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Abstract

The last two decades have witnessed a growing global demand for high quality,
up-to-date mapping datasets from urban environments. However, the majority of
current map making solutions are labour intensive, cost ineffective and error prone.
This has prompted digital map publishers to seek automated solutions for creating
accurate, reliable maps. This work is inspired by a real-world project called AutoMap
where objects of interest and assets visible from the road scene are automatically
extracted from video data captured by land vehicles and geo-located to form a map.

This thesis provides a flexible solution to the problem of building and main-
taining a very-large-scale map using multiple vehicles. In particular, we consider
producing a map of landmarks on the scale of thousands of kilometres in an outdoor
environment. A setup as described in this work enables a continuously updated
database of road scene information at a fraction of the cost compared to the manual
alternative. According to the proposed framework, geographically located informa-
tion from the road scene is gathered continuously (over long periods of time) on
a very large scale by a fleet of distributed vehicles. Each vehicle is equipped with
a range of low-cost sensors including three cameras, a Global Positioning System
(GPS), an Inertial Measurement Unit (IMU), a processor and a 3G modem. In the de-
veloped solution, the mapping algorithm is distributed across different vehicles each
given the task of producing and updating a local map. The vehicles selectively (and
asynchronously) communicate maps to and from a central station in a bandwidth-
constraint environment. This central station combines the potentially overlapping
local maps to compile a global map. The developed multi-vehicle data fusion frame-
work complies with the essential practical requirements of the AutoMap project. In
particular, our solution is efficient in terms of both computational complexity and
communication bandwidth. Moreover, the proposed communication architecture is
scalable and is capable of dealing with time-varying overlapping map sizes.

This thesis also addresses a particular, yet prominent aspect of mapping systems,
namely quality assessment. A new concept of map quality for specialised road map-
ping applications such as AutoMap is established. We derive a particular type of
error measure, known as the Directional Map Error (DIMER) metric, which is ca-
pable of reflecting the accuracy of landmark maps in a more meaningful way. The
new metric can be tuned to fit a wide spectrum of mapping scenarios and can be
deployed by both scientific and business communities as a tool for comparing the
performance of different mapping techniques. We also devise a systematic approach
known as the Covariance Trajectory Perturbation (CTP) algorithm which is capable
of enhancing the DIMER-based quality of obtained maps when incorporated into
an EKF-SLAM structure. The effectiveness of this approach in general single-vehicle
and multi-vehicle settings are examined.
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Chapter 1

Introduction

The last two decades have witnessed a growing global demand for high quality, up-
to-date mapping datasets from urban environments. Different application domains
such as location-based services, asset management and route finding navigation can
benefit from accurate geo-location of road scene objects. However, the majority of
current map making solutions are labour intensive, cost ineffective and error prone.
This has prompted digital map publishers to seek automated, cost-effective solutions
for creating accurate, reliable maps of objects and assets visible from the road.

The inspiration behind this work stems from a real-world project called AutoMap.
This project addresses the above problems by developing cost-effective technologies
for the automatic creation of digital maps to support the growing data requirement
of the personal navigation market. The AutoMap project uses advanced computer
vision techniques to automatically extract and geolocate road signs and other objects
of interest1 from video footage captured by survey land vehicles.

This thesis considers the problem of building and maintaining a very-large-scale
map using multiple vehicles. In the proposed solution, geographically located infor-
mation from the road scene is gathered continuously on a very large scale by a fleet
of distributed vehicles and sent back to a central server where a global database is
compiled.

The current work explores several different aspects of this general problem area.
Accurate and reliable geo-localisation, efficient communication, computational feasi-
bility and quality assessment are among the main topics addressed in this thesis. The
methods used in this project belong to a broader research area involving information
fusion and simultaneous localisation and mapping. While the current chapter ad-
dresses some of these disciplines from a high level point of view, these topics are
further elaborated in this thesis from a more technical, detailed perspective.

The ability to collect, transmit and process information has been studied exten-
sively in the recent decades as part of the universal phenomenon commonly known
as the information age. Sensor enriched infrastructures can be found in many ap-
plication domains such as transportation, defence, surveillance and engineering in
today’s world. The abundance of information in the world makes it difficult to trans-
late this information into useful and sensible data. This makes the search to find

1This thesis will preliminary focus on traffic signs as landmarks of interest.

1
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2 Introduction

intelligent solutions to integrate and interpret different sources of information desir-
able.

Information fusion aims at a synergistic exploitation of multiple information
sources to obtain more information than is present in any individual source [Yan
et al., 2007; Braun et al., 2009]. In other words, by utilising the complementary prop-
erties of the different information sources, the information fusion process attempts
to reduce ambiguities and uncertainties in the measured information. In typical data
fusion and estimation problems, multiple noise-corrupted random variables need to
be fused together to obtain an improved estimate about the underlying state of a
system together with a measure of accuracy.

Simultaneous Localisation and Mapping (SLAM) is a popular technique in the
literature [Durrant-Whyte and Bailey, 2006; Kim and Sukkarieh, 2003; Dissanayake
et al., 2000b; Gutmann and Konolige, 1999] to address complex mapping problems
under conditions of process and sensor noise and possible modeling errors. This
algorithm first appeared in a seminal paper by Smith, Self and Cheeseman [Smith
and Cheeseman, 1986] and it has received a considerable amount of attention by the
robotics community [Lázaro and Castellanos, 2010; Menegatti et al., 2009; Castel-
lanos et al., 2000; Feder et al., 1999]. Broadly speaking, SLAM is the process of
concurrently building a map of the environment while using the map to estimate the
location of the robot in that unknown environment.

1.1 Multi-vehicle Simultaneous Localisation and Mapping

Although most of the initial interest in SLAM considered the problem of mapping
and localisation with a single vehicle, the first decade of the twenty-first century
saw a substantial interest in multi-vehicle localisation and mapping. The advantages
of using multiple, cooperative, vehicles in exploration and mapping applications,
compared to the single vehicle case are well known and intuitive, e.g. redundancy,
improved accuracy in mapping etc. [Fox et al., 2000; Burgard et al., 2000; Cao et al.,
1997].

At a high-level, information fusion is the fundamental tool required for multi-
vehicle SLAM as, on an abstract level, the problem is about combining numerous
sources of information (that may be correlated) about a common parameter in order
to increase one’s knowledge about that parameter.

In multi-vehicle SLAM the problem of where this fusion occurs and how infor-
mation is shared is a practical problem and is one that motivates much of the work
in the first three chapters of this thesis (along with similar work discussed subse-
quently). Different multi-vehicle data fusion architectures have been suggested and
implemented for tasks such as autonomous navigation [Bryson and Sukkarieh, 2005;
Kim, 2004; Williams, 2001], exploration and mapping [Nerurkar et al., 2009; Stipes
et al., 2006; Thrun, 2001] and target tracking [Nettleton, 2003; Ong et al., 2003; Lig-
gins et al., 1997].

The most obvious and traditional data fusion architecture is a fully-centralised
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§1.1 Multi-vehicle Simultaneous Localisation and Mapping 3

one where all the raw sensor data from multiple sources is transmitted to a cen-
tral station for fusion (e.g. using a large Kalman filter). Works such as [Fenwick
et al., 2002] and [Thrun and Liu, 2005] provide fully-centralised approaches to the
multi-vehicle SLAM problem. The main disadvantage of a centralised solution is
the communication and networking complexity required. The central station also
offers a single point of failure and thus centralised solutions in general are less re-
dundant and robust. In addition, the sophistication and heavy computational load at
the central station might lead to an undesirable computational bottleneck. However,
centralised solutions are convenient in numerous practical applications where it is
undesirable for the vehicles to communicate between themselves.

In contrast to the centralised systems, fully decentralised architectures often have
no central processing station. In such systems, individual stations (e.g. individual
vehicles) can perform data fusion in a fully autonomous manner, while receiving
information from and transmitting information to other particular stations. In other
words, fusion occurs locally at each station on the basis of local observations and the
information received from neighbouring stations. Examples of decentralised SLAM
can be found in [Nettleton et al., 2006; Sharon et al., 2003; Ong et al., 2003]. Of course,
in general, decentralised solutions are more robust to failure of a given station.

Both fully-centralised and conventional decentralised architectures have proven
to be effective in numerous mapping applications. However, without additional local
processing it turns out that both methods fail to provide a practical and flexible so-
lution to large-scale (millions of mapping points) mapping where limited bandwidth
and processing power is a real concern. This is particularly true when the constraint
of a centralised architecture is dictated by the problem. This will be discussed in
more details in the current and next chapters as part of the real-world motivation
behind this work.

Despite some fundamental work (e.g. [Nettleton et al., 2006; Nettleton, 2003]),
the problem of selective communication has not been extensively addressed in the
study of multi-vehicle information fusion (e.g. [Bryson and Sukkarieh, 2007]). In
large-scale, low-bandwidth mapping applications, sending all the local information
to the central station is not feasible due to the limited system and communication
resources present in practice. Information tailoring is necessary to avoid high com-
munication costs and other bandwidth constraints in a distributed data collection
system. Consequently, only the most valuable information should be selected and
transmitted. This is the avenue that we follow in Chapter 3.

In addition, the majority of the existing multi-vehicle SLAM techniques suffer
from the growing size of the local maps within individual nodes. Due to the large
number of features and the rapidly increasing map size, the SLAM algorithm fails
to fulfil the requirements of large-scale applications. The ramification is an immense
memory and computational load on the vehicles. Consequently, appropriate strate-
gies must be applied to limit the size of the SLAM filters in very large-scale environ-
ments. We discuss a particular pruning strategy in Chapter 3.
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4 Introduction

Figure 1.1: Road sign detection and localisation in the AutoMap project.

1.2 Thesis Motivation

Digital maps quickly become obsolete and need to be updated regularly2. Traditional
map making solutions are labor intensive, error prone, slow and cost ineffective. A
large portion of the map development cost using these methods is due to manual
methods, since they rely heavily on human labour. The ramification is the low speed
and inaccuracies in the mapping process. In addition, the data collection devices
usually utilised by map making companies3 employ high-grade sensors, thus are not
affordable for large-scale mapping applications. AutoMap addresses the above prob-
lems by developing cost-effective technologies for the automatic creation of digital
maps to support the growing data requirement of the personal navigation market.
At its core, the project uses advanced computer vision techniques [Overett et al.,
2009] to automatically extract and geolocate road scene objects (e.g. traffic signs)
from recorded video footage captured by survey land vehicles (see Figure 1.1). Such
objects are of interest to third party companies like mapping companies and road
asset managers. Figure 1.2 shows an example map output from this project.

One of the solutions offered by the AutoMap project is a passive data collection
scheme using a set of low-cost in-vehicle sensor platforms. In this solution, geo-
graphically located information from the road scene is gathered continuously (over
long periods of time) on a very large scale by a fleet of distributed vehicles such as
taxis, garbage trucks, delivery vans etc. and selectively sent back to a central server
where a global database is compiled (see Figure 1.3). Figure 1.4 gives an indication
of the size of the problem that we are addressing. The video captured by the vehi-

2Anecdotally, 5-15 % of the road sign inventory changes every year.
3The terms map mapping company, mapping company and road mapping companies are used

interchangeably throughout this thesis.
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Figure 1.2: Example map output from the AutoMap project. The road signs of in-
terest are extracted and geo-located. Location: Canberra, Australia (Source: Google

Earth).

cles is automatically analysed to extract road signs of interest. Such information is
currently collected in a manual fashion and updated only every few years which is
a very cumbersome and error prone process. A setup as described in this work en-
ables a continuously updated database of road scene information at a fraction of the
cost compared to the manual alternative. Each sensor platform, as installed in each
fleet vehicle, consists of three cameras, a Global Positioning System (GPS), a 3-axis
accelerometer, a 3-axis gyroscope, a 3-axis magnetometer, a processing unit and a 3G
modem4. Data from the sensors are continuously stored on a local hard drive, and
later analysed by the local processing unit in order of importance to maximise a cost
function representing the value of extracted information.

Analysing the vast amount of information gathered from the sensors and trans-
mitting it back to the central server is a challenging task as the platform installed
in each vehicle suffers from a number of constraints. These constraints can be cate-
gorised as 1) Communication bandwidth 2) Processing power, and 3) Memory and
storage. One of the key constraints this thesis sets out to address is the limited
communication bandwidth provided by the 3G modem. The limited communication
bandwidth not only makes it impossible to transmit all raw sensory data to a central
server and analyse it there, but even the amount of extracted, symbolic informa-
tion poses a challenge. Clearly, a communication architecture that allows selective
communication is needed to handle this case.

In general, there are different parties that can benefit from certain accurate infor-
mation regarding road signs (e.g. type and geo-location). These groups include, but
not limited to:

1. Navigation device owners

2. Asset owners (road authorities and city councils)

3. Mapping companies, content providers and surveying/engineering firms

4This type of sensor bundle is now also becoming commonplace in mobile phones and tablets.
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Cooperative map making!

Map 
Repository!

Central Fusion Center!
(CFC)!

Figure 1.3: The distributed information fusion model keeps the central map reposi-
tory up-to-date.

Figure 1.4: The red lines on the Australia map indicate the roads from which video
has been captured and automatically analysed for road signs (as of 2011). The chal-
lenge addressed in this thesis is how to further automate this task by having a fleet of
ad-hoc surveying vehicles efficiently communicating their observations to a central
server. Since 2011, many more roads have been added to this map. Gary Overett is

thanked for constructing the image.
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The first group comprises the consumers of satellite/navigation devices. The Au-
toMap project can provide this group with a better user experience by offering richer,
fresher, more reliable maps. Asset owners (such as road authorities and city councils)
constitute the second group of map users. These parties are interested in accurate
positioning of road signs in order to construct an up-to-date inventory for different
roads. In addition, accurate monitoring of potential changes to the location of road
signs (also known as change detection) is an important aspect of road asset man-
agement. The third group includes companies who control the personal navigation
market by providing map contents for the interested parties (such as the first two
groups). Sensis and TomTom are two examples of this group. These companies seek
to acquire diverse, high quality maps consisting of the geo-location of road signs
of interest in the environment. The AutoMap project can offer competitive edge to
this group by providing maps at a reduced cost and a higher update rate (due to the
automated map making process). This information is mainly used to provide naviga-
tion and routing advice for the first group and create digital map inventories for the
second group. The block diagram presented in Figure 1.5 visualises the relationship
between the AutoMap project and the above beneficiary parties.

AutoMap Project
(Sign Detection and 

Geo Location)

Mapping Companies, 
Content Providers and 

Surveying/Engineering Firms

Navigation Device 
Owners

Asset Owners
(Road Authorities and 

City Councils)

Figure 1.5: The relationship between the AutoMap project and different beneficiary
parties.

1.3 Quality Assessment in Mapping Applications

A particular, yet prominent facet of mapping applications is the way in which their
performance is evaluated. Accessing meaningful tools for systematic comparison be-
tween the results of various mapping techniques is desirable to the scientific as well
as the business community. To this end, the majority of the works in the literature
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8 Introduction

have attempted to utilise strategies to demonstrate the effectiveness of their meth-
ods and the precision of their results based on a set of criteria. Notwithstanding, it
is widely believed that (e.g. [Jaulmes et al., 2009; Kümmerle et al., 2009; Mourikis
and Roumeliotis, 2006]) the robotic mapping community lacks a generally accepted,
standard methodology for quality assessment and comparison between the results
of different algorithms. Few researchers have recognised the importance of a generic
quality metric which can be applied to calculate a quantitative measure of precision
that thoroughly manifests the characteristics of systems in real-world applications.
Most existing solutions fail to provide a comprehensive evaluation in specialised
mapping scenarios, since they do not fully reflect the quality and accurateness of
mapping processes. Moreover, a large majority of the existing solutions are subjec-
tive, influenced by individual perceptions and hence debatable. This work sets out to
address this issue and clarify the concept of ’quality assessment’ for practical robotic
mapping applications. Chapter 4 introduces a new map error measure known as
DIMER metric which is able to capture the quality of mapping frameworks in a more
meaningful way compared to commonly used methods.

Having access to a generic quality measure for robotic mapping applications
(such as the DIMER metric) then poses new practical questions. The main question
would be ’how can a given mapping system be revised so as to generate more accu-
rate maps when judged using the new map quality metric?’. This specific problem
falls into the more general area of criteria-based estimation in which certain crite-
ria are optimised in order to achieve performance improvements. This is the main
subject we aim to address in Chapter 5 of this thesis. Specifically, the incorporation
and application of the newly designed DIMER metric in different components of the
previously mentioned distributed multi-vehicle mapping system is studied.

1.4 Thesis Contribution

The first contribution of this work is the development of a multi-vehicle data fu-
sion framework for a real-world inspired road mapping application. We introduce
a hierarchical data fusion architecture and a communication scheme that allows the
communication of sub-maps of arbitrary size. In 3.3, a practical pruning algorithm
based on a measure of information gain is introduced to overcome the problem of
progressively growing map sizes within individual vehicles. Moreover, the required
communication bandwidth is reduced significantly by selectively transmitting sub-
maps with the largest information contribution to a central server, where a global
map repository is maintained. The proposed communication architecture is flexi-
ble in the sense that it is capable of dealing with dynamically changing map sizes
in the entire system. In addition, the fusion algorithm offered in this work ensures
that map estimates are integrated in a consistent and robust fashion. The general
implementation complies with the essential practical requirements of the AutoMap
project, as the real-world inspiration behind this work.

The second contribution of this thesis is the development of a new concept of map
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§1.5 Thesis Structure 9

quality for specialised road mapping applications (such as AutoMap). In Section 4.5,
we introduce and formulate a new map error measure known as DIMER metric
which is able to capture the accurateness of mapping systems in a more meaning-
ful way compared to traditional methods. The DIMER metric is developed for two
fundamentally distinct cases, depending on the accessibility of ground-truth infor-
mation.

In addition, this work investigates the incorporation of the newly designed DIMER
metric into some of the most common estimation and mapping frameworks with the
aspiration of producing high-quality map estimates. A new methodology called the
Covariance Trajectory Perturbation (CTP) is developed in Section 5.4 which is capa-
ble of enhancing the quality of obtained maps when integrated into the standard
EKF-SLAM structure. The applicability and performance of the CTP method is anal-
ysed in detail in Section 6.3. This solution is then also systematically expanded to the
previously mentioned multi-vehicle SLAM system with efficient communication. Fi-
nally, this thesis examines the impact of incorporating a filtering structure known as
the converted measurement Kalman filter with debiasing compensation (D-CMKF)
into the non-linear SLAM problem in order to reduce the unwanted bias effect in
the mapping process. The performance of the resulting mapping system and the be-
haviour of the DIMER metric is analysed for the multi-vehicle SLAM setting. It will
be shown that this integration can effectively reduce the estimated map error with
respect to the true map, in both local and global maps.

1.5 Thesis Structure

This thesis consists of seven chapters. With the exception of the current chapter, each
chapter begins with an introduction and concludes by a summary. The literature
review regarding each topic is provided in its respective chapter.

Chapter 2 presents the theoretical background and preliminaries required to ad-
dress the large-scale multi-vehicle mapping problem outlined in this work. The ob-
jective is to evaluate and provide the information in line with the concepts used in
this thesis. An overview of some of the most popular statistical estimation and filter-
ing techniques is conducted. The simultaneous localisation and mapping (SLAM) is
presented as one of the key solutions to the problem of map making in the presence
of process and observation noise. In addition, the chapter formulates the problem at
hand and discusses the existing conceptual and technical challenges in designing a
scalable mapping framework. A summary of the principal literature describing dif-
ferent methodologies to the multi-vehicle SLAM problem is also presented and the
shortcomings of the existing methods are described.

Chapter 3 provides a flexible solution to the problem of multi-vehicle SLAM for
very-large-scale mapping applications. An overview of different components of the
mapping system (such as the local SLAM filter, channel filter and the central fusion
centre) is presented. A data fusion framework based on the popular Covariance In-
tersection (CI) algorithm is devised to tackle the problem of redundant information
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propagation. To avoid excessive communication costs, a communication scheme is
proposed which operates by selectively transmitting the most informative informa-
tion from individual vehicles. Moreover, a practical pruning algorithm is applied to
restrict the size of local maps inside the vehicles.

Chapter 4 is concerned with quality assessment in practical mapping systems
with a focus on the real-world application in this work. A review of some of the
most common techniques used to evaluate the quality of localisation and mapping
systems is provided. The shortcomings of the existing methods are discussed and
the need for a more meaningful quality measure for practical mapping applications
is justified. A new map quality measure known as DIMER metric is devised which
incorporates type and spatial orientation of the existing map elements.

Chapter 5 investigates different techniques for criteria-based estimation and map-
ping with a direct focus on incorporating the DIMER metric into different facets of
mapping systems. The practical problem of fusing two or more maps with unknown
correlation in order to achieve a single, more accurate map (when judged using the
DIMER criteria) is explored. For this purpose, the covariance intersection algorithm
is revisited in this chapter, this time with the DIMER metric as its minimisation cri-
terion. Furthermore, a systematic method known as criteria-based covariance trajec-
tory perturbation (CTP) is proposed to enhance the quality of maps obtained using
the EKF-SLAM algorithm. To tackle an unwanted bias problem in the map estimates
(amplified due to the utilisation of the CTP method), a debiasing technique coupled
with a converted measurement Kalman filtering structure (D-CMKF) is devised and
integrated into the EKF-SLAM structure.

Chapter 6 presents the simulation results of the methods developed throughout
this thesis. At first, the effectiveness of the proposed multi-vehicle mapping solu-
tion for large-scale environments is demonstrated. The results pertaining to the new
DIMER metric and criteria-based mapping is presented next. In particular, an ex-
tensive analysis on the applicability and performance of the covariance perturbation
method is provided. The incorporation of the proposed algorithms into the dis-
tributed mapping system is investigated. Furthermore, the effect of applying the
D-CMKF structure to the local EKF-SLAM filter of individual vehicles is studied.
The performance of the system is assessed and compared against other discussed
solutions.

Finally, Chapter 7 provides the conclusion of this work along with suggestions
on areas of future work.
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Chapter 2

Background and Problem
Formulation

2.1 Introduction

The first objective of this chapter is to provide a theoretical background and pre-
liminaries required to address the large-scale multi-vehicle mapping problem in this
thesis. The second objective is to present and formulate the problem at hand and to
discuss the existing conceptual challenges and difficulties that must be tackled in de-
signing a scalable multi-vehicle mapping framework. The limitations and constraints
imposed on our particular system are elaborated and the subtle practical differences
with the existing methods are outlined.

The structure of this chapter is as follows. Section 2.2 provides an overview
on some of the most popular state-of-the-art statistical estimation and filtering tech-
niques. The Kalman Filter (KF), a practical versatile procedure which combines noisy
sensor measurements to estimate the state of a system with uncertain dynamics, will
be presented first. Its nonlinear counterpart, the Extended Kalman Filter (EKF), will
be formulated and discussed subsequently as the de-facto approach for nonlinear
estimation and sensor fusion in state space. These two algorithms form the corner-
stones of most of the stochastic filtering in this work. This section also includes
a brief synopsis on estimation in information space and a discussion on the infor-
mation form of the Kalman filter. The information space offers some interesting
characteristics which will be exploited in the next chapter for communication and
fusion of data in the proposed multi-vehicle mapping system.

Simultaneous Localisation and Mapping (SLAM) is presented in Section 2.3 as
one of the most widely used tools in the literature to address complex mapping
problems under the influence of process and sensor noise and possible modelling
errors. Broadly speaking, SLAM is the process of concurrently building a map of
the environment while using the map to estimate the location of the robot in that
unknown environment.

Section 2.4 discusses the problem of localisation and mapping using multiple
vehicles. The strategical advantages of using multiple, cooperative, vehicles in ex-
ploration and mapping applications, compared to the single vehicle case will is ex-

11
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12 Background and Problem Formulation

plored. Furthermore, the current literature is surveyed and various algorithms and
techniques applied in different multi-vehicle scenarios is introduced and their re-
spective properties are discussed.

Typically, one of the key decisions that has to be made prior to the design of a
multi-agent multi-sensor system is the way the system is set up from an architec-
tural point of view. A brief review of some of the most popular multi-vehicle data
fusion architectures is conducted in Section 2.5. Three main architectures namely
centralised, decentralised and hierarchical are analysed and the advantages and dis-
advantages of each architecture are discussed.

Major challenges in building and maintaining maps in large-scale environments
are outlined in Section 2.6. Fundamental issues that need to be considered and
rectified in the implementation of large-scale mapping systems are outlined and the
shortcomings of the existing methods are discussed.

A description of the real-world practical project under study and the main re-
source constraints imposed on the project are described in Section 2.7. The devised
solution must be able to cope with these limitations across a range of practical situa-
tions. Therefore, addressing the existing issues are of absolute necessity in the design
and formulation of the large-scale distributed mapping system.

Finally, Section 2.8 devises a hierarchical architecture with a central base station to
combine the local maps obtained from individual vehicles into a global map. In this
chapter, the proposed architecture is addressed from a high-level point of view. Dif-
ferent components of the distributed mapping system, the task associated with each
component and the way these system entities interact with each other are presented
in Chapter 3.

2.2 Statistical Filtering Techniques

There is an abundance of literature on the area of statical estimation and filtering.
The aim of this section is to establish the mathematical framework for different es-
timation algorithms deployed throughout this thesis. These algorithms are either
directly implemented in this work, or their analysis and properties have been con-
sidered essential in decision making regarding the design of the large-scale multi-
vehicle mapping system. The current background material on estimation algorithms
is presented for completeness; thus, advanced readers may skip this section.

2.2.1 Kalman Filter (KF)

The Kalman filter (KF) is a recursive estimation technique that estimates the underly-
ing states of a linear, dynamical system through a process of prediction and update.
The algorithm minimises the mean squared error (MSE) between the estimated and
the real value of a state x.

The Kalman filter operates under two main assumptions. Firstly, the system
under study is a linear time-varying system and secondly, all error terms and mea-
surements have a Gaussian (Normal) probability density distribution. If any of the
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§2.2 Statistical Filtering Techniques 13

aforementioned assumptions are violated, the algorithm will no longer guarantee an
efficient, optimal state estimation. Therefore, these two conditions are imperative for
proper functionality and optimality of the Kalman filter in any application.

The operation of the filter relies on the proper definition of a dynamic process
model, an observation model and a stochastic model [Brown et al., 1992] which are
presented next.

Linear Process Model1

A linear, time-varying discrete-time system can be expressed mathematically using
the state space representation via the following difference equation:

x(k) = Fx(k− 1) + Bu(k) + Gw(k), (2.1)

where x(k) is the state vector at time k, F is a linear state transition matrix relating the
current state to the previous state at time k− 1, u(k) is the input control vector while
B is the model that links the control vector to the current state, and w(k) represent
the process noise which relates to the state vector through matrix G.

The process noise w(k) is a Gaussian white noise that accounts for the inherent
uncertainties in the state transition matrix and control input and is described accord-
ing to

E[w(k)] = 0 ∀k,

E[w(k)wT(j)] =

{
Q(k) k = j
0 k 6= j.

In other words, w(k) is assumed to be a zero mean, uncorrelated random se-
quence with covariance Q(k).

Linear Observation Model2

At time k an observation z(k) of the state x(k) is taken according to

z(k) = Hx(k) + v(k), (2.2)

where H is the linear observation model which links the current state to the obser-
vation vector. In addition, v(k) is the observation noise that models the uncertainties
associated with the made observation. The observation noise is also assumed to be a
zero mean, uncorrelated random sequence with covariance R(k),

E[v(k)] = 0 ∀k,

1The terms ’Process model’ and ’state transition model’ are used synonymously throughout this
thesis.

2The terms ’observation model’ and ’measurement model’ are used synonymously throughout this
thesis.
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14 Background and Problem Formulation

E[v(k)vT(j)] =

{
R(k) k = j

0 k 6= j.

Moreover, the process and observation noises are assumed to be mutually exclu-
sive (uncorrelated) and therefore do not affect each other,

E[w(k)vT(j)] = 0 ∀k, j

Given the above observation model and the process model presented earlier, the
Kalman filter computes a recursive estimate of the system’s states at time k, given
all observations up to time k. This estimate is denoted by x(k|k) and is referred to
as a priori state estimate throughout this thesis. Likewise, x(k|k − 1) is called the a
posteriori state estimate at time k, given all observations up to and including time
k− 1.

In essence, the Kalman filter estimates the unknown states of a process using a
form of feedback control in a recursive way. The filter estimates the process state at
a specific time and then obtains the feedback in form of noisy observations. Based
on this, two groups of equations can be defined for the filter, time update equations
and measurement update equations. The time update equations propagate in time
to get the current state and error covariance estimates. This phase of the algorithm
is also referred to as the prediction step. Then, the filter uses the measurement
update equations as the feedback to obtain an improved estimate of the states. This is
referred to as the update (or estimation) step in the filtering literature. Therefore, the
KF recursively conditions the current estimate on all of the past observations [Welch
and Bishop, 1995]. This will provide an efficient computational mean to estimate the
state of a stochastic process. The prediction and update steps are described below.

KF Prediction Step

The aim of the prediction step of the Kalman filter is to predict the states based upon
the past estimations. Hence, the predicted state is derived by taking the expectation
of Equation (2.1) with zero process noise, given all the previous observations denoted
by Zk−1, according to:

x(k|k− 1) , E[x(k|Zk−1)]

= Fx(k− 1|k− 1) + Bu(k). (2.3)

The uncertainty in the predicted state at time k is represented by P(k|k− 1) and
is determined by taking the expected value of the variance of the error in the state at
time k conditioned upon all observations up to time k− 1 as shown below.
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P(k|k− 1) , E[(x(k)− x(k|k− 1)(x(k)− x(k|k− 1)T|Zk−1]

= FP(k− 1|k− 1)FT + GQ(k)GT. (2.4)

where P(k − 1|k − 1) corresponds to the error covariance matrix from the filter’s
previous step.

KF Update Step3

After the occurrence of an observation z(k) at time k, the updated state is derived
by taking the expectation of Equation (2.1) with zero process noise, given all the
observations up to and including time k.

x(k|k) , E[x(k|Zk)]

= x(k|k− 1) + K(k)ν(k). (2.5)

where K(k) and ν(k) and are known as the Kalman gain and the innovation vector
respectively. The Innovation vector (or residual) is determined by subtracting the
predicted observation with zero observation noise from the measured one,

ν(k) = z(k)−Hx(k|k− 1). (2.6)

Equation (2.5) updates the state vector by adding a weighting on the innovation
to the latest prediction. The Kalman gain K(k) which acts as the weighting factor
in this equation is chosen so as to minimise the trace of the state covariance matrix.
Under the aforementioned Gaussian assumptions on process and observation noise,
this is equivalent to the minimisation of the mean squared error of the state estimate.
The conventional (minimal trace) Kalman gain is derived as4

K(k) = P(k|k− 1)HS−1(k), (2.7)

where S(k) represents the innovation covariance and is determined according to

S(k) = HP(k|k− 1)HT + R(k) (2.8)

The covariance matrix, which represents the uncertainty in the estimated state, is
derived by taking the expected value of the variance of the error in the states at time
k given all observations up to time k,

3Please note that the update phase of the Kalman filter may be referred to as ’estimation phase’.
4The Kalman gain and its derivation are discussed further in Chapter 5.
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P(k|k) , E[(x(k)− x(k|k− 1)(x(k)− x(k|k− 1)T|Zk]

= [I−K(k)H]P(k|k− 1)[I−K(k)H]T + K(k)R(k)KT(k) (2.9)

The above formula is also known as the Joseph form of the covariance update
equation and is valid for any value of the gain K(k). This equation can be simplified
further if the optimal Kalman gain form Equation (2.7) is used. This results in the
below covariance update equation:

P(k|k) = (I−K(k)H)P(k|k− 1) (2.10)

As mentioned before, the above covariance matrix is the minimal trace solution
for the Kalman filter.

2.2.2 Extended Kalman Filter (EKF)

In many real-world practical applications, the underlying process and observation
models are nonlinear. This precludes the use of the above-mentioned Kalman fil-
ter algorithm. However, a different version of the Kalman filter, known as the Ex-
tended Kalman Filter (EKF) can be utilised for non-linear systems. The EKF operates
by continuously linearising the system model before applying the linear estimation
techniques [Maybeck, 1979]. Although there are few theoretical results to indicate the
validity of this algorithm, it has been proven that the EKF can operate successfully
when the model nonlinearity is relatively benign. The foundation for the construc-
tion of the EKF is the Kalman Filter which was outlined in Subsection 2.2.1. EKF
equations and the manner in which the filter handles the nonlinearity problem in the
system is presented here.

Non-linear Process Model

A non-linear time-varying system in discrete-time can be expressed according to

x(k) = f(x(k− 1), u(k), w(k)), (2.11)

where f(., ., .) is a non-linear state transition function which relates the current state
to the previous state x(k− 1), current control input u(k) and process noise w(k). The
zero-mean Gaussian noise assumptions stated earlier for the Kalman filter also hold
for the non-linear system equations.

Non-linear Observation Model

In the general case, the non-linear observation model is expressed by

z(k) = h(x(k), v(k)) (2.12)
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where h(., .) is the observation function at time k which links the observation to the
current state and observation noise vector.

EKF Prediction Step

In a similar fashion to what was described in Subsection 2.2.1 for the Kalman filter,
the predicted state for the EKF is evaluated with zero process noise, according to

x(k|k− 1) = f(x(k− 1|k− 1), u(k), 0) (2.13)

The resulting predicted covariance matrix is given by

P(k|k− 1) = ∇fx(k) P(k− 1|k− 1)∇fT
x (k) +∇fw(k)Q(k)∇fT

w(k) (2.14)

where P(k − 1|k − 1) corresponds to the previous error covariance matrix from the
estimation step. The term ∇fx(k) in the above equation is the Jacobian5 of the non-
linear state transition function f, with respect to the previous state estimate x(k|k− 1)
and the term ∇fw(k) is computed as the Jacobian of the same matrix with respect to
the process noise vector w(k). Both ∇fx(k) and ∇fw(k) are Jacobian matrices which
have to be calculated at each prediction step by taking the partial derivatives of f with
respect to their corresponding variables. As a result, the best linear approximation of
the state transition function around the current state estimate is obtained. However,
the presence of Jacobian terms in the EKF adds a higher level of complexity to the
system.

EKF Update Step

After the occurrence of an observation, the state vector is updated by

x(k|k) = x(k|k− 1) + K(k)ν(k), (2.15)

where ν(k) or the innovation vector is calculated by subtracting the predicted obser-
vation with zero observation noise from the measured one,

ν(k) = z(k) − h(x(k|k− 1), 0). (2.16)

As before, the optimal Kalman gain is chosen so as to minimise the trace of the
updated covariance matrix. Therefore,

K(k) = P(k|k− 1)∇hT
x (k)S

−1(k), (2.17)

where S(k) is called the innovation covariance which is calculated according to,

S(k) = ∇hx(k)P(k|k− 1)∇hT
x (k) +∇hυ(k)R(k)∇hT

υ (k). (2.18)

5The Jacobian matrix is defined as the matrix of all first-order partial derivatives of a function [Tay
et al., 1998].
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Figure 2.1: A diagram illustrating the operation of the extended Kalman filter (EKF)

In the above equation, the term ∇hx(k) is the Jacobian of the current observation
model with respect to the previous state estimate x(k− 1|k− 1). Similarly, ∇hυ(k) is
the Jacobian of the same function with respect to the observation noise v(k).

Finally, the updated covariance matrix is formed by using

P(k|k) = [I−K(k)∇hx(k)]P(k|k− 1)[I−K(k)∇hT
x (k)]

T

+ K(k)∇hυ(k)R(k)∇hT
υ (k)K

T(k). (2.19)

A block diagram for the extended Kalman filter is illustrated in Figure 2.1.

2.2.3 Information Filter (IF)

The information filter (IF), also known as the inverse covariance filter, is an estimation
technique which is numerically equivalent to the Kalman filter. However, rather than
using the conventional state space representation, this filter is expressed in terms of
measures of information. In the information filter framework, the estimated state
x(k|k) and estimated covariance matrix P(k|k) are replaced respectively by the so-
called information state vector y(k|k) and information matrix Y(k|k)6 according to
the following definitions:

y(k|k) , P−1(k|k)x(k|k) (2.20)

Y(k|k) , P−1(k|k) (2.21)

6Y(k|k) is also known as Fisher information.
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It is well known (c.f. [Durrant-Whyte and Henderson, 2008; Bar-Shalom et al.,
2004]) that a duality exists between the information filter and the conventional Kalman
filter in a way that the prediction step of the information filter is related to the update
step of the Kalman filter, and the update of the information filter is comparable to
the prediction step of the Kalman filter [Anderson and Moore, 2012]. The following
prediction and update equations for the information filter are obtained for the linear
process and observation models described by Equations (2.1) and (2.2). We simply
provide the final equations here. A full derivation can be found in the early book by
Maybeck [Maybeck, 1979].

IF Prediction Step

The predicted information state vector is derived according to

y(k|k− 1) = L(k|k− 1)y(k− 1|k− 1) + Y(k|k− 1)B(k)u(k) (2.22)

where L(k|k− 1) is called the similarity transform matrix as is defined by

L(k|k− 1) , Y(k|k− 1)F(k)Y(k− 1|k− 1)−1 (2.23)

The predicted information matrix is given by

Y(k|k− 1) =
(

F(k)Y−1(k− 1|k− 1)FT(k) + G(k)Q(k)GT(k)
)−1

(2.24)

IF Update Step

Within the information filter framework, when an observation z(k) happens at time
k, the information state vector contribution and its corresponding information matrix
associated with that observation are defined as

i(k) , HT(k)R−1(k)z(k) (2.25)

I(k) , HT(k)R−1(k)H(k) (2.26)

The update equations of the information filter are simply obtained by adding
these respective information contributions to the information vector and the infor-
mation matrix according to

y(k|k) = y(k|k− 1) + i(k) (2.27)

Y(k|k) = Y(k|k− 1) + I(k) (2.28)

For the general scenario of incorporating n synchronous observations at time k,
the sum of information contributions from each observation zj(k) is added to the
information vector and information matrix as
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y(k|k) = y(k|k− 1) +
n

∑
j=1

ij(k) (2.29)

Y(k|k) = Y(k|k− 1) +
n

∑
j=1

Ij(k) (2.30)

Therefore, with regards to information integration, all update operations are ad-
ditive [Nettleton et al., 2006; Ong et al.; Thrun et al., 2003]. As a result, the update
step is quite simple compared to that of the Kalman filter7. This is an appealing
characteristic and one of the main advantages of the information filter (and more
generally, data fusion in information space) that will be exploited in Chapter 3.

2.2.4 Extended Information Filter (EIF)

The extended information filter is the nonlinear version of the information filter and
is numerically equivalent to the extended Kalman filter presented earlier in this sec-
tion. Although the EIF is not used directly in this thesis, its equations are presented
here for completeness. The following prediction and update equations are obtained
for the nonlinear process and observation models described by Equations (2.11) and
(2.12). A complete derivation of the non-linear information filter equations along
with some of its applications are shown in [Thrun et al., 2002].

EIF Prediction Step

y(k|k− 1) = Y(k|k− 1)f(x(k|k− 1), u(k), 0) (2.31)

Y(k|k− 1) =
[
∇fx(k)Y−1(k− 1|k− 1)∇fT

x (k) +∇fw(k)Q(k)∇fT
w(k)

]−1
(2.32)

EIF Update Step

The information vector contribution and its associated information matrix are

i(k) = ∇hT
x (k)

[
∇hυ(k)R(k)∇hT

υ (k)
]−1

[ν(k) +∇hx(k)x(k|k− 1)] (2.33)

I(k) = ∇hT
x (k)

[
∇hυ(k)R(k)∇hT

υ (k)
]−1
∇hx(k) (2.34)

where the innovation vector ν(k) is given by Equation (2.16).
Similar to the linear information filter, the update equations of the extended in-

formation filter are simply obtained using

7Nevertheless, the prediction step is comparatively more complex as opposed to the Kalman filter.
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y(k|k) = y(k|k− 1) + i(k) (2.35)

Y(k|k) = Y(k|k− 1) + I(k) (2.36)

2.3 Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation and Mapping (SLAM) is a popular technique in the litera-
ture [Durrant-Whyte and Bailey, 2006; Kim and Sukkarieh, 2003; Dissanayake et al.,
2000b; Gutmann and Konolige, 1999] to address complex mapping problems under
conditions of process and sensor noise and possible modeling errors. This algorithm
first appeared in a seminal paper by Smith, Self and Cheeseman [Smith and Cheese-
man, 1986] and it has received a considerable amount of attention by the robotics
community [Castellanos et al., 2000; Feder et al., 1999; Menegatti et al., 2009; Lázaro
and Castellanos, 2010]. Broadly speaking, SLAM is the process of concurrently build-
ing a map of the environment while using the map to estimate the location of the
robot in that unknown environment. In essence, SLAM tries to estimate both the
robot and map states with successive observations. By tracking the relative position
between the robot and the detected landmarks8 in the environment, both the position
of the robot and the position of the landmarks can be estimated simultaneously.

A handful of techniques have been proposed for solving the SLAM problem.
In [Thrun, 2002], Sebastian Thrun provides a comprehensive survey on existing
robotic mapping strategies such as Maximum likelihood estimation, expectation max-
imisation, extended Kalman filter (EKF), extended information filter (EIF) and parti-
cle filtering. Notwithstanding the effectiveness of all the aforementioned techniques
in various applications, algorithms based on Kalman filtering are widely used to
probabilistically estimate the robot and map objects in the SLAM context and hence
form the basis of most of the work in this thesis. In practice, the extended Kalman
filter (addressed in Section 2.2) is often used as an ad-hoc approximation for non-
linear systems and for fusing the information collected by the robot in a recursive
fashion [Leonard and Durrant-Whyte, 1992]. In other words, EKF calculates Gaus-
sian posterior estimates based on the location of the detected landmarks and the
mobile robot.

We now provide the mathematical foundation for the single-vehicle SLAM algo-
rithm employed in this work. This framework along with the applied notation has
been mostly adopted from the influential paper by Dissanayake et al. [Dissanayake
et al., 2001] and closely resembles that of the classical paper by Smith et al. [Smith
et al., 1990]. In the context of our mapping application, the robot is a moving land
vehicle and the landmarks are the stationary road signs with their position estimates
to be determined. Please note that, as will be seen later in this thesis, beside position,
some types of landmarks (e.g. road signs) have a secondary attribute namely ori-
entation (or surface normal) that may be of interest in some mapping applications.

8Please note that the terms landmark and feature will be used interchangeably in this thesis.
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However, without loss of generality, this chapter, as well as Chapter 3, only consid-
ers the unknown position of landmarks. The more general case of landmark’s state
consisting of position and orientation will be discussed in detail in Chapter 4.

2.3.1 State and Covariance Representation in SLAM

Consider a mobile vehicle traversing an environment containing a population of nav-
igable landmarks with unknown time-invariant locations. The vehicle is equipped
with a sensor (e.g. laser scanner, camera) or a bundle of sensors which are able
to detect the environmental landmarks of interest and provide relative observations
(measurements) of those landmarks with respect to the vehicle itself.

The state of the SLAM system x(k) comprises the state of the vehicle along with
the state of all the detected landmarks. The state of the vehicle at time k is denoted
xv(k) and usually consists of the position and orientation of the moving platform.
The state of the ith landmark, normally consisting of an estimate of its position, is
denoted xmi(k). The joint subscript m indicates that the variable is akin to some land-
mark in order to differentiate between vehicle and landmark states9. The position
vector of all the registered landmarks is denoted xm(k), therefore

xm(k) = [xT
m1(k), xT

m2(k), . . . , xT
mN(k)]

T (2.37)

where N denotes the current number of landmarks stored in the SLAM filter.

Following the Bayesian notation used earlier in Section 2.2, the estimated state
vector and its associated covariance matrix (in block form) for the SLAM system may
be written as

x(k|k) =
[

xv(k|k)
xm(k|k)

]
(2.38)

P(k|k) =
[

Pvv(k|k) Pvm(k|k)
Pmv(k|k) Pmm(k|k)

]
(2.39)

with Pvv(k|k) and Pmm(k|k) representing the covariance of the vehicle states and reg-
istered landmark states respectively, while the terms Pmv(k|k) and Pvm(k|k) denoting
the cross-covariance between the vehicle and landmark states.

In this section, we restrict our discussion to the general process and observation
models for SLAM, without considering a particular type of system. A more detailed
operation of the SLAM filter will be discussed in Chapter 3 when addressing the
local SLAM filter in the multi-vehicle mapping system.

9The superscript has been reserved for future chapters to indicate the vehicle ID in multi-vehicle
mapping systems.
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2.3.2 General Vehicle and Landmark State Transition Models for SLAM

The general form of the state transition model for SLAM is mathematically expressed
by the following difference equation

x(k) = f(x(k− 1), u(k), w(k)) (2.40)

where similar to the notation used in 2.2.2, f is the nonlinear state transition function,
u is the control input vector and w is the vector of process noise. Explicitly, Equation
(2.40) can be partitioned into the vehicle and the map state dynamic model.

The motion model of the vehicle is represented using a non-linear discrete-time
state transition equation as follows:

xv(k) = fv(xv(k− 1), uv(k), wv(k)) (2.41)

where fv is the vehicle’s state transition function, uv is the control input vector and
wv is the vector of process noise errors pertaining to the vehicle.

Similarly, the general state transition equation for the registered landmarks is
given by

xm(k) = fm(xm(k− 1), wm(k)) (2.42)

The dynamic model for the ith landmark is trivial and is given by

xmi(k) = xmi(k− 1) (2.43)

simply because the landmark locations are assumed stationary in SLAM.
As a result, the general state transition model of Equation (2.40) can be written

by combining the process model equations described in (2.41) and (2.42) as

[
xv(k)
xm(k)

]
=

[
fv(xv(k− 1), uv(k), wv(k))

fm(xm(k− 1), wm(k))

]
(2.44)

2.3.3 General Observation Model for SLAM

As mentioned before, it is assumed that the moving vehicle is equipped with a sensor
(or set of sensors) that provide relative observations of the landmark with respect to
the vehicle in terms of sensor measurements. The observation model provides the
relationship between these measurements, the vehicle and landmark states. The non-
linear observation model in discrete-time is given by

z(k) = h(x(k), v(k)) (2.45)

where h(., .) is a general observation function, while v(k) is the vector associated
with observation noise. Equation (2.45) is used in order to predict the sensor mea-
surements for different landmarks. This equation can be simplified to reflect the fact
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that the predicted measurement vector for an arbitrary landmark i, is only a function
of the vehicle state xv(k) and the landmark state itself xmi(k).

zi(k) = h(xv(k), xmi(k)) + v(k) (2.46)

Notice that the general premise on observation noise v(k) has now been relaxed
compared to the generic model of Equation (2.45), by assuming additive observation
noise.

The next three subsections will address the operation of the SLAM algorithm. As
stated before, the extended Kalman filter is used in this work as a state estimator for
localisation and mapping using SLAM.

