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Abstract 

 

Localisation is one of the fundamental components of navigation for a mobile robot or 

autonomous system, with accurate localisation being a key requirement for the successful 

completion of higher-level tasks such as path planning and object avoidance. This report 

considers the case of bearing only localisation, which often needs to utilise collaborative 

localisation techniques. Data fusion algorithms are examined in their application to this 

collaborative localisation problem in a bottom-up problem architecture. Their performance is 

analysed and along with an assessment of the measures of performance applied in testing. This 

report makes its main contribution in the comparison of the Ellipsoidal Intersection (EI) method 

with methods such as Covariance Intersection (CI) and the Convex Combination Ellipsoid 

(CCE). It shows that EI demonstrates promise in this application but has some properties that 

need further exploration in future works.  
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Chapter 1 Introduction

 

Localisation is one of the fundamental components of navigation for a mobile robot or 

autonomous system, referring to the ability of a robot to determine its position, and sometimes 

orientation, within an environment [1]. Accurate localisation is essential for the successful 

execution of more advanced processes such as path-planning and target tracking [2]. 

Localisation can be conducted using a variety of methods to solve different problem 

formulations, making use of various proprioceptive and exteroceptive sensors [3]. 

 

In scenarios such as search and rescue operations, indoor navigation, and military applications, 

where the environment may be GPS denied or the use of GPS and other various active 

exteroceptive sensors may not be applicable, it is essential to be able to perform fast and 

accurate localisation through the means of different sensor technologies [2]. One such category 

of sensor that can be applied in these situations are bearing measurement sensors and therefore, 

the focus of this report will be on the problem of bearing only localisation [4].  

 

However, due to the nature of bearing measurements being unable to provide information about 

the distance from the autonomous robot to its reference point, it is often infeasible for a single 

agent to be able to make precise estimates about its location.  

 

Due to this limitation a technique known as collaborative localisation is often employed 

[2][5][6]. Collaborative localisation is the practice of sharing information between agents 

within a team of mobile robots to improve location accuracy [6] beyond what could have been 

possible from each agent’s individual interactions with the environment alone [7] 

 

For a team of mobile robots, it has been shown that the use of collaborative localisation 

significantly improves the performance of each of the individual agents, and the proper 

combination of complimentary information from multiple agents leads to a localisation estimate 

with increased accuracy and reduced uncertainty [2][6].  

 

In the literature there are a variety of algorithm approaches that have been employed to try and 

solve the collaborative localisation problem, and these approaches can be differentiated into 

two categories, these being top-down approaches and bottom-up approaches. These categories 
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are defined by their initial network architectures and topologies, requirements placed on 

communications, and resources needed.  

 

The top-down approaches begin with a centralised fusion architecture [5], formulating a joint 

estimation problem over the entire network. In the centralised fusion architecture, raw 

measurements made by agents are communicated directly to a central node that is solely 

responsible for computing and storing the estimates [8]. The storage and computation 

responsibilities are then distributed to agents across the network.  

 

Top-down approaches, while widely used and extensively studied, require very precise control 

over communications, tracking of correlations, and a constant ability for nodes to communicate 

with the central node. The strict requirements placed on the network communications, and the 

single point of failure in the form of the central node, makes the top-down approach an 

unreliable option in many real-world applications [2][7]  

 

In contrast, the bottom-up approaches begin with a decentralised fusion architecture, 

formulating the estimation problem in a way that is largely independent of the underlying 

network topology [7], where each agent independently makes measurements, and computes and 

stores estimates of the location of the reference. Communications are then introduced between 

the nodes and they are allowed to communicate their beliefs in order to improve upon their 

individual estimates. 

 

Bottom-up approaches can often allow for a more opportunistic approach to information sharing 

[7], giving the advantage of lower infrastructure and communication costs [8]. The lack of a 

central processing node that must keep track of communications also makes the decentralised 

fusion architectures more robust to failures. 

 

The decentralised fusion and distributed fusion architectures resulting from these approaches 

both encounter the issue of having to account for and mitigate the impacts of correlations in the 

information communicated over the network [8]. Once estimates have been communicated 

between agents of the network the estimates resulting can no longer be assumed to be 

independent and now have unknown cross correlation with estimates already held at the node.  
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While the top-down approach algorithms can often be fully distributed through careful tracking 

and control of communications and correlations, and placing assumptions on the network 

connectivity and reliability [7], these approaches require information about cross correlation 

for the information fusion to take place, and must make approximations when this information 

is unavailable.  

 

Bottom-up approaches do not track cross correlation and instead disregard it, performing fusion 

under unknown correlation. This is achieved through the use of Data Fusion algorithms which 

seek to provide a fusion of estimates and covariances, where in the case of the unknown 

correlations, the fusion process ideally guarantees to retain the common uncertainties of the 

original information [8]. 

 

There is a fundamental trade-off between the level of communication and the overall 

performance of the fusion algorithm. With complete knowledge such as in the centralised fusion 

architecture the accuracy will be higher, however, it is widely accepted that the overall 

optimality of this fusion will be sacrificed for the practicality of the decentralised architecture 

[7].  

 

In the literature there exists a large body of work exploring the top-down approaches to 

collaborative localisation and their attributes. However, the full extent of the properties and 

therefore the potential of the bottom-up approach has been significantly less closely examined.  

 

This report seeks to expand the exploration of the bottom-up approach through the application 

of data fusion algorithms within collaborative localisation algorithms. It will review the key 

theories and methodologies of data fusion under unknown correlation with a specific view 

towards their application to collaborative localisation problems.  

There are two questions this report aims to answer in regard to this goal.  

- Is there a Data Fusion algorithm that provides an acceptable level of performance 

when used within collaborative localisation algorithms? 

- What measures of performance are useful in the comparison data fusion algorithms for 

collaborative localisation? 

