−1Y

∫ 1

0
| ˙̄γ(s)|γ̄(s)r ds

= σ(AdZ)dr(Z−1X, Z−1Y).

�
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6.4 Lemma 6.4.1

Lemma 6.4.1. Consider the system Ξ̇l(t) = ub
l (t)Ξl(t) (resp. Ξ̇r(t) = Ξr(t)ub

r (t)) with

Ξl(0) = Ξ0 ∈ G (resp. Ξr(0) = Ξ0 ∈ G) where ub
l (t), ub

r (t) ∈ g.

(I) If ub
l (t) (resp. ub

r (t)) is bounded for all t ≥ 0, then dl(Ξr(t−τ), Ξr(t)) (resp. dl(Ξr(t−
τ), Ξr(t))) is bounded for all τ ≥ 0 and all t ≥ τ.

(II) If ‖ub
l (t)‖ → 0 (resp. ‖ub

r (t)‖ → 0), then dr(Ξl(t−τ), Ξl(t)) → 0 (resp. dl(Ξr(t−
τ), Ξr(t))→ 0) for all τ ≥ 0.

(III) If ‖ub
l (t)‖

exp−→ 0 (resp. ‖ub
r (t)‖

exp−→ 0), then dr(Ξl(t−τ), Ξl(t))
exp−→ 0 (resp. dl(Ξr(t−

τ), Ξr(t))
exp−→ 0) for all τ ≥ 0.

�

Proof: We prove the Lemma for the right-invariant system Ξ̇l(t) = ub
l (t)Ξl(t)

and the right-invariant distance dr(., .). The proof for the left-invariant case can be

obtained similarly. The length of the curve s 7→ Ξl(s), s ∈ [t− τ, t] connecting Ξl(t−
τ) to Ξl(t) w.r.t. the metric 〈., .〉r is given by Lr(Ξl(t−τ), Ξl(t)) =

∫ t
t−τ |Ξ̇l(s)|

Ξl(s)
r ds =∫ t

t−τ |u
b
l (s)Ξl(s)|

Ξl(s)
r ds =

∫ t
t−τ ‖u

b
l (s)‖ds.

If ub
l (t) is bounded, there exists a constant cu such that ‖ub

l (t)‖ ≤ cu for all t ≥ 0.

Hence Ll(Ξl(t−τ), Ξl(t)) ≤ τcu and consequently dr(Ξl(t−τ), Ξl(t)) is bounded by

dr(Ξl(t−τ), Ξl(t)) ≤ Lr(Ξl(t−τ), Ξl(t)) ≤ τcu. This proves part (I).

If ‖ub
l (t)‖ → 0, then for all εu > 0 there exist a Tu such that for all t ≥ Tu we

have ‖ub
l (t)‖ < εu and hence, Lr(Ξl(t−τ), Ξl(t)) < τεu. Hence, we have dr(Ξl(t−

τ), Ξl(t)) ≤ Lr(Ξl(t−τ), Ξl(t)) < τεu for all t ≥ Tu. Consequently, dr(Ξl(t−τ), Ξl(t))→
0. This proves part (II).

If ‖ub
l (t)‖

exp−→ 0, then there exist positive constants c and α > 0 such that ‖ub
l (t)‖ ≤

c exp(−αt) for all t > 0. We have Lr(Ξl(t−τ), Ξl(t)) =
∫ t

t−τ ‖u
b
l (s)‖ds ≤

∫ t
t−τ c exp(−αs)ds =

c
α (exp(ατ)− 1) exp(−αt). Hence dr(X(t−τ), X(t)) ≤ Lr(Ξl(t−τ), Ξl(t))

exp−→ 0. This

proves part (III). �

6.5 Predictor C++ library for ArduPilot

This section provides explanations on the C++ code developed for the experimental

tests presented in Section 4.6. A copy of the full ArduPilot software including the
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developed code in this thesis is give in the CD attached to the thesis and is also avail-

able online at [13]. In the ArduPilot directory, there are two directories for the EKFs.