2.3.4 SLAM Prediction Step

Similar to the EKF equations of Section 2.2.2, the state vector and its covariance
matrix are propagated using the nonlinear process model f and its corresponding
Jacobian matrix according to

x(k|k− 1) = f(x(k− 1|k− 1), u(k), 0) (2.47)

P(k|k− 1) = ∇fx(k) P(k− 1|k− 1)∇fT
x (k) + ∇fw(k)Q(k)∇fT

w(k) (2.48)

2.3.5 SLAM Update Step

In the event of occurrence of an observation, if the observed landmark is already
stored in the map and is successfully associated with one of the registered landmarks,
the current state vector and covariance matrix are updated according to

x(k|k) = x(k|k− 1) + K(k)ν(k), (2.49)

P(k|k) = [I − K(k)∇hx(k)]P(k|k− 1)[I−K(k)∇hT
x (k)]

T

+ K(k)R(k)KT(k). (2.50)

where the associated innovation vector, Kalman gain and innovation covariance are
respectively determined using

ν(k) = z(k) − h(x(k|k− 1), 0) (2.51)

K(k) = P(k|k− 1)∇hT
x (k)S

−1(k) (2.52)

S(k) = ∇hx(k)P(k|k− 1)∇hT
x (k) + R(k) (2.53)

Please note that topics such as data association in SLAM are beyond the scope of
this work and hence will not be mentioned in this chapter.
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2.3.6 State and Covariance Augmentation in SLAM

In the event of occurrence of an observation, if the observed landmark is not matched
with any of the already registered landmarks in the map, it must be added to the
existing map through extension of the state vector and covariance matrix described
by Equation (2.38) and (2.39).

Let gi(., .) be a nonlinear initialisation function that maps the current vehicle state
estimate and the new observation to the new landmark estimate at time k according
to

xmi(k) = gi(xv(k), z(k)) (2.54)

Then, the augmented state vector can be written as

xaug(k) =

 xv(k)
xm(k)

gi(xv(k), z(k))

 (2.55)

The augmented covariance matrix is also formed according to10

Paug(k) =

 Pvv(k) Pvm(k) (∇vgi(k)Pvv(k))T

Pmv(k) Pmm(k) (∇vgi(k)Pvm(k))T

∇vgi(k)Pvv(k) ∇vgi(k)Pvm(k) γ(k)

 (2.56)

where the block covariance matrix γ(k) is given by

γ(k) = ∇vgi(k)Pvv∇vgi(k)T +∇zgi(k)R(k)∇zgi(k)T (2.57)

2.4 Multi-vehicle Simultaneous Localisation and Mapping

Although most of the initial interest in SLAM considered the problem of mapping
and localisation with a single vehicle, the first decade of the twenty-first century saw
a substantial interest in multi-vehicle localisation and mapping. There are numer-
ous practical robotic applications in which a fleet of distributed sensor platforms are
utilised in order to gather information about an environment and fuse this informa-
tion into a consistent map. The advantages of using multiple, cooperative, vehicles
in exploration and mapping applications, compared to the single vehicle case have
been proven and are well known in the literature [Cao et al., 1997; Fox et al., 2000;
Burgard et al., 2000] and are briefly mentioned here.

Deployment of a single sensing platform is often not sufficient for data collection
and map building in large-scale environments. Performing complex tasks is also
proven to be difficult using only one robotic agent. Also, in general, multiple agents

10See [Kim, 2004; Williams, 2001] for more details on derivation of the augmented covariance matrix.
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have the potential to carry out a mission quicker that a single agent11. In addition,
the utilisation of one very expensive capture platform reduces the fault-tolerance of
the system due to the reliance on one individual entity, whereas the redundancy
created by more than one vehicle mollifies the system failure problem. Most impor-
tantly, in many exploration and mapping applications, using several vehicles pro-
vides improved accuracy and other performance benefits due to the observation of
map objects by more than one vehicle. This alleviates the sensors′ uncertainty and
localisation errors, particularly in situations where the robots have different sensing
and localisation capabilities [Fox et al., 2000]. All these aspects are of paramount
conceptual significance and will be seen in the mapping application addressed in
this work.

2.4.1 Existing Work

In the area of navigation and mapping by multiple vehicles, the work of Sebastian
Thrun [Thrun, 2001; Fox et al., 2000; Burgard et al., 2000], Hugh Durrant-Whyte
[Williams et al., 2002; Durrant-Whyte and Henderson, 2006] and their respective re-
search groups are specifically notable. Different methods and algorithms were pro-
posed and analysed by the researchers in these groups for effective and accurate
mapping and navigation using multiple robots. For example, Makarenko & Durrant-
whyte [Makarenko and Durrant-Whyte, 2004] provide an algorithm for Bayesian
data fusion for multiple vehicles. Rosencrantz et.al. [Rosencrantz et al., 2003] present
a scalable Bayesian technique for decentralised state estimation for multiple plat-
forms in dynamic environments. Fox et al. [Fox et al., 2000] use a sample-based
version of Markov localisation [Cassandra et al., 1996] which is capable of localising
mobile robots at any time.

Several papers such as [Simmons et al., 2000; Singh and Fujimura, 1993] inves-
tigate the techniques for coordinating multiple robots in their task of exploring and
mapping large environments. Burgard et al. [Burgard et al., 2000] present a method
for efficiently coordinating a team of robots for achieving their tasks in exploring the
environment. The key idea in such works is that the cost of reaching an unexplored
location and its utility is simultaneously taken into account while planning the paths
for different robots. Singh and Fujimura [Singh and Fujimura, 1993] designed an
exploration strategy to guide the multiple mobile robots with different motion and
sensing capabilities to explore an unknown bounded region and obtain a global map
while avoiding the obstacles. Within such applications the robots are usually pro-
vided with sufficient computational power and memory to process all the collected
measurements and store a map of the complete region. Each mobile robot can also
communicate with all other robots with negligible delay. Although there are funda-
mental differences between these applications and the distributed mapping system in
this work, certain concepts from coordinated exploration and path planning robotic
applications have been borrowed by the work presented in this thesis. The main dif-

11However, this may not always be the case due to the interference between robots [Schneider-Fontan
and Mataric, 1998].
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ference between the pair is that the mobile vehicles that are tasked with mapping the
environment in the present work cannot be controlled and coordinated to explore
unknown locations or locations where map items are of poor quality. We are simply
interested in building a consistent and accurate picture of the environment using col-
laborative survey vehicles whose future paths and behaviour are uncontrollable and
undetermined to a great extent.

Different works [Williams et al., 2002; Fenwick et al., 2002; Fenwick, 2001] have at-
tempted to extend the single-vehicle simultaneous localisation and mapping (SLAM)
to multiple vehicles. The primary sophistication in directly extending the single-
vehicle mapping systems to multiple vehicles arises from the need to incorporate the
cross-correlation between different landmark estimates stored on each vehicle [Julier
and Uhlmann, 2001b]. For example, Fenwick et al. [Fenwick et al., 2002] combine all
of the collaborating vehicle state estimates into a single state vector in a rigorous way.
In a similar way, all the position estimates of the observed landmarks from all the ve-
hicles are combined together. The authors then define a single estimate that incorpo-
rates all of the vehicle and landmark estimates. The general collaborative covariance
matrix is also constructed by combining all the covariances and cross-covariances.
Once collaborating vehicles are added into the defined state and covariance matrices,
the multi-vehicle prediction and update equations take on the same general form
as the single vehicle estimation algorithms. Despite the straightforward nature of
such solutions, they are highly unsuitable for deployment in extremely large envi-
ronments with a large number of landmarks, as will be discussed subsequently in
this chapter.

A variety of stochastic estimation techniques have been reported in different
works to estimate and maintain the bounded location of robots and the map land-
marks. The nonlinear SLAM algorithm has been extensively implemented in the past
using the extended Kalman filter (addressed in Section 2.2) [Kim and Sukkarieh,
2003; Williams et al., 2000; Leonard and Durrant-Whyte, 1991]). EKF-based SLAM
approaches calculate a fully correlated posterior estimate about robot pose and land-
mark maps. However, these algorithms rely on the strong assumption of Gaussian
distribution for both robot motion and sensor noise. While the EKF solution to the
SLAM problem has received considerable interest, alternative approaches also ap-
pear in the literature. Lu & Milios [Lu and Milios, 1997], Thrun et al. [Thrun et al.,
1998] and Gutmann & Konolige [Gutmann and Konolige, 1999] use batch estimation
techniques to tackle the simultaneous map building and localisation problem for mo-
bile robots. In these works, the data gathered by the robot is stored and processed
in a batch manner to build the maps of the environment in which the robot has op-
erated12. A relatively more recent batch processing method called GraphSLAM was
introduced by Thrun and Montemerlo in [Thrun and Montemerlo, 2006]. Graph-
SLAM operates by using graphical networks and applying optimisation techniques
to the offline SLAM problem. It is claimed that the algorithm is capable of generating

12Such problems are sometimes referred to as offline SLAM problems. These problems require memo-
rising all data and postponing the mapping process until after the robot’s operation is complete [Thrun
and Montemerlo, 2006]
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maps with around 108 features in approximately 30 seconds. Despite its spectacular
performance, the GraphSLAM algorithm is not feasible for many practical appli-
cation due to its offline nature; i.e. it requires the accumulation of all data during
mapping, and consolidating this data into a map after the robot’s exploration process
is complete.

Other approaches to the SLAM problem have tried to eliminate the need for rig-
orous mathematical models of the vehicle and sensing properties and have relied
instead on more qualitative knowledge of the nature of the environment [Brooks,
1986; Levitt and Lawton, 1990]. For instance, Kuipers & Byun [Kuipers and Byun,
1991] have proposed a robot exploration and mapping strategy based on a seman-
tic hierarchy of spatial representations. Sequential Monte Carlo methods, widely
known as Particle filters, have also been used for both single-robot and multi-robot
global localisation [Grisetti et al., 2007; Doucet et al., 2001]. Several works [Ong
et al.; Nettleton et al., 2006; Thrun et al., 2002] employ the information form of the
Kalman filter as an effective approach to the SLAM problem. Lie & Thrun [Eustice
et al., 2005; Thrun et al., 2004; Liu and Thrun, 2003] present some results for out-
door SLAM using sparse extended information filters. These techniques and other
alternative approaches to the SLAM problem have their own particular strengths
and weaknesses. As mentioned previously, the work in this thesis will mainly rely
on the EKF as the primary tool for simultaneous mapping and localisation problem.
However, the interesting properties of the information form of the EKF will also be
exploited in the multi-vehicle mapping paradigm in Chapter 3.

At a high-level, information fusion is the fundamental tool required for multi-
vehicle SLAM as, on an abstract level, the problem is about combining numerous
sources of information (that may be correlated) about a common parameter in order
to increase one’s knowledge about the parameter.

In multi-vehicle SLAM the problem of where this fusion occurs and how infor-
mation is shared is a practical problem and is one that motivates much of the work
in Chapter 3 (along with similar work discussed subsequently). Different multi-
vehicle data fusion architectures have been suggested and implemented for tasks
such as autonomous navigation [Bryson and Sukkarieh, 2005; Kim, 2004; Williams,
2001], exploration and mapping [Nerurkar et al., 2009; Stipes et al., 2006; Thrun,
2001] and target tracking [Liggins et al., 1997; Nettleton, 2003; Ong et al., 2003].
Section 2.5 will address three main architectures used by different researchers for
multi-vehicle/multi-sensor data fusion.

2.5 Multi-vehicle Data Fusion Architectures

The aim of this section is to discuss different multi-vehicle data fusion architectures
and to investigate their respective properties in data fusion applications.

Within the multi-sensor data fusion literature, three main architectures can be
seen for combining information from distributed sources. These architectures are
known as centralised, decentralised and hierarchical.
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Please note that non-identical definitions and categorisations have been provided
in the literature by the information fusion and robotics community for various data
fusion architectures. These definitions are sometimes conflicting and not consistent
with each other. Most notably, the terms hierarchical and distributed are subject
to debate in the literature. For instance [Cao et al., 1997] presents the hierarchical
architecture as a sub-category of decentralised systems, while [Durrant-Whyte and
Henderson, 2006] considers a central processor in the hierarchical architecture and
categorises it in the centralised group. To avoid any confusion and in order to be
consistent, this thesis will present the clear definition of each architecture, as used
throughout this text. We provide a brief description of each architecture along with
their respective advantages and disadvantages as a useful background for making
future design decisions in this work.

2.5.1 Fully Centralised Architecture

The most obvious and traditional data fusion architecture is a fully-centralised one
where all the measurements made by sensors from multiple sources are directly
transmitted to a central station in a raw format where they are processed by a single
algorithm (e.g. using a large Kalman filter), almost in the same way as single sensor
systems. Works such as [Fenwick et al., 2002], [Mourikis and Roumeliotis, 2004],
[Walter and Leonard, 2004] and [Thrun and Liu, 2005] provide fully-centralised
approaches to the multi-vehicle SLAM problem.

In this architecture, little or no local processing of information is performed and
the central server has complete centralised control over the interpretation and inte-
gration of information. The primary disadvantage of a centralised solution is the
communication and networking complexity required. As more sensors and infor-
mation sources are incorporated, the functional requirements and the substantial
complexity of the data fusion system grow. Due to the nature of this architecture, a
severe computational burden is usually imposed on the fusion centre. The resulting
sophistication and heavy computational load at the central station might lead to an
undesirable computational bottleneck. Since the central station offers a single point
of failure, centralised solutions in general are less redundant and robust. Moreover,
due to the communication of all the sensor measurements back to the central pro-
cessor, this setup is not efficient in terms of data transmission and communication
bandwidth. However, centralised solutions are convenient in numerous practical
applications where it is undesirable for the vehicles to communicate between them-
selves. A block diagram for a fully centralised system is depicted in Figure 2.2.

2.5.2 Decentralised Architecture

In contrast to the centralised systems, fully decentralised architectures often have no
central processing station and no common communication system. In such systems,
individual stations (e.g. individual vehicles) can perform data fusion in a fully au-
tonomous manner, while receiving information from and transmitting information
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Figure 2.2: A fully centralised data fusion architecture

to other particular stations. In other words, fusion occurs locally at each station on
the basis of local observations and the information received from neighbouring sta-
tions. Note that if the networking topology resembles a complete graph then such
decentralised systems offer no advantage in terms of communication requirements.
Of course, in general, decentralised solutions are more robust to failure of a given
station. A block diagram for the decentralised architecture is illustrated is Figure 2.3.

[Durrant-Whyte and Henderson, 2006] characterises a decentralised fusion centre
by three important constraints:

1. There is no single central fusion centre; no one node should be central to the
successful operation of the network.

2. There is no common communication facility; nodes cannot broadcast results
and communication must be kept on a strictly node-to-node basis.

3. Sensor nodes do not have any global knowledge of sensor network topology;
nodes should only know about connections in their own neighbourhood

These constraints provide a number of important characteristics such as scalabil-
ity, survivability and modularity which give decentralised systems a major advantage
over conventional sensing architectures, particularly in defence and military appli-
cations. Examples of decentralised SLAM can be found in [Nettleton et al., 2006;
Sharon et al., 2003; Ong et al., 2003].
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Figure 2.3: A fully decentralised data fusion architecture

2.5.3 Hierarchical Architecture

In essence, the hierarchical architecture aims at increasing the ’intelligence’ of local
nodes by allowing different levels of information processing. Compared to fully cen-
tralised architectures, this means moving away some of the sophisticated processing
tasks at the central server at the cost of losing complete control over the low-level
sensor information. Since more processing occurs locally, the overwhelming compu-
tational and communication burden can be removed from the fusion centre. Also,
because the sensors are granted a virtual intelligence in such systems, they can be
constructed in a modular manner. The degree to which local processing takes place
at a sensor node varies from simple validation and data compression up to the full
construction of tracks, running complex estimation algorithms and full interpretation
of information locally. The disadvantage of this architecture is placing a specific and
often rigid structure on the fusion system [Durrant-Whyte and Henderson, 2006]. Ex-
amples of hierarchical systems can be found in [Hashemipour et al., 1988; Blackman
and Popoli, 1999; Dai and Du, 2009]. A single-level hierarchical system is depicted
in Figure 2.4.

2.6 Major Challenges in Building Scalable Maps Using SLAM

Building and maintaining maps in extremely large environments has always been
one of many practical challenges in the SLAM community. One can think of a hand-
ful of real-world applications where a number of mobile robots are tasked with gath-
ering information about an extensive environment filled with a large population of
landmarks. This information needs to be interpreted and presented in terms of a
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Figure 2.4: A single-level hierarchical data fusion architecture

consistent global picture of the environment. The mapping problem addressed in
this thesis is of such practical nature.

Practical challenges associated with mapping large-scale environments is multi-
faceted and generally arise due to the fact that the complexity of the SLAM system
increases as new landmarks are explored. Typically, the main ramifications are in
terms of storage, computational complexity and memory requirements, all caused
by the large number of map elements and the well-known cross-correlation problem
described below.

In general, a fundamental part of the SLAM algorithm is the knowledge of corre-
lations between the map and vehicle estimates. In fact, it is shown that (e.g. in [Dis-
sanayake et al., 2001]) the cross-correlations in the covariance matrix which maintain
the relationships between the vehicle’s state estimates and landmark estimates in
SLAM is the reason for the long-term convergence of the filter. Therefore, the propa-
gation of the covariance matrix of the full map is vitally important to the solution of
the SLAM problem. The full-covariance SLAM (FC-SLAM) operates by maintaining
all the existing cross-correlations presented in the covariance matrix of the estimates.
Recalling Section 2.3, the covariance matrix for a total number of n landmarks can be
written by expanding the block components of Equation (2.39) according to

P(k|k) =


Pvv(k|k) Pv1(k|k) Pv2(k|k) . . . Pvn(k|k)
P1v(k|k) P11(k|k) P12(k|k) . . . P1n(k|k)
P2v(k|k) P21(k|k) P22(k|k) . . . P2n(k|k)

...
...

...
. . .

...
Pnv(k|k) Pn1(k|k) Pn2(k|k) . . . Pnn(k|k)

 (2.58)
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where similar to the notation used before, the term Pvv(k|k) is the block covariance
pertaining to the vehicle’s state estimate, Pii(k|k) is the covariance of the ith land-
mark’s state estimate and Pij(k|k) is the cross-correlation between the estimates of
two arbitrary landmarks i and j.

For a map consisting ofO(n) landmarks, the storage requirements is proportional
to O(n2) and the computational cost is proportional to O(n3). This is because the
entire map of n landmarks needs to be updated at each step by the filter. This means
the map is updated not only after the observation of a single landmark, but also fol-
lowing the incorporation of any input measurement from navigation sensors. These
sensors (e.g. accelerometers and gyroscopes) usually operate with a high update
rate, sometimes reaching a few hundred samples per second. Therefore, maintain-
ing all the cross-correlation terms in FC-SLAM makes the algorithm computationally
intractable in environments with a large number of landmarks. As a result, the prop-
agation of the covariance matrix stated by (2.58) is only practically feasible for small
maps when n is of the order of a few hundred landmarks. The limited computa-
tional power and communication bandwidth in most applications does not allow the
tracking and recording of all the correlations in the multi-vehicle system.

To tackle the above-mentioned problem, several papers [Guivant and Nebot, 2003,
2002; Williams, 2001; Dissanayake et al., 2000a] have proposed different theoretical
and practical solutions to ameliorate the computational inefficiency in SLAM. Basi-
cally, these papers aim at reducing the computational cost of the filter caused by the
full update of the state and covariance matrices by considering sub-optimal solutions
or using other map management techniques. These approaches only address the
single-vehicle SLAM problem. The naive extension of these solutions to large-scale
multi-vehicle SLAM scenarios where remote vehicles share landmark information
(either directly or through a central station) is ineffective in most cases due to the
significance of overlapping landmarks and their correlations in such applications.
Despite some effort, no fully versatile solution for these practical, real-world prob-
lems has been offered to the best of our knowledge.

Another related issue in large-scale mapping applications is the problem of math-
ematical consistency that needs to be addressed. This problem is particularly impor-
tant in data fusion applications where overlapping maps are shared between several
distributed vehicles. Within most filtering frameworks, it is not possible to inte-
grate information from multiple sources unless they are independent or have known
cross-covariance [Chong et al., 1990]. Although, the cross-correlations between the
map objects play a crucial role in the multi-vehicle SLAM, they may cause inconsis-
tency problems in data fusion networks. The effect of redundant information and
information double-counting is a serious issue that must be analysed and handled
with care. Common sources of information double-counting and system inconsis-
tencies will be discussed in more details in the next chapter. Moreover, Appendix A
provides a general analysis on consistency when fusing two generic estimates.

So far we have outlined some of the most arduous challenges associated with
mapping extensive environments. As described, traditional map making solutions
are usually not deployable in their classic forms in these situations where the robots
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are required to operate robustly over long periods of time. These solutions are typ-
ically prone to failure if implemented in practice. As a result, a versatile, scalable
solution is sought which is able to cope with the large-scale virtue of these problems
and face the multitude of challenges imposed on the system. The utilised system
should be able to accommodate algorithms capable of handling extremely large en-
vironments. The solution must be scalable with respect to criteria such as the number
of landmarks, the number of robots exploring the environment and the physical size
of the map13.

2.7 Project Description

As mentioned in the Introduction Chapter, the work in this thesis is inspired by a
real-world project called AutoMap where assets visible from the road scene are auto-
matically extracted from recorded video and geo-located to form a map. One of the
solutions offered by the AutoMap project is a passive data collection scheme using
a set of low-cost in-vehicle sensor platforms. In this solution, geographically located
information from the road scene is gathered continuously (over long periods of time)
on a very large scale by a fleet of distributed vehicles such as taxis, garbage trucks,
delivery vans etc. (see Figure 2.5) and sent back to a central server where a global
database is compiled. Advanced computer vision algorithms [Overett et al., 2009]
are deployed to automatically extract and geolocate objects such as road signs from
recorded video that are of interest to third party companies like mapping companies
and road asset managers [Petersson, 2014]. Such information is currently collected
in a manual fashion and updated only every few years which is a very costly and
error prone process. A setup as described in this work enables a continuously up-
dated database of road scene information at a fraction of the cost compared to the
manual alternative. Each fleet vehicle in this setup is equipped with a low-cost sen-
sor platform consisting of three cameras, a Global Positioning System (GPS), a 3-axis
accelerometer, a 3-axis gyroscope, a 3-axis magnetometer, a processing unit and a
3G modem (See Figure 2.6). The low-grade accelerometer and gyroscope are em-
bedded in a six-degree of freedom MEMS-based14 inertial measurement unit (IMU).
The utilisation of low-cost sensors enables the development of data collection sensor
platforms at a reasonable cost. Data from the sensors are continuously stored on a
local hard drive inside the vehicle, and later analysed by the local processing unit in
order of importance to maximise a cost function representing the value of extracted
information. The in-vehicle sensor platforms are able to send and receive informa-
tion to and from a central server using a 3G connection. In addition to tasks such as
fusing partial information from the vehicles, the central server also acts as the main
map repository which accommodates the global map. The global database maintains
information such as type and geolocation of all landmarks detected via the exploring
vehicles.

13See [Julier and Uhlmann, 2001b] for a discussion on these criteria
14MEMS stands for Micro-Electrical-Mechanical-Systems
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Figure 2.5: Passive data collection using third party vehicles.

The first objective of this work is to develop a distributed data collection model,
which is able to effectively incorporate the collected measurements from different ve-
hicles to gradually build a map of the environment. We are interested in producing
a map of landmarks on the scale of thousands or even millions of kilometres of road
network. This will be the main focus of the current and next chapter. As its second
main objective, this thesis addresses an important aspect of practical mapping appli-
cations, namely quality assessment. In particular, we seek a well-defined concept for
map quality which is able to reflect the accuracy of mapping systems in a meaningful
way. This is mainly motivated by the lack of a widely accepted scientific method-
ology for comparing the results of existing mapping techniques. In addition, the
recent technological advancements and the emergence of specialised mapping sys-
tems (such as AutoMap) call for application-driven performance metrics that are able
to capture the particulars of such systems and can be applied in different practical
scenarios. Chapters 4 and 5 are concerned with quality assessment and criteria-based
estimation in mapping applications.

Figure 2.6: Low-cost sensors used inside the in-vehicle data collection platforms.

We now turn our focus to the design of the previously discussed distributed
mapping system using multiple vehicles. Like many other real-world applications,
this project suffers from variety of limitations and is constrained by the available
resources. Section 2.7.1 presents the main resource constraints imposed on the project
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which are needed to be carefully considered in the design and implementation of the
large-scale distributed mapping system.

2.7.1 Resource Constraints in the AutoMap Project

One of the key restrictions is the low-cost nature of the sensors utilised inside the
in-vehicle data collection units. It is well known (c.f. [Aggarwal et al., 2006; Godha,
2006]) that low-cost sensors are usually associated with large measurement noise
and other inaccuracies due to their intrinsic natures. Most notably, the notorious
error characteristics of low-grade inertial sensors are troublesome in navigation and
mapping applications where the continuous positioning information of a moving
platform is required. For example, temperature dependency and highly nonlinear
characteristics of low-cost inertial sensors can potentially cause drift and misalign-
ment errors during navigation. As a result, if not dealt with properly, the solution
suffers from unbounded error growth with time, leading to degraded navigation per-
formance in the long term. Consequently, determining the associated errors (such as
noises, biases, drifts and scale factor instabilities) becomes indispensable in the utili-
sation of these sensors in real-world navigation applications.

To address this problem, Appendix B provides the theoretical and experimental
development of a calibration scheme to overcome the intrinsic limitations of a low-
cost inertial measurement unit. The two-stage calibration algorithm was developed
and tested successfully on the prototype MEMS IMU (similar to the ones deployed
inside the in-vehicle sensor platforms) to determine the deterministic and stochastic
errors of the sensor. This work makes use of artificial observations known as pseudo-
velocity measurements resulting from a specific scheme of rotation to calibrate the
IMU in the laboratory environment. The proposed structure is then modified and
utilised as a basis for the IMU’s error estimation in outdoor navigation applications.

Besides the low-cost nature of the deployed sensors, there are other major limita-
tions associated with the system. Analysing the vast amount of information gathered
from the sensors and transmitting it back to the central server is a challenging task
as the platform installed in each vehicle suffers from a number of constraints. These
constraints can be categorised as

1. Communication bandwidth and associated cost

2. Processing power

3. Memory and storage

One of the key constraints this thesis sets out to address is the limited communica-
tion bandwidth provided by the 3G modem. The limited communication bandwidth
not only makes it impossible to transmit all raw sensory data to a central server
and analyse it there, but even the amount of extracted, symbolic information poses a
challenge (see Example 1 below). Clearly, a communication architecture that allows
selective communication is needed to handle this case.
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In addition, the available processing power, memory and storage inside the vehi-
cles are limited mainly due to the resources allocated for computationally expensive
computer vision algorithms. This is particularly important to consider given the
very large scale virtue of this mapping problem. Hence, main challenges explained
in Section 2.6 are mostly applied to the current project. Consequently, traditional
multi-vehicle map making solutions are not applicable given the rapidly increasing
map size and the limited available resources.

Example 1. Consider a scenario with n vehicles collecting measurements and tasked at map-
ping a given environment. Each vehicle traverses d kilometres per day and each kilometre
contains m map objects (road signs) on average. The size of each vehicle’s map is given by

N = m · d (2.59)

and it is assumed this map size is initialised at the start of the day. A map represented by a
covariance matrix is then assumed to require b · N2 bytes to transmit and the communication
cost for each byte is given by c. Without any loss of generality, we presume that each of these
n vehicles are tasked with improving a previously existing map in a central communication
node, hence no new landmark is being observed/transmitted in this scenario. The communi-
cation protocol requires k transmissions of b · N2 bytes per kilometre of road data. A simple
calculation shows that the total communication cost using this method is

Ctotal = d3m2nkbc (2.60)

per day. The communication cost (and bandwidth) in this example is proportional to the
cube of the distance driven by each vehicle over a fixed period of time. Consequently, the
above solution is not feasible for very-large-scale applications like AutoMap which exhibit
limited system and communication resources. For example, let n = 10, d = 200, m = 10,
k = 0.1, b = 8, c = $3× 10−8 ($30 for 1GB of 3G data15) and N = md = 10× 200, then
Ctotal = $192 per day. In this case, the cost of complete communication is prohibitive and a
more efficient solution is required. Similar analysis can be done for the processing power and
memory requirements.

This example will be revisited in Chapter 6.

2.8 The Proposed Distributed Data Fusion Model

The nature of the project described above, demands a versatile solution which is
capable of coping with extremely large-scale environments and overcome challenges
and limitations addressed in Sections 2.6 and 2.7.

Although fully-centralised and conventional decentralised architectures have been
proven to be effective in numerous mapping applications, without additional local
processing it turns out that both methods fail to provide a practical and flexible so-
lution to large-scale (millions of mapping points) mapping where limited bandwidth

15This is the average cost in Australia as of October 2013.
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and processing power is a real concern. This is particularly true when the constraint
of a centralised architecture is dictated by the problem.

This section introduces a single-level hierarchical architecture with a central base
station, called the central fusion centre (CFC), to combine the local maps obtained
from individual vehicles into a global map. The strategical advantages of having
this central station as a communication hub can be justified in the context of the
mapping application and based on the system constraints elaborated in 2.7.1. Since
the primary objective is to retain an accurate map of an unknown environment, the
central server is essential in maintaining the very large-scale map repository that can
be easily accessed at any time by any vehicle. In addition, in terms of robustness,
the safety of information at the server can be guaranteed, whereas, the components
of a survey vehicle on a mission are generally prone to failure and information loss.
As argued in Section 2.7, by virtue of the very-large-scale nature of the problem, it is
practically unrealistic to process and maintain all the map data locally at individual
vehicles.

Cooperative map making!

Map 
Repository!

Central Fusion Center!
(CFC)!

Figure 2.7: The distributed information fusion model keeps the central map reposi-
tory up-to-date.

The hierarchical architecture aims to increase the processing done locally by the
individual vehicles. A global map is maintained at the CFC and the individual ve-
hicles construct local maps via SLAM (along with the fusion of local sub-maps from
the CFC). These local maps are transmitted between the vehicles and the CFC over
a cellular network; see Figure 2.7. A local SLAM algorithm is implemented in each
vehicle in order to retain a local map of the detected landmarks and concurrently
estimate the location of the vehicle as it explores the environment. Each vehicle
shares a selection of its local information with the CFC (via a cellular network). The
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Figure 2.8: A single-level hierarchical architecture

CFC is responsible for maintaining a global map and for integrating the informa-
tion collected by the vehicles in a consistent fashion (see Figure 2.8). A feedback
configuration in the system provides a route for the communication of sub-maps of
the global map back to the local filters in individual vehicles. As such, individual
vehicles indirectly have access to the information obtained by other vehicles in the
system. In addition, the feedback can potentially improve the data collection process
with expected advantages of earlier detection, enhanced tracking, and more reliable
identification [Xiong and Svensson, 2002].

Despite some fundamental work (e.g. [Nettleton et al., 2006; Nettleton, 2003]),
the problem of selective communication has been widely neglected in the study of
multi-vehicle information fusion (e.g. [Bryson and Sukkarieh, 2007]). In large-scale,
low-bandwidth mapping applications, sending all the local information to the central
station is not feasible due to the limited system and communication resources present
in practice. Information tailoring is necessary to avoid high communication costs and
other bandwidth constraints in a distributed data collection system. Consequently,
only the most valuable information should be selected and transmitted. This is the
avenue that we follow in Chapter 3.

In addition, the majority of the existing multi-vehicle SLAM techniques suffer
from the growing size of the local maps within individual nodes. Due to the large
number of features and the rapidly increasing map size, the SLAM algorithm fails
to fulfil the requirements of large-scale applications. The ramification is an immense
memory and computational load on the vehicles. Consequently, appropriate strate-
gies must be applied to limit the size of the SLAM filters in very large-scale environ-
ments. We discuss a particular pruning strategy in Chapter 3.

2.9 Summary

This chapter conducted a review of some of the most widely used stochastic estima-
tion techniques. The simultaneous localisation and mapping (SLAM) algorithm was

Draft Copy – 12 September 2014



40 Background and Problem Formulation

presented subsequently as one of the key solutions to the problem of map making
under conditions of process and sensor noise and other modelling uncertainties. A
summary of the principal literature describing different methodologies to the multi-
vehicle SLAM problem was presented, to provide sufficient information to set the
context of the proposed research. Three main multi-vehicle data fusion architectures
were reviewed and their most important properties were noted. Practical challenges
associated with building and maintaining maps in extensive environments were dis-
cussed and the shortcomings of the existing strategies in mapping such environments
were addressed.

A description of the real-world practical project under study and the main con-
straints and limitations associated with it was provided. Low-cost sensors and other
resource constraints such as limited communication bandwidth, processing power,
memory and storage were explained in this chapter. There is an absolute neces-
sity to carefully address these practical restrictions in the design and formulation
of the large-scale distributed mapping system. Based on the problem formulation
provided in this chapter, a single-level hierarchical architecture with a central base
station was devised in Section 2.8. The proposed framework was only addressed
from a high-level point of view in this chapter. Details pertaining to the operation of
the distributed map building framework such as sensor fusion, efficient communi-
cation, consistent map data fusion and local map management will be addressed in
Chapter 3.
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Chapter 3

Efficient Map Building in
Very-Large-Scale Environments

3.1 Introduction

The goal of this chapter is to provide a flexible, intelligent solution to the problem of
building and maintaining a very-large-scale map using multiple vehicles. In particu-
lar, we aim at producing a map of landmarks on the scale of thousands of kilometres
in an outdoor environment. We consider the distributed data collection model with
hierarchical architecture proposed in the previous chapter for the real-world inspired
road mapping application described earlier.

The devised algorithm is distributed across multiple vehicles each given the task
of producing and updating a local map. The vehicles are equipped with a range
of sensors and selectively communicate maps to and from a central station in a
bandwidth-constraint environment. The potentially overlapping local maps are asyn-
chronously transmitted back to a central fusion centre where a global map reposi-
tory is maintained. As its main contribution, this chapter addresses two of the most
common issues of mapping in large-scale environments, namely, computational com-
plexity and limited communication bandwidth.

The content of this chapter can be split into two main parts. The first part (Sec-
tion 3.2) presents an overview of different components of the multi-vehicle mapping
system. The local SLAM filter which is the local implementation of the single-vehicle
SLAM algorithm is outlined first. The state-space equations based on the extended
Kalman filter are provided for this filter. The information-based representation for
states and covariances of a given estimate is addressed next, as it forms the basis
for communication and fusion of a group of landmarks in this chapter. The chan-
nel filter, a structure responsible for maintaining the common information between
the distributed vehicles and the server, is introduced along with a discussion on its
operation. Moreover, a short overview of the system’s medial component known
as the central fusion centre is presented. The second part of this chapter (Section
3.3), considers the communication sequence between a single vehicle and the cen-
tral fusion centre. Six different sequence of steps containing transmission, fusion
and update of map information in different system components is discussed. We

41
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propose a communication architecture which is scalable and is capable of dealing
with time-varying overlapping map sizes. A general data fusion framework based
on the popular covariance intersection algorithm is devised to tackle the problem
of redundant information propagation that is caused by communicating sub-maps
of arbitrary size in the network. The solution is efficient in terms of computational
complexity, memory requirements and communication bandwidth.

3.2 Distributed System Overview

This section provides a detailed description of different system components utilised
in the multi-vehicle data fusion architecture outlined in Chapter 2. The local SLAM
filter (LSF), the channel filter (CHF) and the central fusion center (CFC) are addressed
in this section.

3.2.1 The Local SLAM Filter (LSF)

The local SLAM filter is a local implementation of the single-vehicle SLAM algo-
rithm. In this work the LSF is executed in the standard state space. In summary, the
LSF estimates a state vector and a covariance matrix based on the observed sensor
measurements and the information received from the central server (e.g. as an initial
prior). The state and covariance at the LSF in vehicle i is given by

x̂i(k|k) =
[

x̂i
v(k|k)

x̂i
m(k|k)

]
(3.1)

Pi(k|k) =
[

Pi
vv(k|k) Pi

vm(k|k)
Pi

vm
T
(k|k) Pi

mm(k|k)

]
(3.2)

where vehicle and map components are denoted by the subscripts v and m respec-
tively. The dimension of x̂i(k|k) is different for each i as the local environment (e.g.
the number of landmarks observed etc.) is different for each vehicle. The LSF is
merely considered as a component which takes the sensor measurements and the
external contributing information as inputs and estimates the vehicle and map states
through a recursive process of prediction and update.

It is important to note that an appropriate pruning algorithm must be employed
by the LSF in order to prevent an undesirable growth of the estimates’ state vector
and covariance matrix in a large-scale environment. The significance of the pruning
is to minimise the memory requirements and the computational complexity of the
local vehicle. As a consequence, different vehicles in the network will have different
and non-excessive map sizes. Landmark pruning will be discussed in more details
in Section 3.3.

A detailed description of the local SLAM filter deployed in the multi-vehicle map-
ping system in this thesis is provided here.
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Vehicle and Map State Vectors and Covariance Matrices in LSF

We now provide the state vector and covariance matrix for the vehicle and map
components of the local SLAM filter inside a nominal vehicle. We drop the vehicle’s
superscript i for this discussion, as only a single vehicle is considered.

In this chapter as well as all the related simulations in Chapter 6, the state of the
vehicle at time k is represented by its pose (2-D position and orientation) relative to
a base Cartesian coordinate system with the following mean and covariance

x̂v(k|k) = [x̂v(k|k), ŷv(k|k), φ̂v(k|k)]T (3.3)

Pvv(k|k) =
 Pxvxv(k|k) Pxvyv(k|k) Pxvφv(k|k)

Pyvxv(k|k) Pyvyv(k|k) Pyvφv(k|k)
Pφvxv(k|k) Pyvxv(k|k) Pφvφv(k|k)

 (3.4)

Also, in this chapter, the state of the observed landmarks at time k is repre-
sented by the combined vector of their 2-D position estimates with respect to the
same coordinate system1. The map covariance matrix Pmm(k|k) includes the correla-
tion information (the diagonal terms) and the cross-correlation information between
the landmarks (off-diagonal terms). The cross-correlation terms encapsulate the de-
pendencies amongst different landmarks in the map. Theoretically speaking, as the
number of observations increases, the dependency between the map elements also
increases as the map becomes fully correlated in the limit.

x̂m(k|k) = [x̂m1(k|k) ŷm1(k|k) . . . x̂mn(k|k) ŷmn(k|k)]T (3.5)

Pmm(k|k) =


Pxm1xm1(k|k) Pxm1ym1(k|k) . . . Pxm1xmn(k|k) Pxm1ymn(k|k)
Pxm2xm1(k|k) Pxm2ym1(k|k) . . . Pxm2xmn(k|k) Pxm2ymn(k|k)

...
...

. . .
...

...
Pxmnxm1(k|k) Pxmnym1(k|k) . . . Pxmnxmn(k|k) Pymnxmn(k|k)
Pymnxm1(k|k) Pymnym1(k|k) . . . Pymnxmn(k|k) Pymnymn(k|k)

 (3.6)

LSF State Transition Model Equations

The vehicle’s motion model in this chapter is considered to be two-dimensional, i.e.,
the vehicle operates on a flat surface where its state at each point is described by a
2-D position vector and a heading. All landmarks are assumed stationary with no
process noise (see section 2.3.4 for the general state transition models in SLAM). The
states of the vehicle are propagated using the following state space equations

1The multi-vehicle simulations pertaining to this chapter are all performed under this two dimen-
sional assumption for the model of the landmarks. Nevertheless, this setup may differ in other chapters
depending on the context. For example, Chapters 4 and 5 assume a pose map containing the position
and orientation of the observed landmarks.
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 x̂v(k)
ŷv(k)
φ̂v(k)

 =

 x̂v(k− 1) + ∆tV(k) cos
(
φ̂v(k− 1) + γ(k)

)
ŷv(k− 1) + ∆tV(k) sin

(
φ̂v(k− 1) + γ(k)

)
φ̂v(k− 1) + 1

B ∆tV(k) sin (γ(k))

+

 wx(k)
wy(k)
wφ(k)

 (3.7)

where V(k) and γ(k) are the system’s control inputs which denote the velocity and
steer angle respectively, while B is the vehicle’s wheelbase (the distance between the
front and rear axles). ∆t is the time difference between two consecutive steps k and
k− 1 in the state space.

The EKF-based propagation of the covariance matrix is performed using Equation
(2.14).

LSF Obervation Model Equations

This chapter assumes that the landmarks are observed using a range-bearing sensor2.
The following observation model is then used to express the relationship between the
current vehicle and map state and the range/bearing observations.

z(k) =
[

zR(k)
zθ(k)

]
=

[ √
(x̂v(k)− x̂i(k))2 + (ŷv(k)− ŷi(k))2

arctan
(

ŷv(k)−ŷi(k)
x̂v(k)−x̂i(k)

− φ̂v(k)
) ]

+

[
vR(k)
vθ(k)

]
(3.8)

where x̂i(k) and ŷi(k) are the location estimates of the observed landmark. Subscript
m has been safely dropped here since there is little confusion about the landmark
and vehicle variables.

The EKF-based update stage for the local SLAM filter is performed using Equa-
tions (2.49-5.46).

Landmark Initialisation in LSF

The initial position estimate of a newly observed landmark can be computed using an
initialisation function gi(x̂v(k|k− 1), z(k)) as described in section 2.3.6. This function
can be derived from Equation (3.8) and is shown here.

[
x̂i(k)
ŷi(k)

]
=

[
x̂v(k|k− 1) + zR(k) cos

(
φ̂v(k|k− 1) + zθ(k)

)
ŷv(k|k− 1) + zR(k) sin

(
φ̂v(k|k− 1) + zθ(k)

) ] (3.9)

Given the above initialisation function, Equations (2.55) and (2.56) are used to
augment the state vector and covariance matrix of the local SLAM filter.

2In actual fact, observations from a camera can also be used to compute range and bearing estimates
for a detected feature. Therefore, this assumption is in-line with the practical setup in the AutoMap
project. See Section 2.7 for a list of sensors used in this project.
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3.2.1.1 Map Information

As described in Section 2.2.3, given a state estimate x̂(k|k) with covariance P(k|k), the
information vector and information matrix are defined by a bijective mapping

ŷ(k|k) = P−1(k|k)x̂(k|k) (3.10)

Y(k|k) = P−1(k|k) (3.11)

The reason for considering the information-based representation for states and
covariances is that the interpretation, communication and the fusion of a group of
estimates is more convenient in this form.

From Equation (3.2) we then define the total map information at each vehicle i as

ŷi
mm(k|k) = Pi

mm
−1
(k|k)x̂i

m(k|k) (3.12)

Yi
mm(k|k) = Pi

mm
−1
(k|k) (3.13)

Eric Nettleton’s thesis [Nettleton, 2003] provides two important results concern-
ing the cross-correlation between vehicle state estimates x̂i(k|k) under some pretty
common assumptions. Suppose that the size of x̂i

m(k|k) is the same for all i; i.e., we
can think of x̂i

m(k|k) as a local estimate of the complete global map. Also suppose that
the association (i.e., ordering) amongst the elements of x̂i

m(k|k) is consistent between
vehicles and that

E[(x̂i
m(k|k)− xm(k))(x̂

j
m(k|k)− xm(k))>] = 0 (3.14)

where xm(k) is the actual map of the environment. Then the information vector and
the information matrix of the best, linear unbiased, estimate of the global map are
simply obtained by

ŷmm(k|k) = ∑
i

ŷi
mm(k|k) (3.15)

Ymm(k|k) = ∑
i

Yi
mm(k|k) (3.16)

Moreover, under these assumptions

E[(x̂i
v(k|k)− xi

v(k))(x̂
j
v(k|k)− xj

v(k))>] = 0 (3.17)

where xi
v(k) is the actual ith vehicle location.

However, in practice the assumption that

E[(x̂i
m(k|k)− xm(k))(x̂

j
m(k|k)− xm(k))>] = 0 (3.18)
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is typically not justified and individual vehicle maps x̂i
m(k|k) may only partially over-

lap and be of different sizes. Therefore, the results of Nettleton above are not always
applicable (as noted in much of Nettleton’s own work, e.g. [Nettleton et al., 2006]).

3.2.1.2 Selective Communication

Given the practical scenario envisioned for this work, it follows that limited com-
munication bandwidth constrains the transmission of information to and from the
central server. Consequently, the accuracy of the central map should be optimised
in some manner as a function of the information sent by the individual vehicles un-
der the limited bandwidth constraints. More generally, the desired quality of the
map, the available communication bandwidth and the available processing power
at the server side determine the type and the rate of information that needed to
be collected and transmitted. These factors as well as the available local processing
facility at the vehicles control the place where the integration and assimilation of
information should be performed. As discussed later in Subsection 3.3.4, we use the
information gain (between the local sub-maps known at the central server and the
improved maps resulting from the local SLAM algorithm) as a measure to select the
most informative sub-map within the local SLAM algorithm for communication.

3.2.2 Channel Filter (CHF)

A channel filter is a popular structure in decentralised data fusion architectures and is
used to maintain an estimate of the common information between particular nodes.
In a general decentralised network, a channel filter on node i connected to node
j maintains the common information vector ŷij(k|k) and the common information
matrix Yij(k|k). Furthermore, the channel filter is responsible for synchronisation of
the incoming and outgoing information from the local filter employed by a node. A
variation of the channel filter concept is used in the work described here to keep track
of the common information between each node and the central server (this will be
discussed in Section 3.3). Under the independence assumptions discussed previously
by Nettleton, and where complete and overlapping maps are shared between two
nodes i and j then

ŷj
CH(k|k) = ŷj

CH(k|k− 1) + [ŷi
mm(k|k)− ŷj

CH(k|k− 1)]

= ŷi
mm(k|k) (3.19)

Yj
CH(k|k) = Yj

CH(k|k− 1) + [Yi
mm(k|k)− Yj

CH(k|k− 1)]

= Yi
mm(k|k) (3.20)

where ŷj
CH(k|k) and Yj

CH(k|k) denote the jth channel’s information vector and infor-
mation matrix at time k given the updated information at time k from the ith data
source. However, if the channel map information and the transmitted map have dif-
ferent sizes and/or there is some cross-correlation between the shared information
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and the existing data in the channel then this approach may lead to inconsistent
estimates of the common information between nodes. Broadly speaking, if the statis-
tics of the correlations can be tracked down and identified, the full joint probability
function [Papoulis and Probability, 1991] can be used to obtain the minimum mean
squared error (MMSE) estimates of the common information. Otherwise, one of the
many suboptimal approaches should be applied.

Different methods have been developed to address the data fusion problem when
exact knowledge of the correlation between information sources is not available.
Methods based on Kalman filtering (KF) simply ignore the unmodeled correlations
by assuming independence between the prior estimation error and the new informa-
tion error. This presumption has been sufficient for a wide range of practical situa-
tions and has been successfully implemented in applications such as navigation [Kim
et al., 2006], sensor fusion [Amirsadri et al., 2012b], map building Dissanayake et al.
[2001] and target tracking [Blackman and Popoli, 1999]. Nevertheless, since the in-
dependence assumption is only an approximation to reality, it can potentially lead
to serious problems. An example of such a case is the famous ’double counting’
problem in distributed sensor networks which leads to information redundancy and
over-confident estimates resulting from discarding the common information between
two nodes; see [Chen et al., 2002]. In practice, a typical solution to avoid over-
confident estimation relies on artificially inflating the covariance of the combined
estimate. This method is ad-hoc and unreliable as the level of inflation cannot be
precisely quantified and is largely application dependent.

The inconsistency issue caused by ignoring the correlation can be tackled by ap-
plying conservative fusion algorithms. Perhaps one of the most popular methods for
this purpose is the Covariance Intersection (CI) algorithm. CI was first introduced
in a seminal paper by Simon Julier and Jeffrey Uhlmann [Julier and Uhlmann, 1997]
and has since been used in a wide spectrum of applications, particularly in the field
of decentralised and distributed fusion [Wang and Li, 2010; Uhlmann et al., 1999].

The CI method is also employed in this work to overcome the aforementioned
inconsistency issue in the channel filter created by combining dependant, correlated
information. Appendix A provides a formal justification for the use of CI in the
subsequent discussions. It establishes a result concerning estimation consistency, CI
and fusion while neglecting cross-correlations. We are not aware of a similar formal
argument along the lines given in appendix A for justifying CI (and we show that
for some cross-correlations simply neglecting the cross-correlation will outperform
CI and remain consistent).

A synopsis of the CI algorithm is provided here.

3.2.2.1 Covariance Intersection (CI) Algorithm

The covariance intersection (CI) algorithm is a conservative method to consistently
combine two or more estimates (e.g. running state estimates and sensor measure-
ment) when the correlation among them is unknown. In the context of multi-vehicle
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mapping, it is used to manage the double counting of information when combining
the information from different vehicles.

Consider the problem of combining two estimates A and B with unknown degree
of correlation into an estimate C at an arbitrary time k. Given the mean and the
covariance of the two estimates3 as:

A : x̂A(k|k), PA(k|k) (3.21)

B : x̂B(k|k), PB(k|k) (3.22)

The mean and the covariance of estimate C are calculated according to:

x̂C(k|k) = PC(k|k)
(

ωP−1
A (k|k)x̂A(k|k) + (1−ω)P−1

B (k|k)x̂B(k|k)
)

(3.23)

PC(k|k) =
(

ωP−1
A (k|k) + (1−ω)P−1

B (k|k)
)−1

(3.24)

where ωε[0, 1] is usually selected based on some heuristic to minimise some criteria
of uncertainty. One of the most commonly used methods is to select the coefficient ω

so as to minimises the determinate of the resulting covariance matrix PC(k|k). The CI
update can be written more naturally in the information form using Equations (3.10)
and (3.11) as:

ŷC(k|k) = ωŷA(k|k) + (1−ω)ŷB(k|k) (3.25)

YC(k|k) = ωYA(k|k) + (1−ω)YB(k|k) (3.26)

where ŷC(k|k) and YC(k|k) are the information vector and the information matrix of
the fused estimate C respectively.

The main benefit of using CI in data fusion applications is the ability of this
algorithm to generate consistent estimates, regardless of the degree of correlation be-
tween the information sources. However, CI often results in highly conservative es-
timates, i.e., the estimated covariance can be much larger than the actual covariance.
Therefore, alternative methods which provide less conservative estimates would be
preferred. This is simply because CI always provides an upper-bound of the true
covariance.

Notwithstanding its conservative nature, the CI method will be used in Section
3.3 to calculate the common information between each node and the data from the
central server and to overcome the inconsistency issue described earlier in this sec-
tion.

3The covariance intersection technique is based upon the assumption that measurements or states
can be described with Gaussian probability density functions.
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3.2.3 Central Fusion Center (CFC)

The medial component in the single-level hierarchical architecture introduced in Sec-
tion 2.8 is a base station called the central fusion centre (CFC). The CFC is respon-
sible for assimilating the local sub-maps transmitted from individual vehicles into
a consistent global map. The resulting global map is maintained in a central map
repository at the server and is accessible at any time. More specifically, the global
database accommodates information such as type, geolocation (along with its asso-
ciated uncertainty) of all landmarks detected by the survey vehicles. Moreover, as
mentioned in the previous chapter, a feedback configuration in the system provides
a route for the transmission of sub-maps of the global map back to the local SLAM
filters (via channel filter) in remote vehicles. As such, individual vehicles indirectly
have access to the information obtained by other vehicles in the system.

The strategical importance of having this central base station as a communication
hub can be justified in the context of the mapping application and based on the
resource limitations outlined in Section 2.7.1. As explained in Chapter 2, due to
the size of the mapping problem under study, it is impractical to process and store
all the map data locally at individual vehicles. Furthermore, in terms of system
robustness, the safety of information at the CFC can be guaranteed in the setup,
whereas, the components of a survey vehicle on a mission are generally prone to
failure and information loss.

3.3 Efficient Sub-map Communication and Fusion

In this section we consider the communication sequence for a single vehicle, e.g.
one of the components shown in Figure 2.8, and discuss the process of information
fusion when the shared information between the CFC and an individual vehicle is
correlated and of differing sizes. The proposed communication block diagram is
shown in Figure 3.1. As shown in the figure, a channel filter (CHF) has been added
to the vehicle (see 3.2.2). Note that such a channel filter is also identically replicated
at the CFC for each vehicle. The CHF maintains an information vector ŷCH(k|k) and
matrix YCH(k|k) representing the newly acquired and shared information.

We consider the following sequence of steps:

1. Communicating the CFC information to the vehicle

2. Updating the channel filter using the map information from the CFC

3. Updating the local SLAM filter

4. Selecting the local vehicle sub-map to communicate to the CFC

5. Updating the channel filter using the selected sub-map from the LSF

6. Updating the global map using the communicated information from the local
vehicles
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Figure 3.1: Single-vehicle Information Communication Block Diagram

In this thesis, the first three steps and the last three steps are referred to as down-
link and uplink respectively.

3.3.1 Communicating the CFC Information to the Vehicle

All the landmarks4 within the global map held by the CFC that are in a pre-defined
radius (rregional) around the vehicle are transmitted to the vehicle5.

The reason behind sending ’all’ the regional landmarks to the local vehicle can
be justified with two arguments. Firstly, those landmarks in the CFC which satisfy
the accuracy requirements6 will be sent back to the vehicle in order to provide the
vehicle’s local SLAM filter with a reasonably accurate set-point to help the local-
isation of the vehicle (due to the existing correlation between the vehicle and the
landmarks). Secondly, those groups of CFC landmarks which do not fulfil the accu-
racy requirements will be communicated to the vehicle to serve as prior information.
This information can be potentially improved using the fresh measurements obtained
by the in-vehicle sensor platform. In addition, previously recorded landmarks can
potentially help the data association task in the local vehicle. If the vehicle discov-
ers new landmarks whilst it explores the environment, it most certainly means that
they have not been previously reported back to the CFC by any of the distributed
vehicles (at least until the previous communication). Therefore all of those newly
discovered landmarks should be sent back to the server. Also, when it comes to the
previously registered landmarks, a decision has to be made on how to select the most
informative sub-map to communicate. This will be clarified further in Section 3.3.4.

4When we say information is transmitted it is typically meant that the corresponding state vector
(or information space representation) and the corresponding marginalised covariance (or information
space equivalent) is transmitted.

5We assume that the CFC can access the global coordinates of the sensor platforms on demand.
6The accuracy requirement is usually defined with respect to the mapping application. This will be

elaborated further in Chapter 4.

Draft Copy – 12 September 2014



§3.3 Efficient Sub-map Communication and Fusion 51

This so-called regional map that is sent from the CFC to the ith vehicle is denoted
by Mi

R(ŷ
i
R, Yi

R). This information will be received at the communication channel
filter (CHF) of the local vehicle.

3.3.2 Updating the Channel Filter Using the Map Information from the
CFC

After receiving the regional map from the CFC, the channel filter needs to be up-
dated. This update is performed by combining the newly arrived regional map with
the previous channel information; i.e., ŷi

CH(k|k − 1) and Yi
CH(k|k − 1). Please note

that the channel filter will never maintain any states other than map states, since
vehicle information is never communicated.

Let’s assume that the communicated regional information map and the existing
information map in the channel filter are given by Mi

R(ŷ
i
R, Yi

R) and Mi
CH(ŷ

i
CH, Yi

Ch)
respectively.

In general, the channel map information and the transmitted map have different
sizes and/or there is some cross-correlation between the shared information and the
existing data in the channel. Therefore, using a scheme similar to Equations (3.19)
and (3.20) for updating the channel may lead to inconsistent estimates of the common
information between the vehicle and the CFC. To overcome this inconsistency we
employ the covariance intersection (CI) algorithm (discussed in 3.2.2.1) to calculate
the common information between two nodes.

We now drop the superscript i where there is no danger of confusion (and in
this section we consider only the communication between the CFC and a single ve-
hicle i). The CI algorithm requires both information matrices to be of the same size.
Thus, define the map domain MF as the union of the landmarks in the channel
MC(ŷCH, YCH) and the regional map MR(ŷR, YR) as shown in Figure 3.2.

Two projection matrices are defined GR2F and GC2F and consist of 0 and 1 ele-
ments. These matrices inflate ŷR and ŷCH to match the cardinality of the union MF
by padding those components in each respective vector by zero when the landmark
indexed by that component is present only in the other vector. The CI algorithm is
then given by

ŷCH(k|k) = ω[GC2F(k|k)ŷCH(k|k− 1)]

+ (1−ω)[GR2F(k|k)ŷR(k|k)] (3.27)

YCH(k|k) = ω[GC2F(k|k)YCH(k|k− 1)GT
C2F(k|k)]

+ (1−ω)[GR2F(k|k)YR(k|k)GT
R2F(k|k)] (3.28)

where yCH(k|k) and YCH(k|k) denote the ith channel’s information vector and infor-
mation matrix at time k given the updated information at time k from the regional
sub-map.

The new information received from the CFC is given by
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Figure 3.2: The map domain MF is the union map obtained by combining the re-
gional map domain sent from the CFC and the existing map domain in the channel

filter.

i∗(k|k) = ŷCH(k|k)−GC2FŷCH(k|k− 1) (3.29)

I∗(k|k) = YCH(k|k)−GC2FYCH(k|k− 1)GT
C2F (3.30)

The information increment is sent to the LSF, e.g. see Figure 3.1 to be combined
with the locally running SLAM filter. Computing the increment prevents double
counting of information in the LSF as discussed next.

3.3.3 Updating the Local SLAM Filter

When the local SLAM filter receives the information increment from the channel filter
it uses this information to update its estimates. For this purpose, proper projection
matrices GN2H and GL2H are defined as previously discussed in order to inflate the
information increment vector i(k|k) and the local information vector ŷ(k|k) to the
size of the union domainMH. In constructing the former projection matrices, in ad-
dition to padding the respective vectors with zeros at those elements corresponding
to the non-overlapping landmarks, we must also pad components into i∗(k|k) with
zero to correspond with the vehicle components in ŷ(k|k). Recall no vehicle state is
communicated. The update is done according to:

ŷ(k|k) = GL2H ŷ(k|k− 1) + GN2Hi∗(k|k) (3.31)

Y(k|k) = GL2HY(k|k− 1)GT
L2H + GN2HI∗(k|k)GT

N2H (3.32)

and as the LSF is typically executed in the standard state space it follows that x(k|k) =
Y−1(k|k)ŷ(k|k) and P(k|k) = Y−1(k|k) as before.
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3.3.4 Selecting the Local Vehicle Sub-map to Communicate to the CFC

This algorithm is motivated by the AutoMap practical application where the primary
objective is to construct and maintain a high-quality global map at a centralised sta-
tion using information collected (and pre-processed to some degree) at local vehicles.
Since the communication bandwidth is limited as previously noted, the ’most infor-
mative’ sub-map needs to be selected and transmitted back to the CFC. The term
‘most-informative’ sub-map is necessarily ambiguous. Intuitively one would like to
consider the available communication resources and subject to this constraint then
select those landmarks in the local vehicle’s map that will reduce the uncertainty in
any resulting global map constructed at the CFC.

There are numerous measures of informativeness. The simplest method involves
selecting a sub-map based on the measured information gain. In this application, the
information gain is computed by taking the information matrix of the available local
landmarks (in the LSF) and comparing this with the existing channel information
(all the information transmitted from the LSF previously). We define the information
gain of the local map according to:

I(k|k) = Ymm(k|k)−GC2M(k|k)YCH(k|k)GT
C2M(k|k) (3.33)

where Ymm(k|k) = Pmm
−1(k|k) and an appropriate (as in previous arguments) infla-

tion matrix GC2M has been used.

Assume that I(k|k) encodes the information gain regarding a total number of
p landmarks. Due to the existing communication constraints, the information of
q landmark (q < p ) will be transmitted where q is determined by the available
bandwidth or an allocated communication budget for time k. The q landmarks with
the highest information gain will be selected for transmission. The simple method
which is used here is done by picking up the q landmarks with the largest diagonal
elements in the I(k|k) matrix. The selected information sub-map for communication
to the CFC will be denoted by ŷ∗mm(k|k) and Y∗mm(k|k). This information sub-map is
sent to the channel filter prior to transmission to the CFC (see Figure 3.1).

3.3.4.1 Pruning the Local SLAM Filter

As mentioned before in this thesis, in large-scale mapping applications, it is impera-
tive to prevent the size of the local map within the individual vehicles from growing
unboundedly. To achieve this, pruning algorithm is implemented at each communi-
cation time to limit the size of the SLAM filter. Landmarks with the lowest informa-
tion gain are eliminated from both the LSF and CHF of each vehicle to reduce the
size of the local map to a pre-defined constant npr, without comprising the integrity
of the system.

The salient point here is that, this pruning method is distinct from the standard
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computationally efficient solutions to the SLAM problem, in a sense that the in-
formation (and cross-information) of the discarded landmarks is not lost, due to the
previous communication of information to the CFC. This information can be restored
locally at any time by downloading the map information from the server.

Note: Different methods and tools can be utilised in our specific application
to select the sub-map to communicate. For example, to compare the amount of
contribution provided by different sub-maps, the sign types can also be accounted
for and prioritised based on the significance of the sign localisation accuracy for each
sign type.

3.3.5 Updating the Channel Filter Using the Selected Sub-map from the
LSF

When the information sub-map presented by ŷ∗mm(k|k) and Y∗mm(k|k) arrives at the
channel filter, the channel update is performed using the covariance intersection
method similar to what was shown in Section 3.3.2. As mentioned earlier in this
chapter, CI will yield conservative results when combining sub-maps of arbitrary
size with unknown correlations. This update is done according to:

ŷCH(k|k) = ω[GC2Q(k|k)ŷCH(k|k− 1)]

+ (1−ω)[GS2Q(k|k)y∗mm(k|k)] (3.34)

YCH(k|k) = ω[GC2Q(k|k)YCH(k|k− 1)GT
C2Q(k|k)]

+ (1−ω)[GS2Q(k|k)Y∗mm(k|k)GT
S2Q(k|k)] (3.35)

where MQ is the union of the landmarks presented in the communicated sub-map
and the channel filter as shown in Figure 3.3. Projection matrices GC2Q and GS2Q are
defined appropriately to inflate the sub-maps to the size of the unionMQ.

After the complete update of the channel filter using Equations (3.34) and (3.35),
the selected information sub-map ŷ∗mm(k|k) and Y∗mm(k|k) will be transmitted to the
central fusion centre to be fused with the existing global map. The salient point is
that the sub-map presented by ŷ∗mm(k|k) and Y∗mm(k|k) contains the entire history of
the landmarks in it and not simply an increment of information. This has certain
desirable properties such as robustness to system failure and the ability to retrieve
the information in case of communication failure.

3.3.6 Updating the Global Map Using the Communicated Information
from the Local Vehicles

As described earlier, a channel filter structure is used in each node to keep track of
the common information between that node and the central fusion centre (Figure 3.1).
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(ŷR , YR)

(ŷ⇤
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Figure 3.3: MQ is the union information map obtained by combining the landmarks
in the selected sub-map MS(ŷ∗mm, Y∗mm) and the existing landmarks in the channel

filter MCH(ŷCH, YCH) . The small (red) circles represent the landmarks.

The exact same structure is required inside the CFC for tracking the common infor-
mation between the CFC and each vehicle. Therefore, for every vehicle in the system,
there exists a channel filter at the server (Figure 3.4). This channel is a replica of the
CHF inside the corresponding vehicle. As such, when the CFC receives a sub-map
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(ŷR , YR)

(ŷ⇤
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ŷ

I⇤

YCH
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(ŷ , Y )
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(ŷ⇤
mm , Y ⇤

mm)

(i⇤ , I⇤)

Y ⇤

1

LSF CHF

Sen

Y

ŷ
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(ŷ , Y )
I⇤

YCH

(ŷR , YR)

(ŷ⇤
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(ŷ⇤
mm , Y ⇤

mm)

Y ⇤

1

Y

ŷ
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Figure 3.4: The internal structure of the central fusion centre. For every vehicle, there
is a corresponding channel filter at the CFC. The map fusion centre (MFC) integrates
the information increment of the received map from the vehicles into a global map

and sends it to the central map repository.
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information from the ith node, it updates the corresponding channel filter (CHFCFC
i )

using similar update steps described in Section 3.3.2. Once updated, it calculates the
increment of new information it has just received from node i that has not previ-
ously been fused in the global map in a similar way to Equations (3.29) and (3.30). A
structure called the map fusion centre (MFC), then adds the information increments
received from all the exploring vehicles to the existing information map. In this way,
the central map becomes complete over time and the distributed vehicles continue
to keep it up-to-date. Furthermore, when a regional map is communicated from the
CFC to the ith node, the central channel filter corresponding to that node (CHFCFC

i )
needs to be updated using CI, in a manner similar to Equations (3.34) and (3.35).

3.4 Summary

This chapter presented an efficient data fusion framework for the problem of multi-
vehicle SLAM for very-large-scale road mapping applications. The solution is effi-
cient in terms of both computational complexity and communication bandwidth. A
communication algorithm was proposed which operated by intelligently transmit-
ting the most informative sub-map (highest information gain) within the local SLAM
filter to the server. A practical pruning algorithm based on information gain was
applied to overcome the problem of growing map sizes at the local nodes. The appli-
cability of covariance intersection algorithm was discussed and its used was justified.
The proposed communication architecture is capable of dealing with dynamically
changing map-sizes in the system and is able to consistently fuse this map informa-
tion in order to build a global map. The mapping solution is potentially scalable to
environments with thousands of vehicles and many millions of landmarks.
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Chapter 4

Quality Assessment in Map
Making Applications

4.1 Introduction

In the previous two chapters of this thesis an efficient data fusion framework was de-
vised for the problem of multi-vehicle SLAM in very-large-scale environments. The
work was inspired by a real-world road mapping application called AutoMap with
the objective of producing an accurate map of road signs using a number of dedicated
surveying vehicles. A very prominent aspect of such specialised mapping systems
(and more generally, every mapping system) is the way in which their performance
is evaluated. Addressing this issue is the main focus of the current chapter.

In general, the problem of determining the quality of a given map estimate is sub-
ject to debate for robotic mapping applications because no standard method is avail-
able. Although a myriad of different techniques have been presented in the literature
to tackle the problem of localisation and mapping, the field researchers have found
it difficult to reach a consensus on a generic approach to assess the performance of
a variety of mapping systems. This precludes the existence of a widely accepted
scientific methodology for comparing a multitude of existing mapping techniques.
In addition, the recent technological advancements and the emergence of specialised
mapping systems call for application-driven performance metrics that are able to
capture the particulars of such systems and can be applied in different practical sce-
narios.

This chapter explicitly pursues a comprehensive discussion on measures of map
quality with a focus on road mapping frameworks. A well-defined concept for map
quality is sought which can reflect the accuracy of mapping systems in a meaningful
way. A new, generic directional map quality metric is introduced which can be tuned
to fit a wide spectrum of practical applications depending on priorities in localisation
direction and specific types of landmarks. This measure is designed in a way that is
conceptually compelling for specialised road mapping applications (such as the work
carried out in this thesis) and can be potentially employed by both scientific and
business community to serve as a tool for comparing the performance of different
mapping algorithms.

57
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This chapter is organised as follows: Section 4.2 presents an overview on some
of the most popular techniques used in the literature to assess the quality and per-
formance of localisation and mapping applications and highlights the motivation
behind the present work. Fundamental questions such as “what is map quality?”
and “how to compare the results of different mapping algorithms” are elaborated.
Section 4.3 describes a taxonomy of map quality metrics based on various practi-
cal factors. This systematic categorisation sets up the foundation for designing a
new quality metric. Some of the practical factors that are needed to be considered
in the design and development of a map quality metric for road applications are
discussed in Section 4.4. These considerations are discussed around topics such as
requirements of different groups of map users, geometry of road structure and the
accessibility of information. Finally, Section 4.5 formulates a new map error metric
which incorporates the classification of map elements and the priorities in localisa-
tion directions. Two types of directional map error (DIMER) metrics are proposed
depending on the availability of ground-truth information. We also establish the link
between the new and existing quality metrics.

4.2 Motivation and Background

As outlined before in this thesis, one of the principal goals of mobile robotics research
is the creation of a map from noisy sensor data collected by a robot as it explores an
unknown environment. A myriad of different solutions have been presented in the
literature to tackle the problem of robot localisation and mapping1. One of the fun-
damental questions that needs to be answered in any mapping application is ”how
should the performance of the mapping system be evaluated?”. The significance
of this question lies in the fact that it is generally desirable to study the impact of
different algorithms, utilised system components and environmental/experimental
conditions on the performance of mapping systems. In addition, finding an appro-
priate answer to the above question enables the systematic comparison between the
results of various mapping techniques. This has prompted different works in the
literature to employ strategies to demonstrate the effectiveness of their methods and
the precision of their results. Notwithstanding, it has been argued that (e.g. [Jaul-
mes et al., 2009; Kümmerle et al., 2009; Mourikis and Roumeliotis, 2006]) the robotic
mapping community lacks a generally accepted, standard methodology for quality
assessment and comparison between the results of different algorithms. This stems
from the fact that it is generally difficult to use a single measure of performance for
a wide range of application areas and practical scenarios. Most existing solutions fail
to provide a comprehensive evaluation in specialised mapping scenarios, since they
do not fully reflect the quality and accurateness of mapping processes. Moreover, a
large majority of the existing solutions are subjective, influenced by individual per-
ceptions and hence debatable. A practical quality measure that thoroughly manifests
the performance of a mapping systems needs to be driven by the specific character-

1Chapter 2 summarises some of the most popular localisation and mapping methods.
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istics of that particular application. This is the avenue we follow in this chapter.
This work strives to address these issues and to clarify the concept of ”quality

assessment” for practical robotic mapping applications, before formulating a new
quality metric for specialised road mapping applications. In order to provide the
required background, this section reviews some of the state-of-the-art quality assess-
ment techniques used in the literature and outlines their key strengths and weak-
nesses. Although this discussion can be around most of the existing mapping algo-
rithms, the probabilistic mapping methods (such as SLAM) are the main focus of this
chapter.

In general, assessing the performance of mapping algorithms is multifaceted. Dif-
ferent aspects of the mapping systems might be taken into account and examined for
this purpose. Ideally, all factors included in the mapping system as well as the fi-
nal obtained map and the application of the end map should be accounted for in
the performance evaluation process. However, quantifying and incorporating all of
these aspects in a single measure is infeasible for most practical systems due to the
introduced complexity. Therefore, more simplistic methods are usually employed
depending on the specifications and requirements of mapping applications. For in-
stance, a naive approach may see the average required communication bandwidth or
the computational complexity as performance criteria for the multi-vehicle mapping
system described in Chapter 3; i.e. the effectiveness of the system is judged based on
communication or computational efficiency. However, using such statistics puts very
little emphasis on the overall performance of the mapping system.

A relatively straightforward way of comparing certain robotic systems is judg-
ing them by their performance in a competition setting. RoboCup [Rob, 2013] and
DARPA Grande Challenge [DAR, 2013] are two famous examples of such compe-
titions. Although individual subsystems are not directly judged, such competition
scenarios allow the level of system integration and the merit of certain engineering
skills to be ranked for different participating groups [Wulf et al., 2008]. Search and
rescue robotic operations [Kleiner et al., 2006; Piniés et al., 2006], robots in simulated
Mars environments [ESA, 2008] and cleaning robots [EPF, 2002] are some of the
robotic challenges with a defined mission objective as the main criterion to evaluate
the performance of different algorithms. However, it can be argued that due to the
diversity of hardware/software components used by different participating parties,
the competition outcome does not reflect a fair comparison between the merit of
utilised mapping algorithms.

Another popular approach used by the scientific community to assess the quality
of localisation and mapping techniques is the use of benchmarking methods. These
techniques require some sort of ground-truth data about the environment in which
the robot operates. Benchmarking the outcome can be performed with respect to
the location of robot or map features. The published works on classical SLAM, es-
pecially works carried out around autonomous navigation (e.g. [Guivant et al., 2000;
Durrant-Whyte et al., 1996]), focus on the algorithm’s performance based on the
robot localisation error, while little emphasis is put on the error contained in the ob-
tained map. A more recent example is [Kümmerle et al., 2009] in which the estimated
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position of the robot is compared with a reference position. Therefore, instead of the
output map, the poses of the robot during data acquisition are considered. The main
advantage of such techniques is that they enable the comparison of different algo-
rithms regardless of the fashion used to represent their generated maps. However,
as mentioned before, such measures do not provide any information on the quality
of the output map from the algorithm. A more common approach for benchmarking
robotic mapping systems is to assess the output map with respect to a reference map.
The type of the generated map (e.g. occupation grid maps, position of features/bea-
cons maps, superposition of scans) plays an important role in the manner in which
the performance of the system is examined. For example, numerous applications
in the area of feature-based estimation use the distance (Euclidean or Mahalanobis
distance) between the estimated and true feature locations. In the area of grid-based
estimation techniques, visual inspection methods (such as image similarity) are used
to benchmark and compare the produced maps. It is also possible to quantitatively
measure the correlation between the estimated map and the ground-truth.

Simulation environment is commonly used to generate the ground-truth data
and state variables for conducting and repeating experiments in defined conditions
(example works include [Bryson and Sukkarieh, 2007; Nettleton et al., 2006; Kim,
2004]). However, the downside is, since it is almost impossible to inclusively model
all aspects of different applications, simulation environment inevitably differs from
real-world in various respects.

In addition to artificially generated environments, publicly available datasets are
extensively used in benchmarking applications to provide a platform to replicate
experiments for evaluation and comparison of different methodologies. For example,
the Victoria Park benchmark dataset [J. Guivant and Nebot., 2007] has become a
popular benchmarking tool within the SLAM research community. Nevertheless,
for most real-world applications, ground-truth data is not readily available mainly
due to the difficulties involved in the process of gathering this information. More
specifically, getting ground-truth information for large scale outdoor environments
(like AutoMap) is cumbersome. Hence, alternative tools for a standard, meaningful
comparison between different methods are still desirable for these cases.

In the absence of absolute ground-truth information, different criteria are used
by the scientific community to evaluate the performance of different mapping algo-
rithms. In Kalman filter based estimation algorithms (e.g. EKF-SLAM), one of the
most common approaches is to determine the accurateness of the estimator by mak-
ing use of the error covariance matrix pertaining to the estimates. The covariance
matrix is essentially a measure of uncertainty in the obtained estimate which is gen-
erated by the estimator2. Error ellipses are popularly used to denote the uncertainty
of features’ position estimates.

Different measures of the error covariance matrix have been used in the litera-
ture. Trace and determinant are the two of the mostly employed types of measures
(e.g. [Julier and Uhlmann, 2007; Alriksson and Rantzer, 2006; Sim and Roy, 2005;

2This was one of the main methods used in Chapter 3.
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Andrade-Cetto et al., 2005; Vidal-Calleja et al., 2004; Amirsadri et al., 2012a]). Ge-
ometrically, the determinant is closely related (although not equal) to the volume
encapsulated by the error ellipse associated with the estimate’s covariance matrix,
while the trace has a more subtle interpretation which is based on the lengths of the
axes of the ellipse3. Metrics dependant on both vehicle and landmark uncertainties
are also utilised for a different agenda. For example, in [Feder et al., 1999], an in-
fluential paper on adaptive navigation and mapping, the authors introduce a metric
for adaptive sensing represented by the sum of the areas of the error ellipses of the
vehicle and feature estimates in the map.

In summary, this section described some of the most common approaches for
evaluating the performance of localisation and mapping systems. As mentioned ear-
lier, in an ideal world, all factors included in the mapping system should be taken
into consideration for a comprehensive quality assessment in robotic applications.
However, this is clearly infeasible in a practical sense. As a result, only certain as-
pects of a mapping system can be considered in a realistic scenario depending on
the characteristics and priorities of the particular application. In applications like
AutoMap where the final output map is considered as the primary outcome, a sen-
sible decision regarding the performance metric is to emphasise on the quality of
that map, regardless of the method with which it has been acquired. This is the av-
enue we follow in the remainder of this chapter. We seek a well-defined map quality
metric to quantitatively assess the performance of localisation and mapping methods
such as SLAM. Another significant aspect of such systems is assessing the quality of
its output in relation to particular mapping profiles for specialised mapping appli-
cations. In order to have a generic way of evaluating the map quality, we devise a
metric that can be tuned to fit a wide spectrum of applications. As a preliminary
step, Section 4.3 describes a general taxonomy of different map quality metrics.

4.3 Taxonomy of Different Map Quality Metrics

This section describes a taxonomy of map quality metrics with the purpose of setting
up the context for designing a new map quality measure for specialised road map-
ping applications. These metrics can be categorised with respect to different criteria.
Different schemes of classification are driven by various factors and points of view
such as the properties of the available map, available information and other geometri-
cal or statistical elements. The review of different map metric classifications provides
a systematic tool to compare the existing map quality assessment techniques. This
section is complementary to the discussion provided in Section 4.2. Here, for sim-
plicity, we only concentrate on two-dimensional feature maps, as it is also closely
related to the map making process studied in this thesis.

A relatively simple, yet fundamental categorisation is based on the availability of
ground-truth information in the calculation of the map quality metric. Two distinct

3See Section 4.5 for more details.
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types of measures can be considered for this case

1. Metrics relying on ground-truth information

2. Metrics independent of ground-truth information

Metrics belonging to the first group are frequently used in computer simulations
to test the performance of different algorithms. The Euclidean or Mahalanobis dis-
tance which are calculated based on the distance between the estimated and true fea-
ture positions are examples of such metrics. However, as mentioned in the previous
section, these metrics are subject to the availability of ground-truth feature informa-
tion. Also, such simple measures do not capture the particulars of certain applica-
tions. Consequently, their use in real-world practical applications is restricted. In
such cases, the second group of metrics can be used in lieu of the first group. These
metrics are typically correlated with a quantity representing the map uncertainty.
For instance, metrics based on the covariance matrix (e.g. trace or determinant of
the map covariance matrix) are commonly used as an uncertainty criteria for feature
maps in scenarios where a ground-truth map is inaccessible. Albeit, these metrics
are indirectly connected to the metrics of the first group due to the fact that they are
often calculated to approximate the distance with respect to the true map. In fact,
the covariance can be calculated using the following expected value:

P , E
[
(X− E(X))(X− E(X))T

]
(4.1)

where the state vector X is a general random variable with E(X) representing its
mean value.

The taxonomy of map quality metrics can also be in relation to different map
properties. For example, the type of the given map plays a pivotal role in the metric
chosen to measure the map’s quality. In addition to the position, many applica-
tions also consider another attribute for stationary feature maps namely landmark
orientation. Broadly speaking, orientation can be defined for landmarks with a third
dimension (e.g. surface, heading, pointer) where the mean orientation estimation is
also of importance in the map making process4. Therefore, map quality metrics can
be divided into the following three categories, based on the availability of position
and orientation of map elements.

1. Metrics based only on landmarks’ position

2. Metrics based only on landmarks’ orientation

3. Metrics based on both position and orientation of landmarks

In principle, probabilistic estimation techniques such as SLAM estimate a mean
along with a measure of uncertainty (e.g. covariance matrix) for the position of map

4Orientation will be explicitly defined for road signs in Section 4.4.
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elements. For example, for a 2-D position map acquired through the use of the EKF-
SLAM algorithm (see Chapter 3), the estimated position mean for a landmark is in
the form of a 2×1 matrix and the associated covariance is a 2×2 matrix. This leads
to another categorisation for the map quality metric based on the available statistics
provided by the mapping algorithm:

1. Metrics based only on estimated mean

2. Metrics based only on estimated variance

3. Metrics based on both mean and variance of the estimate

The last categorisation considered for the taxonomy of map quality metrics in this
section is based on isotropy, i.e. whether the properties of the metric vary depending
on the factors such as direction or orientation. As will be seen in Section 4.4 this clas-
sification is vital for understanding the underlying metric sought for road mapping
applications. In general, all map quality metrics can be divided into the following
two groups:

1. Isotropic metrics

2. Non-isotropic metrics

The majority of the map quality metrics used by the robotics community (see
Section 4.2) are isotropic, meaning that the geometry of the quality metric is the same,
regardless of direction. Measures that are solely based on the trace or determinant
of the covariance matrix are examples of isotropic metrics.

This section highlighted some of the most important classifications of map quality
metrics in robotics applications. It goes without saying that the taxonomy of quality
metrics is not limited to the discussion provided here. In what follows in Section 4.4,
we set up the requirements for the formulation of a new map quality metric for road
mapping frameworks.

4.4 Practical Considerations in Measuring the Map Quality
in Road Applications

This section is concerned with some of the practical considerations in design and
development of map quality metrics for road applications. Thus far in this chapter,
we have addressed quality assessment in general mapping frameworks from a high-
level point of view. A handful of different techniques were outlined in Section 4.2
and a general taxonomy was conducted in Section 4.3. In this section, we narrow
down our discussion to quality assessment for road mapping applications. More
specifically, we focus on the AutoMap project explained previously in this thesis5. We

5Please note the terms road sign, landmark and map element are used interchangeably throughout
this section.
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start by providing arguments and examples of reasons why most of the de-facto map
quality metrics struggle to provide a comprehensive, generic approach to assess the
quality of maps consisting of road signs. This will serve as a justification for the need
for a more advanced quality metric for similar road applications. We then provide
some of the practical issues that are needed to be considered prior to designing a
new metric. These considerations are discussed around factors such as requirements
of different user groups, geometry of road structure and information availability. The
current section and the discussion provided previously in this chapter set up the basis
for Section 4.5 where a new map quality metric is developed and mathematically
formulated.

4.4.1 Requirements of Different User Groups

A very important facet that needs to be considered in designing a specialised map
quality metric is the targeted user-group. Before making design decisions, one needs
to distinguish between different groups of map users and the subtle differences be-
tween their requirements. For this purpose, this section considers four main groups
that can benefit from a meaningful map quality metric.

1. Digital Mapping companies

2. Road authorities and asset managers

3. Map developers

4. Users of satellite navigation devices (end users)

The first group is comprised of map making companies (e.g. Sensis, TomTom,
Nokia and others) who control the personal navigation market. These companies
seek to acquire accurate and reliable map estimates consisting of the geo-location of
road signs of interest in the environment. This information is mainly used for rout-
ing purposes. Through the integration of road signs (along with other extracted data
from the roads), these companies aim at creating quality maps with an enhanced
user experience. For instance, Sensis interprets the road sign data in order to pro-
vide efficient and accurate turn-by-turn navigation advice and other location-based
features for their satellite navigation devices. For this purpose, the maps must sat-
isfy a certain degree of accuracy where both position and orientation accuracies are
important. For a particular road sign, the main concern of this group is to be able to
identify the specific road that the sign is applied to.

Road authorities and asset managers constitute the second group studied in this
section. These parties are interested in accurate positioning of road signs in order
to construct a valid and up-to-date database of the installed traffic signs in different
roads. In addition, accurate monitoring of potential changes to the location of road
signs (also known as change detection) is an important aspect of road asset man-
agement. In order to do this, these groups must have an accurate idea of the sign
location and its initial state in the first place. Moreover, sign inventories are used to
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keep track of statistics of road signs in different areas. This can also facilitate main-
tenance procedures deemed essential for certain road signs. This group is interested
in whether or not different road signs comply with road safety standards (e.g. how
close is a given sign to the road) in order to prevent hazardous situations. Therefore,
road asset managers care about the asset itself for various maintenance and compli-
ance purposes, whereas mapping companies care about certain statistics regarding
the sign essentially for routing purposes, to be able to transfer this information to the
end users.

The third group is the party responsible for extracting the information of road
signs and developing high-quality digital maps for mapping companies and asset
managers. The AutoMap project is a good example of this group6. Access to a
reliable tool for map quality assessment is of vital practical importance to this group,
since the algorithm development in such applications is usually performed in order
to optimise a certain quality criteria. Therefore, it is evidently advantageous to use
a customisable measure which can be tuned with respect to the requirements of a
specific mapping application. In this way, one can improve the map making process
by building better quality maps for the other user groups discussed here. This is the
main avenue we follow in Chapter 5.

Finally, the fourth group of users who can potentially benefit from a comprehen-
sive map quality metric are the end users. This group includes the regular people
who are the users of personal satellite navigation devices. Although the end users
may not directly use all the available statistics regarding different signs on a daily ba-
sis, accurate geo-localisation of the signs with respect to roads is important to them.
Particularly, the emergence of a variety of location-based services for the users of
in-vehicle navigation devices has created the necessity for accurate information re-
garding the traffic signs applied to different roads. The requirements of this group
regarding map quality are tightly related to those of the first group (the mapping
companies), as the latter should essentially reflect the needs of the former. In other
words, the needs of mapping companies are derived from the needs of the end users.
For example, the end users want to know which speed limit apply to a certain road,
can they drive in a specific direction, etc. These needs are transferred into the needs
of mapping companies such as Sensis.

Prior to designing a new quality metric, one must make a distinction between the
way in which the above groups are going to evaluate the quality of their maps. Con-
sequently, a map quality metric that accommodates the basic requirements and prior-
ities of different groups of map users is preferred. The above-mentioned descriptive
needs must first be transformed into equivalent technical needs. For instance, as ex-
plained before, mapping companies are required to determine the specific road any
given sign is applied to. Furthermore, road authorities are interested in specifying
the proximity of traffic signs to different roads. To be able to do this, parallel and
orthogonal accuracies with respect to the road must be distinguished and separated
in a quality assessment. This concept will be elaborated in Subsection 4.4.2.

6Note that this group can be a part of the organisational pipeline of a mapping company itself.
However, for the sake of the discussion in this thesis, they are presumed as a separate entity.
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Figure 4.1: An example of six different position estimates for a sample speed sign.
The magnitude of the Euclidean distance between the estimated (blue dot) and true

position (the 50 km/h speed sign) is identical in all cases.

To allow more degrees of freedom in the system, different sign types will be
treated differently in the map quality assessment process. In general, road signs can
be divided into two distinct groups: 1- regulatory signs 2- advisory signs. Broadly
speaking, regulatory signs are the signs intended to instruct the drivers and other
road users in different circumstances. These signs are used to reinforce various traffic
laws and regulations. Disregarding regulatory signs will lead to law violations and
carry a legal penalty due to their sensitive nature. Stop signs, speed limits and no
entry signs are a few examples of the many types in this group. On the other hand,
as implied by their names, advisory signs describe a range of signs that are used to
recommend certain instructions to the road users. Although disregarding advisory
signs may not necessarily be deemed as a traffic offence, obeying them will increase
road safety and diminish the risk of road incidents. Caution signs and advisory
speed limits are examples of such signs. Typically, advisory signs are considered less
critical than regulatory signs. This is one reason why one wants to treat different
sign types differently in map quality assessment. This will be the focus of Subsection
4.4.3.

4.4.2 Directional Priorities

As mentioned before, in some mapping scenarios (particularly in road applications)
the localisation accuracy for certain types of landmarks is more significant along
one particular direction compared to the others. The following discussion is used to
exemplify this claim for a simple scenario consisting of a single landmark.
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Figure 4.2: An example of six different uncertainty ellipses pertaining to the position
estimates of a sample road sign. The trace and determinant of these ellipses are

identical, despite their different relative orientation with respect to the road.

Consider a hypothetical scenario where a number of distinct position estimates
have been obtained for a particular road sign through the employment of a number
of non-identical mapping algorithms. For the first example, we assume that the true
position of this sample road sign is completely known. Figure 4.1 shows the esti-
mated position mean and the true sign position for each of the given estimates. The
stretch of road corresponding to the sample road sign can also be seen in the figure.
Also, for the sake of the argument, suppose that the localisation accuracy for this
particular road sign is m times more important along the road’s perpendicular axis
compared to its parallel axis. It can be argued that the generality of this presumption
can be deemed valid for specific road signs (e.g. speed signs7) in AutoMap. We refer
to this concept as directional priorities in this thesis and we further elaborate that in
the future8.

The Euclidean distance between the position estimates and the actual road sign
position is one of the most common existing measures for calculating the map error in
this scenario. This distance has been shown using a vector for each of the estimates
in figure 4.1. Although the Euclidean distance is identical for all six cases, their
respective qualities must be different due to the previously mentioned assumption
on directional priorities. For example, it is logical that the estimate shown in Box
No.1 has a higher quality compared to estimate of Box No.5, since it has got a much
smaller perpendicular position error with respect to the road.

7Since speed signs are placed to specify the speed limit on a road stretch, the positioning inaccuracies
in horizontal directions (with respect to the road) are more tolerable compared to vertical errors.

8These priorities will be defined as a function of sign type later in this chapter.
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Now for the second example, we consider a similar, yet more realistic scenario in
which the ground-truth positions are not available. Suppose that six different posi-
tion estimates (including mean and covariance) are given (See Figure 4.2). Without
loss of generality, we assume that these six given estimates have the same mean, but
different covariances. Since the actual sign locations are not accessible in this case,
the covariance of these position estimates are used to calculate and compare the er-
ror associated with each map. The uncertainty ellipse associated with each estimate’s
covariance is shown in the figure.

Recalling Section 4.2, trace and determinant of the covariance matrix are two of
the most common metrics for map quality assessment in similar scenarios. Employ-
ment of either of these isotropic metrics will yield the same value for all the ellipses
in Figure 4.2. However, assuming the same directional priorities as before, (most
probably) these maps must have different qualities in terms of directional position
accuracy, since their parallel and perpendicular uncertainties with respect to the road
frame are evidently not alike.

Consequently, it can be concluded from the above two hypothetical examples
(Figs. 4.1 and 4.2) that there is a necessity to apply a more versatile metric for
quality assessment in specialised road mapping applications such as AutoMap. In
each example, identical error values for each case resulting from applying conven-
tional methods (simple Euclidean distance and trace/determinant respectively) sug-
gests that these isotropic metrics are not sufficiently effective in determining the map
quality under similar circumstances. As a result, strategies to integrate directional
priorities in the calculation of map quality metrics need to be further examined. This
issue will be addressed in detail later in this chapter.

4.4.3 Type Priorities

In addition to directional priorities, there are other complementary factors that can
be capitalised in determining the quality for a given map of road signs. One main
factor which is considered in this thesis is the classification of the sign type (i.e.
speed, speed, caution, no entry, etc.). Practically speaking, different sign types are
generally regarded (or weighted) differently in terms of localisation accuracy9. Con-
sider a map populated by a large number of road signs in which different sign types
are present. The overall error associated with the map would typically be the sum
of error for individual landmarks. We argue that, for applications (like AutoMap)
where different kinds of landmarks are perceived differently, this may not be the
most sensible approach to quantify the error. We propose a weighting concept for
each type of landmark depending on their contribution to the total map error. In this
text, we use the term sign type priorities to refer to the above concept and we further
elaborate its application in Section 4.5.

By virtue of the above practical factors, the need for a more sophisticated, mean-
ingful metric can be justified. In Section 4.5, we introduce a well-defined metric that
can be utilised by the scientific and business communities to inclusively evaluate the

9Refer to Subsection 4.4.1 for the fundamental differences between regulatory and advisory signs.
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quality of a given map in specialised road mapping applications. The intention is to
later incorporate the new quality metric in multi-vehicle SLAM scenarios addressed
in Chapter 3. The remaining of this section is concerned with addressing some of the
other practical considerations in the design and theoretical development of this new
metric.

4.4.4 Information Accessibility

As discussed earlier, there are various preliminary factors that are needed to be con-
sidered when designing a metric for map quality assessment in real-world appli-
cations. This subsection will address the information accessibility concept for con-
structing a metric for measuring the quality of maps comprised of road signs.

Generally speaking, the proposed metric will have to be a precisely defined math-
ematical concept which can be used with respect to the requirements of particular
mapping applications. Therefore, it is imperative to define a metric which is com-
putable based on the available information. This is the direct follow up from the
discussion provided on taxonomy of quality metrics in Section 4.3. Intuitively, one
should develop a metric which is based on the specifications of the available map.
For example, a measure based on the position of the vehicle would clearly not make
sense for a map which only consists of position estimates of map elements.

In this thesis, two main spatial attributes are considered for road signs. These
attributes are position and orientation of the sign with respect to the Cartesian frame
of reference (in other words, we consider the pose attribute for a given road sign). To
clarify the orientation concept, we provide the following definition.

Definition 1. Under the fairly reasonable assumption that road signs have a flat surface, the
sign orientation in defined as the counter-clock-wise angle between the normal vector to the
sign’s surface and the x-y plane in the global Cartesian frame. Therefore, orientation of a sign
is the same as the orientation of the vector perpendicular to the sign’s surface and is defined
in the (−π, π] interval.

Note that the sign orientation definition is based on the assumption that the
majority of signs have a flat surface and are installed in a way that they are orthogonal
to the ground’s surface. This, in turn, makes the sign’s normal vector parallel to the
road’s surface. As a result of these assumptions, a unique, well-defined orientation
can be defined for any given sign (see Figure 4.3).

In addition to the main spatial parameters (position and orientation), sign type is
also considered to characterise a given road sign. The implemented computer vision
algorithms used to detect road signs of interest from video footages are capable of
identifying the type of the extracted signs. Broadly speaking, these three parameters
are sufficient to describe a road sign for the purpose of the application addressed
here.

Throughout the remaining of this chapter we concentrate on maps of road signs
comprising of 2-D position and orientation estimates. Each estimate is represented
using a mean and a corresponding covariance. We further assume that the true sign
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Figure 4.3: Sign Orientation is defined with respect to the normal vector perpendic-
ular to its surface.

type is also available for the existing signs in the map. Consequently, based on the
availability information and the nature of the mapping application, the following
different options can be nominated for use in the calculation of the new map quality
metric (sign type information has been excluded in this categorisation):

1. Measures that depend only on position

2. Measures that depend only on pose

3. Measures that depend only on position and its variance

4. Measures that depend only on pose and its variance

5. Measures that depend only on position variance

6. Measures that depend only on pose variance

Presuming the availability of the above statistics, the decision on the choice of the
quality metric depends on which type of map measure is more appropriate for our
specific road application. For instance, on one level, a measure which is characterised
by position-only estimates might be the kind of map quality factor that one wants to
define, and on another level, a quality metric based on pose, rather than just position,
might be more appealing and suitable for a specific purpose.