The original EKF of ArduPilot is at the path \ardupilot\libraries\AP_NavEKF

(which is referred to by EKF1) while the developed predictor library in this thesis

along with its combined EKF is at the path \ardupilot\libraries\AP_NavEKF2

(which is referred to by EKF2). In the directory AP_NavEKF2, AP_Predictors.h and

AP_Predictors.cpp are the header file and the body of the predictor library, re-

spectively, while AP_NavEKF2.h and AP_NavEKF2.cpp contain the header and body

of EKF2, respectively. The code has been developed in a object oriented manner,

meaning that AP_Predictors and AP_NaveEKF2 are two classes. An object belong-

ing to the class AP_Predictors is defined in AP_NaveEKF2 to facilitate combining the

developed predictor with EKF2 (see Section 6.5.2). Explanations and comments are

given in the code to help the reader better understand the code. In the following, we

briefly explain the correspondence between the functions within the predictor library

and the predictor equations given in Section 4.6.2. We also discuss how the predictor

library is combined with EKF2.

6.5.1 AP_Predictors

As was explained in Sections 4.4 and 4.6.2, the states of the predictor need to be

buffered. The length of the buffer should be at least equal to the maximum amount

of the measurement delay amongst all of the sensors. Size of the buffer in the de-

veloped code is determined by the variable BUFFER_SIZE in AP_Predictors.h. Cur-

rently, this variable is set to 50. Noting that ArduPilot runs at 50 Hz on planes1, the

maximum amount of delay allowed in the current configuration is 50× 1
50 (ms) =

1000 (ms)2. This is well beyond the usual delay of 220 (ms) assumed for commercial

GPS units and set in EKF2. The functions within AP_Predictors.cpp are as follows.

• UpdatePredictorStates : This function calls three functions to update the

internal states of the predictor according to the discretized predictor dynamics

(4.29)-(4.31). Namely, the function AttitudeModel, VelModel, and PosModel

implement the attitude kinematics (4.29), velocity kinematics (4.30), and the

1Recall that we used model planes for the experimental tests of Section 4.6
2Note that ArduPilot runs at 200 Hz on platforms other than planes, i.e. copters and rovers. For

those platforms, the maximum allowed delay drops to 50× 1
200 (ms) = 250(ms)
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position kinematics (4.31), respectively. The function UpdatePredictorStates

is called in the prediction stage of EKF2 yielding the predictor states to be

updated at the same rate as EKF2 states.

• VectorPredictor : This function implements the static predictor equation

(4.32) used for predicting the current magnetic field vector. This function is

called at the update stage of EKF2 where magnetic field measurement should

be fused.

• VelPredictor : This function implements the static predictor equation (4.33)

used for predicting the current linear velocity vector of vehicle. This function

is called at the update stage of EKF2 where velocity measurement should be

fused.

• PosNEPredictor : This function implements the static predictor equation (4.34)

used for predicting the current North and Earth elements of the position of

vehicle. This function is called at the update stage of EKF2 where North and

East position measurement should be fused.

• HgtPredictor : This function implements the static predictor equation (4.35)

used for predicting the current Down elements of the position of vehicle (i.e.

negative of hight). This function is called at the update stage of EKF2 where

Down position measurement should be fused.

• The functions storeDataVector and storeDataQuaternion are used for stor-

ing 3D vector elements (i.e. δvk+1 and δpk+1) and quaternion elements (i.e. qk+1)

of the predictor states into buffers. These functions also store the associated

time stamps of those vector and quaternion elements into separate buffers.

This functions are used in AttitudeModel, VelModel, and PosModel to store

the predictor states after each update.

• The function BestIndex reads a given time stamp buffer and finds the time

stamp that is closest to a given time. This function is used in VectorPredictor,

VelPredictor, PosNEPredictor, and HgtPredictor.
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6.5.2 Combining AP_Predictors with AP_NavEKF2

In order to combine the predictor with EKF2, the object ANU_Predictor belonging

to the class AP_Predictors is defined in AP_NavEKF2.h as a member of the class

AP_NavEKF2 (see the line 98 of AP_NavEKF2.h). This way, the functions defined in

the class AP_Predictors can be used within the class AP_NavEKF2. Oe can sim-

ply search for "ANU_Predictor" in AP_NavEKF2.cpp to find the exact lines of the

code where the functions of the predictor library are called. The predictor states

are updated by calling the function ANU_Predictor.UpdatePredictorStates in the

function UpdateStrapdownEquationsNED which is the prediction stage of EKF2 (see

the line 1213 of AP_NavEKF2.cpp). The functions VelPredictor, PosNEPredictor,

and HgtPredictor are all called within the function FuseVelPosNED where the ve-

locity and position measurements are fused (note that the predicted measurements

are fused instead of the actual measurements). The function VectorPredictor is

called within FuseMagnetometer where the predicted magnetic field is fused.
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