As argued before in this section, measures based on position-only estimates are
not deemed sufficient to correctly reflect the quality of a map encompassing road
signs due to the existence of the inherited directional priorities. Therefore, a logi-
cal option would be to somehow incorporate the road heading information in the
calculation of the new map error metric. Nevertheless, this information is generally
not readily accessible as it is not directly presented in the output of most mapping

Draft Copy – 12 September 2014



§4.4 Practical Considerations in Measuring the Map Quality in Road Applications 71

techniques. This stems from the fact that the majority of map representations are es-
sentially used to describe different aspects of the existing map elements, rather than
other environmental objects. Note that, in theoretical sense, the SLAM algorithm
produces the track of the vehicle as well as the position of the detected features.
However, the only deliverable piece of information for most mapping applications is
merely the information of map elements. This restriction is particularly valid for map
creation in large-scale environments where maintaining all the vehicle’s positioning
information is not feasible due to the size of the problem. Therefore, an alternative
must be sought to replace the road and vehicle heading information in developing
the new quality metric.

As a general rule, in the world of road signs, each sign is installed with respect
to a stretch of road. We make an assumption that even though any given road has
a finite width, it is defined according to the centre-line of its lanes. Therefore, a
single line is associated to each road regardless of its width. For a typical road
network, the heading of the road varies from point to point, thus making it difficult to
mathematically define a fixed heading for a road stretch. Therefore, for our particular
road mapping application, we define a point-wise heading depending on where this
quantity is being measured.

Definition 2. The heading at any particular point of a given road is defined as the angle be-
tween the road tangent at that point and the global Cartesian frame. Road heading is denoted
using β and is defined in the interval [0, π).

More specifically, we purposely define the ’road heading for a specific road sign’
as the heading of the road at the intersection point of the road and the sign’s surface.
A numerical example of the point-wise road heading concept has been shown in Fig-
ure 4.4.

� = 0�

� = 132�

� = 40�

Figure 4.4: Point-wise road heading (0 ≤ β < π).

As can be tentatively deducted from Definitions 1 & 2 , sign orientation and road
heading are closely related concepts. This is mainly due to the fact that, for the ma-
jority of signs, the sign’s flat surface is approximately orthogonal to the stretch of
the road they apply to10. Thus, for a given sign11, the sign normal vector is roughly

10Since the imaginary horizontal continuation of most signs’ surfaces (form the sides) intersects the
road at a 90◦ degree.

11Note that some sign types (e.g. one way, parking, etc.) are parallel to the road. Without loss
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parallel to the stretch of road and opposite to the direction in which the vehicles tra-
verse that road (Figure 4.5 clarifies this concept). Consequently, we propose the use
of sign orientation (sign normal) in lieu of the road heading (as the closest accessible
measure) in developing the new map error metric. This will effectively lead to the
creation of a non-isotropic metric, as it will be dependant on the spatial orientation
of the landmarks (see Section 4.3).

Figure 4.5: The surface of a sample road sign is usually orthogonal to the portion of
the road it applies to, which in turn makes the sign’s surface normal (sign orientation)

parallel to the road’s tangent.

The advantages of estimating the landmark orientation for road mapping ap-
plications is two-fold. Firstly, as discussed recently, the orientation integration can
potentially facilitate the design of a compelling, more extensive map quality metric
which is dependant on the previously mentioned directional priorities. Secondly,
delivering maps consisting of pose estimates can offer certain practical benefits to
mapping companies. For instance, Sensis, AutoMap’s key Australian customer, can
use and interpret the sign orientation information in a non-trivial procedure in their
organisational pipeline (called the integration process) to obtain some partial knowl-
edge about the geometry of roads and the surrounding environment. For example,
based on the pose estimate and the type of a particular road sign, the structure of
the roads pertaining to that sign can be inferred. It is important to note that finding
the road corresponding to a road sign is not a trivial problem in general, specially
for speed, give way and round-about signs.

This section outlined some of the most pivotal practical points needed to be con-
sidered for the design of a versatile metric for quality assessment in road mapping
applications. In the next section we will introduce a new measure called DIMER
metric based on the type of the existing map elements and the directional priorities
with respect to the road geometry. The term ‘DIMER‘ is created as an acronym of
the phrase ”DIrectional Map ERror”.

of generality, we exclude these signs from our discussion. However, the road heading can be easily
determined using the sign orientation and type for this minority. In addition, all the past and future
equations can be re-derived for these signs.
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4.5 Directional Map Error (DIMER) Metric

In this section we design a directional map quality metric which integrates the land-
mark’s type information and directional priorities into the calculation of the map er-
ror metric. Two distinct cases based on the availability of ground-truth information
are considered. Firstly, a preliminary quality measure based on mean-only estimates
is formulated in Section 4.5.1 for the case where the true landmark locations are avail-
able. Secondly, a map quality metric based on variance-only estimates is defined in
Section 4.5.2 for scenarios where the true mean values are not available. Please note
that assessing the map quality is performed by calculating a form of map error in
this chapter. Therefore, the concepts of ‘map quality metric‘ and ‘map error metric‘
are closely related. Needless to say, the lower the map error, the higher the quality
and accurateness of that map.

Similar to the previous section, we choose to focus on road signs as the main
landmarks of interest for this section. Despite this, the discussion presented here can
be generalised and extended to other robotic applications where a more meaningful,
advanced quality metric is required.

4.5.1 Ground-truth-based DIMER Metric

Consider a two-dimensional map consisting of N landmarks (e.g. N road signs). Let
X∗j be the vector of true position and X̂j the vector of position estimates for the jth

landmark in the map. If all the N landmarks presented in the map are identical12

(homogenous) and the localisation importance for every landmark is the same along
any arbitrary axis (there are no directional preferences), then the computation of
the total map error measure (M) for this given map is straightforward and can be
calculated using13

MG =
N

∑
j=1
‖X̂j − X∗j ‖2 (4.2)

where subscript G refers to the fact that the calculated map error is based on ground-
truth data. As can be seen,MG is simply the sum of square14 of distance between the
estimate and the ground-truth for individual landmarks (See Fig. 4.6 for a sample
landmark in the map). This combined Euclidean distance is obviously the most
viable metric for evaluating the quality of the map in this situation.

Now assume a realistic scenario where the landmarks in the map are of differ-
ent types (non-homogenous map) and the localisation accuracy for each type is of
different practical importance. As discussed in Section 4.4, in such cases, individ-
ual landmark’s errors are weighted differently in the overall map error calculation

12Identical in this sense means that the landmarks in the map are of the same type and class.
13One can also consider the average error over N landmarks. However, we consider the total map

error in our calculations.
14We remark that the use of squared error values makes the calculations analytically more tractable.

Therefore, they are used in most of the formulations provided in this chapter.
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Figure 4.6: The true and estimated positions for a sample landmark j.

depending on their respective classification. We propose the introduction of a weight-
ing factor ω for each type of landmark depending on their localisation importance.
Larger weighting ωj corresponds to higher localisation importance and therefore
more contribution towards the overall map error. These weights are adjustable and
can be defined in different ways for different applications based on their specific
requirements15. A simplistic setup may choose to define ω ∈ [0, 1] where 0 and 1
indicate the lowest and highest priorities respectively. The weighting factors can be
incorporated into the map error measure by revising Equation (4.2) according to

MG =
N

∑
j=1

ω(Tj)‖X̂j − X∗j ‖2 (4.3)

This equation uses the weighted sum of the squared errors pertaining to individ-
ual landmarks to compute the total map error metric. Notation Tj is used to denote
the type of the jth landmark. As can be seen, the weighting factor ω for a landmark
is a function of its type.

In order to complete the design of the new map quality metric for this case, we
now need to integrate the previously discussed directional priorities. Suppose the
directional importance factors for sign localisation are denoted by I‖ j for parallel and
I⊥ j for perpendicular directions with respect to the road16. The relative importance

15Note that the weighting factor for a particular type of landmark is defined relatively with respect
to the localisation importance of other groups of landmarks.

16In this chapter, the terms parallel direction, perpendicular direction and directional priorities are
all defined with respect to the heading of the road. Therefore, for brevity and to avoid repetition, we
do not mention this relatively with respect to the road most of the time.
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factors are deliberately chosen under the following constraint:

I‖ j + I⊥ j = 2 (4.4)

For example, for a hypothetical situation where the map user is only concerned
with the vertical error with respect to the road, I⊥ and I‖ are set equal to 2 and 0
respectively, meaning that the parallel errors are neglected in the calculation of the
directional map error metric. Note that these importance factors can be separately
chosen for each landmark based on specific mapping profiles for any criteria-based
mapping system. For applications with no directional preference, I‖ and I⊥ are both
set equal to unity.

Let β∗j denote the true heading of the road in which landmark j applies to (0 <
β∗j < π). The error vector in Fig. 4.6 can be projected into components along the
road’s parallel (x′′) and perpendicular (y′′) axes in the Cartesian Coordinate System
(see Figure 4.7). Through this orthogonal decomposition, the directional priorities I‖
and I⊥ can be incorporated into Equation (4.3). These error projections are called
the parallel (E j

‖) and perpendicular (E j
⊥) error metrics and are simply calculated by

using the inner product properties as below:

E j
‖ = I‖

jω(Tj)‖X̂j − X∗j ‖2 cos2(αj − β∗j ) (4.5)

E j
⊥ = I⊥ jω(Tj)‖X̂j − X∗j ‖2 sin2(αj − β∗j ) (4.6)

where −π < α < π is the angle of the error vector with respect to the Cartesian
frame (xy-plane) and is calculated according to

αj = arctan(
ŷj − y∗j
x̂j − x∗j

) (4.7)

Consequently, the revised total map error measure (after taking into account the
directional priorities for each directional component) for a map comprising of N
non-homogenous landmarks becomes

MG =

(
N

∑
j=1
C j
‖‖X̂j − X∗j ‖2 cos2(αj − β∗j )

)

+

(
N

∑
j=1
C j
⊥‖X̂j − X∗j ‖2 sin2(αj − β∗j )

) (4.8)

where C j
‖ and C j

⊥ are defined by
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Figure 4.7: The error vector of Fig. 4.6 is decomposed into components along the
road’s parallel (x′′) and perpendicular (y′′) axes.

C j
‖ , I‖ jω(Tj) (4.9)

C j
⊥ , I⊥ jω(Tj). (4.10)

and can be adjusted for any arbitrary sign j depending on different map users and
profiles. Equation (4.8) can alternatively be written as17

MG =
N

∑
j=1

(
E j
‖ + E

j
⊥
)

(4.11)

4.5.2 Covariance-based DIMER Metric

This subsection formulates a directional map error (DIMER) metric for situations
where no ground-truth information is available. As previously explained in this
chapter, the covariance matrix of position estimates can be used in this case for de-
riving a quantitative quality metric. Once again, we examine the quality of a map
consisting of N road signs. Consider a scenario where the position and orientation of
the existing road signs have been estimated through the use of a stochastic filtering
algorithm. For the sake of this discussion and without loss of generality, we presume

17Once again we remark that one might consider the average error over N landmarks.
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that the position and orientation estimates of any road sign are not correlated, thus
may have been obtained separately. Similar to the previous subsection, we first de-
rive the directional error for a single landmark before formulating the DIMER metric
for the full map.

x00

y00

x0
y0

x

y

True road heading
Estimated road heading

~̂Nj

Figure 4.8: The estimated position mean and its associated covariance ellipse for a
sample road sign. The road heading is estimated based on the landmark orientation

estimation ( ~̂Nj).

Consider a sample landmark j in the map as depicted in Figure 4.8. The estimated
position mean and its covariance ellipse for this road sign can be seen in this figure
along with the relative stretch of road. Moreover, the estimated sign orientation
has been demonstrated using a normal vector ( ~Nj) in the figure. As previously
discussed in this chapter, an estimate of the road heading can be inferred using
the sign orientation information, since the road sign’s surface is perpendicular to
the road at their intersection point. We denote the estimated road heading using β̂ j.
Now suppose X̂j and Pj be the mean and its associated covariance matrix pertaining
to the position estimate of landmark j, then

X̂j = [x̂j, ŷj]T; (4.12)

Pj =

[
Pj

xx Pj
xy

Pj
xy Pj

yy

]
=

 σ
j
x

2
σ

j
xy

σ
j
xy σ

j
y

2

 (4.13)
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Figure 4.9: A standard error ellipse used to visualise a general 2-D covariance matrix
such as the one provided in Eq. (4.13). The semi-major and semi-minor axes of the

ellipse are labelled σ
j
x′ and σ

j
y′ respectively.

where σx and σy denote the standard deviation while σxy is the associated covariance
of the position estimates in (4.12). The following relationship holds between these
variables:

σxy = ρxy · σx · σy (4.14)

with ρxy ∈ [−1, 1] being the correlation coefficient.

In principle, covariance matrices can be geometrically represented by elliptical
distributions. More specifically, in two-dimensional space, a covariance matrix like
Pj can be visualised by a standard error ellipse such as the one shown in Fig. 4.9.
Please note that in many estimation applications, the 2σ or 3σ error ellipses are used
in lieu of the standard (1σ) ellipse. However, for the current discussion around map
quality metrics, we concentrate on the latter case with no scaling coefficient for the
standard deviation.

As a result of the principal axis theorem18, the eigenvectors of the covariance
matrix Pj define the principal axes of the standard error ellipse shown in Fig. 4.9.
These principal axes are referred to as major and minor axes and are shown using
two perpendicular axes x′ and y′ in the figure. The eigenvalues of the Pj matrix are
directly related to the length of the principal axes in that they are equal to the squares
of the semi-axes σ

j
x′ and σ

j
y′ . Therefore,

18See [Mornhinweg et al., 1993] for more details on this theorem.
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λ
j
x = σ

j
x′

2
(4.15)

λ
j
y = σ

j
y′

2
(4.16)

where λ
j
x ≥ λ

j
y ≥ 0 is implied by the obvious fact that σ

j
x′ ≥ σ

j
y′ .

In a general error ellipse, the principal axes do not coincide with the Cartesian
Coordinate axes (x and y), thus forming an angle with respect to it. This angle
θj (known as the error ellipse orientation) is mathematically defined as the angle
between the major axis of the ellipse (x′) and the x-axis and can be calculated by

θj =
1
2

arctan(
2σ

j
xy

σ
j
x

2 − σ
j
y

2 ) , θj ∈ (−π

2
,

π

2
] (4.17)

Alternatively, θj can be written as

θj =
1
2

arctan(
2Pj

xy

Pj
xx − Pj

yy
) , θj ∈ (−π

2
,

π

2
] (4.18)

Furthermore, the semi-major (σj
x′) and semi-minor (σj

y′) axes of the standard error
ellipse are linked to the elements of the covariance matrix in (4.13) through

σ
j
x′

2
=

Pj
xx + Pj

yy

2
+

√
(

Pj
xx − Pj

yy

2
)2 + Pj

xy
2

 (4.19)

σ
j
y′

2
=

Pj
xx + Pj

yy

2
−

√
(

Pj
xx − Pj

yy

2
)2 + Pj

xy
2

 (4.20)

The first term in the above equations is the trace of the Pj matrix. It is mathemat-
ically well known that the trace of a positive semi-definite (PSD) matrix is equivalent
to the sum of the matrix’s eigenvalues. Therefore, Equations (4.15) and (4.16) can be
rearranged as:

σ
j
x′

2
=

1
2

Tr(Pj) +
1
2

Sp(Pj) (4.21)

σ
j
y′

2
=

1
2

Tr(Pj)− 1
2

Sp(Pj) (4.22)

where Sp(Pj) is called the spread of matrix Pj and is used to describe the maximum
distance between the matrix’s eigenvalues in the complex plane. Therefore,

Sp(Pj) = λ
j
x − λ

j
y (4.23)
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Given the above preliminaries on the nature of the covariance error ellipse, we
now formulate the new covariance-based directional map error metric.

Calculating the parallel and perpendicular components of the error ellipse is
slightly more subtle than the calculations in Subsection 4.5.1. However, in a simi-
lar way to Equations (4.5) and (4.6), the semi-major and semi-minor axes of the error
ellipse can be decomposed into parallel and perpendicular components with respect
to the heading of the road (β̂ j). The enlarged view of the covariance ellipse presented
in Fig. 4.8 can be observed in Figure 4.10. The principal axes of the ellipse have been
marked with x′ and y′, while the road axes are denoted x′′ and y′′. The projections
of the ellipse’s axes onto the road’s axes are calculated and rearranged to form the
parallel E j

‖ and perpendicular E j
⊥ errors as below:

x

y

x0
y0

�j
x0

�j
y0 ✓j

�̂j

x00

y00

Figure 4.10: Projecting the semi-major and semi-minor axes of the ellipse to an arbi-
trary axis x” with orientation β.

E j
‖ , C j

‖

(
σ2

x′j
cos2(θj − β̂ j) + σ2

y′j
sin2(θj − β̂ j)

)
(4.24)

E j
⊥ , C j

⊥
(

σ2
x′j

sin2(θj − β̂ j) + σ2
y′j

cos2(θj − β̂ j)
)

. (4.25)

where, as before, sign-specific variables C j
‖ and C j

⊥ are defined by

C j
‖ , I‖ jω(Tj) (4.26)

C j
⊥ , I⊥ jω(Tj). (4.27)

Substituting Equations (4.21) and (4.22) in Eq. (4.24) gives
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E j
‖ = C j

‖

(
1
2

Tr(Pj) +
1
2

Sp(Pj)

)
cos2(θj − β̂ j)

+ C j
‖

(
1
2

Tr(Pj)− 1
2

Sp(Pj)

)
sin2(θj − β̂ j) (4.28)

Rearranging the above equation and using trigonometric equalities yields

E j
‖ = C

j
‖

(
1
2

Tr(Pj) +
1
2

Sp(Pj) cos(2θj − 2β̂ j)

)
(4.29)

The perpendicular error (E j
⊥) is also derived in a similar way as:

E j
⊥ = C j

⊥

(
1
2

Tr(Pj)− 1
2

Sp(Pj) cos(2θj − 2β̂ j)

)
(4.30)

On the other hand, reorganising the error ellipse orientation in Eq. (4.18) gives

tan(2θj) =
2Pj

xy

Pj
xx − Pj

yy
θj ∈ (−π, π] (4.31)

Substituting the above equation into the following trigonometry equalities

sin(2θj) = ±
tan(2θj)√

1 + tan2(2θj)
, cos(2θj) = ±

1√
1 + tan2(2θj)

yields19

sin(2θj) =
2Pj

xy

Sp(Pj)
(4.32)

cos(2θj) =
Pj

xx − Pj
yy

Sp(Pj)
(4.33)

Substituting Equations (4.32) and (4.33) into Equations (4.29) and (4.30) and sim-
plifying yields:

E j
‖ = C

j
‖

(
(

1 + cos(2β̂ j)

2
)Pj

xx + (
1− cos(2β̂ j)

2
)Pj

yy + sin(2β̂ j)Pj
xy

)
(4.34)

E j
⊥ = C j

⊥

(
(

1− cos(2β̂ j)

2
)Pj

xx + (
1 + cos(2β̂ j)

2
)Pj

yy − sin(2β j)Pj
xy

)
(4.35)

19The quadrant in which angle 2θ falls into is significant in specifying the sign of the derived sine
and cosine functions in Equations (4.32) and (4.33) from the above trigonometric equations.
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On the other hand, the total map error metric for landmark j is obtained by
adding the parallel and perpendicular errors:

Mj
C = E j

‖ + E
j
⊥ (4.36)

Therefore,

Mj
C(P

j) = C j
‖

(
(

1 + cos(2β̂ j)

2
)Pj

xx + (
1− cos(2β̂ j)

2
)Pj

yy + sin(2β̂ j)Pj
xy

)
+

+ C j
⊥

(
(

1− cos(2β̂ j)

2
)Pj

xx + (
1 + cos(2β̂ j)

2
)Pj

yy − sin(2β̂ j)Pj
xy

)
(4.37)

where subscript C refers to the fact that the calculated error is based on the covariance
matrix of the estimate. Alternatively, (4.37) can be written as

Mj
C(P

j) = Tr(CjPj) (4.38)

where

Cj =

[
Cj

11 Cj
12

Cj
12 Cj

22

]
with

Cj
11 = C j

‖

(
1 + cos(2β̂ j)

2

)
+ C j

⊥

(
1− cos(2β̂ j)

2

)

Cj
22 = C j

‖

(
1− cos(2β̂ j)

2

)
+ C j

⊥

(
1 + cos(2β̂ j)

2

)

Cj
12 =

1
2
(C j
‖ − C

j
⊥) sin(2β̂ j)

Consequently, the DIMER metric for a given landmark j with the estimated posi-
tion covariance matrix Pj can be written as the trace of a weighted covariance matrix
where the weighting factor depends on factors such as the estimated heading of the
road, directional priorities and the sign type.

The total directional map error (DIMER) metric for a map comprising of N land-
marks is then calculated by adding the error of individual landmarks in the map
according to:

MC(P1, . . . , Pn) =
N

∑
j=1
Mj

C(P
j) (4.39)

Therefore,
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MC(P1, . . . , Pn) =
N

∑
j=1
C j
‖

(
(

1 + cos(2β̂ j)

2
)Pj

xx + (
1− cos(2β̂ j)

2
)Pj

yy + sin(2β̂ j)Pj
xy

)
+

+
N

∑
j=1
C j
⊥

(
(

1− cos(2β̂ j)

2
)Pj

xx + (
1 + cos(2β̂ j)

2
)Pj

yy − sin(2β j)Pj
xy

)
(4.40)

Or alternatively,

MC(P1, . . . , Pn) =
N

∑
j=1

Tr(CjPj) (4.41)

One may also consider the average error over the whole number of landmark (N)
according to

MC,avg(P1, . . . , Pn) =
1
N

N

∑
j=1

Tr(CjPj) (4.42)

We now provide the following important propositions regarding the directional
map error metricMC(Pj) in Eq. (4.38).

Proposition 1. For a given directional error measure Mj
C(P

j) associated with landmark j
and given positive coefficients C j

‖ and C j
⊥ such that C j

‖ = C
j
⊥ = cj with cj > 0, all covariance

matrices Pj that satisfy (4.37) have the same trace and Tr(Pj) =Mj
C/cj.

Proof. Let C j
‖ = C

j
⊥ = cj, (4.37) becomes

Mj
C(P

j) = cj

(
(

1 + cos(2β̂ j)

2
)Pj

xx + (
1− cos(2β̂ j)

2
)Pj

yy + sin(2β̂ j)Pj
xy

)

+ cj

(
(

1− cos(2β̂ j)

2
)Pj

xx + (
1 + cos(2β̂ j)

2
)Pj

yy − sin(2β̂ j)Pj
xy

)
= cj(Pj

xx + Pj
yy)

= cjTr(Pj).

Thus Tr(Pj) =Mj
C(P

j)/cj.

The above proposition establishes the link between the newly designed DIMER
metric and the existing well-known measure based on trace of the covariance ma-
trix. It demonstrates that in applications with no directional priorities for landmark
positioning, the directional error metric transforms into a simple weighted trace.
Moreover, it can be easily verified that for the special case where the parallel and
perpendicular weights associated with the directional errors of the landmark are
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identical and equal to unity, the error measure will be transformed to the already-
known trace of the covariance matrix Pj.

Proposition 2. The following statements hold for the map error measureMj
C(P

j) associated
with landmark j and the covariance matrix Pj associated with the estimate of the position of
j.

1. If β̂ j is either equal to 0 or π then

Mj
C(P

j) = C j
‖P

j
xx + C j

⊥Pj
yy. (4.43)

2. If β̂ j = ±π/2 then
Mj

C(P
j) = C j

‖P
j
yy + C j

⊥Pj
xx. (4.44)

Proof. Statement (1) and (2) follow directly from evaluating (4.37) for β̂ j = 0, β̂ j = π

and β̂ j = π/2.

An example set of ellipses associated with covariance matrices that lead to the
same Mj

C(P
j) for a fixed C j

‖ and C j
⊥ under (4.43) where β̂ j = 0 is depicted in Figure

4.11. The only dominant localisation direction in this example is the direction per-
pendicular to the heading of the road. Under these assumptions, counter-intuitively,
all the demonstrated error ellipses have the same directional quality (see Fig. 4.12).
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Figure 4.11: A set of covariance error ellipses that yield identical covariance-based
DIMER metric, Mj

C(P
j), for the case where the parallel component of the error is

ignored, i.e. Cj
‖ = 0 and Cj

⊥ = 2. The heading of the road associated with the

estimates is considered to be horizontal (βj = 0).
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Figure 4.12: Comparison of different error measures (trace, determinant and
covariance-based DIMER metric) for the ellipses shown in Figure 4.11. The errors

are plotted with respect to the ellipses’ tilt angle θ j.

The two propositions stated above show that the directional metric proposed in
this section for quantitatively assessing the map quality is a more general case of the
already-known trace metric. In other words, Tr(Pj) is a special case of the metric
described in (4.37). Consequently, the DIMER metric is a natural generalisation of
the popular trace metric. A variety of examples will be provided in Chapter 6 to
demonstrate the applicability and functionality of the proposed metric.

4.6 Summary

This chapter presented a review on some of the most popular techniques used to
evaluate the quality of localisation and mapping applications. Some of the basic
shortcomings associated with applying the existing techniques to specialised map-
ping problems were identified. The need for a more meaningful, versatile approach
to quantitatively assess the quality of road mapping applications (such as AutoMap)
was justified through demonstration of some practical examples.

A generic map error measure based on orientation and classification of map
elements was devised for road signs which is deemed compelling for specialised
road mapping applications. The specific requirements and expectations of different
groups of map users regarding map quality metrics were studied and considered in
the design process. The directional map error (DIMER) metric was developed for
two fundamentally distinct cases. The first type of metric was designed for scenarios
where the ground-truth information was accessible. The second metric was devel-
oped in the absence of information regarding the true map and was based on the
covariance matrix of the position estimates. In contrast to the majority of existing
map quality measures, the DIMER metrics is not isotopic, since the properties of
the metric varies depending on the direction of the roads corresponding to the map
elements.

Although most of the focus in this chapter revolved around maps comprising of
road signs, different practical applications (particularly road related applications or
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86 Quality Assessment in Map Making Applications

applications with similar characteristics) can be inspired by this discussion. The de-
vised metrics are applicable to a variety of mapping frameworks where different user
groups employ different mapping profiles and localisation priorities. In principal, the
devised metrics can be used by the scientific as well as the business community in
order to interactively compare the output of specialised mapping systems such as
the multi-vehicle map building system described previously in this thesis.

One of the main objectives of the next chapter (Chapter 5) is to apply and incor-
porate the DIMER metric in different aspects of mapping systems with the aspiration
of generating high-quality maps based on the new metric.
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Chapter 5

The DIMER Metric in Mapping
Applications

5.1 Introduction

Generally speaking, generating high quality maps is one of the principal objectives of
any mapping application. Different mapping frameworks seek to improve the map
making process by offering strategies aimed at reducing the error associated with
their produced maps. In addition, the demand for accurate mapping solutions for
specialised applications has elevated the importance of research on new techniques
for improving the quality of generated maps. The main prerequisite for achieving
this goal is a reliable measure for evaluating the map quality in different setups and
situations1. To this aim, Chapter 4 strived to re-define the concept of map quality for
road mapping applications and proposed a meaningful way of assessing the accu-
rateness of maps comprised of position and orientation of map elements. A versatile
map error metric was devised which could be specifically tailored and adjusted to fit
the requirements of a wide range of mapping applications depending on specific user
profiles describing the previously mentioned direction and type priorities. This met-
ric was designed to tackle some of the shortcomings of common isotropic measures,
especially when they are applied in real-world road mapping applications. One of
the main objectives of the current chapter is to apply and incorporate the proposed
directional map error (DIMER) metric in different aspects of mapping systems, aim-
ing at performance improvement with respect to the new metric. The structure and
components of the multi-vehicle mapping framework introduced in Chapter 3 are
the main focus of this discussion.

The structure of this chapter is as follows. Section 5.2 addresses the problem of
fusing two or more map estimates obtained from different sources with unknown
degree of correlation. The well-known covariance intersection (CI) algorithm will
be integrated with the new DIMER metric in order to optimally combine the map
estimates to attain the highest accuracy in the resulting map. Moreover, a commonly

1This can also be perceived as a chicken and egg problem where on one hand, one needs a suitable
measure to evaluate the performance of a mapping process; on the other hand, one wants to utilise an
algorithm in order to satisfy a defined quality measure.

87
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88 The DIMER Metric in Mapping Applications

used analytical variation of this approach called fast covariance intersection will be
examined and revised in order to minimise the error with respect to the DIMER cri-
terion. Section 5.3 focuses on targeted modification of the EKF-SLAM algorithm as
one of the main cornerstones of a large number of stochastic mapping applications
such as the present work. Preliminary effort involves re-deriving the Kalman gain
so as to minimise the covariance-based DIMER metric in lieu of the conventional
trace metric. Although, as will be seen, the calculated gain will turn out to be iden-
tical to the classical Kalman gain (minimal-trace gain), the outcome of this process
is an interesting result which is mentioned for completeness. Section 5.4 proposes a
systematic methodology for reducing the covariance-based directional error of maps
obtained using the state-of-the-art EKF-SLAM algorithm. This method is called the
Criteria-based Covariance Trajectory Perturbation (CTP) and is inspired by the covari-
ance inflation methods found in the literature. The shortcomings of this method are
discussed and qqqq

Despite its seeming potential to reduce the variance of map estimates, the covari-
ance trajectory perturbation method has its shortcomings. Most notably, it suffers
from bias problems, especially when large measurement noise is present. To alle-
viate this problem, a debiasing technique is deployed aimed at restricting the bias
effect and reducing the mean squared error of map estimates. This technique is
implemented through integration with a method called the Converted-Measurement
Kalman filtering (CMKF), a concept partly borrowed from the field of target tracking.
The highlight of the result are provided thereafter, while the bulk of the results are
demonstrated in Chapter 6.

5.2 Criteria-based Covariance Intersection (CI) Analysis

As discussed succinctly in Subsection 3.2.2.1, covariance intersection (CI) is a conser-
vative technique to consistently consolidate different estimates when the correlation
information between them is not available. CI was utilised in Section 3.3 to fuse
the information shared between distributed nodes in an extensive environment. The
present section revisits a similar scheme where two or more maps, obtained from
different sources, are to be merged together to achieve a high quality map. The qual-
ity of the maps will be assessed using the covariance-based DIMER metric devised
in Chapter 4. The examples provided in this section purposely use road signs as
sample landmarks to demonstrate the directional map quality concept.

Consider a realistic scenario where two overlapping maps labeled A and B, con-
sisting of pose estimates of a large number of landmarks (e.g. thousands) are to
be fused together in order to obtain a single, more accurate map2. It is assumed
that A and B are acquired through different sources, using different statistical pro-
cesses. Each map estimate is represented by a mean vector and a covariance matrix
for the position and the orientation of all the landmarks in the map. Since, the cor-
relation between the map estimates in A and B is typically non-zero but unknown,

2No system dynamics are considered for this section and the assumed maps are stationary.
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§5.2 Criteria-based Covariance Intersection (CI) Analysis 89

discarding the common information may lead to over-confident estimates. Hence,
the well-known covariance intersection can be effectively used in order to achieve a
consistent combined map3.

Due to its structure (see below), the CI algorithm can be tuned in order to op-
timise with respect to different performance criteria. The trace and determinant of
the resulting covariance matrix are two of the most common criteria for robotics ap-
plication in the literature. Notwithstanding this, as discussed in detail in Chapter 4,
these metrics do not fully reflect the quality of maps in road mapping applications
such as AutoMap. We now re-examine the fusion of map estimates with unknown
degree of dependency based on the error calculated in relation to the directional
map quality metric MC described via Equation (4.37). We also provide an analogy
between the outcome of this method and the results obtained using the standard
trace/determinant minimisation.

To highlight the essence of the results and without loss of generality, we sim-
plify the above map fusion scenario to the problem of combining two pose estimates
pertaining to a single road sign (labelled j). We further assume perfect orientation
estimation and we focus on calculating the best position estimate for this sample
landmark. The two map estimates (of the position of the road sign) are indexed by a
and b and are considered to be normally distributed. Therefore, these maps are rep-
resented by a ∼ N (X̂aj, Paj) and b ∼ N (X̂bj, Pbj) respectively4. As explained before,
since in general the correlation between the two estimates, Pabj, is unknown, the CI
algorithm may be used to consistently combine a and b, where the CI is defined by
the following convex combination:

Pzj−1
= ωPaj−1

+ (1−ω)Pbj−1
(5.1)

Pzj−1
X̂zj = ωPaj−1

X̂aj + (1−ω)Pbj−1
X̂bj (5.2)

where z ∼ N (X̂zj, Pzj) is an estimate of X∗j (true position of landmark j) and ω ∈ [0, 1]
is calculated according to some performance criteria. We note here simply that for
all ω ∈ [0, 1], the resulting estimate is consistent and often considerably conservative.
Figure 5.1 exemplifies this claim for two sample covariance ellipses. As can be seen
from the figure, for all the legitimate values of the free parameter ω, the resulting
covariance ellipse encapsulates the space created between the two input ellipses,
thus providing consistency. We point to the literature Julier and Uhlmann [1997] for
further discussion of the CI algorithm and its consistency. We now seek to examine
the effects of minimising the covariance matrix based on the directional map quality
metric MC described via Equation (4.37). To this aim we propose the following

3A similar justification to the one provided in Chapter 3 for using the CI algorithm can be applied
in this case.

4Note that the landmark superscript ′m′ is dropped for convenience.
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optimisation problem for determining the optimal weighting coefficient ω:

min
ω∈(0,1)

Mj
c(Pzj)

s.t. Pzj = (ωPaj−1
+ (1−ω)Pbj−1

)−1
(5.3)
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(b) Fusion using covariance intersection (CI)

Figure 5.1: Fusing two covariance ellipses Paj and Pbj pertaining to the position estimates of landmark
j. The covariance ellipses for the original estimates a and b are depicted using the solid outer ellipses.
In the left subfigure, the inner (green) dashed lines show the resulting ellipses for different known
correlations between a and b. The slightly ticker dashed line (magenta) shows the case where the
correlation between the input estimates is ignored. The right subfigure depicts the resulting CI estimate
c for different values of the free parameter ω. As can be seen, all dashed ellipses (red) in this subfigure

encapsulate the dashed ellipses (green) in the left subfigure, thus are consistent estimates.

Recalling Eq. (4.37), the computation of Mj
c requires a reliable estimate for β̂ j,

the heading of the road pertaining to landmark j. Following the discussion provided
in Chapter 4, the landmark orientation (which is available for pose maps) can be
used in this case to infer the road heading and calculate the directional error metric.
Applying the DIMER criterion in calculation of the weighting factor ω in the above
equation yield a conservative covariance matrix Pzj with a minimal directional er-
ror measure with respect to the road. Figure 5.2 provides an analogy between the
resulting covariance ellipse when different minimisation criteria are used for the CI
algorithm. Subfigures (a) and (b) use the de-facto trace and determinant criteria,
while Subfigure (c) applies the new covariance-based DIMER metric as the minimi-
sation criterion for the covariance intersection method. The input covariance ellipses
presented in Figure 5.1 are also used for this example. This example assumes a hori-
zontal road with β̂ j = 0. In addition, C‖ and C⊥ are set to 0 and 2 respectively. As can
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be seen, the CI algorithm picks the consistent error ellipse with the lowest perpen-
dicular error amongst all possible results (see Fig.5.1.b). DIMER-based covariance
intersection will be studied further in Chapter 6.
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(a) Minimal-trace CI
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(b) Minimal-determinant CI
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(c) Minimal-DIMER CI

Figure 5.2: Comparison between the minimal-trace, minimal-determinant and minimal-DIMER co-
variance intersection in fusing the covariance ellipses shown of Fig. 5.1. The road pertaining to the
sample landmark j is assumed to be horizontal (β̂ j = 0) and the directional priorities are set to C‖ = 0

and C⊥ = 2.

Although numerical methods can theoretically be employed to solve the forgoing
optimisation problem stated in 5.3, the use of such methods are deemed costly for
extensive applications with a large number of estimates. Alternatively, there are
different analytical methods that can be utilised to solve this non-convex optimisation
problem and obtain a suboptimal solution. In what follows, we explore one of these
methods based on the fast covariance intersection method described in [Niehsen,
2002].

5.2.1 DIMER-based Fast Covariance Intersection

The fast covariance intersection calculation is based on the observation that for the
case whereMj

C(P
aj)�Mj

C(P
bj), ω ≈ 1, or equivalently, the estimate with the much

smaller error measure should be chosen. Thus, we have the following equation that
captures the aforementioned observation

ωMj
C(P

aj) + (1−ω)Mj
C(P

bj) = 0. (5.4)

Hence,

ω =
Mj

C(P
bj)

Mj
C(P

aj) +Mj
C(P

bj)
. (5.5)

Similar results can be obtained straightforwardly for the case where more than
two estimates are to be fused. The optimisation problem (5.3) for the case with ne
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estimates becomes

min
{ωl}

Mj
c(Pzj)

s.t. Pzj =
ne

∑
l=1

ωlPl j−1
,

ne

∑
l=1

ωl = 1, ωl ≥ 0.

(5.6)

Note that a non-iterative way to calculate a suboptimal solution to (5.6) can be
obtained in a similar way as the previous case. This calculation is omitted here for
the sake of brevity.

5.3 Criteria-based Estimation and Mapping Using EKF-SLAM

As discussed before, producing high quality maps can be accomplished through the
incorporation of the newly designed DIMER metric into different aspects of a given
mapping system. This section is concerned with targeted modification of one of the
key components of the majority of statistical mapping systems, i.e., the filtering algo-
rithm (or the estimator). Broadly speaking, in this context, the filtering algorithm is
responsible for combining noisy sensor measurements, given the system’s model, to
acquire an accurate estimate of the system’s unknown states. The Kalman filter along
with its nonlinear counterpart, the EKF, have been recognised as two of the most pop-
ular filtering structures for mapping systems and are also used in this thesis as the
main building-blocks of the proposed large-scale mapping framework. Recalling the
multi-vehicle mapping system in Chapter 3, an EKF-based simultaneous localisation
and mapping (SLAM) approach was implemented as the nonlinear local filter. This
section coupled with Section 5.4 are in pursuit of finding a way to modify the con-
ventional EKF-SLAM algorithm in order to enhance the quality of obtained maps in
regards to the DIMER metric.

Typically, algorithm development for this purpose requires a fundamental un-
derstanding of different aspects of the mapping system and the applied filtering
framework. It is also important to differentiate between the information used in the
creation and the factors considered in deployment of the quality metric. Ideally, we
want to design an algorithm that performs against all sensible measures. However,
realistically, this is not going to be the case for a real world problem due to the in-
herent complexity. Therefore, inevitably algorithm development must be conducted
selectively (with respect to one or a limited number of measures). For example, this
chapter endeavours to enhance the quality of map estimates when measured against
the covariance-based DIMER metric. Like any other optimisation problem, optimis-
ing against a given measure is more likely to deteriorate some of the other measures.
The way to get around this problem is to design an algorithm that performs success-
fully for a single measure or a relevant subset of measures and analyse the effect and
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possible ramification on other measures. In other words, the relationship between
the measure which is used for algorithm development and the (potentially different)
measures which are deployed to evaluate the map quality must be carefully studied.
This will be discussed later in this chapter and chapter 6.

As a preliminary requirement, we study the structure of the standard discrete-
time Kalman filter and its mean-square error minimisation process as it is conven-
tionally used in the literature. Then, the default one-step optimisation criterion will
be manipulated appropriately to minimise the covariance-based DIMER metricMc.

5.3.1 Error Minimisation in the Standard Kalman Filter

Generally speaking, the mean squared error (MSE) is probably one of the most com-
mon measures of estimator performance in the estimation community. This measure
quantifies the discrepancy between the estimated and the real value of the underlying
system’s states and is defined by

MSEX = E[(X̂− X)2] (5.7)

where X and X̂ denote the true and estimated values respectively. Under the Gaus-
sian noise assumption, the Kalman filter algorithm is a minimum mean-square error
estimator [Anderson and Moore, 2012]. In other words, no other linear estimator
can provide a smaller mean-square error under the same model presumptions. As
a recursive Bayes estimator, the discrete-time Kalman filter achieves this optimality
through minimising the trace of the a posteriori covariance matrix in every filter step.
Therefore, in the linear quadratic Gaussian regime, minimising the trace of the co-
variance matrix is equivalent to minimising the MSE. The detailed formulation of
this minimisation process for the conventional Kalman filter is provided below.

Recalling Subsection 2.2.1 from Chapter 2, in the descrete Kalman filter equations,
the a posteriori estimate covariance matrix Pk|k in each update step is calculated by

Pk|k = Pk|k−1 −KkHkPk|k−1 − Pk|k−1H>k K>k + KkSkK>k (5.8)

In Equation (5.8), Pk|k−1 is the a priori covariance estimate from the prediction step
in the Kalman filter. H is the observation model and Sk is the innovation covariance
defined by

Sk = HkPk|k−1H>k + Rk (5.9)

with Rk being the covariance of the observation noise.

The standard optimal Kalman gain Kstd
k is derived by minimising the trace of a

posteriori covariance matrix Pk|k with respect to Kk. The trace Tr(Pk|k) is minimised
when its matrix derivative with respect to the gain matrix Kk is zero. This is equiva-
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lent to solving the following differential equation:

∂Tr(Pk|k)

∂Kk
= 0 (5.10)

Starting with the left hand side of the above equation and substituting the a
posteriori covariance matrix with Equation (5.8), we have

∂Tr(Pk|k)

∂Kk
=

∂Tr(Pk|k−1 −KkHkPk|k−1 − Pk|k−1H>k K>k + KkSkK>k )
∂Kk

(5.11)

Since trace is a linear operator, it commutes with the derivative in the above
equation, giving

∂Tr(Pk|k)

∂Kk
=

∂Tr(Pk|k−1)

∂Kk
− ∂Tr(KkHkPk|k−1)

∂Kk
− ∂Tr(Pk|k−1H>k K>k )

∂Kk
+

∂Tr(KkSkK>k )
∂Kk

(5.12)
Applying the gradient matrix rules and using the properties of symmetric matri-

ces we get

∂Tr(Pk|k)

∂Kk
= 0− Pk|k−1H>k − Pk|k−1H>k + 2KkSk (5.13)

= −2Pk|k−1H>k + 2KkSk (5.14)

Therefore, the standard optimal Kalman gain for the one-step trace minimisation
is calculated by

Kstd
k = Pk|k−1HkS−1

k (5.15)

Consequently, the covariance matrix obtained by replacing the above Kstd
k into the

covariance update formula given by Equation (5.8) is minimal in terms of trace. The
resulting covariance can be further simplified according to

Pk|k = (I−KkHk)Pk|k−1 (5.16)

We now purposely alter the optimisation criterion given by Eq. (5.10) to the
covariance-based DIMER metricMC described via Equation (4.37) and re-derive the
filter gain for minimising the directional error. The initial expectation is that the
computed optimal Kalman gain and hence the filter’s update equations for this un-
conventional measure would be different than the standard case described above.

5.3.2 Kalman Gain Derivation for Minimising the DIMER Metric

This part aims at deriving the Kalman gain for minimising the covariance-based
DIMER metric rather than the default trace parameter in the Kalman filtering context.
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Prior to this derivation, we make a number of preliminary assumptions regard-
ing the EKF-SLAM algorithm for this section. These assumptions aim at highlighting
the map estimation process in the EKF-SLAM paradigm. We consider a simplified
two-dimensional mapping scenario where a mobile vehicle is observing a single land-
mark, labelled j, by collecting a series of noisy measurements. Furthermore, since the
current discussion is around improving the map quality, without loss of generality,
we assume perfect vehicle positioning throughout this analysis. This, in turn, will
effectively transform the SLAM problem into a mapping-only problem. As a result,
the only unknown state of the filter is the 2D position of the observed landmark xj.
The SLAM algorithm tries to estimate the unknown position of this landmark and
provide a measure of uncertainty associated with the state estimation (See Section 2.3
for more details on SLAM). Note that while the above restrictions are essentially ap-
plied to simplify the preliminary research, the discussion and results would provide
a perspective into the structure of more general systems.

Under the above premise, re-writing the covariance update equation (Eq. (5.8))
for landmark j gives

Pj
k|k = Pj

k|k−1 −Kj
kHj

kPj
k|k−1 − Pj

k|k−1Hj
k
>

Kj
k
>
+ Kj

kSj
kKj

k
>

Recalling Chapter 2, for a non-linear observation model such as h(., .), Hj
k in the

above equation is calculated by evaluating the jacobian matrix ∇hx(k).

We seek the effect of modifying the filter’s minimisation criterion to the covariance-
based DIMER metric in every filter step. The optimal Kalman gain in this case is
denoted by Kj

k
∗

and is derived by minimising the map error measure pertaining to
the a posteriori covariance matrix Pj

k|k with respect to Kj
k. This optimisation problem

is equivalent to solving the following differential equation:

∂Mj
C(P

j
k|k)

∂Kj
k

= 0 (5.17)

Recalling Equation (4.38) from Chapter 4, the directional error metric Mj
C(P

j
k|k)

can be written as
Mj

C(P
j
k|k) = Tr(CjPj

k|k) (5.18)

where

Cj =

[
Cj

11 Cj
12

Cj
12 Cj

22

]

is the directional weighting matrix. The elements of the Cj matrix are evaluated
based on the directional priorities and the road heading estimate corresponding to
landmark j according to

Draft Copy – 12 September 2014



96 The DIMER Metric in Mapping Applications

Cj
11 = C j

‖

(
1 + cos(2β j)

2

)
+ C j

⊥

(
1− cos(2β j)

2

)
Cj

22 = C j
‖

(
1− cos(2β j)

2

)
+ C j

⊥

(
1 + cos(2β j)

2

)
Cj

12 =
1
2
(C j
‖ − C

j
⊥) sin(2β j)

Substituting Equation (5.18) into the differential equation given by (5.17) yields:

∂Tr(CjPj
k|k)

∂Kj
k

= 0 (5.19)

Starting with the left hand side of the above equation and using Equation (5.8),
we have

∂Tr(CjPj
k|k)

∂Kk
=

∂Tr
(

Cj(Pj
k|k−1 −Kj

kHj
kPj

k|k−1 − Pj
k|k−1Hj

k
>

Kj
k
>
+ Kj

kSj
kKj

k
>
)

)
∂Kj

k

(5.20)

Since the trace is a linear operator, it commutes with the derivative in the above
equation, giving

∂Tr(CjPj
k|k)

∂Kj
k

=
∂Tr(CjPj

k|k−1)

∂Kj
k

−
∂Tr(CjKj

kHj
kPj

k|k−1)

∂Kj
k

−
∂Tr(CjPj

k|k−1Hj
k
>

Kj
k
>
)

∂Kj
k

+
∂Tr(CjKj

kSj
kKj

k
>
)

∂Kj
k

(5.21)

Similar to before, in the light of the linearity of the trace operator and applying
the gradient matrix rules and using the properties of symmetric matrices we obtain

∂Tr(CjPj
k|k)

∂Kj
k

= 0− Pj
k|k−1Hj

k
>

Cj − Pj
k|k−1Hj

k
>

Cj + 2Kj
kSj

kCj

=− 2Pj
k|k−1Hj

k
>

Cj + 2Kj
kSj

kCj (5.22)

Thus, from (5.19) and the above equation, the one-step Kalman gain based on the
covariance-based DIMER criteriaMj

C is calculated by

Kj
k
∗
= Pj

k|k−1Hj
kSj

k
−1

(5.23)
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As can be seen, the calculated gain in this case is identical to the standard Kalman
gain for the optimal-trace Kalman filter in Equation (5.15). This result states that, in
addition to the widely accepted error metric Tr(Pj), the conventional Kalman filter
(used along with the standard Kalman gain) minimises Tr(CjPj) in every filter step,
where Cj is any arbitrary positive-semi-definite matrix.

Equivalently, by re-arranging the terms in Equation (5.18), the DIMER metric
Mj

C(P
j) can be written in terms of the elements of the covariance matrix Pj according

to:

Mj
C(P

j) = Tr(CjPj) = Cj
11Pj

xx + Cj
22Pj

yy + 2Cj
12Pj

xy (5.24)

Consequently, in a linear system, in addition to minimising (Pj
xx + Pj

yy), the stan-

dard Kalman gain Kj
k
∗
= Pj

k|k−1Hj
kSj

k
−1

minimises all the other linear combinations
of the elements of the error covariance matrix (including the off-diagonal elements),
provided that matrix Cj is PSD.

To the best of our knowledge, the above Kalman gain derivation for minimising
Tr(CjPj) has not been carried out explicitly in the literature. Hence, it is presented
here as an interesting result which provides an insight into the operation and philos-
ophy of the conventional Kalman filter as an optimal estimator. We also extend this
finding to provide the following corollary:

Corollary 1. Amongst linear filters with the general update equation in the form of

x̂k|k = x̂k|k−1 + Kkνk, (5.25)

the optimal choice for minimising the cost function J = Tr(GP), with G being any size-
compatible positive-definite matrix, is the classical Kalman filter with the one-step gain equal
to the standard Kalman gain K∗k = Pk|k−1HkS−1

k .

In the next section, we introduce an intuitive approach aimed at enhancing the
quality of similar probabilistic mapping techniques.

5.4 Criteria-based Covariance Trajectory Perturbation (CTP)

This section proposes a systematic approach called the criteria-based Covariance Tra-
jectory Perturbation (CTP) for reducing the covariance-based directional errors asso-
ciated with maps consisting of position and orientation of interesting landmarks.
Similar to Section 5.3, the EKF-SLAM algorithm is considered to be at the core of
the map estimation framework. We focus on specialised mapping applications, more
specifically the AutoMap project (with road signs as landmarks) addressed through-
out this thesis.

Similar developments in the literature revolve around efforts to solve an optimal
problem associated with a proposed metric or a cost function (often an error min-
imisation problem). Whereas it is not generally practical to solve the optimisation
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problem exactly5, alternative approaches aim at deriving approximations and tweak-
ing the measures until the solution converges. This is the avenue we follow in this
section.

As a background, Subsection 5.4.1 provides a brief overview on Covariance In-
flation methods as the main inspiration behind the proposed work. Subsection 5.4.2
formulates the problem at hand, followed by a methodological solution aimed at al-
leviating the error in the map. It is desirable to manipulate the filtering algorithm in
order to achieve a better performance in terms of obtaining a lower directional map
error measure compared to the standard Kalman filter.

5.4.1 Inspiration and Proximity to the Literature

The work in this section has been inspired by the idea of artificially increasing the
estimated covariance in order to control certain aspects and behaviours of statistical
system for performance improvement purposes.

Historically, employing variance inflation methods date back as early as the 1970’s.
For example [Miller, 1971] suggested scaling the variance in order to enhance the
filter performance for state estimate filters. This process caused the state estimate
to deviate from the assumed system dynamics in order to account for the imper-
fect knowledge of the system under study. Similarly, injecting artificial noise (as
disturbance) can also be utilised to speed up the convergence of estimators. For in-
stance, [Bertuccelli and How, 2008] improves the responsiveness of the estimator for
the non-stationary Markov Chain model by adding an artificial pseudo-noise to the
system.

In the mapping community, some works have proposed the use of covariance
inflation techniques to accelerate the performance of Kalman-filter-based SLAM al-
gorithms. [Julier, 2003] defines covariance inflation as ”the process of adding a posi-
tive semidefinite matrix to the system covariance matrix to improve the properties of
a SLAM algorithm”. This process effectively removes the dependency between the
vehicle and landmark states in the SLAM paradigm by diagonalising the state error
covariance matrix which, in turn, reduces the computational complexity of the algo-
rithm. Examples of covariance inflation methods in SLAM can be found in [Guivant
and Nebot, 2001, 2003]. Despite their effectiveness, one of the main drawbacks of
such techniques is that the addition of pseudo-noise may potentially lead to insta-
bility in the system due to the fact that the covariance can increase without bound.
Furthermore, according to [Bailey et al., 2006], the inflation process effectively nul-
lifies all of the convergence properties of SLAM described in [Dissanayake et al.,
2001].

Another group of applications in which the covariance may be increased artifi-
cially is where it is attempted to compensate for estimation inconsistencies. Although
the amount of adequate inflation is not quite clear, such methods have been proven
to be effective in providing consistent results. A prevalent example is the practical

5Linear Kalman filter is one exception where the optimisation problem is solved exactly.
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scenario of fusing two estimates with unknown inter-dependency. A common subop-
timal approach is to ignore the existing correlation and avoid the possible generated
inconsistency by inflating the covariance of the combined estimates (see [Julier and
Uhlmann, 2001a] and [Bailey et al., 2006] for more details).

5.4.2 DIMER-based Covariance Trajectory Perturbation Algorithm

Similar to Section 5.3, we consider a simplified mapping scenario where a single
vehicle is observing a landmark (labelled j) by collecting noisy range and bearing
measurements at κ different timestamps. Due to the nature of our road mapping
application, we assume that κ is a finite, small integer. In practice (for the AutoMap
project), we have κ ≤ 10, as road signs are usually detected in a limited number of
video frames due to the dynamic of the vehicle and sensor’s restrictions.

Without loss of generality, once again, we assume that the vehicle state is known
perfectly and the only unknown state is the 2D position of the observed landmark
j. We seek to estimate the unknown position of this landmark xj through employing

an EKF-SLAM algorithm. Moreover, a (2×2) covariance matrix Pj
κ|κ representing the

uncertainty associated with the landmark state estimate after κ measurements is to be
estimated. Note that the landmark superscript ′m′ has been dropped for convenience.

Assume at each time k, k ∈ {1, . . . , κ}, a measurement zj
k is collected. Let

Z j
κ , {zj

i}κ
i=1 be the combined vector of all measurements pertaining to landmark

j. Moreover, let F be the set of all recursive functions that at at each time step k
take the measurement zj

k along with Pj
k|k−1 and return an updated covariance matrix

Pj
k|k such that Pj

k|k−1 and Pj
k|k are consistent for a known a priori covariance matrix

Pj
1|0 = Pj. Hence, given Z j

κ the problem of interest is

min
F∈F

Mj
C(P

j
κ|κ)

s.t. Pj
k|k = F (P

j
k|k−1, zj

k), k ∈ {1, . . . , κ}
(5.26)

The optimisation problem (5.26) is an infinite-dimension optimisation problem
and is typically intractable. To be able to make the problem tractable we make an
assumption on the recursive function F . Let F at time k be of the form

Pj
k|k = Pj

k|k−1 −Kj
kHj

kPj
k|k−1 − Pj

k|k−1Hj
k
>

Kj
k
>
+ KkSj

kKj
k
>

(5.27)

where Hj
k is the observation model and Sj

k is the innovation covariance defined by

Sj
k = Hj

kPj
k|k−1Hj

k
>
+ Rj

k. (5.28)

Note that for the foregoing recursive update, the only variables that can be chosen
independent of the model and Zκ are Kj

k, k ∈ {1, . . . , κ}, and Pj
1|0. Particularly, Pj

1|0
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can be chosen to be any conservative estimate of Pj and can be parameterised as

Pj
1|0 = Pj

+ ∆Pj, (5.29)

where ∆Pj is any positive definite (PD) matrix that results in Pj
1|0 being consistent (Pj

is assumed to be consistent as well). Initially, ∆Pj
k is defined according to

∆Pj
k =

[
δk

x 0
0 δk

y

]
(5.30)

where δk
x, δk

y > 0, such that after collecting the κ measurements, the calculated

Mj
C(P̃

j
κ|κ) is smaller than Mj

C(P
j
κ|κ), where P̃j

κ|κ denotes the resulting covariance

matrix at time κ after applying the perturbation ∆Pj as per Eq. (5.29). Then, the
optimisation problem (5.26) becomes

min
Kj

k ,∆Pj
Mj

C(P
j
κ|κ)

s.t. Pj
k|k = Pj

k|k−1 −Kj
kHj

kPj
k|k−1 − Pj

k|k−1Hj
k
>

Kj
k
>
+ KkSj

kKj
k
>

Sj
k = Hj

kPj
k|k−1Hj

k
>
+ Rj

k

Pj
1|0 = Pj

+ ∆Pj, ∆Pj ≥ 0

k ∈ {1, . . . , κ}.

(5.31)

In addition, in light of the calculations conducted in Subsection 5.3.2, Eq. (5.31)

can be further relaxed. Recalling Eq. (5.23), the Kalman gain given by Kj
k , Pj

k|k−1Hj
kSj

k
−1

,

k ∈ {1, . . . , κ}, minimises the Mj
C(P

j
k|k) described by Equation (4.38) in every filter

step. A summary of the CTP method is provided below.

min
∆Pj

Mj
C(P

j
κ|κ)

s.t. Pj
k|k = Pj

k|k−1 −Kj
kHj

kPj
k|k−1 − Pj

k|k−1Hj
k
>

Kj
k
>
+ KkSj

kKj
k
>

Sj
k = Hj

kPj
k|k−1Hj

k
>
+ Rj

k

Kj
k = Pj

k|k−1Hj
kSj

k
−1

Pj
1|0 = Pj

+ ∆Pj, ∆Pj ≥ 0

k ∈ {1, . . . , κ}.

(5.32)

Therefore, the problem is to find an appropriate positive definite matrix ∆Pj that
minimises the resultingMj

C(P
j
κ|κ). In this way, by inflating the initial covariance ma-
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trix across certain directions, the directional quality of the final obtained map (after
κ observations) is improved with respect to the covariance-based DIMER criteria.

The minimisation problem expressed using Equation (5.32) is a non-convex opti-
misation problem where no exact solution can be mathematically formulated. There-
fore, in order to find the best covariance perturbation value for a single landmark j,
one may run the filter multiple times, each time with a different value of ∆Pj and
compare the quality of the final maps after κ observations. The only inputs required
for this approach are all the measurements Zk for times k = 1 . . . κ. In other words,
all the measurement up to time k = κ are required to find the solution to the opti-
misation problem in (5.32). Therefore, the nature of this problem can be perceived
as small-sized batch processing as opposed to real-time recursive algorithms typi-
cally used6. The crucial point here is that the optimal ∆Pj∗ is directly dependant on
the measurements obtained on that specific filter run and might not be applicable
for different set of measurements from the same probability distribution. Moreover,
once again, we remark that evaluating the directional metricMj

C(P
j
κ|κ) for every filter

run requires the availability of the heading parameter for the road corresponding to
landmark j. As explained before, the landmark orientation estimate is the best viable
candidate for this purpose and will be used in this thesis7.

Initially, a naive, exhaustive search approach is implemented to solve the opti-
misation problem set forth by (5.32). The search runs the filter from time k = 1 to
k = κ, each time using a pre-defined value of δx > 0 and δy > 0 and evaluates
the map error measure MC for the final covariance matrix at time k = κ. We are
interested in the perturbation matrix ∆Pj∗ which yields the lowest covariance-based
error Mj

C(P
j
κ|κ) for the final obtained map at time κ. Initial experiments suggest

that finding a non-zero ∆Pj∗ in the search cannot be guaranteed. However, in situa-
tions in which a valid covariance perturbation is found, the covariance-based quality
measure for the obtained map is improved in comparison with the conventional al-
gorithm (with zero covariance perturbation). The proposed naive search process can
be expensive depending on the search domain in the ∆Pj space and the step size for
the search variables. Nevertheless, more intelligent, efficient search methods will be
used in the simulations provided in the results chapter to help alleviate the compu-
tational load for mapping environments with a large number of landmarks. It will
be shown later in Chapter 6 that a more efficient search is confined to testing only
four different ∆Pj values for any given landmark.

As will be seen, preliminary simulation and analysis suggest that, in case of
finding the appropriate perturbation, the CTP algorithm seemingly produces maps
with an improved quality, by virtue of reducing the DIMER metric for individual
landmarks. At this point, we suggest that the main reason behind the effectiveness
of this approach is that the algorithm capitalises on the inherent non-linearities in
the system model. In other words, the covariance trajectory perturbation algorithm

6With enough available computational power, the CTP algorithm can be applied online (in a delayed
batch mode).

7As will be seen in Chapter 6 simulations, a pre-filter structure is devised in order to get a prelimi-
nary orientation estimate for the existing landmarks in the map.
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accounts for some of the exploited approximations in the calculation of the mean and
variance of the estimates in the non-linear SLAM framework. These approximations
are predominantly caused by the linearisation of system models and the evaluation
of Jacobian terms (see Section 2.2.2). As a result, the estimated mean and covariance
may not accurately represent the true moments of these probability distributions.
This will be discussed further in Chapter 7.

Given the above highlights, the detailed implementation of the covariance trajec-
tory perturbation algorithm will be elaborated in Chapter 6. The effectiveness of this
approach in improving the covariance-based DIMER metric will be demonstrated
through simulations for both single-vehicle and multi-vehicle systems. Different
practical road mapping scenarios will be examined. Furthermore, the average impact
of the CTP algorithm on the popular trace metric as well as the ground-truth-based
DIMER metric will be examined through implementation of Monte-Carlo simula-
tions.

It is worth mentioning here that the idea of running a Kalman filter multiple
times for a given set of measurements has been previously used in the literature
for different theoretical or practical objectives. For example, in [Kalandros and Pao,
1998], the authors propose a sensor management strategy in which a separate Kalman
filter operates for a series of possible sensor combinations in order to determine the
minimal sensor combination that achieves a certain accuracy. Despite introducing
additional computational load to the system (resulting from re-running the filter),
such schemes are beneficial in examining the effect of different system parameters
and in search for optimal values across different dimensions.

The philosophy behind the suboptimal covariance perturbation algorithm to im-
prove the map quality lies in the nature of the practical problem at hand. It is im-
portant to note that by virtue of the limited number of observations of each map
element, studying the behaviour of the results in the limit is not applicable in this
case. More precisely, we are looking at a finite-horizon problem8. Therefore, for a
limited number of available measurements, applying covariance perturbation can po-
tentially offer a better transient performance compared to the classical Kalman-based
SLAM.

One common limitation of algorithm development with respect to a certain cost
function (e.g. the above minimisation effort against the DIMER metric) is that min-
imising the given cost function may potentially result in an increase in other un-
wanted cost functions associated with the system. As described briefly in Subsection
5.3.1, the Kalman filter is an exception where minimising the variance coincides with
minimising some of the other popular measures such as the expected value between
the error between the estimated and real values. However, in typical real-world fil-
tering regimes that is not going to be the case. The next section provides a discussion
on the trade-off between the bias and variance of an estimator with a direct focus on
the criteria-based CTP approach.

8It has been shown in the literature that it is typically possible to outperform the infinite-horizon op-
timal Kalman filter in the transient phase (e.g. unscented Kalman filter and some high-gain observers).
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5.5 Discussion on the Trade-off between Bias, Variance and
Mean Squared Error

Let θ̂ be a general estimator of the unknown parameter θ. Recalling Equation (5.7),
the mean squared error of this estimator is a function of θ and is defined as

MSE(θ̂) = E
[
(θ̂ − θ)2]. (5.33)

After applying some mathematical manipulation and using the properties of ex-
pected value function (E), the above equation can be expanded according to9

MSE(θ̂) = Var(θ̂) + Bias(θ̂, θ)2 (5.34)

Consequently, the mean squared error can be interpreted as the sum of the es-
timator’s variance and the square of its bias, where the variance component is a
measure of variability and the bias is an indicator of accuracy. Broadly speaking, for
any estimator, it is desirable to minimise its MSE value. In many applications, min-
imising the MSE is generally done by designing the estimator based on one of the
aforementioned components (variance or bias). However, in some occasions, min-
imising one of these parameters may lead to an increase in the value of the other,
resulting in an undesirable increase in the overall MSE value. Consequently, con-
trolling only one of the bias or variance parameters does not guarantee a low mean
squared error.

The same situation holds for the criteria-based covariance trajectory perturbation
(CTP) algorithm proposed in Subsection 5.4.2. As discussed in detail, the optimisa-
tion problem was set up in order to reduce the DIMER-based variance pertaining to
the obtained position estimate of the map elements. In other words, the formulation
made no specific considerations for controlling the bias associated with the estimates.
As will be seen later in this thesis, despite its effectiveness in reducing the variance,
applying the CTP algorithm can potentially introduce additional bias into the esti-
mator in some occasions10. For this reason, the trade-off between the variance and
bias must be carefully analysed. Chapter 6 will provide Monte Carlo simulations to
examine the ramification of the covariance trajectory perturbation algorithm on the
bias of map estimates for practical road mapping scenarios. Simulations suggest that
the bias issue is much more acute in scenarios where the uncertainties in the mea-
surements are large. Under such circumstances, the consistency of the map estimates
is endangered due to the generation of biases and the mismatch between the mean
and covariance estimates.

The bias problem prompted the implementation of a debiasing procedure in syn-
ergy with the CTP method in order to reduce the risk of acquiring inconsistent,
biased map estimates. The proposed debiasing compensation used in this work is

9For a formal proof see [Wackerly et al., 2008].
10Note that due to the nonlinear nature of the EKF-SLAM algorithm, the original (unperturbed)

estimates are most probably biased as well. However, as will be seen in the simulations of Chapter 6,
the CTP algorithm amplifies this bias in some occasions.
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mainly inspired by a target-tracking paper by Lerro and Bar-Shalom [Lerro and Bar-
Shalom, 1993]11. The original applicability of this paper was intended for active
sonar systems or long range radar systems. The presented approach is based on the
derivation of the expected value of the true bias along with the true covariance for a
target-tracking scenario. We now present the debiasing strategy utilised in this work.

5.5.1 A Debiasing Compensation Strategy Combined with Converted Mea-
surement Kalman Filtering (D-CMKF)

As mentioned previously, the debiasing procedure presented in this work is inspired
by [Lerro and Bar-Shalom, 1993], a paper borrowed from the field of target tracking.
For this reason, appropriate modifications are needed in order to apply the concept
to the localisation and mapping applications similar to the work undertaken in this
thesis. The debiasing approach is implemented in combination with a converted
measurement Kalman filter (CMKF), a filter based on transformation of measure-
ments to a common Cartesian coordinate system. It is worth mentioning that, unlike
most mapping systems where the measurements and state variables are represented
in both polar and Cartesian frames, tracking systems typically transform the mea-
surements to a common coordinate system.

The motivation behind using the debiasing technique with converted measure-
ments is two-fold. Firstly, it is theoretically expected that the debiasing compensa-
tion procedure will help the potential bias/inconsistency problem discussed earlier.
Secondly, as will be explained, utilising the Kalman filter with converted, Cartesian
measurements should restrict the effect of nonlinearities in the system compared to
the extended Kalman filter. We now present the formulation concerning estimation
with Debiased Converted Measurement Kalman Filter (D-CMKF) for the practical
mapping application in this body of work.

Consider a SLAM system similar to the one studied in Section 3.2 with the fol-
lowing polar measurements, zp(k).

zp(k) =
[

rm(k)
θm(k)

]
(5.35)

The system measurements are in the form of range (rm) and bearing (θm) and are
defined with respect to the true range r and bearing θ values:

rm = r + r̄ θm = θ + θ̄ (5.36)

with r̄ and θ̄ being the range and bearing errors. These errors are assumed to be
independent with zero-mean and respective standard deviations σr and σθ . These
polar measurements zp(k) are related to the vehicle and map state through

11Note that other debiasing approaches could also be substituted.
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zp(k) =
[

rm(k)
θm(k)

]
=

[ √
(x̂v(k)− x̂i(k))2 + (ŷv(k)− ŷi(k))2

arctan
(

ŷv(k)−ŷi(k)
x̂v(k)−x̂i(k)

− φ̂v(k)
) ]

+

[
vR(k)
vθ(k)

]

Notice the minor change of notation compared to Eq. (3.8). Subscript m has been
used here to indicate the measured values.

In the debiased-CMKF framework, the above polar measurements at time k are
converted to a Cartesian coordinate measurement denoted by zc(k) through a non-
linear transformation η according to

zc(k) = η[zp(k)]− µa (5.37)

This conversion is given by

zc(k) =
[

xc
m(k)

yc
m(k)

]
=

[
rm(k) cos

(
θm(k) + φ̂v(k|k− 1)

)
rm(k) sin

(
θm(k) + φ̂v(k|k− 1)

) ]− µa(k) (5.38)

where xc
m and yc

m are used to express the converted Cartesian measurements in the
local frame of reference12.

Notice the incorporation of the new term µa(k) into the above conversion equa-
tions. This parameter is the debiasing term that takes into account the correction for
the average bias. The authors in [Lerro and Bar-Shalom, 1993] derive the true bias
µt as well as the true converted measurement covariance Rt. Since these terms are
conditioned on true values of range and bearing, the expected value of these true
moments (conditioned on the measured range and bearing) are suggested for use in
practice.

Since the respective converted measurement equations in [Lerro and Bar-Shalom,
1993] are mainly derived for target tracking applications, some basic amendments
ought to be made in order to implement this methodology in the localisation and
mapping context studied in this thesis. Most importantly, the heading of the vehicle,
φv, must be incorporated into the original equations from the foregoing paper (see
Eq. (5.38)). For simplicity and without loss of generality, we assume negligible error
in the heading of the vehicle in this implementation. This section does not dwell
on the details of this formulation and we simply provide the final equations for the
modified converted measurement filter with bias compensation.

We now temporarily drop the time index k for convenience in the formulation
and we provide the revised equations for the EKF-SLAM. The debiasing term, µa, is
expressed according to the following equation:

12These parameters are defined in the local frame and shall not to be confused with the un-
superscripted x̂m and ŷm parameters used in Chapter 3 to denote the estimated position of map el-
ements in the global frame.
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µa =

[
rm cos (θm + φ̂v)(e−σ2

θ − e−σ2
θ /2)

rm sin (θm + φ̂v)(e−σ2
θ − e−σ2

θ /2)

]
(5.39)

Also, the average covariance of the converted measurements is a 2× 2 matrix, Ra,
given by

Ra =

[
R11

a R12
a

R21
a R22

a

]
(5.40)

with the following elements

R11
a =r2

me−2σ2
θ [cos2(θm + φ̂v)(cosh 2σ2

θ − cosh σ2
θ ) + sin2 (θm + φ̂v)(sinh 2σ2

θ − sinh σ2
θ )]

+σ2
r e−2σ2

θ [cos2(θm + φ̂v)(2 cosh 2σ2
θ − cosh σ2

θ ) + sin2(θm + φ̂v)(2 sinh 2σ2
θ − sinh σ2

θ )]
(5.41a)

R22
a =r2

me−2σ2
θ [sin2(θm + φ̂v)(cosh 2σ2

θ − cosh σ2
θ ) + cos2 (θm + φ̂v)(sinh 2σ2

θ − sinh σ2
θ )]

+σ2
r e−2σ2

θ [sin2 θm(2 cosh 2σ2
θ − cosh σ2

θ ) + cos2(θm + φ̂v)(2 sinh 2σ2
θ − sinh σ2

θ )]
(5.41b)

R12
a = sin (θm + φ̂v) cos (θm + φ̂v)e−4σ2

θ [σ2
r + (r2

m + σ2
r )(1− eσ2

θ )] (5.41c)

Given the above-mentioned measurement conversion, the filter equations must
be changed accordingly to incorporate the Cartesian measurements zc = [xc

m, yc
m]
>.

This modification will have some positive effects on the nonlinearity of the original
filter. More prominently, as a result of using converted measurements, the general
observation model h(., .) in the original EKF-SLAM equations will no longer be non-
linear (see Eq. (2.46)).

The predicted measurement at time k for an arbitrary landmark i is calculated
using

zc
i (k|k− 1) = h(x̂v(k), x̂mi(k)) + v(k)

=

[
x̂i(k|k− 1)− x̂v(k|k− 1)
ŷi(k|k− 1)− ŷv(k|k− 1)

]
+ v(k) (5.42)

Consequently, the once non-linear jacobian matrix ∇hx, is replaced by the below
linear measurement matrix H in a multi-landmark scenario.

H =

[ −1 0 0 . . . 1 0 . . .
0 −1 0 . . . 0 1 . . .

]
(5.43)
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Furthermore, the revised update equations for CMKF are given by13

ν(k) = zc(k) − Hx(k|k− 1) (5.44)

K(k) = P(k|k− 1)HTS−1(k) (5.45)

S(k) = HP(k|k− 1)HT + Ra(k) (5.46)

and the covariance matrix is updated according to

P(k|k) = P(k|k− 1)−K(k)HP(k|k− 1)− P(k|k− 1)HTKT(k) + K(k)S(k)K−1(k)

(5.47)

where Ra(k) is the converted measurement error covariance given by (5.41).

The effects of using the converted-measurement Kalman filter with bias com-
pensation (D-CMKF) in lieu of the original extended Kalman filter (EKF) will be
examined in Chapter 6 for a multi-vehicle mapping scenario. As will be seen, the
new filter will produce consistent estimates that are compatible with the calculated
covariances, even for high levels of measurement noise. In addition, considerable
improvements can be detected for the ground-truth-based directional quality. Fur-
thermore, the resulting mean squared error (MSE) for the converted-measurement
filter is reduced on average, compared to the non-linear SLAM using EKF. In ad-
dition to these encouraging enhancements, an unexpected result is observed in the
simulations. It turns out that the effect of the CTP algorithm (applied for reducing
the variance of position estimates) is masked by the D-CMKF implementation. The
linearisation of the system model is likely to have a significant bearing on disabling
the covariance trajectory perturbation approach. Other possible reasons behind these
outcomes will be discussed in Chapter 6.

5.6 Summary

This chapter made an effort to incorporate the newly designed DIMER metric into
some of the most common components of mapping systems with an emphasis on the
real-world application characterised in this thesis. Section 5.2 addressed the practi-
cal problem of merging two or more maps with unknown degree of correlation in
order to acquire a single, high-quality, consistent map. To this end, the mainstream
covariance intersection (CI) algorithm was modified to adopt the covariance-based
DIMER metric rather than the commonly used trace measure as the error minimisa-
tion criteria. In addition, a widely used analytical version of this method known as
the fast covariance intersection (FCI) was derived so as to minimise the covariance-
based DIMER criteria. It was shown that this approach holds the same structure as

13See Section 2.3 for the original EKF-SLAM equations.

Draft Copy – 12 September 2014



108 The DIMER Metric in Mapping Applications

the trace-based FCI.
The rest of the chapter was concerned with the targeted modification of Kalman-

filter-based mapping algorithms in order to improve the quality of generated maps,
when judged by the new DIMER metric. The first effort involved deriving the opti-
mal gain in the Kalman filter’s update equations to minimise the covariance-based
DIMER criteria for the landmarks in the map. This effort yielded a gain identical
to the Kalman gain for the conventional optimal-trace filter. Following this attempt,
Section 5.4 devised a systematic approach aiming at improving the quality of maps
obtained using the SLAM filter in the road application under study. This heuristic
algorithm, called the covariance trajectory perturbation (CTP), is a brute-force opti-
misation method which operates in a batch mode. The method seeks the existence
of an appropriate perturbation to the initial covariance matrix of landmark estimates
in order to reduce the overall covariance-based DIMER metric pertaining to the map.
This suboptimal method requires the filter to be run multiple times (each time with
a different value of injected covariance) over a fixed set of measurements, to find the
perturbation yielding the highest directional quality in the final map. In essence, this
method is designed to improve the transient phase of the mapping process compared
to the classical Kalman filter and is conceptually based on the subtle fact that there
are only a limited number of observations for each landmark.

Section 5.5 addressed the general problem of trade-off between bias and variance
in typical estimation regimes. To reduce the overall MSE and diminish the effect
of the amplified bias resulting from the CTP method, a debiasing technique was
utilised. The implementation of this technique was carried out through integration
with the Converted-Measurement Kalman filtering (CMKF). Chapter 6 will exam-
ine the effect of this filter on the covariance trajectory perturbation method in the
distributed mapping system proposed in this body of work.
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Chapter 6

Simulations and Results

6.1 Introduction

This chapter presents the simulation results of the methods developed throughout
previous chapters of this thesis. For this purpose, these results are distinctly divided
into three main groups.

The first part of this chapter is concerned with demonstrating the effectiveness
and validity of the large-scale mapping solution developed in Chapters 2 and 3.
The efficiency of the devised multi-vehicle system in terms of communication and
computation will be addressed in Section 6.2 and its performance will be compared
against more conventional methods in the literature1. We will conclude this part by
analysing the solution using a number of illustrative examples.

The second part of the results exclusively concentrates on the proposed direc-
tional map quality (DIMER) metric designed in Chapter 4 and the follow-up criteria-
based mapping solutions discussed in Chapter 5. In Section 6.3, the effectiveness of
the covariance trajectory perturbation (CTP) algorithm in enhancing the quality of
landmark localisation will be examined for simplified mapping scenarios comprised
of a single vehicle and a single landmark. In addition, the impact of deploying the
DIMER-based covariance perturbation method on some of the other quality mea-
sures will be inspected. We will further study the behaviour and characteristics of
the proposed CTP methodology through various experiments in different realistic
scenarios. Monte Carlo simulations constitute the main core of this part as they pro-
vide a practical tool for studying the possible outcomes and their occurrence for a
range of system parameters. Based on the attained results, the characteristics of this
approach will be pointed out and generalised for more complex system structures.

After establishing the above results, Section 6.4 endeavours to incorporate the di-
rectional map quality concept with the proposed distributed mapping system from
the first part and investigate the results in a large-scale environment. The synergy
between different system components and the effects of employing the criteria-based
mapping algorithm on the performance of the multi-vehicle mapping system will
be studied in Subsection 6.4.1. Moreover, the behaviour of the covariance-based as

1Note that this part will use the classical metrics (such as trace of the covariance matrix) for quality
assessment rather than the DIMER metric, as the focus is predominantly on efficiency in communication
and computation.
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well as the ground-truth-based DIMER measures in both local and global maps will
be explored. Subsection 6.4.2 presents the results of employing the converted mea-
surement Kalman filtering with debiasing compensation (D-CMKF) in the proposed
multi-vehicle map making system. The impact of deploying this methodology on the
map estimation process is examined through providing realistic examples and the
obtained results are compared against some of the other filtering structures studied
in this work.

6.2 Large-scale Distributed Mapping Simulations and Results

Simulations were conducted to evaluate the performance of the communication algo-
rithm proposed in Chapter 3. The simulation consisted of 3 vehicles driving around
in overlapping circular trajectories in an environment of 100 landmarks (see Fig. 6.1).
A non-linear unicycle motion model was implemented to estimate the 2D position
and orientation of each vehicle. In addition to the motion sensors, vehicles were also
equipped with a range/bearing sensor which provided observations to landmarks
along their line of sight.2 Refer to Section 3.2.1 for details regarding the implementa-
tion of the local SLAM filter (LSF) inside individual vehicles.

The first part of this section’s results concentrates on the landmark localisation
performance. Two separate runs were performed using identical system configura-
tions, noise parameters and observations. During the first run, none of the vehicles
communicated any information to the server and each vehicle simply constructed a
local map of its observed landmarks. In the second run, the vehicles communicated
their map information at regular intervals with the CFC, according to the bandwidth
efficient algorithm described in Section 3.3. At each communication interval, in ad-
dition to the information of newly discovered landmarks, the map information of
up to q = 10 landmarks with the highest information gain (See Equation 3.33) was
also transmitted to the CFC. In order to limit the size of the local map within the
individual vehicles, a pruning algorithm with npr = 15 was implemented to cut the
number of the LSF landmarks to 15 (see Subsection 3.3.4.1). Subsequently, the avail-
able regional map information from the CFC was communicated to each vehicle for
fusion, as described in Subsection 3.3.1.

The results of the mentioned runs are illustrated in Figures 6.2 and 6.3 respec-
tively. The resulting mean and the 3σ covariance ellipses of the estimated landmark
positions are shown in each figure alongside the true location of the landmarks. Fig-
ure 6.4 shows the overlaid, enlarged view of the small rectangles shown in Figures
6.2 and 6.3. As can be seen from the figures, the landmark localisation accuracy of
the multi-vehicle SLAM with periodic communication outperforms the case where
no communication exists3.

2The open source SLAM simulation software by Tim Bailey (available from http://www-
personal.acfr.usyd.edu.au/tbailey) was modified and extended to multiple vehicles for use in simu-
lations in this work.

3However, due to the selective communication performed here, the obtained map maintained at the
server is relatively less accurate than if the entire local map information were to be transmitted (as in
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Figure 6.1: The multi-vehicle SLAM simulation consists of 3 vehicles driving around
circular trajectories in an environment populated with 100 landmarks. The true ve-

hicle trajectories and the actual position of the landmarks are depicted.

Figure 6.5 shows the uncertainty of the obtained map for different values of max-
imum communicated map size (q). For these initial simulations, the trace of the map
covariance matrix was used as a commonly accepted measure of uncertainty esti-
mation, cf. [Bar-Shalom et al., 2001]. The results suggest that, although the overall
uncertainty decreases with the number of communicated local landmarks, the per-
formance quickly converges towards a stable value, as the maximum communicated
sub-map size increases. This constant value corresponds to the communication of the
entire local maps. This is due to the fact that the algorithm dynamically selects the
most informative sub-maps (landmarks with the highest information gain) to trans-
mit. Consequently, if communicated, the landmarks which have not been observed
recently and have an insignificant information contribution will have a very small
effect on the quality of the global map.

Figure 6.6 shows the changes in the size of the global and local maps for the
duration of the exploration when the landmark pruning algorithm from Chapter 3
is applied. As mentioned before, the pruning constant has been set to npr = 15 in
this simulation, meaning that after each communication time, the size of the local

the approach in Bryson and Sukkarieh [2007]).
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Figure 6.2: The SLAM estimates from individual vehicles (no communication). No
map information is communicated between the vehicles and the CFC. The 3σ uncer-

tainty ellipses are shown in the overhead figure.

and channel filters of each vehicle is reduced to 15 landmarks. The discarded land-
marks are determined by evaluating their associated information gain. The results
are shown in the case where all three vehicles close their respective loops twice. As
can be seen, the pruning algorithm effectively prevents the local map from growing
unboundedly. Preliminary evidence suggest that the simulation is comparable to the
case where no pruning is performed in terms of performance and at some points
the landmark localisation accuracy improves by applying the pruning algorithm. We
believe that this improvement is likely to occur due to the fact that the CI algorithm
employed inside the channel filter of individual vehicles can potentially perform bet-
ter on a fewer number of landmarks. To elaborate, we argue that reducing the size
of the local maps causes the CI algorithm to optimise (with respect to the defined
minimisation criteria) against fewer number of map elements, thus achieving better
quality for individual landmarks in some occasions. Although the demonstrated re-
sults are limited to 3 vehicles and 100 landmarks, the proposed solution is evidently
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Figure 6.3: The multi-vehicle SLAM estimates obtained by selectively communicating
map information to the CFC (using q = 10). The 3σ uncertainty ellipses are shown.
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Figure 6.4: The enlarged view of the map estimates. The small rectangular boxes of
Figures 6.2 and 6.3 are overlaid together. The 3σ uncertainty ellipses are shown in

the figure.
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Figure 6.5: The performance of the algorithm in terms of the uncertainty of the
obtained global map at the CFC for different values of maximum communicated

sub-map sizes.

expandable to large-scale environments with more vehicles and many more map
elements.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

M
ap

 S
iz

e

Local and Global Map Size

 

 
Vehicle1
Vehicle2
Vehicle3
CFC
npr

Figure 6.6: The local and global map sizes for npr = 15. The results are shown in the
case where the vehicles close their loops twice. The vertical dashed lines demonstrate

the communication times.
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We conclude this section by providing a cost analysis for the solution provided
in this work and a conventional communication algorithm with no selective commu-
nication (e.g. [Bryson and Sukkarieh, 2007]). For this purpose, the values provided
in the scenario explained in Example 1 from Section 2.7 are used.4 These values
can be found in Table 6.1. Table 6.2 provides a summary of the calculated data
regarding each strategy. Although it is assumed that our communication scenario
communicates more frequently (20 times more often), the total communication cost
is substantially smaller than that of [Bryson and Sukkarieh, 2007]. To reflect the ac-
tual network costs, the total communication cost is also compared after considering
an overhead cost due to the carrier’s flag fall fee.

n d m k b c
10 vehicles 200 km 10 signs/km 0.1 com./km 8 bytes $30 /GB

Table 6.1: Values from Example 1, Section 2.7.

Total

distance

per day

Total number

of landmarks

per day

Landmarks

in the LSF of

each vehicle

Total number of

communications

per day

Transmitted

sub-map

size

Total bytes sent by

each vehicle

per day

Total communication

cost per day

(including overhead)

Bryson & n · d n ·m · d m · d n · d · k m · d b · d · k · (m · d)2 c ·n · b · d · k · (m · d)2

Sukkarieh 2000 20000 2000 200 (k=0.1) 2000 6.4× 108 $192 ($192)

Algorithm n · d n ·m · d npr n · d · k q b · d · k · q2 c · n · b · d · k · q2

of Sec. 3.3 2000 20000 20 4000 (k=2) 10 320000 $0.0096 ($7.68)

Table 6.2: A numerical example to compare the algorithm in [Bryson and Sukkarieh, 2007]
with the solution provided in this thesis. The example uses the values provided in Table 6.1
and assumes q = 10 and npr = 20 for the selective communication method. For the definition

of different variables please see Example 1 in Section 2.7.

6.3 Criteria-based Estimation Simulations and Results

This part of the results chapter pursues two main goals. Firstly, it demonstrates the
use of the newly designed directional map error (DIMER) metric introduced in Chap-
ter 4. Although conventional methods (such as trace) were briefly used in Section 6.2
of this chapter for quantifying the estimation error, the rest of this chapter will typi-
cally use the DIMER metric as the main tool for map quality assessment. Secondly,
this section presents the simulation results of the criteria-based estimation and map-
ping algorithms outlined in Chapter 5. Subsection 6.3.1 addresses the DIMER-based
covariance intersection for the fusion of two maps with unknown correlation. The

4Note that the values used in this example are not related to the values used in the simulation.
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results are compared against two classical cases where the trace and determinant of
the map covariance matrix are used as the minimisation criteria. Subsection 6.3.2 is
concerned with the simulations and results pertaining to criteria-based EKF-SLAM
algorithm. The validity and effectiveness of the DIMER-based covariance trajectory
perturbation (CTP) (devised in Section 5.4) in enhancing the landmark localisation
accuracy in road applications is investigated in detail.

The simulations in this section used the same prediction and observation models
as those of Section 6.2 (see Section 3.2.1 for more details about this implementation).
However, a slight modification was made to incorporate the landmark orientation
estimates into the structure of the local SLAM filter. In other words, the originally
developed position-only filter was expanded to a pose estimation filter for the re-
maining simulations in this chapter5. Recalling Chapter 4, this information is used
to infer the road heading and is essential in evaluating the DIMER metric for a given
map element. Like before, an arrow vector is used to depict the landmark orientation
in this chapter.

6.3.1 DIMER-based Covariance Intersection (CI) Results

Figure 6.7 illustrates the results of utilising the CI algorithm for fusing two map esti-
mates (corresponding to the same landmark) with unknown degree of dependency.
The subfigures compare the obtained maps when different minimisation criteria were
used in the calculation of the fused map. Subfigures (a) and (b) demonstrate the
results related to the use of the more conventional trace and determinant criteria re-
spectively, while Subfigure (c) shows the outcome when the new covariance-based
DIMER metric was applied as the minimisation criterion. This example assumes
a horizontal road with β̂ j = 0 (this can be inferred from the landmark orientation
estimate). In addition, C‖ and C⊥ were set to 0 and 2 respectively, meaning the
perpendicular error was to be minimised. As can be seen, the CI algorithm picks
the consistent error ellipse with the lowest perpendicular error amongst all possible
consistent results. The graphs presented in Figure 6.8 show the behaviour of each
covariance-based measure for different values of weighting factor ω. It can be seen
that the optimal value of ω is different for each minimisation criterion.

Simulations were conducted to extend the above notion to larger environments
with several landmarks. Consider the problem of combining two maps (each map
is comprised of pose estimates corresponding to a group of landmarks) in order to
attain a single, high quality fused map. It is assumed that the degree of dependency
among these two maps is not known. Similar to the above analysis for a single land-
mark, the covariance-based DIMER measure is used as the minimisation criteria in
the covariance intersection algorithm. Figure 6.9 provides an example of fusing two
maps consisting of 20 landmarks6. The original and resulting estimates are illustrated
in the figure. Results witnessed a 12 percent decrease in the calculated DIMER metric

5We do not dwell on the particulars of landmark orientation estimation in this thesis.
6Although the results are shown for a map consisting of 20 landmarks, it can easily be generalised

to very-large-scale environments.
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associated with the fused map compared to the case where the covariance trace was
used as the optimisation criterion. The enlarged view of two of the map elements of
Figure 6.9 can be seen in Figure 6.10. A comparison between the trace-based CI and
the DIMER-based CI can be seen in the figure. It can be seen that the DIMER-based
solution results in a relatively lower perpendicular error.
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(a) Minimal-trace CI
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(b) Minimal-determinant CI
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Figure 6.7: Comparison between the minimal-trace, minimal-determinant and
minimal-DIMER covariance intersection in fusing two sample covariance ellipses.
The road pertaining to the sample landmark j is assumed to be horizontal (β̂ j = 0)

and the directional priorities were set to C‖ = 0 and C⊥ = 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

20

t

Tr
(P
)

(a) Trace metric w.r.t. ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

45

50

t

|P
|

(b) Determinant metric w.r.t. ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

11

12

t

M
c

(c) DIMER metric w.r.t. ω

Figure 6.8: The behaviour of different covariance-based measures for different values
of weighting factor ω. The graphs correspond to the plots shown in Fig. 6.7.
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Figure 6.9: DIMER-based Covariance Intersection for fusing two maps with unknown degree of
correlation. The directional priorities were set to C‖ = 0 and C⊥ = 2 for this example.
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Figure 6.10: DIMER-based Covariance Intersection. The enlarged view of the map estimates in
Figure 6.9. The dotted (orange) ellipses represent the optimal-trace and the solid (red) ellipses rep-
resent the resulting optimal-DIMER covariance matrix. The DIMER-based solution results in a lower

perpendicular error with respect to the road.
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6.3.2 Criteria-based EKF-SLAM Simulation Results

Prior to presenting the results of the covariance trajectory perturbation algorithm,
we carry out a preliminary experiment in order to clarify the map quality concept in
typical SLAM scenarios.

6.3.2.1 Preliminary Map Quality Analysis

This simple simulation which includes a single stationary landmark being observed
by a moving vehicle aims at demonstrating the typical manner in which the estimated
position mean and its associated covariance ellipse evolve as the number of observa-
tions increases. This evolution is shown in Figure 6.11. The vehicle is traversing a
horizontal path (β j = 0) from left to right and it detects a landmark at 5 occasions by
capturing a range and a bearing measurement for each observation. These measure-
ments are processed by the nonlinear EKF-SLAM algorithm to generate the mean
and covariance estimates. The solid ellipse in Fig. 6.11 represents the final estimate
for the map element after the last observation. The salient point here is that the final
mean estimate and covariance ellipse are influenced by various factors. Most notably,
the measurement noise has a direct impact on the orientation and size of the result-
ing covariance ellipses. Furthermore, as can be inferred from the figure, the spatial
relativity and geometry of the vehicle and landmark pair with respect to each other
at the time of observation is crucial in determining the final map estimate. The indi-
vidual estimates of Fig. 6.11 after each observation are shown in Figure 6.12. We also
monitor the covariance-based and ground-truth-based DIMER measures contained
in individual estimates. The directional priorities are assumed to be C‖ = 2 and
C⊥ = 0 for this particular example. The evolution of trace and the covariance-based
DIMER metrics are depicted in Figure 6.13, while the classical squared distance and
the ground-truth based DIMER metrics are shown in Figure 6.14. As can be seen,
both of the covariance-based errors are monotonically diminishing as the number of
observations grow. However, that is not the case for the ground-truth-based errors
of Fig. 6.147, although the general trend seems to be decreasing. This pattern is most
probably related to the inherited nonlinearities in the system under study and the
infamous bias problem. To elaborate, the EKF algorithm is designed to work around
minimising the step-by-step covariance of the estimates with respect to a certain cri-
terion (conventionally the trace and more recently the covariance-based DIMER met-
ric). Although the principal philosophy behind this minimisation is to reduce a form
of distance with respect to the true values of the system states (the expected value of
this error, to be more precise), the nonlinearities of the system may sometimes pre-
vent the materialisation of this goal in full. In other words, minimising the variance
in a nonlinear filter does not necessarily mean that the actual errors are going to be
reduced at every filter step and for any given set of measurements8. Once again we

7Especially since these figures are plotted for a single sample of measurements. It is expected that
the expected values of these parameters exhibit a more consistent behaviour.

8This was also discussed in Chapter 5 when addressing the general trade-off between bias, variance
and mean squared error.
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remark that the linear Kalman filter (which is unbiased) is an exception where the
variance minimisation coincides exactly with the minimisation of the mean-squared
error for a large number of samples.
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Figure 6.11: The evolution of the estimated position mean and its associated covariance ellipse for a
scenario comprising of a moving vehicle and a stationary landmark. Range and bearing with respect
to the landmark are measured at each observation. The solid ellipse represents the final map estimate.
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Figure 6.12: Individual estimates of Fig. 6.11. It can be detected that the orientation and size of
the resulting error ellipses depend on the relativity between the moving vehicle and the stationary

landmark at observation times.
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Figure 6.13: The step-by-step behaviour of the covariance-based errors contained in the map esti-
mates of Fig. 6.12. The DIMER metric is calculated based on the assumption that C‖ = 2 and C⊥ = 0.

Both measures decrease monotonically as the number of landmark observations increase.
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Figure 6.14: The step-by-step behaviour of the ground-truth-based errors contained in the map
estimates of Fig. 6.12. The DIMER metric is calculated based on the assumption that C‖ = 2 and
C⊥ = 0. Although the general trend is of descending order, the behaviour is more random and not

monotonic, unlike the covariance-based error metrics.
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6.3.2.2 Map quality Analysis Based on Measurement Noise

This subsection examines the general impact of observation noise on landmark local-
isation accuracy through the implementation of Monte Carlo simulations. The same
single-vehicle/single-landmark scenario from Subsection 6.3.2.1 was considered for
this experiment. Once again, the directional priorities were set to C‖ = 2 and C⊥ = 0.
The directional map error (DIMER) metrics as well as the state-of-the-art errors per-
taining to the final obtained map at time κ were calculated and compared for differ-
ent values of range and bearing standard deviation. The considered values for these
measurement noise levels were σr ∈ {1, 2, . . . , 10} and σθ ∈ {1, 2, . . . , 10}. For each
pair of (σr, σθ) the EKF-SLAM filter was run 1000 times (same level of noise but re-
sampled set of measurements) and the average error in the final map was calculated
using four different measures. Figure 6.15 shows the trace of the map covariance
matrix (averaged over 1000 samples) for all the possible values of σr and σθ in the
above interval. A heat diagram as well as a 3D bar chart have been used to visualise
the simulation results. As can be observed from the graphs, the trace metric increases
almost monotonically as the measurement noise level grows. Figure 6.16 illustrates
the covariance-based DIMER metric for different levels of measurement noise using
the same Monte Carlo simulation. Despite the presence of directional priorities, M̄C
exhibits a similar behaviour to that of trace.

The behaviours of the average Euclidean distance and the average ground-truth-
based DIMER metric were also compared in Figures 6.17 and 6.18 respectively. Note
that the squared value of the DIMER metric is shown in the figures in virtue of hav-
ing a more sensible scaling system which is comparable with the Euclidean distance.
As can be seen, both of the plotted ground-truth-based error metrics follow the same
pattern and are generally increasing for larger range and bearing noise levels. How-
ever, the extremum of these distance errors occur when the range standard deviation
is at its highest level, while the bearing standard deviation is small. Based on conjec-
ture, this is probably related to the geometry of the problem and the relativity of the
vehicle and the landmark at different observation times.

After providing this preliminary map error analysis, we now present the sim-
ulation results of covariance trajectory perturbation algorithm in the next part. As
mentioned in Chapter 5, this method which is based on targeted modification of the
original EKF-SLAM algorithm aims at improving the quality of obtained maps based
on particular error criteria.
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Figure 6.15: Average Trace (Tr(Pκ|κ)) for different values of measurement noise
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Figure 6.16: Average Covariance-based DIMER (M̄C(Pκ|κ)) for different values of measurement
noise
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Figure 6.17: Average Ground-truth-based DIMER (D̄(x̂κ|κ)) for different values of measurement noise
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Figure 6.18: Average Ground-truth-based DIMER (
√
M̄G(x̂κ|κ)) for different values of measurement

noise
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6.3.3 Criteria-based Covariance Trajectory Perturbation Simulation Results

This Subsection is concerned with the results of criteria-based EKF-SLAM simula-
tions, particularly the covariance trajectory perturbation algorithm introduced in Sec-
tion 5.4. The effectiveness of this method in reducing the covariance-based DIMER
metric in a typical nonlinear SLAM system will be shown and the consequent im-
pact on its counterpart, the ground-truth-based DIMER measure will be inspected.
Finally, through the employment of Monte Carlo simulations, some of the key prop-
erties of this approach will be pointed out based on the behaviour of the acquired
results.

CTP Simulation Setup

Once again, to highlight the essence of the covariance trajectory perturbation results,
simplified scenarios consisting of a single vehicle and a single landmark are consid-
ered9. For this analysis, the focus will be on the real-world road application studied
in this thesis. Therefore, two of the most commonly occurring road structures in the
real world will be investigated for the trajectory of the mobile vehicle. The nominated
trajectory types for this section are straight path and curved path which are shown
in Figure 6.19 10. The examples in this section have been set up in a way that they
resemble real world situations in which a road sign is being detected by a moving
vehicle over consecutive observations. The position of the vehicle at each observa-
tion time has been depicted in the figure using a triangle. At each observation time
k, k ∈ {1, . . . , κ}, the vehicle collects a measurement zk in the form of a range and a
bearing value with respect to the landmark. Let Zκ , {zi}κ

i=1 be the combined vector
of all measurements. Given Zκ and the system models, the EKF-SLAM algorithm is
deployed to estimate a position mean and a covariance matrix corresponding to the
detected landmark.

A simulation was implemented to apply the covariance trajectory perturbation al-
gorithm to the original filter structure (outlined above). As elaborated in Section 5.4,
the CTP algorithm searches for an appropriate perturbation ∆P that minimises the
covariance-based DIMER metric and improves the quality of the map compared to
the standard filtering scheme with no perturbation. Fundamentally, the perturbation
can be applied prior to each filter update. Nonetheless, in the upcoming simulations
∆P is designed so that it is applied after the first update equation and prior to the
incorporation of the second set of measurements z2. In this way, the filter has enough
time to cope with the injected uncertainty and settle down during the next observa-
tions to eventually converge to the final map estimate. The error contained in the
final map estimate (after integrating the last set of measurements) is the quantity we
aim to minimise in the provided examples. Like before, the covariance-based DIMER
metric is utilised for map error calculation in the CTP context. Unless mentioned oth-
erwise, the directional priorities for the simulations of this section are considered to

9This will be expanded to multiple vehicle and multiple landmarks later in this chapter.
10Although other road geometry structures can be seen in the real world, analysing the mentioned

trajectories has been deemed sufficient to highlight the results of this section.
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Figure 6.19: Test scenarios for analysing the covariance trajectory perturbation method. These scenar-
ios are two of the most commonly occurring situations in the real world. The true landmark orientation

in each figure has been shown using a green arrow.

be C‖ = 2 and C⊥ = 0.
The two-dimensional perturbation matrix ∆P needs to be positive definite in or-

der not to sabotage the consistency of the system. Initially, ∆P is parametrised ac-
cording to

∆P =

[
δx 0
0 δy

]
(6.1)

and the search is carried out along the matrix diagonal elements with δk
x, δk

y > 0.
For the simulations of this section, the search domain for the free diagonal variables
was set to δx ∈ (0, 100] and δy ∈ (0, 100]. This interval which ensures the positive
definiteness of ∆P was initially chosen based on intuition. It was observed that
searching in wider intervals had negligible impact on localisation quality and yielded
similar outcomes. We infer that the relative value of the search parameters δk

x and δk
y

(rather that their absolute values) is decisive in determining the error contained in
the final map.

For each eligible perturbation matrix ∆P in the above search domain the EKF-
SLAM filter was run (in a batch mode) using the given measurements Zκ under
the same model parameters and initial values. The covariance-based DIMER metric
MC(Pκ|κ) was evaluated for each of the final map estimates (after the last set of
measurements at time κ). The ∆P matrix yielding the lowest MC(Pκ|κ) is sought in
this search process. We introduce the following notations pertaining to the covariance
trajectory perturbation algorithm which are used throughout this section:

• M0
C(Pκ|κ) denotes the value of the covariance-based DIMER metric associated

with the final map (after κ measurements) when no perturbation is considered
(∆P = 0). The final map obtained using this method is equivalent to the results
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of the original EKF-SLAM algorithm. Therefore,

M0
C(Pκ|κ) ,MC(Pκ|κ)

∣∣
∆P=0 (6.2)

The ground-truth-based DIMER measure corresponding to this map is denoted
M0

G(x̂κ|κ). Therefore we have

M0
G(x̂κ|κ) ,MG(x̂κ|κ)

∣∣
∆P=0 (6.3)

• M∗
C(Pκ|κ) denotes the optimal value of the covariance-based DIMER metric

associated with the final map (after κ measurements). This value is obtained
by applying the optimal perturbation matrix ∆P∗ to the filter update equations
yielding the lowest map error. Therefore,

M∗
C(Pκ|κ) ,MC(Pκ|κ)

∣∣
∆P=∆P∗ (6.4)

The ground-truth-based DIMER measure corresponding to this map is denoted
M∆P∗

G (x̂κ|κ). Therefore we have

M∆P∗
G (x̂κ|κ) ,MG(x̂κ|κ)

∣∣
∆P=∆P∗ (6.5)

Conducting numerous experiments with different system parameters suggest that
finding an optimal, non-zero ∆P∗ cannot always be guaranteed and the perturbation
search is dependant on various factors such as the noise levels, geometry of the
road, system model and the nature of the captured measurements. Nevertheless, in
situations in which a valid covariance perturbation is found, the covariance-based
quality measure for the generated map (i.e. M∗

C(Pκ|κ)) is enhanced compared to the
standard EKF-SLAM solution without the presence of covariance perturbation (i.e.
M0

C(Pκ|κ)). Therefore, the worst case scenario (the largest error when judged using
the covariance-based DIMER metric) is always identical to the result obtained using
the standard filter.

DIMER-based CTP Analysis and Results

We now present the results of utilising the covariance perturbation algorithm in the
real-world mapping situations shown in Fig. 6.19. For each nominated trajectory
(straight and curved) we designed a series of experiments to examine the behaviour
of the covariance-based DIMER metric (as well as the ground-truth based DIMER
metric) of the acquired map for different values of the perturbation matrix ∆P.

In general, three different scenarios might occur when applying the CTP algo-
rithm to a mapping problem:
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Case (I) - The CTP algorithm fails to improve the quality of the map.

Case (II) - The CTP algorithm decreases the covariance-based DIMER, but increases
the ground-truth-based DIMER measure.

Case (III) - The CTP algorithm decreases both the covariance-based and the ground-
truth-based DIMER measures.

For each of the nominated trajectories shown in Fig. 6.19, we provide an example
of the above potential cases. For all the examples in this section, the range and
bearing standard deviations have been set to σr = 7m and σθ = 5◦ respectively. The
measurements for each case are re-sampled from zero-mean normal distributions
given by these standard deviations.

Straight Path Analysis

Case (I): CTP fails to improve the quality of the map

Figure 6.20 shows the resulting position mean and the 3σ covariance ellipse obtained
by employing the standard Kalman filter (with no covariance perturbation) for an ex-
ample set of measurements collected by a moving vehicle on the straight path shown
in Figure 6.19(a). These noisy range and bearing measurements are artificially gen-
erated by adding random noise values sampled from normal distribution functions
with σr = 7m and σθ = 5◦ to the true values.

Figure 6.21 visualise the ∆P search process for this example. This 3D graph shows
the calculated MC(Pκ|κ) for different values of δx and δy. The flat (blue) surface
represents the DIMER measure for the standard filter (i.e. M0

C(Pκ|κ)), while the
other (red) surface is comprised of the DIMER measures corresponding to non-zero
∆P values in the search interval.

As can be observed, all valid perturbation values yield higher DIMER measures
compared to the original EKF-SLAM filter (where ∆P = 0). Therefore,

∀ ∆P
∣∣δx∈(0,100]
δy∈(0,100] :M∆P

C (Pκ|κ) >M0
C(Pκ|κ) (6.6)

In other words, for this particular instance of range and bearing measurements
(which are instantaneous samples of a normally distributed function), the CTP al-
gorithm is unable to improve the directional quality of the generated map. Conse-
quently, the non-perturbed error ellipse shown in Fig. 6.20 has the lowest directional
error compared to the perturbed results, effectively making the CTP algorithm a
fruitless effort in this case.
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Figure 6.20: Case (I) - Straight trajectory: The 3σ covariance ellipse obtained by applying the stan-
dard EKF-SLAM filter (with no perturbation) to an example scenario. The DIMER measures associated

with this estimate areM0
C(Pκ|κ) = 0.55973 andM0

G(x̂κ|κ) = 0.83641.

Figure 6.21: Case (I) - Straight trajectory: The behaviour of the covariance-based DIMER measure
MC for different values of ∆P in the search interval. No non-zero ∆P∗ could be found in this case.

M0
C(Pκ|κ) = 0.55973 ;M∗C(Pκ|κ) = 0.55973. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Case (II): CTP reduces the covariance-based DIMER, but deteriorates the ground-
truth-based DIMER measure.

A different set of range and bearing values (compared to Case (I) explained above)
are examined in this example for the scenario shown in Fig. 6.19(a). Like before, these
range and bearing noises are artificially generated by sampling normal distribution
functions with σr = 7m and σθ = 5◦ respectively.

Figure 6.22 visualises the ∆P search process for this example. Unlike Case (I),
there are numerous values for the pair (δx, δy) where the resulting covariance-based
DIMER metric is below the blue surface representing M0

C(Pκ|κ). Recalling the opti-
misation problem expressed using Eq. (5.31), we seek a ∆P∗ that achieves the lowest
directional error. In this example, the optimal DIMER value, M∗

C(Pκ|κ), occurs at
point δ∗x = 100 and δ∗y = 0.

Figure 6.23 examines the behaviour of the ground-truth-based DIMER measure
for different values of ∆P. The flat (blue) surface in this graph represents the ground-
truth-based DIMER measure for the standard filter, i.e. M0

G(x̂κ|κ). Despite the effec-
tiveness of the CTP method in reducing the covariance-based DIMER measure, the
presence of the injected perturbation deteriorates the ground-truth-based directional
error compared to the standard EKF-SLAM filter. Notwithstanding this, as can be
seen from the figure, the error associated with the optimal perturbation matrix (i.e.
M∆P∗

G (x̂κ|κ)) is only somewhat worse than the error contained in the non-perturbed
mean estimateM0

G(x̂κ|κ).
The relation between the estimation results of the standard EKF-SLAM filter (zero

perturbation) and the perturbed Kalman filter (perturbed by ∆P∗) is shown in Figure
6.24. The decrease in the covariance-based parallel error and the slight increase in the
ground-truth-based parallel error caused by applying the CTP method are observable
in the figure (since the directional priorities are set to C‖ = 2 and C⊥ = 0, the aim is
to minimise the error associated with the parallel direction).
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M
C

Figure 6.22: Case (II) - Straight trajectory: The behaviour of the covariance-based DIMER measure
MC for different values of ∆P in the search interval. The optimal ∆P∗ occurred at δ∗x = 100 and δ∗y = 0.

M0
C(Pκ|κ) = 3.9441 ;M∗C(Pκ|κ) = 2.9812. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].

M
G

Figure 6.23: Case (II) - Straight trajectory: The behaviour of the ground-truth-based DIMER measure
MG for different values of ∆P in the search interval. The optimal ∆P∗ has had a deteriorating effect on
the MG metric compared to the standard case. M0

G(x̂κ|κ) = 5.5021 ; M∆P∗
G (x̂κ|κ) = 6.5359. C‖ = 2 ;

C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Figure 6.24: Case (II) - Straight trajectory: The effect of applying the CTP algorithm on the mean
and the 3σ ellipse associated with the map estimate. M0

C(Pκ|κ) = 3.9441 ; M∗C(Pκ|κ) = 2.9812 ;
M0

G(x̂κ|κ) = 5.5021 ;M∆P∗
G (x̂κ|κ) = 6.5359. δ∗x = 100 ; δ∗y = 0. C‖ = 2 ; C⊥ = 0.
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Case (III): CTP reduces both the covariance-based and the ground-truth-based
DIMER measures.

We now provide an example of the third potential case. This case, which is the ideal
scenario, demonstrates the improvement in both covariance-based and ground-truth-
based DIMER measures. Similar to Cases I & II, the range and bearing measurements
are samples from same normally distributed functions with σr = 7m and σθ = 5◦.

Figure 6.25 visualises the ∆P search process for this example. Similar to Case
(II), there are several values for the pair (δx, δy) where the resulting covariance-based
DIMER metric (Mc) is below the blue surface representingM0

C(Pκ|κ). In this exam-
ple, the optimal DIMER value,M∗

C(Pκ|κ), occurs at point δ∗x = 100 and δ∗y = 100.
Figure 6.26 examines the behaviour of the ground-truth-based DIMER measure

for different values of ∆P. In this particular example, this error exhibits the same
behaviour as the covariance-based metric shown in Fig. 6.25. Also, as can be seen,
the error corresponding to the optimal perturbation, i.e. M∆P∗

G (x̂κ|κ)) is smaller than
the error contained in the non-perturbed mean estimate M0

G(x̂κ|κ). Therefore, both
types of DIMER metrics have shown improvements in this example.

The relation between the estimation results of the standard EKF-SLAM filter (zero
perturbation) and the perturbed Kalman filter (perturbed by ∆P∗) is shown in Figure
6.27. The decline in the covariance-based as well as ground-truth-based parallel
errors caused by applying the CTP method are observable in the figure (since the
directional priorities are set to C‖ = 2 and C⊥ = 0, the parallel direction is the
dominant axis in the directional error calculation).

Figure 6.25: Case (III) - Straight trajectory: The behaviour of the covariance-based DIMER measure
MC for different values of ∆P in the search interval. The optimal ∆P∗ occurred at δ∗x = 100 and

δ∗y = 100. M0
C(Pκ|κ) = 1.70034 ;M∗C(Pκ|κ) = 0.3569. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Figure 6.26: Case (III) - Straight trajectory: The behaviour of the ground-truth-based DIMER mea-
sure MG for different values of ∆P in the search interval. The optimal ∆P∗ at δ∗x = 100 and δ∗y = 100
managed to significantly decrease theMG metric compared to the standard case. M0

G(x̂κ|κ) = 8.8796 ;
M∆P∗

G (x̂κ|κ) = 0.1390. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Figure 6.27: Case (III) - Straight trajectory: The effect of applying the CTP algorithm on the mean
and 3σ ellipse associated with the map estimate. Both DIMER metrics have improved compared to the
standard case (with no perturbation). M0

C(Pκ|κ) = 1.70034 ;M∗C(Pκ|κ) = 0.3569 ;M0
G(x̂κ|κ) = 8.8796 ;

M∆P∗
G (x̂κ|κ) = 0.1390. δ∗x = 100 ; δ∗y = 100. C‖ = 2 ; C⊥ = 0.
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Curved Path Analysis

This section presents the results of applying the CTP algorithm to the example sce-
nario shown in Figure 6.19(b) in which a vehicle traverses a curved path and observes
a stationary landmark at different time-steps. Similar to the straight path analysis
conducted above, we designed a series of experiments to investigate the behaviour
of the covariance-based DIMER metric (as well as the ground-truth based DIMER
metric) of the acquired map for different values of the perturbation matrix ∆P.

An example for each of the aforementioned potential cases (Cases I-III) is pro-
vided here. The system setup and the details of this analysis are exactly the same as
those of the straight path. Hence, for brevity, we do not dwell on the description of
these examples and merely present the final results.

Case (I): CTP fails to improve the quality of the map

The results related to this example are shown in Figures 6.28 and 6.29.
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Figure 6.28: Case (I) - Curved trajectory: The 3σ covariance ellipses obtained by applying the stan-
dard EKF-SLAM filter (with no perturbation) to an example scenario. The DIMER measures associated

with this estimate areM0
C(Pκ|κ) = 0.55973 ;M0

G(x̂κ|κ) = 0.18202.
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Figure 6.29: Case (I) - Curved trajectory: The behaviour of the covariance-based DIMER measure
MC for different values of ∆P in the search interval. No non-zero ∆P∗ could be found in this case.

M0
C(Pκ|κ) = 0.19912 ;M∗C(Pκ|κ) = 0.19912. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].

Case (II): CTP reduces the covariance-based DIMER, but deteriorates the ground-
truth-based DIMER measure.

The results related to this example are shown in Figures 6.30 to 6.32.

Figure 6.30: Case (II) - Curved trajectory: The behaviour of the covariance-based DIMER measure
MC for different values of ∆P in the search interval. The optimal ∆P∗ occurred at δ∗x = 100 and δ∗y = 0.

M0
C(Pκ|κ) = 0.44885 ;M∗C(Pκ|κ) = 0.21473. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Figure 6.31: Case (II) - Curved trajectory: The behaviour of the ground-truth-based DIMER measure
MG for different values of ∆P in the search interval. The optimal ∆P∗ has had a deteriorating effect on
theMG metric compared to the standard case. M0

G(x̂κ|κ) = 0.062181 ;M∆P∗
G (x̂κ|κ) = 0.78965. C‖ = 2 ;

C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Figure 6.32: Case (II) - Curved trajectory: The effect of applying the CTP algorithm on the mean
and the 3σ ellipse associated with the map estimate. M0

C(Pκ|κ) = 0.44885 ; M∗C(Pκ|κ) = 0.21473 ;
M0

G(x̂κ|κ) = 0.062181 ;M∆P∗
G (x̂κ|κ) = 0.78965. δ∗x = 100 ; δ∗y = 0. C‖ = 2 ; C⊥ = 0.
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Case (III): CTP reduces both the covariance-based and the ground-truth-based
DIMER measures.

The results related to this example are shown in Figures 6.33 to 6.35.

Figure 6.33: Case (III) - Curved trajectory: The behaviour of the covariance-based DIMER measure
MC for different values of ∆P in the search interval. The optimal ∆P∗ occurred at δ∗x = 100 and

δ∗y = 100. M0
C(Pκ|κ) = 1.2478 ;M∗C(Pκ|κ) = 0.1534. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].

Figure 6.34: Case (III) - Curved trajectory: The behaviour of the ground-truth-based DIMER mea-
sure MG for different values of ∆P in the search interval. The optimal ∆P∗ at δ∗x = 100 and δ∗y = 100
managed to effectively decrease the MG metric compared to the standard case. M0

G(x̂κ|κ) = 2.2804 ;
M∆P∗

G (x̂κ|κ) = 1.1002. C‖ = 2 ; C⊥ = 0. δx ∈ (0, 100] ; δy ∈ (0, 100].
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Figure 6.35: Case (III) - Curved trajectory: The effect of applying the CTP algorithm on the mean
and 3σ ellipse associated with the map estimate. Both DIMER metrics have improved compared to the
standard case (with no perturbation). M0

C(Pκ|κ) = 1.2478 ; M∗C(Pκ|κ) = 0.1534 ; M0
G(x̂κ|κ) = 2.2804 ;

M∆P∗
G (x̂κ|κ) = 1.1002. δ∗x = 100 ; δ∗y = 100. C‖ = 2 ; C⊥ = 0.

Draft Copy – 12 September 2014



140 Simulations and Results

6.3.4 Further Analysis on Covariance Trajectory Perturbation Algorithm

This section provides supplementary analysis on the CTP algorithm and the simula-
tions conducted in Subsection 6.3.3. The experiments carried out previously aimed at
exemplifying the potential effectiveness of the CTP method in improving the direc-
tional map error metrics in different mapping scenarios. As shown, three different
cases could be detected when applying a positive-definite covariance perturbation to
the EKF-SLAM algorithm depending on the geometry of the collected measurements.
We now examine the tentative probability for the occurrence of each case through the
utilisation of Monte Carlo simulations. These simulations were designed to verify the
CTP search in the following scenarios:

1. Parallel error minimisation for the straight-path scenario of Fig. 6.19(a)

2. Perpendicular error minimisation for the straight-path scenario of Fig. 6.19(a)

3. Parallel error minimisation for the curved-path scenario of Fig. 6.19(b)

4. Perpendicular error minimisation for the curved-path scenario of Fig. 6.19(b).

For each of the four scenarios outlined above, the criteria-based EKF-SLAM was
performed for 1000 runs of Monte Carlo simulations. The noisy measurements were
artificially generated by adding a random noise to the true range and bearing values.
The measurement noise values for the initial simulations were sampled from normal
distribution functions with σr = 7m and σθ = 5◦. In each filter run the CTP algorithm
was applied to minimise the covariance-based DIMER metric. Similar to the CTP
simulations of Subsection 6.3.3, ∆P was presumed diagonal with δx ∈ (0, 100] and
δy ∈ (0, 100]. For parallel error minimisation, the directional priorities were chosen
as C‖ = 2 and C⊥ = 0, whereas for perpendicular error minimisation these priorities
were set to C‖ = 0 and C⊥ = 2.

Prior to presenting the relevant results, we define the following notations. Al-
though some of these notations have been used earlier, they are presented once again
for completeness.

• β̂ j: an estimate of the heading of the road pertaining to landmark j.

• Nmc: number of total Monte Carlo runs

• N f : number of runs where a non-zero ∆P∗ is found (MC(Pκ|κ) is improved).

• Ncg: number of runs where both ground-truth-based and covariance-based
DIMER metrics are improved.

• ∆MG,avg: average change in ground-truth based DIMER metric for the sam-
ples where a non-zero ∆P∗ is found. A negative value indicates improvement,
whereas a positive value shows an increase in this error (compared to the stan-
dard EKF-SLAM filter with no covariance perturbation).
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Table 6.3 summarises the Monte Carlo simulation results for the above scenarios.
As can be seen, in the parallel error minimisation problem for the straight-path sce-
nario (No.1), in just over half the runs the CTP algorithm managed to find an optimal
perturbation ∆P∗ that reduced the covariance-based DIMER. Furthermore, in 38% of
those runs (194/508) the ground-truth-based DIMER metric was also improved. The
obtained value for ∆MG,avg shows that on average, the ground-truth-based DIMER
improved compared to the standard filter with no perturbation (positive ∆MG,avg in-
dicates that the CTP has increased the average ground-truth-based error). As a result,
the covariance trajectory perturbation was successful in improving both the average
covariance-based and the average ground-truth-based measures over a large number
of samples. However, for the perpendicular error minimisation (No.2), that is not the
case. In spite of improving the covariance-based DIMER metric in about 38% of the
total runs (of which 37% of them - or 14% of the total runs - exhibit ground-truth-
based error reduction), the average ground-truth-based DIMER has become worse, in
relation to the unperturbed filter. This deterioration can be interpreted as the intro-
duction of an additional bias term into the estimator. To elaborate, the map estimate
obtained using the nonlinear EKF-SLAM filter (with no perturbation) is originally bi-
ased with respect to the ground-truth, due to the difference between the estimator’s
expected value and the true map value. In some situations (such as scenario No.2),
the integration of the CTP algorithm amplifies the already existing bias. Recalling
Section 5.5, a large bias value may result in an increased MSE value and a mismatch
between the mean and covariance estimates. In Chapter 5, we proposed the use of
a debiasing technique known as D-CMKF to address the unwanted bias problem.
Section 6.4.2 examines the effect of employing this strategy in a more general setting
when incorporated into a multi-vehicle SLAM system.

The simulation results related to the curved trajectory (No.3 and No.4) demon-
strated similar behaviour to those of the straight trajectory discussed above. The
main difference was that the percentage of the runs in which an optimal, non-zero
∆P∗ could be found was lower than that of their straight-path scenario counterparts
(i.e., No.1 and No.2). This might tentatively suggest that the CTP method is more
likely to be effective in situations where the vehicle is moving in a straight trajectory
compared to a curved path. Another observed difference was that both minimi-
sation problems related to the curved trajectory exhibited a slight increase in the
average ground-truth-based DIMER metric (similar to Experiment No.2). An impor-
tant remark regarding these experiments and similar cases is that although the CTP
method does not improve the ground-truth-based DIMER metric at 100 percent of
the occasions (and even though the average ground-truth is also deteriorated), there
is still value in reducing the covariance-based DIMER in a certain direction. Since the
ground-truth information in not always accessible in real-world applications, the co-
variance matrix is the only available tool for performance assessment. Reducing the
uncertainty of the estimate in a desirable direction is still beneficial because it pro-
vides a higher degree of confidence in the position estimate (because of the smaller
error ellipse). Thus, the CTP method can potentially offer more credibility to a given
map estimate.
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No.
Vehicle

Trajectory
σr σθ β̂ j

Directional

Priorities

Nmc

(percentage)

N f

(percentage)

Ncg

(percentage)
∆MG,avg

1 Straight
Fig. 6.19(a)

7.0 m 5.0◦ 0.24◦
C‖ = 2

C⊥ = 0

1000
(100%)

508

(50.8%)

194

(19.4%)
−10.81

2 Straight
Fig. 6.19(a)

7.0 m 5.0◦ 0.24◦
C‖ = 0

C⊥ = 2

1000
(100%)

378

(37.8%)

140

(14.0%)
+7.11

3 Curved
Fig. 6.19(b)

7.0 m 5.0◦ −166.7◦
C‖ = 2

C⊥ = 0

1000
(100%)

363

(36.3%)

188

(18.8%)
+1.45

4 Curved
Fig. 6.19(b)

7.0 m 5.0◦ −166.7◦
C‖ = 0

C⊥ = 2

1000
(100%)

238

(23.8%)

96

(9.6%)
+1.72

Table 6.3: CTP analysis: Examining the CTP search in different scenarios.

No.
∆P Search

Domain

N f

(percentage)

N(δ∗x=100)
(δ∗y=100)

(percentage)

N(δ∗x=100)
(δ∗y=0)

(percentage)

N(δ∗x=0)
(δ∗y=100)

(percentage)

1
δx ∈ (0, 100]

δy ∈ (0, 100]

508

(100%)

181

(35.6%)

198

(39.0%)

129

(25.4%)

2
δx ∈ (0, 100]

δy ∈ (0, 100]

378

(100%)

158

(41.8%)

65

(17.2%)

155

(41.0%)

3
δx ∈ (0, 100]

δy ∈ (0, 100]

363

(100%)

107

(29.4%)

182

(50.1%)

74

(20.4%)

4
δx ∈ (0, 100]

δy ∈ (0, 100]

238

(100%)

63

(26.5%)

150

(63.0%)

25

(10.5%)

Table 6.4: CTP analysis: Statistics about the optimal perturbation ∆P∗ for the scenar-
ios of Table 6.3.

In order to study the behaviour of the CTP algorithm, we carried out further anal-
ysis regarding the ∆P search in each of the scenarios shown in Table 6.3. Table 6.4
presents some statistics around the optimal ∆P∗ point in the pre-set search interval
in situations where the CTP method successfully reduces the covariance-based direc-
tional error. As can be seen in all the studied scenarios in this section, the minimum
value of MC(Pκ|κ) occurs at one of the 4 corners corresponding to the maximum or
minimum values of the search parameters δx and δy (i.e. 0 or 100 in these exam-
ples), of which one belongs to the point associated with no perturbation (δx = 0 and
δy = 0). Therefore, based on the evidence, it is likely that when ∆P is parametrised
according to Eq. (6.1), evaluating and comparing the DIMER metrics at only 4 points
is sufficient in determining the optimal point in the CTP search process11. This can
make the CTP algorithm computationally far more efficient compared to the exhaus-
tive search approach performed initially.

To examine the effects of different levels of measurement noise on the CTP search
we conducted a separate Monte Carlo experiment for the straight-path scenario of
Fig. 6.19(a). For each value of the nominated σr and σθ pair, the simulation was run

11The same observation can be made in the results presented in 6.3.3 (e.g. Figs. 6.21 and 6.22).
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1000 times. Once again, CTP was incorporated with the original EKF-SLAM algo-
rithm to improve the directional quality of the obtained map. Table 6.5 presents the
results of these simulations. Five different pairs of measurement noise are considered
in this table (N1 to N5). According to this table, the likelihood of finding a non-zero
∆P∗ that reduces the covariance-based DIMER measure increases with the level of
measurement noise. Furthermore, the trend seen in the values of Ncg and ∆MG,avg
suggests that the likelihood of improvement (as well as the degree of improvement)
in the ground-truth-based metric increases for higher levels of measurement noise.
Table 6.6 provides some statistics on the ∆P search for these scenarios. It can be
seen that for this particular studied scenario, the likelihood of the success of the CTP
method increases by inflating the covariance matrix in both x and y directions.

A more thorough analysis on the relationship between the CTP success and mea-
surement noise level is performed in Figure 6.36. The figure uses a 3-D bar chart and
a heat diagram to visualise this search process for the straight-path scenario shown
in Fig. 6.11, when the values of range and bearing standard deviation vary between
1 and 10 (only the integer values are shown). The pattern shown in this figure also
confirms that in general the CTP algorithm is more effective in scenarios where the
measurement noise level is high. More extensive simulations were performed for
different scenarios (such as curved path, etc.) that yielded similar outcomes with
identical behaviour for the CTP search. However, to avoid repetitiveness, the results
of these simulations are not presented here.

No.
Vehicle

Trajectory
σr σθ β̂ j

Directional

Priorities

Nmc

(percentage)

N f

(percentage)

Ncg

(percentage)
∆MG,avg

N1 Straight
Fig. 6.19(a)

1.0 m 0.5◦ 0.24◦
C‖ = 2

C⊥ = 0

1000
(100%)

185

(18.5%)

48

(4.80%)
+0.12

N2 Straight
Fig. 6.19(a)

2.0 m 1.0◦ 0.24◦
C‖ = 2

C⊥ = 0

1000
(100%)

378

(37.8%)

122

(12.2%)
+0.69

N3 Straight
Fig. 6.19(a)

4.0 m 3.0◦ 0.24◦
C‖ = 2

C⊥ = 0

1000
(100%)

456

(45.6%)

144

(14.4%)
−3.59

N4 Straight
Fig. 6.19(a)

5.0 m 4.0◦ 0.24◦
C‖ = 2

C⊥ = 0

1000
(100%)

482

(48.2%)

154

(15.4%)
−5.30

N5 Straight
Fig. 6.19(a)

6.0 m 5.0◦ 0.24◦
C‖ = 2

C⊥ = 0

1000
(100%)

518

(51.8%)

195

(19.5%)
−7.74

Table 6.5: CTP analysis: The performance of the CTP algorithm for different values
of range and bearing noise (straight trajectory).
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No.
∆P Search

Domain

N f

(percentage)

N(δ∗x=100)
(δ∗y=100)

(percentage)

N(δ∗x=100)
(δ∗y=0)

(percentage)

N(δ∗x=0)
(δ∗y=100)

(percentage)

N1
δx ∈ (0, 100]

δy ∈ (0, 100]

185

(100%)

158

(85.4%)

5

(2.7%)

22

(11.9%)

N2
δx ∈ (0, 100]

δy ∈ (0, 100]

378

(100%)

307

(81.2%)

15

(4.0%)

56

(14.8%)

N3
δx ∈ (0, 100]

δy ∈ (0, 100]

456

(100%)

321

(70.4%)

49

(10.7%)

86

(18.9%)

N4
δx ∈ (0, 100]

δy ∈ (0, 100]

482

(100%)

258

(53.5%)

117

(24.3%)

107

(22.2%)

N5
δx ∈ (0, 100]

δy ∈ (0, 100]

518

(100%)

221

(42.7%)

182

(35.1%)

115

(22.2%)

Table 6.6: CTP analysis: Statistics about the optimal perturbation ∆P∗ for the scenar-
ios presented in Table 6.5.
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Figure 6.36: CTP analysis: Average N f (percentage) for different values of measure-
ment noise.

Draft Copy – 12 September 2014



§6.4 Criteria-based Multi-vehicle SLAM Simulations and Results 145

6.4 Criteria-based Multi-vehicle SLAM Simulations and Re-
sults

In the previous section we demonstrated the effectiveness of the criteria-based co-
variance trajectory perturbation algorithm in reducing the covariance-based DIMER
metric for a scenario involving a single vehicle and a single landmark. The present
section expands this solution by integrating the CTP method into the multi-vehicle
distributed mapping system proposed in Chapter 3. The mapping performance will
be investigated by evaluating the quality of obtained maps inside individual vehicles
as well as the central fusion centre (CFC). Both types of quality measures, i.e. the
covariance-based and the ground-truth-based DIMER metrics will be examined.

6.4.1 DIMER-based Covariance Trajectory Perturbation for Multi-vehicle
SLAM

The simulation consisted of three vehicles driving around overlapping trajectories in
a sample environment populated with 25 landmarks (as shown in Figure 6.37). The
paths and the movements of the vehicles were chosen so as to resemble a real-world
situation. Like before, each vehicle collects and processes range and bearing mea-
surements from the visible landmarks in their respective line of sight. The vehicles
transmit their most informative local information to the server, where a global map
is maintained (see Section 3.3).
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Figure 6.37: Individual vehicle tracks. The vehicle trajectories have been chosen so
that every landmark in the grid is covered by at least one vehicle.

Since the CTP algorithm was originally developed for a simple case including a
single vehicle and a single map element (see Section 5.4), some partial modifications
had to be made in order to integrate this strategy into the multi-vehicle system with
several landmarks. Consider an environment populated with N landmarks. A naive
way of generalising the CTP method would be to solve a batch optimisation problem
including N free variables (one unknown ∆P for each landmark). The implementa-
tion of such a method would require re-running the mapping algorithm on the entire
trajectory for a large number of times (each time with a different set of ∆P parame-
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ters and comparing the resulting maps). This would be unfeasible for a large number
of landmarks due to its computational complexity. This prompted the application of
a segmentation technique in which the path of each vehicle is divided into smaller
segments in an intelligent way. Each ”chunk” (or horizon) is basically comprised of a
small number of landmarks (usually Ni < 4) in order to mathematically facilitate the
∆P search algorithm. Such a systematic approach can effectively render this process
computationally tractable in large-scale environments.

For this purpose, we devise the use of a pre-filter structure as a pre-phase sys-
tem component. For each vehicle, the pre-filter runs a separate EKF-SLAM (with no
covariance trajectory perturbation) on the respective trajectory to obtain an initial,
tentative map. Note that since no information is shared between the vehicles, the
obtained estimates using this process are most likely less accurate compared to the
case where the multi-vehicle SLAM is implemented. Based on the initial map esti-
mates for individual vehicles, the previously mentioned landmark segmentation can
be carried out prior to the implementation of the CTP method12. This is performed
in a way that the landmarks in vicinity of each other are placed in the same segment.
The main reason behind this is that there is generally a stronger correlation between
adjacent landmarks compared to spatially distant landmarks in the SLAM context.
Therefore, artificially inflating the covariance of one landmark in a specific segment
would probably affect the other landmarks in that same segment more than the rest
of the landmarks in the map. Consequently, due to this existing correlation, it is
sensible to apply the CTP algorithm to a segment of the map consisting of adjacent
landmarks.

After operating the pre-filter and assigning the landmarks to their specific seg-
ments, the distributed multi-vehicle SLAM with efficient communication can be run
to construct the local and global maps. However, for each pre-defined road segment
(determined from the pre-filter phase) the CTP algorithm is run to find the appro-
priate ∆P∗ values that minimise the DIMER metric associated with the landmarks in
that segment. During the perturbation search, all side activities related to the multi-
vehicle system are essentially paused temporarily until the ∆P search is completed.
The operation of the filter is resumed upon the completion of this search.

Two different sets of simulations were conducted to exemplify the impact of the
CTP algorithm when incorporated into the distributed mapping system with effi-
cient communication. The standard deviations of range and bearing measurements
were set to σr = 4m and σθ = 4◦ for both simulations. Figure 6.38 illustrates the
resulting map when no covariance trajectory perturbation is applied. The local map
estimates inside individual vehicles (including the position and orientation of the
landmarks) as well as the global map at the server are shown in the figure. Figure
6.39 shows the obtained map when the CTP algorithm is integrated into the map-
ping system (an enlarged view will be provided shortly to demonstrate the effective-
ness of the CTP method). The directional priorities for this experiment were set to
C‖ = 2 and C⊥ = 0 and the search limits were set as δx ∈ (0, 100] and δy ∈ (0, 100].

12Once again, we assumed perfect data association for the simulations presented in this chapter.
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Note that the generated measurements and other system parameters were identical
in both simulations to provide a credible comparison platform. Table 6.7 provides
the covariance-based (MC) and ground-truth-based (MG) DIMER metrics associated
with the global map as well as the local maps inside the vehicles for each of the above
runs. As can be observed from this table, deploying the CTP algorithm for this exam-
ple reduced the covariance-based local map errors in each vehicle. Moreover, as an
indirect consequence of the CTP integration, the total covariance-based DIMER met-
ric associated with the global map at the CFC witnessed a decrease compared to the
normal case with no perturbation. On the other hand, changes in the overall ground-
truth-based DIMER metric were negligible, meaning that the covariance-reduction
was performed with no severe ramification on the ground-truth-based measure (this
implies a small increase in the estimator’s bias). Notwithstanding this, a few incon-
sistent map estimates were observed in both cases (Figs. 6.38 and 6.39). In other
words, some of the covariance ellipses did not match the mean estimates. This issue
will be addressed later in this Chapter.

The impact of applying the DIMER-based CTP on an example landmark can be
seen in Figure 6.40. Subfigures (a) and (b) depict the enlarged views of Box No.1 in
Figures 6.38 and 6.39 respectively. As can be seen, the local CTP algorithm employed
in the third vehicle has managed to reduce the parallel error in the covariance ellipse
pertaining to that landmark (notice the change in the solid ellipse). In addition, the
same error has been decreased for the constructed global map at the central fusion
centre (after the incorporation of information from all the vehicles).

The pattern reported here was also consistent with the results obtained from other
experiments performed in similar multi-vehicle settings13. Consequently, the results
support the initial hypothesis that, in addition to single-vehicle/single-landmark sce-
narios, the CTP algorithm is also effective in the multi-vehicle mapping system de-
vised in this thesis. We remark that it is not generally trivial that decreasing the
DIMER error for each vehicle deceases the DIMER error at the CFC. This uncertainty
arises from the complex nature of the distributed system and the impact of sub-map
fusion inside local, channel and server structures.

Fig. CTP M1
C M2

C M3
C MCFC

C M1
G M2

G M3
G MCFC

G

6.38 0 168.10 121.25 85.48 47.62 158.67 88.44 31.83 56.45

6.39 1 165.49 119.85 82.9 44.77 159.06 91.26 44.71 58.70

Table 6.7: The effect of applying the CTP algorithm to the multi-vehicle SLAM system with efficient
communication. The covariance-based (MC) and the ground-truth-based (MG) DIMER metrics associ-
ated with the final obtained maps (for both local and global estimates) are shown. Directional priorities

were set to C‖ = 2 and C⊥ = 0.

13These results are not shown in this thesis to avoid repetitiveness.
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Figure 6.38: The local and global map estimates obtained by running the efficient multi-vehicle
SLAM algorithm (with no perturbation). The 3σ uncertainty ellipses are shown in the overhead figure.

Draft Copy – 12 September 2014



§6.4 Criteria-based Multi-vehicle SLAM Simulations and Results 149

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Map Estimates

East (m)

N
or

th
 (m

)

 

 
Ground truth
veh1
veh2
veh3
CFC

1

2

Figure 6.39: The resulting local and global map estimates obtained by applying the CTP algorithm
to the efficient multi-vehicle SLAM algorithm of Fig. 6.38. Directional priorities were set to C‖ = 2 and

C⊥ = 0 in this example. See Fig. 6.40 for an enhanced view.
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Figure 6.40: The impact of deploying the CTP algorithm on the local and global map estimates
pertaining to a sample landmark. Subfigures (a) and (b) are the enlarged views of Box No.1 in Figures

6.38 and 6.39 respectively. Directional priorities were set to C‖ = 2 and C⊥ = 0.
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6.4.2 Results on Converted Measurement Kalman Filtering with De-biasing
Compensation (D-CMKF)

In most of the experiments carried out previously in this section, in addition to
analysing the effect of deploying the CTP algorithm on the covariance of the obtained
maps, it was set out to examine the behaviour of the actual directional mapping er-
ror through the use of the MG metric. The results (e.g. Monte Carlo simulations
of Table 6.3) indicated that in some occasions, perturbing the initial covariance ma-
trix can introduce additional bias into the estimator. This can potentially create a
mismatch between the mean and covariance estimates and result in inconsistent es-
timates. Recalling Section 5.5, we proposed a debiasing algorithm coupled with
converted measurement Kalman filtering (CMKF) to diminish the existing bias and
avoid the inconsistency problem in the system. This subsection analyses the effect of
D-CMKF integration on the multi-vehicle SLAM system shown in Fig. 6.37.

To demonstrate the overall impact of the D-CMKF technique and to compare the
generated maps with the formerly obtained results where no debiasing approach
was applied (i.e., Figures 6.38 and 6.39), four different experiments were designed
and carried out. The same system model and identical measurements were used for
these simulations. Each experiment (as shown below), utilised a different filtering
structure inside the vehicles.

Experiment A - The original EKF-SLAM filter with non-linear observation model

Experiment B - The EKF-SLAM filter in synergy with DIMER-based CTP algorithm

Experiment C - The D-CMKF filter which uses a converted measurement system

Experiment D - The D-CMKF filter in synergy with DIMER-based CTP algorithm.

Table 6.8 compares the performance of the above four cases. Like before, the
covariance-based as well as the ground-truth-based DIMER measures have been cal-
culated for the final global and local maps. Based on the table, it appears that the
D-CMKF algorithm has managed to reduce the ground-truth-based DIMER met-
ric in both local and global maps. No consistent pattern could be detected for the
covariance-based error associated with the local estimates, however D-CMKF seems
to have marginally increased the overall covariance-based DIMER corresponding to
the global map at the server (compared to the case where no D-CMKF is used). The
second experiment (in which the EKF-SLAM algorithm was combined with the CTP
method) still delivers the best quality in terms of the covariance-based DIMER. Other
experiments with different set of measurements and system parameters exhibited the
same type of behaviour for the above four cases. In other words, in all the conducted
simulations the D-CMKF algorithm reduced the directional error with respect to the
actual map in the local and global maps. We provide two hypothesis on reasons be-
hind this improvement. Firstly, this enhancement is attributed to the employment of
the debiasing structure in the D-CMKF filter (this was in fact the original motivation
behind using this method). Secondly, this might also have occurred as a result of the
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Exp. Fig. CTP D-CMKF M1
C M2

C M3
C MCFC

C M1
G M2

G M3
G MCFC

G

A 6.38 0 0 168.10 121.25 85.48 47.62 158.67 88.44 31.83 56.45

B 6.39 1 0 165.49 119.85 82.9 44.77 159.06 91.26 44.71 58.70

C 6.41 0 1 163.99 120.50 90.43 51.32 153.33 80.33 35.76 47.41

D 6.41 1 1 163.99 120.50 90.43 51.32 153.33 80.33 35.76 47.41

Table 6.8: This table shows the impact of employing the D-CMKF structure on the multi-vehicle
mapping system. The DIMER metric associated with the final obtained maps (local and global) have

been shown. σr = 4m and σθ = 4◦. Directional priorities were set to C‖ = 2 and C⊥ = 0.

using a linear observation model in the CMKF structure. Linearising the measure-
ment model (and avoiding Jacobian calculations and other approximations normally
used in an EKF-based system) may have caused the generation of more accurate
estimates with respect to the true map.

Figure 6.41 shows the local and global map estimates obtained by applying the
D-CMKF structure to the multi-vehicle scenario of Fig. 6.37 (i.e. Experiments 3 & 4
from above). In this experiment and other conducted experiments using the D-CMKF
structure, inconsistent map estimates reported previously were no longer observed.
We believe that this is also attributed to the structure of the D-CMKF filter and
the fact that it provides more accurate estimates through using a linear observation
model. Figure 6.42 exemplifies this claim for a single landmark in the above dataset.
Subfigures (a), (b) and (c) depict the close-up views of Box No.2 shown in Figures
6.38, 6.39 and 6.41 respectively.

Another interesting, though surprising observation was that in the experiments
where the D-CMKF structure was used as the local mapping algorithm, the incor-
poration of the CTP method failed to enhance the directional quality of the existing
landmarks in the map. The data presented in Table 6.8 complies with this observa-
tion. It can be seen that the implementation of the D-CMKF filter for this experiment
yielded identical test results regardless of whether the CTP was deployed or not. In
other words, based on this evidence, applying the covariance trajectory perturbation
to the converted measurement filter with bias compensation offers no advantage,
since the effect of the CTP method is overshadowed by the D-CMKF filter. Our ten-
tative hypothesis for the reason behind this unexpected result is that the developed
CTP structure operates through exploiting the non-linearities of the mapping sys-
tem. As mentioned previously, the proposed D-CMKF filter linearises the original
EKF-SLAM filter model by converting polar measurements (range and bearing) to
measurements in the Cartesian frame. As a result of this process, the CTP algo-
rithm can no longer perform successfully to reduce the covariance-based DIMER of
the estimates. Notwithstanding this, it is important to note that the CTP algorithm
can still be effective in other filtering algorithms and mapping systems where the
measurement model cannot be linearised.

Once again, we note that the conducted experiments were not limited to the
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Figure 6.41: The resulting local and global map estimates obtained by applying the D-CMKF algo-
rithm to the original SLAM filter inside individual vehicles. Directional priorities were set to C‖ = 2

and C⊥ = 0 in this example.
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(a) CTP = 0, CMKF = 0
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(b) CTP = 1, CMKF = 0
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(c) CTP = 1, CMKF = 1

Figure 6.42: Subfigures (a), (b) and (c) depict the close-up views of Box No.2 in Figs. 6.38, 6.39 and
6.41 respectively. In (a) and (b), the global map estimate at the CFC as well as the local estimate from
one of the vehicles (veh3) are inconsistent. The inconsistency issue has been resolved by applying the

converted measurement filtering in Subfigure (c).
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results presented in this chapter. Several other mapping scenarios were tested with
different system parameters (different trajectories, set of measurements, noise levels,
vehicle parameters, etc) which exhibited similar behaviour as reported here.

6.5 Summary

This chapter presented the simulations and results related to the methods proposed
in this thesis. Section 6.2 showed the effectiveness of the developed multi-vehicle
mapping architecture in a large-scale environment. It was shown that selectively
communicating the landmarks with the highest information gain would significantly
reduce the required transmission bandwidth in this architecture. Furthermore, the
applied pruning algorithm (also based on information gain) limited the size of the lo-
cal maps inside individual vehicles, which in turn made the system computationally
feasible in large-scale environments.

Section 6.3 mainly focused on the application results of the newly designed
DIMER metric in Chapter 4. The results related to the incorporation of this metric
into the structure of two of the most widely used map estimation techniques, namely
the covariance intersection and the EKF-SLAM algorithms were established. In Sec-
tion 6.3.1, the results of applying DIMER-based CI for fusing maps with unknown
degree of correlation were demonstrated and compared against more conventional
methods in the literature. Subsection 6.3.3 presented the results of utilising the co-
variance trajectory perturbation (CTP) algorithm in a simplified scenario including
a vehicle and a landmark. Three fundamentally different cases were identified and
exemplified when applying a covariance perturbation to the EKF-SLAM algorithm.
Detailed examples demonstrated how the integration of the CTP algorithm into the
EKF-SLAM structure could be potentially constructive in reducing the covariance-
based DIMER metric of the obtained map. Nevertheless, the results suggest that
this method is situation-dependent and is impacted by several factors, thus could
not guarantee success (in reducing the covariance-based DIMER) in 100% of the
occasions. In addition to the studied straight and curved vehicle trajectories, the
application of the CTP method was tested in other scenarios and yielded similar re-
sults. Based on the Monte Carlo results, it was made probable that the search process
can be performed more efficiently than originally perceived by confining the search
points for any given landmark to merely the four edge points in the search interval.

Section 6.4 was concerned with the simulation results of DIMER-based estima-
tion in the previously developed multi-vehicle SLAM settings. The results indicated
that deploying the CTP algorithm inside the local SLAM filter of individual vehicles
could effectively enhance the directional error of the produced global map at the cen-
tral fusion centre. The impact of utilising the D-CMKF filter on the performance of
the mapping system was studied in Subsection 6.4.2. It was discovered that applying
the covariance trajectory perturbation to the converted measurement filter with bias
compensation offers no advantage, since the effect of the CTP method is overshad-
owed by the D-CMKF filter. It was also observed that the proposed methodology
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managed to improve the ground-truth-based DIMER metric (in both local and global
maps) in analogy with the normal EKF-SLAM filter. Nevertheless, the formerly dis-
cussed synergy between the EKF-SLAM and the CTP algorithm (where no D-CMKF
is applied) yielded better maps in terms of the covariance-based DIMER metric.
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Chapter 7

Conclusions and Future Work

This chapter provides the conclusion of this work and presents suggestions on areas
of future research.

7.1 Conclusions

This work devised an efficient data fusion framework for the problem of multi-
vehicle SLAM for very-large-scale road mapping applications. The proposed solution
conforms to the enforced practical restrictions and fundamental requirements of the
AutoMap project, as the real-world inspiration behind this work. The deployed hi-
erarchical architecture with selective communication significantly reduces the com-
munication bandwidth in this setup. In addition, utilising the landmark pruning
algorithm overcomes the problem of growing map sizes at the local nodes, thus ren-
dering the local filter computationally feasible. The developed mapping solution is
potentially scalable to environments with thousands of vehicles and many millions
of landmarks.

A new concept of map quality for specialised road mapping applications such
as AutoMap has been established. A particular type of error measure is derived in
this work which is capable of reflecting the accuracy of landmark maps in a more
meaningful way. The devised DIMER measure assimilates a number of significant
practical factors (such as spatial orientation and type of map elements), which are
not typically accounted for in traditional measures, to capture the accurateness of a
given map in a variety of mapping applications. The DIMER metric can be deployed
by both scientific and business communities to serve as a tool for comparing the
performance of different mapping algorithms. It has been shown that the proposed
covariance-based metric is a natural generalisation of the popular trace metric and
it successfully accounts for the major deficiencies of conventional methods. More-
over, in a single-vehicle/single-landmark SLAM scenario, investigating the impact
of measurement noise on the error contained in the resulting map demonstrates that
the average covariance-based DIMER-metric exhibits comparable behaviour to that of
the trace metric (both error measures increase as the measurement noise increases).
Nevertheless, this is not necessarily true for the ground-truth-based DIMER metric
in general (particularly for high levels of measurement noise).

155
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The results have demonstrated that the devised covariance trajectory perturbation
(CTP) solution is capable of enhancing the quality of landmark localisation when
consolidated into the non-linear EKF-SLAM algorithm. Nonetheless, the proposed
methodology is situation-dependent and cannot guarantee quality improvements in
100 percent of the occasions. Simulations suggest that there are various factors that
attribute to the success of this method. More specifically, the geometry of the land-
mark observations should have a significant bearing on the performance of the CTP
method. Monte-Carlo simulations conducted in this thesis indicate that statistically
the CTP algorithm is effective in reducing the covariance-based DIMER measure in
approximately 25-50% of the occasions. Furthermore, this method achieves enhance-
ments in both ground-truth-based and covariance-based DIMER measures in 10-20%
percent of the cases. It is also observed that an increase in the level of measurement
noise would effectively increase the prospect of CTP success as well as the likelihood
of reducing the ground-truth-based DIMER measure.

Although the original CTP algorithm was initially designed to operate in a single
vehicle/single landmark environment, it is evidentially effective when expanded to
the distributed multi-vehicle setting with intermittent communications developed in
this thesis. Deploying the CTP algorithm inside the local SLAM filter of individual
vehicles effectively reduces the covariance-based directional error of the local maps
as well as the generated global map at the server. Despite its proven effectiveness in
reducing the covariance-based directional error, the CTP implementation can bring
about a number of undesirable consequences. The main ramifications include the cre-
ation of bias and inconsistent map estimates, both phenomena relatively more preva-
lent when the measurement noise is large. It turns out that the implementation of the
D-CMKF filter, originally intended as a debiasing compensation structure, improves
the ground-truth-based DIMER metric in both local and global maps. Moreover, the
D-CMKF solution successfully prevents the issue of inconsistent map estimates from
occurring by virtue of the linearised observation model. It has also been shown that
applying CTP to the D-CMKF-SLAM filter renders the covariance search futile, since
the D-CMKF filter effectively superseded the covariance perturbation method.

7.2 Future Work

This chapter concludes by providing suggestions on areas of future work. We out-
line three potential research problems related to the current thesis that merit further
investigation and research.

Computer simulations were used in this thesis to demonstrate the effectiveness
of the proposed methods. Due to the data collection platforms not being ready,
the majority of these solutions were not tested on real-world data. Confirming the
effectiveness of the devised methods and analysing their performance using real-
world sensory data is a potential avenue worth pursuing.

This thesis developed a number of strategies for efficient, large-scale, distributed
mapping using multiple vehicles in the presence of different practical constraints.
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Although these methods are interconnected through the hierarchical mapping archi-
tecture, they were mostly addressed individually throughout this work. An alterna-
tive approach is to set up and solve a single joint-optimisation problem consisting of
all the existing constraints dictated by the problem. This off-line, batch-optimisation
problem can include a number of different factors such as the available computa-
tional power and communication bandwidth, the maximum size of local maps, cost
parameters, targeted map quality, etc. Solving such intricate optimisation problem
requires a well-defined mathematical formulation encompassing all the practical and
theoretical aspects.

Finally, the last area of future research envisioned in this work is related to the
problem of criteria-based estimation and mapping in the distributed mapping sys-
tem. The development of other stochastic/deterministic techniques or filtering struc-
tures to enhance the DIMER metric associated with the obtained local and global
map estimates can be investigated. In addition, the incorporation of the DIMER met-
ric into the existing filtering/batch processing techniques (e.g. Graph-SLAM, Particle
filtering, Unscented Kalman filtering, etc.) can be studied to provide an insight into
more complex systems.
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Appendix A

Appendix A : Applicability and
Analysis of Covariance Intersection
(CI)

A.1 introduction

In this appendix we examine the conditions in which data fusion can be performed
by neglecting the unmodeled correlation between two information sources without
compromising the consistency of the system. More specifically, we explore those sit-
uations in which one can disregard the correlation information and achieve a consis-
tent estimate by simply adding the respective estimates′ information matrices. This
estimate will deliver considerably better performance than the widely employed Co-
variance Intersection (CI) algorithm in terms of estimation uncertainty.

This work is motivated by a practical project with the aim of developing a dis-
tributed fusion system to map a large-scale environment. The data fusion algorithm
is distributed across multiple vehicles, each given the task of producing and updat-
ing a local map. The vehicles are equipped with a range of sensors and selectively
communicate maps to and from a central station [Amirsadri et al., 2012a]. The local
maps obtained from different vehicles are not independent; e.g. all vehicles share
information obtained from the central station. Hence, an appropriate fusion strategy
must be deployed to tackle the problem of correlated submaps.

The rest of this section is arranged as follows: Section A.1.1 provides some pre-
liminaries on the data fusion problem under study. Subsection A.1.2 outlines three
classical fusion methods given correlated estimates. In Section A.1.3 conditions on
consistent fusion, while ignoring the unknown correlation, will be derived for fusing
two unbiased estimates. Simulations are provided in Section A.2 and Conclusions
are drawn in Section A.3.

161
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A.1.1 Preliminaries

We consider two (random variable) estimates a ∼ N (c∗, P̃aa) and b ∼ N (c∗, P̃bb) of
some fixed parameter c∗. The estimation error of a and b are defined by the random
variables

ã = a− c∗ , b̃ = b− c∗ (A.1)

where, in this case,

E[ã] = 0 , P̃aa = E[ãã>] (A.2)

E[b̃] = 0 , P̃bb = E[b̃b̃>] (A.3)

Although the true values P̃aa and P̃bb may not be known, consistent approxima-
tions Paa and Pbb are assumed available where 1

Paa ≥ P̃aa , Pbb ≥ P̃bb (A.4)

The cross-correlation matrix between the two estimates is denoted by P̃ab and is
defined by

P̃ab = E[(a− c∗)(b− c∗)>] = E[ãb̃>] (A.5)

This matrix may be known or unknown and may even be zero in some applications.
Let c ∼ N (c∗, Pcc) denote a third estimate of c∗ obtained via a linear combination

of a and b. That is
c = K1a + K2b (A.6)

where a, b ∈ Rn and K1, K2 ∈ Rn×n. The error in this estimate is

c̃ = c− c∗ (A.7)

and obeys E[c̃] = 0 when K1 + K2 = I.
The true covariance P̃cc = E[c̃c̃>] is calculated by

P̃cc = K1P̃aaK>1 + K2P̃bbK>2 + K1P̃abK>2 + K2P̃baK>1 (A.8)

and calculation of this term requires P̃ab = P̃>ba be known (when it is non-zero).
In this paper we are mainly interested in the construction of an estimate Pcc of P̃cc

when the cross-correlation P̃ab is non-zero but unknown. We are further interested in
certain properties of the resulting Pcc. In particular, we are interested in the property
of consistency

Pcc ≥ P̃cc (A.9)

where P̃cc is given by (A.8). In this case, (A.8) holds for any estimator defined by
the linear combination (A.6) but the computation (A.8) requires knowledge of the
cross-correlation P̃ab or some estimation thereof.

In many cases, one is not interested in the class of estimators defined by arbitrary

1This inequality is in the sense of matrix positive definiteness.
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parameters K1 + K2 = I but rather in some optimal estimator. In this case, we note
the following estimator defined by

(K∗1 , K∗2) = argmin
(K1,K2)

tr(P̃cc) s.t. K1 + K2 = I (A.10)

P̃cc =
[

K1 K2
] [ P̃aa P̃ab

P̃T
ab P̃bb

] [
K>1
K>2

]
(A.11)

where the pair K1 and K2 are chosen to minimise the trace of P̃cc. Solving the above
constrained optimisation problem for K1 and K2 yields an optimal value for P̃cc in
the form of

P̃∗
−1

cc = P̃−1
aa + (P̃−1

aa P̃ab − I)(P̃bb − P̃>abP̃−1
aa P̃ab)

−1 ·
(P̃>abP̃−1

aa − I) (A.12)

As noted, in this paper we are concerned, primarily with the construction of a
consistent estimate Pcc of P̃cc when the cross-correlation P̃ab is non-zero but unknown.
To this end we define consistency against the optimal value P̃∗cc which in turn is
defined as that P̃cc with the minimum trace over all estimators of the form (A.6).

Definition 3. Suppose P̃aa and P̃bb are given along with P̃ab = P̃>ba. Suppose P̃ab = P̃>ba is
non-zero. An estimate Pcc of P̃cc is said to be consistent if

Pcc ≥ P̃∗cc (A.13)

where P̃∗cc is an optimal value for P̃cc given by (A.12).

This definition of consistency is particularly useful for the purposes of study-
ing information fusion algorithms as it relates practical estimators (particularly their
uncertainty estimate) with an ideal estimator that could be constructed if the cross-
correlation between individual estimators were known (and it was known that indi-
vidual estimates were not over-confident).

It is generally true that ignoring the correlation information P̃ab when fusing a
and b can lead to overly confident results; i.e. the resulting estimate of Pcc will be
inconsistent as per Definition 3. Some algorithms, such as covariance intersection
(CI), on the other hand are designed to generate consistent estimates when the cross-
correlation is unknown. In many cases, the resulting estimators are considerably
conservative. We explore those situations in which one can simply ignore the corre-
lation information and achieve a consistent estimate by simply adding the respective
estimates’ information matrices. This estimate will deliver considerably better per-
formance than the suboptimal covariance intersection. The specific details of the
estimators in question will become clear as the paper progresses.
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A.1.2 Three Classical Fusion Algorithms

In this section we outline three well-known estimation algorithms given the setup
provided in the previous section. Each estimator assumes different information to
be available for computation. We are mainly focused on the computation of the
estimator’s covariance in this paper as we will later be concerned with consistency.

A.1.2.1 Minimum Trace Fusion of Two Normally Distributed Estimators with a
Known Degree of Correlation

We consider two estimates a ∼ N (c∗, P̃aa) and b ∼ N (c∗, P̃bb) of some fixed param-
eter c∗. Suppose two consistent estimates of a and b with Paa ≥ P̃aa and Pbb ≥ P̃bb
are available and the cross-correlation P̃ab is known. Replacing P̃aa and P̃bb in (A.12)
by Paa and Pbb respectively, automatically generates a consistent estimate P∗cc ≥ P̃∗cc if
P̃ab = P̃>ba is known. This is a consequence of Eq. (A.8). Therefore, when Paa and Pbb
are consistent and P̃ab is known then the combined estimate

P∗cc
−1 = P−1

aa + (P−1
aa P̃ab − I)(Pbb − P̃>abP−1

aa P̃ab)
−1 ·

(P̃>abP−1
aa − I) (A.14)

is by definition consistent (as per Definition 3). As noted, the problem in practice is
that P̃ab is typically unknown.

A.1.2.2 Fusion of Two Normally Distributed Estimators with an Unknown De-
gree of Correlation: Covariance Intersection

In many practical applications the degree of correlation between different informa-
tion sources is not available. A common solution in this case is to use the well-
known covariance intersection (CI) algorithm. Suppose again we have two estimates
a ∼ N (c∗, P̃aa) and b ∼ N (c∗, P̃bb) of some fixed parameter c∗. Suppose consistent
estimates Paa ≥ P̃aa and Pbb ≥ P̃bb are available. The cross-correlation P̃ab is unknown
(cannot be used in the fusion algorithm) and may be non-zero. Then CI is defined by
a convex combination

PCI
cc
−1

= ωP−1
aa + (1−ω)P−1

bb (A.15)

PCI
cc
−1

c = ωP−1
aa a + (1−ω)P−1

bb b (A.16)

where c ∼ N (c∗, Pcc) is an estimate of c∗ and where ω ∈ (0, 1) is calculated accord-
ing to some criteria; e.g. such as minimising the trace of the resulting covariance
matrix PCI

cc .

We note here simply that for all ω ∈ (0, 1), CI is guaranteed consistent as per
Definition 3; i.e. PCI

cc ≥ P̃∗cc and is often considerably conservative. We point to the
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literature [Julier and Uhlmann, 1997] for further discussion of the CI algorithm and
its consistency.

A.1.2.3 Fusion of Two Normally Distributed Estimators with an Unknown De-
gree of Correlation: Assuming Zero Correlation

Suppose again we have two estimates a ∼ N (c∗, Paa) and b ∼ N (c∗, Pbb) of some
fixed parameter c∗ and each estimate is consistent; i.e. Paa ≥ P̃aa and Pbb ≥ P̃bb. The
cross-correlation P̃ab is unknown (cannot be used in the fusion algorithm) and may
be non-zero. Let c ∼ N (c∗, Pcc) denote an estimate of c∗.

Now if a and b were in fact uncorrelated, then substituting P̃ab = 0 into (A.14)
yields

P0
cc
−1

= P−1
aa + P−1

bb (A.17)

which can be computed and is subsequently (by definition) consistent as per Defini-
tion 3. We also have

P0
cc
−1

c = P−1
aa a + P−1

bb b (A.18)

for completeness. This solution is optimal (in the sense of a minimum trace) when
P̃ab is indeed zero.

The main question motivating the subsequent work in this paper is summarised
in the following.

Question 1. If one computes P0
cc
−1

= P−1
aa + P−1

bb when P̃ab is non-zero, is P0
cc consistent as

per Definition 3?

It is easily observed that P0
cc ≤ PCI

cc . Thus, if P0
cc ≥ P̃∗cc, i.e. if P0

cc is consistent
as per Definition 3, then it follows that estimation via P0

cc is typically more desirable
than estimation via PCI

cc . It will turn out that the inequality P0
cc ≥ P̃∗cc holds for only

some values of P̃ab. In those cases, it so happens that one may simply ignore (set to
zero) the cross-correlation and perform optimal (minimum trace) fusion. The result
will be sub-optimal (as expected) but better (in terms of the trace) than covariance
intersection. The result, as per the definition of consistency, will be conservative
(non-optimistic) as desired.

A.1.3 Condition on consistent estimation under unknown correlation

It is well known that the CI algorithm guarantees the combined estimate to be consis-
tent as per Definition 3. However, the consistency of P0

cc
−1

= P−1
aa + P−1

bb , i.e. simply
ignoring the correlation, when P̃ab is non-zero has yet to be established. As per
Definition 3 consistency requires

P0
cc ≥ P̃∗cc (A.19)
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where P̃∗cc is computed by (A.12).

Now given consistent estimates Paa and Pbb and a known cross-correlation P̃ab,
a consistent representation of the combined estimate P∗cc can be computed using
Eq. (A.14). As explained in Subsection A.1.2.1, the resulting estimate automatically
generates a consistent estimate, i.e.

P∗cc ≥ P̃∗cc (A.20)

As a consequence of (A.19) and (A.20), if the inequality

P0
cc ≥ P∗cc (A.21)

holds, the consistency of P0
cc can be guaranteed as per Definition 3.

A.1.3.1 Consistency Analysis in One-Dimension

Suppose we have two estimates a ∼ N (c∗, P̃aa) and b ∼ N (c∗, P̃bb) of some fixed
parameter c∗ ∈ R. Consistent estimates of a and b with Paa ≥ P̃aa and Pbb ≥ P̃bb
are available. The cross-correlation P̃ab is unknown (cannot be used in the fusion
algorithm) and is non-zero. The following is the main result of this subsection.

Theorem 1. Suppose one computes

P0
cc
−1

= P−1
aa + P−1

bb (A.22)

P0
cc
−1

c = P−1
aa a + P−1

bb b (A.23)

Then,
P0

cc ≥ P∗cc (A.24)

if and only if

−
√

PaaPbb ≤ P̃ab ≤ 0, or (A.25)(
P−1

aa + P−1
bb

2

)−1

≤ P̃ab ≤
√

PaaPbb (A.26)

where P∗cc is computed via (A.14) using the consistent Paa ≥ P̃aa and Pbb ≥ P̃bb and the true
P̃ab.

That is in particular, P0
cc is consistent as per Definition 3 when P̃ab obeys one of

the theorem’s stated inequalities.
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Proof. The inequality (A.24) can be written as

P0
cc
−1 ≤ P∗cc

−1

P−1
aa +P−1

bb ≤ P−1
aa +

(P−1
aa P̃ab−1)(Pbb−P̃>abP−1

aa P̃ab)
−1(P̃>abP−1

aa −1)

P−1
aa + P−1

bb ≤
Paa + Pbb − 2P̃ab

PaaPbb − P̃2
ab

(Paa + Pbb)(PaaPbb − P̃2
ab) ≤ PaaPbb(Paa + Pbb − 2P̃ab)

Rearranging gives
P̃ab
[
(Paa + Pbb)P̃ab − 2PaaPbb

]
≥ 0

and thus
P̃ab ≤ 0, or P̃ab ≥

2PaaPbb

(Paa + Pbb)

However, the joint covariance matrix

P =

[
Paa P̃ab
P̃>ab Pbb

]
must be positive definite which yields the upper and lower bounds on P̃ab and gives

−
√

PaaPbb ≤ P̃ab ≤ 0, or(
P−1

aa + P−1
bb

2

)−1

≤ P̃ab ≤
√

PaaPbb

This completes the proof.

This theorem suggests that if the ignored correlation P̃ab obeys the inequalities
stated in the theorem then the solution provided by P0

cc will still deliver a consistent
estimate. An important point here is that P0

cc is always smaller than PCI
cc regardless

of the correlation and thus offers a higher quality estimate. We state an equivalent
result in a different way via the following corollary.

Corollary 2. Consider the same one-dimensional problem setup as applied in the preceding
theorem. For all consistent Paa and Pbb there exists a choice of P̃ab 6= 0 such that P0

cc > P∗cc
holds with strict inequality. Similarly, for all Paa and Pbb there exists a different choice of
P̃ab 6= 0 such that P0

cc < P∗cc holds with strict inequality.

A.1.3.2 Consistency Analysis in Higher Dimensions

Consider two n-dimensional estimates (n ∈N) a ∼ N (c∗, P̃aa) and b ∼ N (c∗, P̃bb) of
some fixed parameter c∗ ∈ R. We consider a special case where consistent estimates
Paa ≥ P̃aa and Pbb ≥ P̃bb are available and are defined in the form of:
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Paa = γa · In (A.27)

Pbb = γb · In (A.28)

where γa and γb are scalars and In denotes the (n× n) identity matrix. The cross-
correlation P̃ab is unknown but assumed to be in the form of

P̃ab = ρ · In (A.29)

where ρ is the scalar correlation coefficient. The following theorem summarises the
main result of this subsection.

Theorem 2. Suppose one computes

P0
cc
−1

= P−1
aa + P−1

bb (A.30)

P0
cc
−1

c = P−1
aa a + P−1

bb b (A.31)

Then,
P0

cc ≥ P∗cc (A.32)

if and only if

−√γaγb ≤ ρ ≤ 0, or (A.33)(
γa
−1 + γb

−1

2

)−1

≤ ρ ≤ √γaγb (A.34)

where P∗cc is computed via (A.14) using the consistent Paa ≥ P̃aa and Pbb ≥ P̃bb and the true
P̃ab = ρ · In.

That is, P0
cc is consistent as per Definition 3 when ρ obeys one of the inequalities

in Equations (A.33) and (A.34). The proof for theorem 2 is fundamentally similar
to the proof provided for the one-dimensional case in theorem 1, thus not provided
here to avoid repetition.

This theorem suggests that if ρ in (A.29) obeys the inequalities stated in the the-
orem then the solution provided by P0

cc will still deliver a consistent estimate. An
important point here is that P0

cc is always smaller than PCI
cc of (A.15) regardless of the

correlation and thus offers a higher quality estimate. Similar to the one-dimensional
case, we state an equivalent result via the following corollary.

Corollary 3. Consider the same n-dimensional problem setup as applied in the preceding
theorem. For all consistent Paa and Pbb there exists a choice of P̃ab 6= 0 such that P0

cc > P∗cc
holds with strict inequality. Similarly, for all Paa and Pbb there exists a different choice of
P̃ab 6= 0 such that P0

cc < P∗cc holds with strict inequality.
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A.2 Simulations and Results (Consistency Analysis)

We now provide two simulations to exemplify the theorems stated in Section A.1.3.
The first simulation considers the fusion of two unbiased one-dimensional estimates
a ∼ N (0, P̃aa) and b ∼ N (0, P̃bb) into estimate c. The covariances of the input esti-
mates are given by Paa = 1 and Pbb = 0.3. Fig. A.1 compares the covariance of the
combined estimate c as a function of the cross-correlation P̃ab for the three classical
methods outlined in Section A.1.2. If the ignored correlation P̃ab satisfies the inequal-
ities (A.25) and (A.26), the covariance of the obtained estimate P0

cc is greater than the
covariance of the optimal estimate provided by (A.14), thus guaranteeing a consistent
estimate. The covariance of the solution obtained by using CI is always greater than
both P∗cc and P0

cc.
Fig. A.2 shows the fusion of two unbiased two-dimensional estimates a and b

represented by Paa and Pbb where

Paa =

[
1 0
0 1

]
and Pbb =

[
2 0
0 2

]
These estimates are represented by their corresponding 2σ uncertainty ellipsoids.

The combined estimate c using CI and the method ignoring the correlation have been
shown. The dashed ellipsoids (green) are the calculated P∗cc estimates using differ-
ent values of the cross-correlation matrix (obtained using equal sampling) defined by
P̃ab = ρ · I as described in Subsection A.1.3.2. For those values of the cross-correlation
P̃ab in which the exact optimal value P∗cc is enclosed by the ellipsoid defined by P0

cc, it
is safe to ignore the cross-correlation and still be consistent. However, if the ellipsoid
representing the optimal P∗cc encloses the P0

cc ellipsoid then ignoring the correlation
generates an inconsistent estimate. The CI algorithm achieves a consistent, yet con-
servative estimate.

A.3 Conclusions

This paper analysed the consistency and applicability of three notable fusion al-
gorithms for combining correlated random variables. It was shown that, although
ignoring the non-zero correlation can cause inconsistency in the general case, there
are cases where the consistency of the combined estimate can be achieved by simply
neglecting the correlation. We derived conditions on the correlation under which one
may simply ignore the correlation (as if it were zero) and apply an optimal fusion
algorithm. Such conditions were given in the one-dimensional case and in a special
case of high-dimensional estimation. This method of fusion will be considerably less
conservative than covariance intersection.
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Figure A.1: Comparison of the covariance of the combined estimate as a function of
the true cross-correlation P̃ab. For those values of P̃ab where P0

cc is larger than the op-
timal value P∗cc, consistent estimates can be achieved when the correlation is ignored.
The intersection points of P0

cc and P∗cc can be found by looking at the boundaries in
(A.25) and (A.26). As expected, the conservative CI estimate PCI

cc is always larger than
both P∗cc and P0

cc.
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Figure A.2: Comparison of the obtained estimate c resulting from fusing 2-D esti-
mates a and b using different fusion techniques. 2σ uncertainty bounds have been

shown using the covariance ellipsoids (circles here).
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Appendix B

Appendix B: Practical
Considerations in Precise
Calibration of a Low-cost MEMS
IMU for Road-Mapping
Applications

This paper addresses the theoretical and experimental development of a calibration
scheme to overcome the intrinsic limitations of a low-cost Micro-Electrical-Mechanical
System (MEMS) based Inertial Measurement Unit (IMU). The two-stage calibration
algorithm was developed and tested successfully on a six-degree of freedom proto-
type MEMS IMU to determine the deterministic and stochastic errors of the sensor.
This paper makes use of artificial observations known as pseudo-velocity measure-
ments resulting from a specific scheme of rotation to calibrate the IMU in the labo-
ratory environment. The proposed structure is then modified and utilised as a basis
for the IMU’s error estimation in outdoor navigation applications. For this purpose,
the designed calibration method is applied to an integrated GPS/MEMS IMU sys-
tem, showing improved navigational and road sign positioning performance in a test
vehicle.

B.1 Introduction

The last two decades have witnessed an increasing trend towards the use of navi-
gation and positioning technologies in land vehicle applications. The demand for
high quality navigation information on one hand and the well-known limitations of
the Global Positioning System (GPS) on the other hand have driven the research into
employment of Inertial Navigation Systems (INS) in positioning and mapping ap-
plications. Probably one of the most widely used inertial sensor assemblies is the
Inertial Measurement Unit (IMU). A tri-axial IMU, like the one implemented in this

173
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work, includes a triad of gyroscopes and accelerometers, all placed in an orthogonal
arrangement with respect to each other.

In spite of their widespread utilisation, the high cost and complexity of traditional
inertial navigation systems create some constraints on their use in general purpose
civilian applications. The advent of Micro-Electrical-Mechanical Systems (MEMS)
has enabled the manufacturing of low-cost inertial sensors. MEMS-based IMUs have
proved their use in a myriad of applications from robotics to integrated navigation
systems. These sensors are capable of providing reasonably accurate navigation data
over short intervals of time. Nevertheless, the major challenge in dealing with them is
their notorious error characteristic which leads to degraded performance in the long
term [Godha, 2006]. Consequently, determining the associated errors (such as noises,
biases, drifts and scale factor instabilities) becomes indispensable in the utilisation of
these sensors in real-world navigation applications.

The work in this paper is strongly motivated by a project called AutoMap which
aims at developing cost effective methods for automatic creation of digital maps [Pe-
tersson, 2010]. The project exploits computer vision algorithms for road sign extrac-
tion from video footage captured by land vehicles. The AutoMap project requires
continuous positioning information of the fleet vehicle in order to localise the de-
tected landmarks. For this purpose, inertial sensors are used alongside the GPS
to obtain synergetic observation effects. The utilisation of low-cost MEMS IMUs
enables the development of data collection sensor platforms at a reasonable cost.
Consequently, the study and calibration of the MEMS IMU in this work is of vital
importance to the future development of the AutoMap technology.

Over the years, several calibration techniques have been developed in different
works to address the problem of accumulative errors presented in inertial sensors.
Grewal et al. [Grewal et al., 2002] and Foxlin & Naimark [Foxlin and Naimark, 2003]
designed a Kalman filter with precise maneuvers to calibrate low-cost IMU sensors
for less demanding applications. Their methods have difficulties generating accurate
external calibration values such as bias and scale factor errors and they often require
costly and high-precision equipment which may not be available to researchers for
general orientation measurement applications. Nebot & Durrant-Whyte [Nebot and
Durrant-Whyte, 1999] implemented an algorithm for online initial calibration and
alignment of an IMU with six degrees-of-freedom (DoF) for land vehicle navigation
applications. Kim & Golnaraghi [Kim and Golnaraghi, 2004] studied a calibration
process using an optical tracking system. Park & Gao [Park and Gao, 2002] and Syed
et al. [Syed et al., 2007] investigated the lab calibration of MEMS-based IMUs by de-
veloping a turn table test procedure. Hall & Williams [Hall and Williams II, 2000]
developed an electromechanical system for automated calibration of IMUs using GPS
antennas. Titterton & Weston [Weston and Titterton, 1997], Farrel [Farrell and Barth,
1999] and Shin & Sheimy [Shin and El-Sheimy, 2002] used a velocity matching align-
ment method where the attitude of the IMU was being initialised by the GPS velocity
information. A common finding of the majority of prior works on calibration is that
they do not account for the time-varying errors associated with inertial sensors. We
will address this issue by constantly and continuously estimating and compensating
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for the IMU’s stochastic errors. Although online error estimation and fault-detection
techniques were previously investigated in other publications such as [Sukkarieh
et al., 1999], the context in which they appear in this work is different in implemen-
tation and application. The method in [Sukkarieh et al., 1999] investigates the fault
detection of IMU and GPS in a GPS/INS fusion system for outdoor applications.
However, unlike our method, it does not address the stand-alone calibration of the
inertial sensors for removing the time-varying errors in the lab environment.

This paper provides a systematic framework for both lab and in-field calibra-
tion of a 6-DoF MEMS-based inertial measurement unit. The proposed calibration
scheme is comprised of two distinct phases which are implemented sequentially.
Firstly, fixed errors are removed from the stationary IMU during a designed labora-
tory test in a process referred to as static calibration. Secondly, the extended Kalman
filter (EKF) is utilised in a context known as dynamic calibration to estimate the time-
varying errors. An intuitive concept called a pseudo-measurement based approach
was taken to tackle the dynamic calibration problem in the lab environment. The
pseudo-measurement method is closely related, but not identical to the concept of
zero velocity update (ZUPT) in [14] and [15]. ZUPT is often used for outdoor appli-
cations and it involves performing calibration and resetting the sensor’s errors while
the vehicle is stationary. However, as will be seen later in this paper, the pseudo-
measurement methodology dynamically and continuously estimates and removes
the time-varying errors of inertial sensors. In addition, the relaxed rotational scheme
in the lab environment, which will be described later, provides a more general type
of motion for the calibration experiment compared to the ZUPT method.

Although the pseudo-measurement concept is mainly designed for lab calibra-
tion, it can easily be expanded to incorporate GPS measurements to calibrate low-
grade IMUs in outdoor navigation applications. Unlike Park and Gao [2002]; Syed
et al. [2007]; Winkler et al., the calibration solution described here is independent
of any advanced equipment such as turn tables and it does not require precise ma-
neuvers explained in [Grewal et al., 2002; Foxlin and Naimark, 2003]. It provides a
simpler operational solution than [Hadfield and Leiser, 1988; Rogers et al., 2002] in
that it does not require the frequent stoppage of the vehicle to perform calibration.
Moreover, in contrast to [Aggarwal et al., 2006, 2008] it does not require a thermal
model and a thermal calibration of the sensor.

The rest of this paper is arranged as follows. Section B.2 starts with a brief
overview on the calibration procedure and providing the preliminary definitions.
Subsection B.2.1 explains a methodical solution for static calibration of an IMU. Sec-
tion B.2.2 employs the state space representation to formulate the dynamic calibra-
tion algorithm in the extended Kalman filtering context. This section introduces the
pseudo-measurement concept and a specific scheme of rotational movement as the
main contribution of this paper. Section B.3 provides the IMU calibration results
followed by the results of the GPS/MEMS-based IMU fusion system. This system
is a real-world navigation application of the pseudo-measurement based calibration
framework provided earlier. Finally, the conclusions are drawn from the results in
Section B.4.
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B.2 Calibration Scheme

Calibration is widely defined as the process of comparing instrument outputs with
known reference information. In this process, the coefficients are determined that
force the output to agree with the reference information for any range of output
values. The error characteristic of MEMS components is often highly nonlinear and
temperature dependent. In addition, MEMS-based IMUs are typically not compen-
sated for errors such as biases and scale factors. To achieve the desired accuracy,
it is therefore crucial to model the dominating errors and analyse their effects in
navigation applications.

Accelerometer bias is defined as an offset in the output that varies randomly from
time to time after removing the gravitational term. Gyro bias offset is the measured
angular velocity when no rotational motion is present. On the other hand, the scale
factor errors of the accelerometer and gyro are errors which are proportional to the
sensed quantities. The errors caused by the bias and scale factor in the inaccurate
sensor reading accumulate with time and will subsequently lead to the systematic
error known as the integration drift in the velocity, position and attitude provided
by the unit. The calibration model used in this paper is a simple linear model where
the scale factor (SA) and bias (βA) are, respectively, the multiplicative and additive
factors of the generic variable A. That is,

A(t) = SA Ã(t) + βA(t), (B.1)

where A denotes the real value of the quantity which is being calibrated, and Ã is the
direct reading from the sensor. Other error sources such as axis misalignment errors
are not taken into account in this work1. Interested readers are referred to [Sukkarieh
et al., 1999] and Skog and Händel for axis misalignment estimation.

The measurement errors in an IMU can be categorised into deterministic and
stochastic errors [Salychev and University, 1998]. The term deterministic errors refers
to fixed biases and scale factor errors. In contrast, stochastic errors vary randomly
from time to time which is an intrinsic nature of MEMS sensors. In this paper, the
calibration is performed through two consecutive steps. At first, the deterministic
errors presented in the raw sensor measurements will be compensated using con-
trolled experimental methods to calculate the conditioned inertial quantities. This is
called the static calibration procedure. The method employs a variation of the six-
position static and rate tests which are discussed in different works [Syed et al., 2007;
Weston and Titterton, 1997]. In the second stage, the conditioned accelerations and
angular rates from the first step are fed into the designed calibration module as in-
puts. This structure estimates the stochastic errors presented in the sensor. This step
is referred to as the dynamic calibration. The pseudo-measurement concept provided

1Since, in the MEMS quality sensor under study, all components are assembled in a single, auto-
mated PCB assembly step, misalignment errors can be kept to a minimum.
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by a relaxed rotational movement is introduced in this phase as a tool for estimating
the time-varying errors of the implemented IMU during a mission.

B.2.1 Static Calibration

The deterministic type of errors in an IMU can usually be determined in controlled
laboratory tests. Several procedures (e.g. [Ferraris et al., 1995; Lötters et al., 1998;
Won and Golnaraghi, 2010]) have been proposed in the literature to remove the fixed
errors of inertial sensors. Typically, for obtaining the biases of inertial sensors, the
simplest method is to measure the output reading while the sensor is stationary. The
methodology which has been used in this paper is described here2. The scale factor of
the gyro is determined by using the information from the sensor’s data sheet. Using
the employed Analog-Digital Converter (ADC) specifications and sensor’s sensitivity,
a rough estimate, S0g, of the scale factor is calculated:

S0g = 2(nb−1)(
Vref

Sgyro
), (B.2)

where Vref, Sgyro and nb are the ADC reference voltage, the gyroscope’s sensitivity
and the number of ADC bits respectively. After taking into account the calculated
scale factor, the bias value, β0g, is simply determined using the average value of
gyro reading over a sufficiently large period (e.g. 2 minutes) so that Equation (B.1)
leads to a zero value for a static IMU (a gyro at rest experiences an angular rotation
equal to the Earth rotation rate, which is considered negligible for our application).
Therefore,

β0g = −S0gω̃avg, (B.3)

where ω̃avg is the average sensor reading for angular rate and β0g and S0g denote the
gyro’s constant bias and scale factor, respectively.
Determining the unknown errors of an accelerometer is more subtle than for a gyro.
In this paper, the Earth’s gravity is used as a physical standard for calibrating the
IMU. An accelerometer at rest on the Earth’s surface will indicate 1g along the vertical
axis,

−→ax +−→ay +−→az = −→g . (B.4)

Taking the `2 Norm of Equation (B.4) yields:√
||−→ax ||2 + ||−→ay ||2 + ||−→az ||2 = g. (B.5)

Similar to the structure of Equation (B.1), we define the following equation for

2Expert readers may skip the static calibration section.
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each axis:

ā = S0a ãavg + β0a, (B.6)

where ãavg denotes the average sensor reading and ā is the resulting conditioned
acceleration after compensating for the deterministic bias β0a and scale factor S0a.
Substituting the above equations into Equation (B.5) and squaring both sides of the
equation yields:

(
S0a,x ãx,avg + β0a,x

)2
+

+
(
S0a,y ãy,avg + β0a,y

)2
+

+
(
S0a,z ãz,avg + β0a,z

)2
= g2.

(B.7)

In theory, at least 6 equations are required to solve for the 6 unknown errors of
Equation (B.7). In this work, to be prudent, 12 equations are formed by placing the
IMU at 12 different tilt angles, and measuring the accelerations while the sensor is at
rest. At each tilt angle, the corresponding reading for each axis is measured and av-
eraged over a random period of time. The average values are then fed into Equation
(B.7) to constitute the required set of equations. By taking advantage of regression
analysis and curve fitting techniques on the obtained polynomials, the unknown er-
rors of the accelerometer can be successfully computed.

B.2.2 Dynamic Calibration

Due to the nature of low-cost MEMS inertial units, the deterministic errors from Sec-
tion B.2.1 tend to vary from time to time. Drifts in angle measurements pertaining
to the gyro errors, cause the gravity vector to be incorrectly subtracted from the ac-
celeration vector, producing a virtual bias in the predicted acceleration. On the other
hand, changes in the environmental conditions, especially the ambient temperature
can change the bias and scale factor values. These errors are integrated into pro-
gressively larger errors in velocity, which are accumulated into even greater errors in
position. It is well known that the bias terms affect the estimated velocity and attitude
linearly with time, while they affect the estimated position quadratically [Sukkarieh
et al., 2002]. For these reasons, the MEMS-based IMU sensors need to be calibrated
frequently during a mission to avoid the accumulation of error and the integration
drift phenomena.

The purpose of the designed dynamic calibration process is to statistically esti-
mate the stochastic errors such as turn-on bias and in-run bias, by augmenting them
into the state of a stochastic observer [Kim, 2004]. The EKF is used in this paper as
the nonlinear state estimator to determine the IMU’s stochastic errors. This structure
receives a set of measured data from the IMU and estimates the unknown biases
and scale factors of the components embedded in the sensor. However, prior to the
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implementation, the fixed errors are removed from the raw measurements using the
static calibration procedure explained in Section B.2.1. Therefore,

ā(t) = S0a ã(t) + β0a (B.8)

ω̄(t) = S0gω̃(t) + β0g, (B.9)

where similar to the notation used in Equation (B.6), ā and ω̄ denote the statically
conditioned IMU measurements after the removal of deterministic errors. For the
dynamic calibration, the acceleration and angular velocity equations for each axis
are defined as:3

ab(t) =
(

1 + Sb
a(t)

)
ā(t) + βb

a(t) (B.10)

ωb(t) =
(

1 + Sb
g(t)

)
ω̄b(t) + βb

g(t). (B.11)

The two previous equations link the conditioned values ā and ω̄ from (B.8) and
(B.9) to the real acceleration and angular rate values in the body-fixed frame (ab and
ωb). The t index is used to represent the time-varying nature of the error terms.
However, for the sake of simplicity in the notation, continuous or discrete time index
(t and k) of these errors are dropped for most equations from now on.

Although this paper will not dwell on the detailed Kalman filtering equations,
it provides the required steps to construct the filter model. Equations (B.25) and
(B.28) below provide the full discretised system model used with a standard EKF
construction. The first step in designing the filter is to identify the state vector x
for equations of the model. For a tri-axial IMU, there are 3 orthogonally mounted
accelerometers and 3 orthogonal gyroscopes. Since each axis has an unknown bias
and an unknown scale factor, the calibration process consists of determining a total
number of 12 unknowns. These unknowns are used as a part of the state vector to
be estimated directly by the filter. In addition to the above unknown variables, linear
velocities of the IMU in the Earth-fixed navigation frame, and the four-component
quaternion vector constitute the state vector. A quaternion vector has been preferred
over Euler angles to describe the attitude of the sensor in different maneuvering
situations4. As a result, the state x can be constructed as a 19× 1 vector, consisting
of velocity, body attitude and stochastic errors (biases and scale factors) according to
the following discrete-time representation:

x(k) = [ vn(k) q(k) βb
a(k) βb

g(k) Sb
a(k) Sb

g(k) ]
T . (B.12)

State Transition Model: The next step is to construct a discrete-time state transition

3This is the model which is used for the dynamic calibration. Note that Equations (B.8) and (B.9)
are related to the static calibration phase and should not be confused with Equations (B.10) and (B.11)
introduced here.

4Attitude parameterization using the quaternion is more computationally efficient and numerically
accurate than the Euler angle method.
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model in the form of the following equation:

x(k) = f (x(k− 1), u(k), w(k)), (B.13)

where u(k) and w(k) denote the control input and the process noise respectively.
The conditioned values obtained from Equations (B.8) and (B.9) are used as control
inputs for the process model. Therefore, u is a 6× 1 vector such that,

u(k) = [ āb
x(k) āb

y(k) āb
z(k) ω̄b

x(k) ω̄b
y(k) ω̄b

z (k) ]T . (B.14)

Since the conditioned sensor measurements are still in the body-fixed frame, su-
perscript ‘b’ is used for the vector components in (B.14). For constructing the discrete-
time model, we first present the continuous-time equation models followed by the
discretization process. The first set of equations of the state transition model (Equa-
tion (B.13)), links the rate of change of velocity to the state vector x, and the control
inputs u according to:

v̇n = an = Cn
b ab + gn, (B.15)

where āb =
[

āb
x āb

y āb
z

]T
is formed by extracting the first three components of

the control input vector in (B.14) and the 3× 3 matrix Cn
b transforms the acceleration

quantities in the body-fixed frame to the navigation frame. The gravity vector gn =[
0 0 g

]T
with g denoting gravity, is used to compensate the effect of the local

gravity on the measured acceleration along the Earth’s z-axis. Substituting Equation
(B.10) into (B.15) results in the velocity equations for the state transition model, that
is,

v̇n = Cn
b

(
(1 + Sb

a) ◦ āb
)
+ Cn

b βb
a + gn, (B.16)

where ◦ represents the Hadamard product as in [Million, 2011]. This type of product
(also known as the component-wise product) is between two matrices or vectors with
the same dimensions5. Cn

b should be expressed in terms of the filter states (in this
case, the quaternions). This is done by using the quaternion transformation as:

Cn
b =

 q2
0 + q2

1 − q2
2 − q2

3 −2(q0q3 − q1q2) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q2

0 − q2
1 + q2

2 − q2
3 −2(q0q1 − q2q3)

−2(q0q2 − q1q3) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3



(B.17)

The second set of equations for the state transition model expresses the orienta-
tion of the IMU platform using gyro measurements,

q̇ =
1
2
[q⊗]ω̌b

nb (B.18)

5Let A and B be m× n matrices with entries in C. The Hadamard product of A and B is defined by
[A ◦ B]ij = [A]ij[B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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where,

[q⊗] =
 q0 −q1 −q2 −q3

q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 and ω̌b
nb =

 0
ωb

x
ωb

y
ωb

z

 . (B.19)

Equation (B.18) expresses the rate of change of the quaternion in terms of the
quaternion and angular velocities from the gyro. In this way, q̇ is indirectly linked to
the state vector x and control input u. Substituting Equation (B.11) into (B.18) results
in the second set of equations for the state transition model, that is,

q̇ =
1
2
[q⊗]

(
(1 + Šb

g) ◦ ω̄b
nb + β̌b

g

)
, (B.20)

where ω̄b
nb is the modified angular velocity (extracted from the control input vector

in (B.14)), according to:

ω̄b
nb =

[
0 ω̄b

x ω̄b
y ω̄b

z

]T
; (B.21)

and similar to the notation used in Equation (B.19),

Šb
g =

[
0 Sb

g,x Sb
g,y Sb

g,z

]
(B.22)

β̌b
g =

[
0 βb

g,x βb
g,y βb

g,z

]
. (B.23)

The differential equations for the last 12 states in Equation (B.12) are simply:

[
β̇b

a β̇b
g Ṡb

a Ṡb
g

]T
= 0. (B.24)

This set of equations is based on the assumption that the stochastic errors of in-
ertial sensors vary slowly compared to the dynamics of the moving vehicle. Hence,
they are considered as constant values between two consecutive IMU samples through-
out the EKF’s prediction stage. As will be shown in the next section, these varying
errors are estimated during each iteration of the filter. Equations (B.16), (B.18) and
(B.24) are the fundamental equations that enable the computation of the state x of the
sensor from an initial state x(0) and a series of measurements ãb and ω̃b. The salient
point here is that these equation are valid for general motion of the IMU in 3D space,
regardless of the motion. Since the discrete form of the EKF is used in this paper,
the above continuous-time state transition model is discretised [Kim, 2004] using the
forward Euler method [Butcher and Corporation, 2008]:
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vn(k)
q(k)

βb
a(k)

βb
g(k)

Sb
a(k)

Sb
g(k)


=



vn(k− 1)
q(k− 1)

βb
a(k− 1)

βb
g(k− 1)

Sb
a(k− 1)

Sb
g(k− 1)


+

+


Cn

b (k)
(
(1 + Sb

a(k)) ◦ āb(k)
)
+ (∆T)Cn

b (k)βb
a(k) + gn(k)

(∆T)
2 [q⊗ (k)]

(
(1 + Šb

g(k)) ◦ ω̄b
nb(k) + β̌b

g(k)
)

0
0
0
0

 (B.25)

where ∆T is the sampling time of the IMU.
Observation Model: The observation model is generally constructed in order to

provide a relationship between the observations, the state vector and the control
input according to the following equation:

z(k) = h(x(k), u(k), v(k)). (B.26)

where v(k) denotes the observation noise. The sensor’s velocity in the earth-fixed
navigation frame is used as the basis for constructing the observation model, that is,

z(k) =
[

vn
x(k) vn

y(k) vn
z (k)

]T
. (B.27)

In the proposed dynamic calibration method, the raw IMU data is collected for
rotational movements of the sensor about several arbitrary axes where no transla-
tional movement is imposed on the sensor’s center of mass6. Moreover, the cal-
ibration starts from the stationary mode with zero initial velocity. As a result of
this specific scheme of motion (assuming the linear acceleration caused by manual
rotation is negligible), velocity in the navigation frame can be considered equal to
zero throughout the calibration process. Since in reality no measuring instrument
is used to directly measure the velocity of the sensor in the navigation frame, the
term “pseudo-velocity” is used for referring to the mentioned measurements. The
pseudo-velocity measurements are used as the filter’s observation, therefore,

∀k : z(k) =
[

0 0 0
]T

+ v(k). (B.28)

It is important to note that Equation (B.28) is just the simple case of the general
observation model described by Equation (B.27). In applications where the velocity
of the sensor is known at each time, this velocity can be used to form the observation
model in order to correct the estimated states from the prediction phase of the EKF.
This will be shown in Section B.3 where the designed calibration procedure is used
as a basis to form the structure of a GPS/INS integrated system.

6The method does not require advanced maneuvers of the sensor. The IMU is simply held by hand
and rotated around several arbitrary axes by delicate wrist movements.
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After the filter is initialised, it enters a loop as long as IMU measurements exist.
At any given time (k), the EKF first predicts the state based upon the state estimate
from the previous time (k − 1). Subsequently, pseudo-velocity observation at the
current time is used for further correction of this prediction and to provide a better
estimate of the system states. The estimated state and covariance are augmented
with the mean and covariance of the process noise. Through this recursive solution
of prediction and update, the EKF efficiently estimates the bias and scale factor errors
presented in the inertial sensors.

B.3 Experimental Results

Figure B.1: ThinIMU Micro consists of three accelerometers and three gyros in an
orthogonal arrangement. (Dimensions: 31.5×25×5 (mm)).

Figure B.2: The roll and pitch angles of a stationary sensor with and without the
dynamic calibration (left). The figure on the right is the enlarged view of the Euler

angles for the dynamically calibrated sensor.

The inertial data was collected from a prototype IMU known as ThinIMU Mi-
cro7which is an extremely small and very thin inertial measurement unit with an

7 Designed and developed by Felix Schill at the School of Engineering, Australian National Univer-
sity.
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on-board processor. ThinIMU Micro chip includes an integrated dual-axis gyro [IDG-
300 Datasheet, InvenSense, Inc.] for X and Y axes, and a yaw-rate gyro [ADXRS610
Datasheet, Analog Devices Inc. 2007] for Z axis. It also includes a three axis ac-
celerometer [MMA7340L Datasheet, Freescale Semiconductor, Inc., 2007]. Due to the
miniature footprint and low price, it is ideal for applications like the AutoMap project
with size, weight and cost constraints and it can be easily integrated into a motion
capturing suit or a navigation platform. This IMU is depicted in Figure B.1.

The static calibration outlined in Section B.2.1 was performed to obtain the deter-
ministic errors of the sensor. Removing the stochastic errors associated with the IMU
was tested for both a stationary and a rotating IMU using the dynamic calibration
algorithm described in Section B.2.2.

The left graph in Figure B.2 illustrates the change in the roll and pitch angles
for 10 data sequences before and after carrying out the dynamic calibration process.
The measurements for all the sequences were collected from a static IMU, while the
sensor was left unchanged on the table between two sequences. As can be seen
from the figure, the attitude for the uncalibrated IMU diverges with time due to the
bias terms presented in the sensor. Furthermore, there is a considerable difference
between the attitude results of the uncalibrated IMU from sequence to sequence.
This might be due to the variations of the turn-on bias which is an undesirable
characteristic of MEMS IMUs. Consequently, it is crucial to remove the bias and
scale factor errors associated with the sensor. As can be seen from the figure, the
estimated Euler angles after performing the dynamic calibration phase using the
pseudo-velocity concept are approximately fixed during the filter run. Figure B.2
(right) is the enlarged view of the calibrated roll and pitch for all the data sequences.

As the second contribution of this work, the calibration scheme described in this
paper is applied to a designed GPS/INS integrated system comprising the ThinIMU
Micro IMU and an ordinary GPS receiver. The development of the GPS/INS naviga-
tion system is enabled through the augmentation of the dynamic calibration method
described in Section B.2.2. The integration system is designed by incorporating the
developed EKF structure used to estimate the dynamic states of an IMU, with GPS
velocity measurements. The main difference between this system and the calibration
structure described in Section B.2.2 is the use of GPS outputs instead of the so-called
pseudo-velocity measurements as the EKF observed quantities according to:

∀k : z(k) =
[

VGPS
x (k) VGPS

y (k) VGPS
z (k)

]T
+ vk. (B.29)

The described GPS/INS algorithm was run on a data sequence collected by driv-
ing around a test vehicle on the trajectory shown in Figure B.3, with the average
speed of 50 km/h. The path was chosen to include interesting types of vehicle mo-
tion for our navigation application (e.g. straight line, slight turn and sharp turn).
The test vehicle is equipped with ThinIMU Micro and a Ublox 5 GPS antenna. Please
note that since the physical distance between the two sensors is negligible in our
setup, the velocity experienced by the IMU is considered to be the same as the GPS
velocity. The GPS velocity updates of Equation (B.29), which are calculated directly
from the GPS positioning information, correct and estimate the biases and scale fac-
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tor errors presented in the IMU. In addition, the structure is capable of estimating
the position, velocity and attitude (PVA) of the moving platform. The tuning process
of the EKF is a crucial step in the fusion implementation. Tuning was performed
by assigning appropriate values to the state covariance matrix (Q) and the obser-
vation covariance matrix (R)8. The effectiveness of the tuning process was verified
by monitoring the velocity innovations and the normalised innovation square (NIS)
as a measure of the filter’s consistency9. Figure B.4 compares the fusion system’s
performance for the calibrated and uncalibrated inertial sensors for a segment of the
nominated trajectory. The behaviour of the accelerometer bias is illustrated in Figure
B.5. Other estimated errors are not shown here but they follow the same type of
behaviour. Figure B.6 shows an example map output which is acquired by running
the sign detection and the GPS/INS fusion algorithms on real data captured by the
test vehicle. The estimated trajectory of the vehicle and the location of the detected
road signs are illustrated.

B.4 Conclusions and Future Work

A simple and effective calibration procedure was developed and tested successfully
on a low-cost 6-DoF MEMS IMU. Pseudo-velocity measurements were used as the
virtual observations for estimating the sensor’s stochastic errors in the lab. The pro-
posed method overcomes the most important deficiencies associated with previous
work in the area.

8The exact value of all the tuning parameters are available from the authors on request.
9Since the true state values were not available in the experiment, the innovations were used as a

statistical measure of consistency, cf. [Castellanos et al., 2007].
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The effectiveness of the calibration method was investigated through designing
a GPS/MEMS-based IMU fusion system for outdoor applications. Although not
presented in this paper, promising navigation results were attained for the GPS/INS
integration for land vehicles under deliberate GPS dropout. The performance of the
fusion system during GPS outage periods can be further improved using a nonlinear
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Figure B.6: Example map output. The resulted trajectory has been obtained using the
GPS/MEMS IMU integration described in Section B.3. Location: Canberra, Australia

(Source: Google Earth).

smoothing method [Seo et al., 2005]. Running the filtering algorithm both in forward
and backward directions and combining the results using a smoother enables the
fusion system to alleviate the sensor drifts.

Finally, the utilisation of ThinIMU Micro with the developed calibration proce-
dure has enabled the AutoMap project to accurately localise survey vehicles and geo-
locate the road signs of interests. The encouraging results merit further investigation
into other application domains of the low-cost IMU under study. The calibration
methodology discussed in this paper can potentially be used in other field applica-
tions with parsimonious consumption of resources.

Draft Copy – 12 September 2014



188Appendix B: Practical Considerations in Precise Calibration of a Low-cost MEMS IMU for Road-Mapping Applications

Draft Copy – 12 September 2014



Bibliography

2002. EPFL and IROS Cleaning Robot Contest. http://robotika.cz/competitions/
cleaning2002/en. (cited on page 59)

2008. ESA Lunar Robotics Challenge. http://www.esa.int/Our_Activities/Human_
Spaceflight/Research/Lunar_Robotics_Challenge_A_successful_cooperation_
within_ESA. (cited on page 59)

2013. DARPA | CyberGrand Challenge. http://www.darpa.mil/cybergrandchallenge.
org. (cited on page 59)

2013. RoboCup. http://www.robocup.org. (cited on page 59)

Aggarwal, P.; Syed, Z.; and El-Sheimy, N., 2008. Thermal Calibration of Low Cost
MEMS Sensors for Land Vehicle Navigation System. In Vehicular Technology Con-
ference, 2008. VTC Spring 2008. IEEE, 2859–2863. IEEE. (cited on page 175)

Aggarwal, P.; Syed, Z.; Niu, X.; and El-Sheimy, N., 2006. Cost-effective testing
and calibration of low cost MEMS sensors for integrated positioning, navigation
and mapping systems. In XXIII FIG (International Federation of Surveyors) Congress.
Munich, Germany. (cited on pages 36 and 175)

Alriksson, P. and Rantzer, A., 2006. Distributed kalman filtering using weighted
averaging. In Proceedings of the 17th International Symposium on Mathematical Theory
of Networks and Systems, 1–60. (cited on page 60)

Amirsadri, A.; Bishop, A.; Kim, J.; Trumpf, J.; and Petersson, L., 2012a. A com-
putationally efficient low-bandwidth method for very-large-scale mapping of road
signs with multiple vehicles. In Information Fusion, 2012. To be published in Proceed-
ings. Fusion’12. IEEE International Conference on. IEEE. (cited on pages 61 and 161)

Amirsadri, A.; Kim, J.; Petersson, L.; and Trumpf, J., 2012b. Practical considera-
tions in precise calibration of a low-cost MEMS IMU for road-mapping applica-
tions. In Proceedings of the 2012 American Control Conference. IEEE. (cited on page
47)

Anderson, B. D. and Moore, J. B., 2012. Optimal filtering. DoverPublications. com.
(cited on pages 19 and 93)

Andrade-Cetto, J.; Vidal-Calleja, T.; and Sanfeliu, A., 2005. Stochastic state esti-
mation for simultaneous localization and map building in mobile robotics. Cutting
Edge Robotics, (2005), 3. (cited on page 61)

189

Draft Copy – 12 September 2014

http://robotika.cz/competitions/cleaning2002/en
http://robotika.cz/competitions/cleaning2002/en
http://www.esa.int/Our_Activities/Human_Spaceflight/Research/Lunar_Robotics_Challenge_A_successful_cooperation_within_ESA
http://www.esa.int/Our_Activities/Human_Spaceflight/Research/Lunar_Robotics_Challenge_A_successful_cooperation_within_ESA
http://www.esa.int/Our_Activities/Human_Spaceflight/Research/Lunar_Robotics_Challenge_A_successful_cooperation_within_ESA
http://www. darpa.mil/cybergrandchallenge. org
http://www. darpa.mil/cybergrandchallenge. org
http://www. robocup. org


190 BIBLIOGRAPHY

Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; and Nebot, E., 2006. Consistency of
the ekf-slam algorithm. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, 3562–3568. IEEE. (cited on pages 98 and 99)

Bar-Shalom, Y.; Li, X.; Kirubarajan, T.; and Wiley, J., 2001. Estimation with applica-
tions to tracking and navigation. Wiley Online Library. (cited on page 111)

Bar-Shalom, Y.; Li, X. R.; and Kirubarajan, T., 2004. Estimation with applications to
tracking and navigation: theory algorithms and software. John Wiley & Sons. (cited on
page 19)

Bertuccelli, L. F. and How, J. P., 2008. Estimation of non-stationary markov chain
transition models. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on,
55–60. IEEE. (cited on page 98)

Blackman, S. and Popoli, R., 1999. Design and analysis of modern tracking systems,
vol. 685. Artech House Noorwood, MA. (cited on pages 31 and 47)

Braun, J.; Glina, Y.; Hess, A.; Dasey, T.; and Wack, E., 2009. Information fusion for
cb defense applications: Challenge and opportunity. In Technologies for Homeland
Security, 2009. HST’09. IEEE Conference on, 493–502. IEEE. (cited on page 2)

Brooks, R., 1986. A robust layered control system for a mobile robot. Robotics and
Automation, IEEE Journal of, 2, 1 (1986), 14–23. (cited on page 28)

Brown, R. G.; Hwang, P. Y.; et al., 1992. Introduction to random signals and applied
Kalman filtering, vol. 1. John Wiley & Sons New York. (cited on page 13)

Bryson, M. and Sukkarieh, S., 2005. An information-theoretic approach to au-
tonomous navigation and guidance of an uninhabited aerial vehicle in unknown
environments. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on, 3770–3775. IEEE. (cited on pages 2 and 28)

Bryson, M. and Sukkarieh, S., 2007. Co-operative localisation and mapping for
multiple uavs in unknown environments. In Aerospace Conference, 2007 IEEE, 1–12.
IEEE. (cited on pages xxiii, 3, 39, 60, 111, and 115)

Burgard, W.; Moors, M.; Fox, D.; Simmons, R.; and Thrun, S., 2000. Collaborative
multi-robot exploration. In Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, vol. 1, 476–481. IEEE. (cited on pages 2, 25, and 26)

Butcher, J. and Corporation, E., 2008. Numerical methods for ordinary differential
equations. Wiley Online Library. ISBN 0470723351. (cited on page 181)

Cao, Y.; Fukunaga, A.; and Kahng, A., 1997. Cooperative mobile robotics: An-
tecedents and directions. Autonomous robots, 4, 1 (1997), 7–27. (cited on pages 2,
25, and 29)

Draft Copy – 12 September 2014



BIBLIOGRAPHY 191

Cassandra, A.; Kaelbling, L.; and Kurien, J., 1996. Acting under uncertainty:
Discrete bayesian models for mobile-robot navigation. In Intelligent Robots and
Systems’ 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on,
vol. 2, 963–972. IEEE. (cited on page 26)

Castellanos, J.; Martinez-Cantin, R.; Tardós, J.; and Neira, J., 2007. Robocen-
tric map joining: Improving the consistency of ekf-slam. Robotics and Autonomous
Systems, 55, 1 (2007), 21–29. (cited on page 185)

Castellanos, J.; Montiel, J.; Neira, J.; and Tardós, J., 2000. Sensor influence
in the performance of simultaneous mobile robot localization and map building.
Experimental Robotics VI, (2000), 287–296. (cited on pages 2 and 21)

Chen, L.; Arambel, P.; and Mehra, R., 2002. Fusion under unknown correlation-
covariance intersection as a special case. In Information Fusion, 2002. Proceedings of
the Fifth International Conference on, vol. 2, 905–912. IEEE. (cited on page 47)

Chong, C.; Mori, S.; and Chang, K., 1990. Distributed multitarget multisensor
tracking. Multitarget-multisensor tracking: Advanced applications, 1 (1990), 247–295.
(cited on page 33)

Dai, X. and Du, J., 2009. Hierarchical simultaneous localization and mapping based
on discrete event systems. In Measuring Technology and Mechatronics Automation,
2009. ICMTMA’09. International Conference on, vol. 2, 234–237. IEEE. (cited on page
31)

Dissanayake, G.; Durrant-Whyte, H.; and Bailey, T., 2000a. A computationally
efficient solution to the simultaneous localisation and map building (SLAM) prob-
lem. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Con-
ference on, vol. 2, 1009–1014. IEEE. (cited on page 33)

Dissanayake, M.; Newman, P.; Clark, S.; Durrant-Whyte, H.; and Csorba, M.,
2001. A solution to the simultaneous localization and map building (SLAM) prob-
lem. Robotics and Automation, IEEE Transactions on, 17, 3 (2001), 229–241. (cited on
pages 21, 32, 47, and 98)

Dissanayake, M.; Newman, P.; Durrant-Whyte, H.; Clark, S.; and Csorba, M.,
2000b. An experimental and theoretical investigation into simultaneous localisa-
tion and map building. Experimental Robotics VI, (2000), 265–274. (cited on pages
2 and 21)

Doucet, A.; De Freitas, N.; and Gordon, N., 2001. Sequential Monte Carlo methods
in practice. Springer Verlag. (cited on page 28)

Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localisation and mapping
(SLAM): Part i the essential algorithms. Robotics and Automation Magazine, 13, 2
(2006), 99–110. (cited on pages 2 and 21)

Draft Copy – 12 September 2014



192 BIBLIOGRAPHY

Durrant-Whyte, H. and Henderson, T., 2006. Multisensor data fusion. Australian
Center for Field Robotics, (2006). (cited on pages 26, 29, 30, and 31)

Durrant-Whyte, H. and Henderson, T. C., 2008. Multisensor d. (2008). (cited on
page 19)

Durrant-Whyte, H.; Rye, D.; and Nebot, E., 1996. Localization of autonomous
guided vehicles. In Robotics Research, 613–625. Springer. (cited on page 59)

Eustice, R.; Walter, M.; and Leonard, J., 2005. Sparse extended information filters:
Insights into sparsification. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, 3281–3288. IEEE. (cited on page 28)

Farrell, J. and Barth, M., 1999. The global positioning system and inertial navigation.
McGraw-Hill Professional. ISBN 007022045X. (cited on page 174)

Feder, H.; Leonard, J.; and Smith, C., 1999. Adaptive mobile robot navigation and
mapping. The International Journal of Robotics Research, 18, 7 (1999), 650. (cited on
pages 2, 21, and 61)

Fenwick, J., 2001. Collaborative concurrent mapping and localization. Ph.D. thesis, MIT
Dept. of Electrical Engineering and Computer Science. (cited on page 27)

Fenwick, J.; Newman, P.; and Leonard, J., 2002. Cooperative concurrent mapping
and localization. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Inter-
national Conference on, vol. 2, 1810–1817. IEEE. (cited on pages 3, 27, and 29)

Ferraris, F.; Grimaldi, U.; and Parvis, M., 1995. Procedure for effortless in-field
calibration of three-axis rate gyros and accelerometers. Sensors and Materials, 7
(1995), 311–311. (cited on page 177)

Fox, D.; Burgard, W.; Kruppa, H.; and Thrun, S., 2000. A probabilistic approach
to collaborative multi-robot localization. Autonomous Robots, 8, 3 (2000), 325–344.
(cited on pages 2, 25, and 26)

Foxlin, E. and Naimark, L., 2003. Miniaturization, calibration & accuracy evaluation
of a hybrid self-tracker. In Mixed and Augmented Reality, 2003. Proceedings. The
Second IEEE and ACM International Symposium on, 151–160. IEEE. (cited on pages
174 and 175)

Godha, S., 2006. Performance evaluation of low cost MEMS-based IMU integrated
with GPS for land vehicle navigation application. Master’s thesis, Department of
Geomatics Engineering, University of Calgary, Calgary, Canada, (2006). (cited on pages
36 and 174)

Grewal, M.; Henderson, V.; and Miyasako, R., 2002. Application of Kalman fil-
tering to the calibration and alignment of inertial navigation systems. Automatic
Control, IEEE Transactions on, 36, 1 (2002), 3–13. (cited on pages 174 and 175)

Draft Copy – 12 September 2014



BIBLIOGRAPHY 193

Grisetti, G.; Stachniss, C.; and Burgard, W., 2007. Improved techniques for grid
mapping with rao-blackwellized particle filters. Robotics, IEEE Transactions on, 23,
1 (2007), 34–46. (cited on page 28)

Guivant, J. and Nebot, E., 2002. Improving computational and memory require-
ments of simultaneous localization and map building algorithms. In Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol. 3, 2731–
2736. IEEE. (cited on page 33)

Guivant, J. and Nebot, E., 2003. Solving computational and memory requirements
of feature-based simultaneous localization and mapping algorithms. Robotics and
Automation, IEEE Transactions on, 19, 4 (2003), 749–755. (cited on pages 33 and 98)

Guivant, J.; Nebot, E.; and Baiker, S., 2000. Autonomous navigation and map
building using laser range sensors in outdoor applications. Journal of robotic systems,
17, 10 (2000), 565–583. (cited on page 59)

Guivant, J. E. and Nebot, E. M., 2001. Optimization of the simultaneous localization
and map-building algorithm for real-time implementation. Robotics and Automation,
IEEE Transactions on, 17, 3 (2001), 242–257. (cited on page 98)

Gutmann, J. and Konolige, K., 1999. Incremental mapping of large cyclic envi-
ronments. In Computational Intelligence in Robotics and Automation, 1999. CIRA’99.
Proceedings. 1999 IEEE International Symposium on, 318–325. IEEE. (cited on pages
2, 21, and 27)

Hadfield, M. and Leiser, K., 1988. Ring laser gyros come down to earth: field
test results on the rlg modular azimuth position system (maps). In Position Loca-
tion and Navigation Symposium, 1988. Record. Navigation into the 21st Century. IEEE
PLANS’88., IEEE, 61–72. IEEE. (cited on page 175)

Hall, J. and Williams II, R., 2000. Case study: Inertial measurement unit calibration
platform. Journal of Robotic Systems, 17, 11 (2000), 623–632. (cited on page 174)

Hashemipour, H.; Roy, S.; and Laub, A., 1988. Decentralized structures for parallel
kalman filtering. Automatic Control, IEEE Transactions on, 33, 1 (1988), 88–94. (cited
on page 31)

J. Guivant, J. N. and Nebot., E., 2007. VictoriaParkDataset. www.acfr.usyd.edu.au/
homepages/academic/enebot/dataset.htm. (cited on page 60)

Jaulmes, R.; Moliné, E.; and Obriet-Leclef, J., 2009. Towards a quantitative evalu-
ation of simultaneous localization and mapping methods. In Control Architecture of
Robots national conference. (cited on pages 8 and 58)

Julier, S., 2003. The stability of covariance inflation methods for slam. In Intelli-
gent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, vol. 3, 2749–2754. IEEE. (cited on page 98)

Draft Copy – 12 September 2014

www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.htm
www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.htm


194 BIBLIOGRAPHY

Julier, S. and Uhlmann, J., 1997. A non-divergent estimation algorithm in the
presence of unknown correlations. In American Control Conference, 1997. Proceedings
of the 1997, vol. 4, 2369–2373. IEEE. (cited on pages 47, 89, and 165)

Julier, S. and Uhlmann, J., 2001a. General decentralized data fusion with covari-
ance intersection (ci). (2001). (cited on page 99)

Julier, S. and Uhlmann, J., 2007. Using covariance intersection for SLAM. Robotics
and Autonomous Systems, 55 (2007). (cited on page 60)

Julier, S. J. and Uhlmann, J. K., 2001b. Building a million beacon map. In Intelligent
Systems and Advanced Manufacturing, 10–21. International Society for Optics and
Photonics. (cited on pages 27 and 34)

Kalandros, M. and Pao, L. Y., 1998. Controlling target estimate covariance in cen-
tralized multisensor systems. In American Control Conference, 1998. Proceedings of
the 1998, vol. 5, 2749–2753. IEEE. (cited on page 102)

Kim, A. and Golnaraghi, M., 2004. Initial calibration of an inertial measurement
unit using an optical position tracking system. In Position Location and Navigation
Symposium, 2004. PLANS 2004, 96–101. IEEE. (cited on page 174)

Kim, J., 2004. Autonomous navigation for airborne applications. Ph.D. thesis, Dept. of
Aerospace, Mechanical and Mechatronic Engineering, Graduate School of Engi-
neering, University of Sydney. (cited on pages 2, 25, 28, 60, 178, and 181)

Kim, J. and Sukkarieh, S., 2003. Airborne simultaneous localisation and map build-
ing. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Con-
ference on, vol. 1, 406–411. IEEE. (cited on pages 2, 21, and 27)

Kim, J.; Sukkarieh, S.; and Wishart, S., 2006. Real-time navigation, guidance, and
control of a UAV using low-cost sensors. In Field and Service Robotics, 299–309.
Springer. (cited on page 47)

Kleiner, A.; Prediger, J.; and Nebel, B., 2006. Rfid technology-based exploration
and slam for search and rescue. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, 4054–4059. IEEE. (cited on page 59)

Kuipers, B. and Byun, Y., 1991. A robot exploration and mapping strategy based on
a semantic hierarchy of spatial representations. Robotics and autonomous systems, 8,
1-2 (1991), 47–63. (cited on page 28)

Kümmerle, R.; Steder, B.; Dornhege, C.; Ruhnke, M.; Grisetti, G.; Stachniss,
C.; and Kleiner, A., 2009. On measuring the accuracy of slam algorithms. Au-
tonomous Robots, 27, 4 (2009), 387–407. (cited on pages 8, 58, and 59)

Lázaro, M. and Castellanos, J., 2010. Localization of probabilistic robot formations
in SLAM. In Robotics and Automation (ICRA), 2010 IEEE International Conference on,
3179–3184. IEEE. (cited on pages 2 and 21)

Draft Copy – 12 September 2014



BIBLIOGRAPHY 195

Leonard, J. and Durrant-Whyte, H., 1992. Directed sonar sensing for mobile robot
navigation. Springer. (cited on page 21)

Leonard, J. J. and Durrant-Whyte, H. F., 1991. Mobile robot localization by track-
ing geometric beacons. Robotics and Automation, IEEE Transactions on, 7, 3 (1991),
376–382. (cited on page 27)

Lerro, D. and Bar-Shalom, Y., 1993. Tracking with debiased consistent converted
measurements versus ekf. Aerospace and Electronic Systems, IEEE Transactions on, 29,
3 (1993), 1015–1022. (cited on pages 104 and 105)

Levitt, T. and Lawton, D., 1990. Qualitative navigation for mobile robots. Artificial
Intelligence, 44, 3 (1990), 305–360. (cited on page 28)

Liggins, M.; Chong, C.; Kadar, I.; Alford, M.; Vannicola, V.; Thomopoulos, S.;
et al., 1997. Distributed fusion architectures and algorithms for target tracking.
Proceedings of the IEEE, 85, 1 (1997), 95–107. (cited on pages 2 and 28)

Liu, Y. and Thrun, S., 2003. Results for outdoor-SLAM using sparse extended infor-
mation filters. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE Interna-
tional Conference on, vol. 1, 1227–1233. IEEE. (cited on page 28)

Lötters, J.; Schipper, J.; Veltink, P.; Olthuis, W.; and Bergveld, P., 1998. Procedure
for in-use calibration of triaxial accelerometers in medical applications. Sensors and
Actuators A: Physical, 68, 1-3 (1998), 221–228. (cited on page 177)

Lu, F. and Milios, E., 1997. Robot pose estimation in unknown environments by
matching 2d range scans. Journal of Intelligent and Robotic Systems, 18, 3 (1997),
249–275. (cited on page 27)

Makarenko, A. and Durrant-Whyte, H., 2004. Decentralized data fusion and con-
trol in active sensor networks. In Proceedings of the Seventh International Conference
on Information Fusion. Citeseer. (cited on page 26)

Maybeck, P., 1979. Stochastic models, estimation and control, vol. 141. Academic press.
(cited on pages 16 and 19)

Menegatti, E.; Zanella, A.; Zilli, S.; Zorzi, F.; and Pagello, E., 2009. Range-
only SLAM with a mobile robot and a wireless sensor networks. In Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on, 8–14. IEEE. (cited on
pages 2 and 21)

Miller, R., 1971. Asymptotic behavior of the kalman filter with exponential aging.
AIAA Journal, 9, 3 (1971), 537–539. (cited on page 98)

Million, E., 2011. The hadamard product. http://buzzard.ups.edu/courses/
2007spring/projects/million-paper.pdf. (cited on page 180)

Draft Copy – 12 September 2014

http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf
http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf


196 BIBLIOGRAPHY

Mornhinweg, D.; Shapiro, D. B.; and Valente, K., 1993. The principal axis theorem
over arbitrary fields. American Mathematical Monthly, (1993), 749–754. (cited on
page 78)

Mourikis, A. and Roumeliotis, S., 2004. Performance bounds for cooperative si-
multaneous localization and mapping (C-SLAM). Dept. of Computer Science and
Engineering, University of Minnesota, Tech. Rep, (2004). (cited on page 29)

Mourikis, A. I. and Roumeliotis, S. I., 2006. Analytical characterization of the
accuracy of slam without absolute orientation measurements. In Robotics: Science
and Systems. (cited on pages 8 and 58)

Nebot, E. and Durrant-Whyte, H., 1999. Initial calibration and alignment of low-
cost inertial navigation units for land vehicle applications. Journal of Robotic Sys-
tems, 16, 2 (1999), 81–92. (cited on page 174)

Nerurkar, E.; Roumeliotis, S.; and Martinelli, A., 2009. Distributed maximum
a posteriori estimation for multi-robot cooperative localization. In Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on, 1402–1409. IEEE. (cited
on pages 2 and 28)

Nettleton, E., 2003. Decentralised architectures for tracking and navigation with
multiple flight vehicles. (2003). (cited on pages 2, 3, 28, 39, and 45)

Nettleton, E.; Thrun, S.; Durrant-Whyte, H.; and Sukkarieh, S., 2006. Decen-
tralised SLAM with low-bandwidth communication for teams of vehicles. In Field
and Service Robotics, 179–188. Springer. (cited on pages 3, 20, 28, 30, 39, 46, and 60)

Niehsen, W., 2002. Information fusion based on fast covariance intersection filtering.
In Information Fusion, 2002. Proceedings of the Fifth International Conference on, vol. 2,
901–904. IEEE. (cited on page 91)

Ong, L.; Ridley, M.; Kim, J.; Nettleton, E.; and Sukkarieh, S. Six dof decentralised
slam. In Australasian Conf. on Robotics and Automation, 10–16. Citeseer. (cited on
pages 20 and 28)

Ong, L.; Ridley, M.; Kim, J.; Nettleton, E.; and Sukkarieh, S., 2003. Six dof
decentralised SLAM. In Proceedings of the Australasian Conference on Robotics and
Automation, 10–16. (cited on pages 2, 3, 28, and 30)

Overett, G.; Petersson, L.; Andersson, L.; and Pettersson, N., 2009. Boosting
a heterogeneous pool of fast hog features for pedestrian and sign detection. In
Intelligent Vehicles Symposium, 2009 IEEE, 584–590. IEEE. (cited on pages 4 and 34)

Papoulis, A. and Probability, R., 1991. Stochastic processes, vol. 3. McGraw-Hill,
New York. (cited on page 47)

Draft Copy – 12 September 2014



BIBLIOGRAPHY 197

Park, M. and Gao, Y., 2002. Error analysis of low-cost MEMS-based accelerometers
for land vehicle navigation. In ION GPS 2002: 15 th International Technical Meeting
of the Satellite Division of The Institute of Navigation; Portland, OR. Institute of Navi-
gation, 3975 University Drive, Suite 390, Fairfax, VA, 22030, USA,. (cited on pages
174 and 175)

Petersson, L., 2010. NICTA | AutoMap. http://www.nicta.com.au/research/
projects/AutoMap. (cited on page 174)

Petersson, L., 2014. NICTA | AutoMap. http://www.nicta.com.au/research/
projects/AutoMap. (cited on page 34)

Piniés, P.; Tardós, J. D.; and Neira, J., 2006. Localization of avalanche victims
using robocentric slam. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, 3074–3079. IEEE. (cited on page 59)

Rogers, R.; Wit, J.; Crane III, C.; Armstrong, D.; et al., 2002. Integrated IN-
U/DGPS for autonomous vehicle navigation. In Position Location and Navigation
Symposium, 1996., IEEE 1996, 471–476. IEEE. (cited on page 175)

Rosencrantz, M.; Gordon, G.; and Thrun, S., 2003. Decentralized sensor fusion
with distributed particle filters. In Proc. of UAI. Citeseer. (cited on page 26)

Salychev, O. and University, B. M. S. T., 1998. Inertial systems in navigation and
geophysics. Bauman MSTU Press. ISBN 5703813468. (cited on page 176)

Schneider-Fontan, M. and Mataric, M., 1998. Territorial multi-robot task division.
Robotics and Automation, IEEE Transactions on, 14, 5 (1998), 815–822. (cited on page
26)

Seo, J.; Lee, J.; Park, C.; Lee, H.; and Kim, S., 2005. Application of nonlinear smooth-
ing to integrated GPS/INS navigation system. Journal of Global Positioning Systems,
4, 1-2 (2005), 88–94. (cited on page 187)

Sharon, L.; Ling, L.; et al., 2003. Six dof decentralised SLAM. (2003). (cited on
pages 3 and 30)

Shin, E. and El-Sheimy, N., 2002. A new calibration method for strapdown inertial
navigation systems. Z. Vermess, 127 (2002), 1–10. (cited on page 174)

Sim, R. and Roy, N., 2005. Global a-optimal robot exploration in slam. In Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on,
661–666. IEEE. (cited on page 60)

Simmons, R.; Apfelbaum, D.; Burgard, W.; Fox, D.; Moors, M.; Thrun, S.; and

Younes, H., 2000. Coordination for multi-robot exploration and mapping. In
Proceedings of the National Conference on Artificial Intelligence, 852–858. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999. (cited on page 26)

Draft Copy – 12 September 2014

http://www.nicta.com.au/research/projects/AutoMap
http://www.nicta.com.au/research/projects/AutoMap
http://www.nicta.com.au/research/projects/AutoMap
http://www.nicta.com.au/research/projects/AutoMap


198 BIBLIOGRAPHY

Singh, K. and Fujimura, K., 1993. Map making by cooperating mobile robots. In
Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on,
254–259. IEEE. (cited on page 26)

Skog, I. and Händel, P. Calibration of a mems inertial measurement unit. In XVII
IMEKO World Congress on Metrology for a Sustainable Development, September, 17–22.
Citeseer. (cited on page 176)

Smith, R. and Cheeseman, P., 1986. On the representation and estimation of spatial
uncertainty. The international journal of Robotics Research, 5, 4 (1986), 56. (cited on
pages 2 and 21)

Smith, R.; Self, M.; and Cheeseman, P., 1990. Estimating uncertain spatial rela-
tionships in robotics. Autonomous robot vehicles, 1 (1990), 167–193. (cited on page
21)

Stipes, J.; Hawthorne, R.; Scheidt, D.; and Pacifico, D., 2006. Cooperative localiza-
tion and mapping. In Networking, Sensing and Control, 2006. ICNSC’06. Proceedings
of the 2006 IEEE International Conference on, 596–601. IEEE. (cited on pages 2 and 28)

Sukkarieh, S.; Nebot, E.; and Durrant-Whyte, H., 1999. A high integrity imu/gps
navigation loop for autonomous land vehicle applications. Robotics and Automation,
IEEE Transactions on, 15, 3 (1999), 572–578. (cited on pages 175 and 176)

Sukkarieh, S.; Nebot, E.; and Durrant-Whyte, H., 2002. Achieving integrity in
an INS/GPS navigation loop for autonomous land vehicle applications. In Robotics
and Automation, 1998. Proceedings. 1998 IEEE International Conference on, vol. 4, 3437–
3442. IEEE. (cited on page 178)

Syed, Z.; Aggarwal, P.; Goodall, C.; Niu, X.; and El-Sheimy, N., 2007. A new multi-
position calibration method for MEMS inertial navigation systems. Measurement
Science and Technology, 18 (2007), 1897. (cited on pages 174, 175, and 176)

Tay, T.-T.; Mareels, I.; and Moore, J. B., 1998. High performance control. Springer.
(cited on page 17)

Thrun, S., 2001. A probabilistic on-line mapping algorithm for teams of mobile
robots. The International Journal of Robotics Research, 20, 5 (2001), 335. (cited on
pages 2, 26, and 28)

Thrun, S., 2002. Robotic mapping: A survey. Exploring artificial intelligence in the new
millennium, (2002), 1–35. (cited on page 21)

Thrun, S.; Burgard, W.; and Fox, D., 1998. A probabilistic approach to concurrent
mapping and localization for mobile robots. Autonomous Robots, 5, 3 (1998), 253–
271. (cited on page 27)

Draft Copy – 12 September 2014



BIBLIOGRAPHY 199

Thrun, S.; Koller, D.; Ghahmarani, Z.; and Durrant-Whyte, H., 2002. SLAM up-
dates require constant time. In Workshop on the Algorithmic Foundations of Robotics.
(cited on pages 20 and 28)

Thrun, S.; Koller, D.; Ghahramani, Z.; Durrant-Whyte, H.; and Ng, A., 2003.
Simultaneous mapping and localization with sparse extended information filters:
Theory and initial results. Algorithmic Foundations of Robotics V, (2003), 363–380.
(cited on page 20)

Thrun, S. and Liu, Y., 2005. Multi-robot SLAM with sparse extended information
filers. Robotics Research, (2005), 254–266. (cited on pages 3 and 29)

Thrun, S.; Liu, Y.; Koller, D.; Ng, A.; Ghahramani, Z.; and Durrant-Whyte, H.,
2004. Simultaneous localization and mapping with sparse extended information
filters. The International Journal of Robotics Research, 23, 7-8 (2004), 693. (cited on
page 28)

Thrun, S. and Montemerlo, M., 2006. The graph slam algorithm with applications
to large-scale mapping of urban structures. The International Journal of Robotics
Research, 25, 5-6 (2006), 403–429. (cited on page 27)

Uhlmann, J.; Julier, S.; Kamgar-Parsi, B.; Lanzagorta, M.; and Shyu, H., 1999.
Nasa mars rover: A testbed for evaluating applications of covariance intersection.
In Proceedings of SPIE, vol. 3693, 140. (cited on page 47)

Vidal-Calleja, T.; Andrade-Cetto, J.; and Sanfeliu, A., 2004. Conditions for
suboptimal filter stability in slam. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol. 1, 27–32. IEEE.
(cited on page 61)

Wackerly, D. D.; Mendenhall, W.; and Scheaffer, R. L., 2008. Mathematical statis-
tics with applications. Cengage Learning. (cited on page 103)

Walter, M. and Leonard, J., 2004. An experimental investigation of cooperative
SLAM. In Proceedings of the Fifth IFAC/EURON Symposium on Intelligent Autonomous
Vehicles,(Lisbon, Portugal). (cited on page 29)

Wang, Y. and Li, X., 2010. Distributed estimation fusion under unknown cross-
correlation: An analytic center approach. In Information Fusion (FUSION), 2010
13th Conference on, 1–8. IEEE. (cited on page 47)

Welch, G. and Bishop, G., 1995. An introduction to the kalman filter. (cited on page
14)

Weston, D. and Titterton, D., 1997. Strapdown inertial navigation technology. Laven-
ham Press Ltd, Lavenham. (cited on pages 174 and 176)

Williams, S., 2001. Efficient solutions to autonomous mapping and navigation problems.
Ph.D. thesis, Citeseer. (cited on pages 2, 25, 28, and 33)

Draft Copy – 12 September 2014



200 BIBLIOGRAPHY

Williams, S.; Dissanayake, G.; and Durrant-Whyte, H., 2002. Towards multi-
vehicle simultaneous localisation and mapping. In Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, vol. 3, 2743–2748. IEEE.
(cited on pages 26 and 27)

Williams, S. B.; Newman, P.; Dissanayake, G.; and Durrant-Whyte, H., 2000.
Autonomous underwater simultaneous localisation and map building. In Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 2,
1793–1798. IEEE. (cited on page 27)

Winkler, S.; Buschmann, M.; Kordes, T.; Schulz, H.; and Vorsmann, P. MEMS-
based IMU development, calibration and testing for autonomous MAV navigation.
In Proceedings of the ION 59th Annual Meeting and the CIGTF 22nd Guidance Test
Symposium (Albuquerque, NM, 23-25 Juni, 2003), 128–134. (cited on page 175)

Won, S. and Golnaraghi, F., 2010. A triaxial accelerometer calibration method using
a mathematical model. Instrumentation and Measurement, IEEE Transactions on, 59, 8
(2010), 2144–2153. (cited on page 177)

Wulf, O.; Nüchter, A.; Hertzberg, J.; and Wagner, B., 2008. Benchmarking ur-
ban six-degree-of-freedom simultaneous localization and mapping. Journal of Field
Robotics, 25, 3 (2008), 148–163. (cited on page 59)

Xiong, N. and Svensson, P., 2002. Multi-sensor management for information fusion:
issues and approaches. Information fusion, 3, 2 (2002), 163–186. (cited on page 39)

Yan, L.; Liu, B.; and Zhou, D., 2007. Asynchronous multirate multisensor informa-
tion fusion algorithm. Aerospace and Electronic Systems, IEEE Transactions on, 43, 3
(2007), 1135–1146. (cited on page 2)

Draft Copy – 12 September 2014


	Acknowledgments
	Abstract
	Contents
	Introduction
	Multi-vehicle Simultaneous Localisation and Mapping
	Thesis Motivation
	Quality Assessment in Mapping Applications
	Thesis Contribution
	Thesis Structure

	Background and Problem Formulation
	Introduction
	Statistical Filtering Techniques
	Kalman Filter (KF)
	Extended Kalman Filter (EKF)
	Information Filter (IF)
	Extended Information Filter (EIF)

	Simultaneous Localisation and Mapping (SLAM)
	State and Covariance Representation in SLAM
	General Vehicle and Landmark State Transition Models for SLAM
	General Observation Model for SLAM
	SLAM Prediction Step
	SLAM Update Step
	State and Covariance Augmentation in SLAM

	Multi-vehicle Simultaneous Localisation and Mapping
	Existing Work

	Multi-vehicle Data Fusion Architectures
	Fully Centralised Architecture
	Decentralised Architecture
	Hierarchical Architecture

	Major Challenges in Building Scalable Maps Using SLAM
	Project Description
	Resource Constraints in the AutoMap Project

	The Proposed Distributed Data Fusion Model
	Summary

	Efficient Map Building in Very-Large-Scale Environments
	Introduction
	Distributed System Overview
	The Local SLAM Filter (LSF)
	Map Information
	Selective Communication

	Channel Filter (CHF)
	Covariance Intersection (CI) Algorithm

	Central Fusion Center (CFC)

	Efficient Sub-map Communication and Fusion
	Communicating the CFC Information to the Vehicle
	Updating the Channel Filter Using the Map Information from the CFC
	Updating the Local SLAM Filter
	Selecting the Local Vehicle Sub-map to Communicate to the CFC 
	Pruning the Local SLAM Filter 

	Updating the Channel Filter Using the Selected Sub-map from the LSF
	Updating the Global Map Using the Communicated Information from the Local Vehicles 

	Summary

	Quality Assessment in Map Making Applications
	Introduction
	Motivation and Background
	Taxonomy of Different Map Quality Metrics
	Practical Considerations in Measuring the Map Quality in Road Applications
	Requirements of Different User Groups
	Directional Priorities
	Type Priorities
	Information Accessibility

	Directional Map Error (DIMER) Metric
	Ground-truth-based DIMER Metric
	Covariance-based DIMER Metric

	Summary

	The DIMER Metric in Mapping Applications
	Introduction
	Criteria-based Covariance Intersection (CI) Analysis
	DIMER-based Fast Covariance Intersection

	Criteria-based Estimation and Mapping Using EKF-SLAM
	Error Minimisation in the Standard Kalman Filter
	Kalman Gain Derivation for Minimising the DIMER Metric

	Criteria-based Covariance Trajectory Perturbation (CTP)
	Inspiration and Proximity to the Literature
	DIMER-based Covariance Trajectory Perturbation Algorithm 

	Discussion on the Trade-off between Bias, Variance and Mean Squared Error
	A Debiasing Compensation Strategy Combined with Converted Measurement Kalman Filtering (D-CMKF)

	Summary

	Simulations and Results
	Introduction
	Large-scale Distributed Mapping Simulations and Results
	Criteria-based Estimation Simulations and Results
	DIMER-based Covariance Intersection (CI) Results
	Criteria-based EKF-SLAM Simulation Results
	Preliminary Map Quality Analysis
	Map quality Analysis Based on Measurement Noise

	Criteria-based Covariance Trajectory Perturbation Simulation Results
	Further Analysis on Covariance Trajectory Perturbation Algorithm

	Criteria-based Multi-vehicle SLAM Simulations and Results
	DIMER-based Covariance Trajectory Perturbation for Multi-vehicle SLAM
	Results on Converted Measurement Kalman Filtering with De-biasing Compensation (D-CMKF)

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Appendix A : Applicability and Analysis of Covariance Intersection (CI)
	introduction
	Preliminaries
	Three Classical Fusion Algorithms
	Minimum Trace Fusion of Two Normally Distributed Estimators with a Known Degree of Correlation
	Fusion of Two Normally Distributed Estimators with an Unknown Degree of Correlation: Covariance Intersection
	Fusion of Two Normally Distributed Estimators with an Unknown Degree of Correlation: Assuming Zero Correlation

	Condition on consistent estimation under unknown correlation
	Consistency Analysis in One-Dimension
	Consistency Analysis in Higher Dimensions


	Simulations and Results (Consistency Analysis)
	Conclusions

	Appendix B: Practical Considerations in Precise Calibration of a Low-cost MEMS IMU for Road-Mapping Applications 
	Introduction
	Calibration Scheme
	Static Calibration
	Dynamic Calibration

	Experimental Results
	Conclusions and Future Work