In order to answers these questions this report will first cover the necessary background 

information in Chapter 2, before outlining the methodology that was applied in Chapter 3. 

Following this, results will be presented for the outlined methods in Chapter 4. Chapter 5 will 

present conclusions and discuss potential future work. 
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Chapter 2 Background 

2.1 Ellipsoidal Representations 

This section covers some of the mathematical background of ellipsoidal representations using 

matrices that will be essential for understanding in this report. 

2.1.1 Matrix Representation Ellipsoids 

In the 2-dimensional case considered in this report, an ellipse around an undefined centre point 

can be described by the matrix 𝑃, shown in equation (1), known as the shape matrix. 

𝑃 = [
𝑎 𝑏
𝑏 𝑐

]   (1) 

 

From the shape matrix the radii and rotation of the ellipse can be calculated by determining the 

eigenvalues 𝜆1, 𝜆2 as shown in equations (2a) and (2b), and the angle 𝜃 as shown in equation 

(2c). 

𝜆1 =
𝑎+𝑐

2
+ √(

𝑎−𝑐

2
)

2
+ 𝑏2  (2a) 

𝜆2 =
𝑎+𝑐

2
− √(

𝑎−𝑐

2
)

2
+ 𝑏2  (2b) 

𝜃 =  𝑎𝑡𝑎𝑛2(𝜆1 − 𝑎, 𝑏)  (2c) 

Where √𝜆1 is the radius of the major axis and √𝜆2 is the radius of the minor axis. The angle of 

rotation 𝜃 is measured in radians anti-clockwise from the positive x axis- to the ellipse’s major 

axis. This is visualised in Figure 1. 

 

Figure 1. Visual representation of ellipse geometry calculated from matrix representation.1 

 

1 Image sourced from https://cookierobotics.com/007/ 
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2.1.2 Ellipsoidal Representation of Uncertainty and Noise 

Most techniques for parameter estimation assume that the data is corrupted by random noise 

and uncertainty that can be assumed to be Gaussian [9]. In order to model this, an uncertainty 

ellipsoid ℰ ∈ ℝ𝑛   can be constructed around an estimated centre point 𝑐 ∈ ℝ𝑛, with the shape 

matrix 𝑃 ∈ ℝ𝑛×𝑛, 𝑃 > 0.  In the 2-dimensional case 𝑛 = 2  the uncertainty ellipsoid can be 

viewed as a representation of a bivariate Gaussian distribution where the centre point 𝑐 =

[𝜇1 𝜇2] and the shape matrix 𝑃 is called the covariance matrix and is defined as shown below.  

 

𝑃 = [
𝜎11 𝜎12

𝜎12 𝜎22
]   (3) 

 

The covariance matrix produces a bounded region around the centre point representing an area 

in which it is statistically likely that we will find the true point within. 

2.2 Localisation  

Localisation is one of four components of the conceptual framework of navigation for a mobile 

robot and has received significant research attention over the last few decades [1].  

 

The ability of a mobile robot to determine its position, and sometimes orientation, in space can 

be achieved using a variety of sensors in a variety of environments. A particular issue of interest 

is the ability of a mobile robot to localise itself in an environment where use of global 

positioning systems (GPS) is restricted in some way.  

 

To localise a robot indoors or in obstructed areas with geographical features that will interfere 

with GPS accuracy, different sensors must be selected to achieve this application. Additionally, 

the use of GPS will only provide the global position of the robot whereas in many scenarios a 

relative position is required. This could be relative to a reference point, target, other robots, or 

humans.  

 

For this purpose, this report explores the use of bearing only localisation. Section 2.2.1, defines 

bearing only localisation, discusses bearing measurement representation, as well as its 

limitations in localisation, which motivates the application of collaborative localisation 

methods.   
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2.2.1 Bearing Only Localisation 

Bearing only localisation makes use of relative bearing measurements to determine an agent’s 

position with respect to a target, reference point, or landmark [4]. In bearing localisation angular 

measurements are taken by the agent to a reference, giving a relative bearing in the local 

coordinate frame attached to the agent. This then maps to a true bearing in a global coordinate 

frame. Bearings are the angles measured in degrees, clockwise from north, or in standard 2D 

coordinate frames, clockwise from the y-axis.  

 

Each agent is equipped with some sensor capable of producing bearing angle measurements 𝜃, 

between a reference point 𝑝 ∈ ℝ𝑛 and an agent’s location 𝑥 ∈ ℝ𝑛 

 

𝜃 = atan (
𝑝−𝑥

‖𝑝−𝑥‖
) + 𝛿  (4) 

 

Where 𝛿 represents an unknown measurement error with an assumed Gaussian distribution, 

𝛿 ∼ 𝒩(0, 𝜎2), where 𝜎2 is a known standard deviation.  

 

This bearing measurement is non-linear, and would typically require linearisation or the 

application of non-linear filtering approaches such as the extended Kalman filter [10]. However, 

as shown in [7], an ellipsoidal measurement modelling approach may be used instead. This is 

applied by making a further assumption that the minimum and maximum range, 𝑟  and 𝑟 

respectively, within which the sensor is designed to operate, is known. Placing this assumption 

on the range allows for the calculation of the measurement ellipse ℰ𝑚(𝑐𝑚 , 𝑃𝑚), where 𝑐𝑚 ∈

ℝ𝑛 is the centre, with the shape/covariance matrix 𝑃𝑚 ∈ ℝ𝑛×𝑛 , with 𝑛 = 2 describing the 2D 

case. It is proposed in [7] that a similar approach can be extended to the 3D case; however, this 

lies outside the scope of this report. The equations below give the mathematical definition of 

this measurement ellipse. A graphical representation is given in Figure 2. 

 

𝑐𝑚 = 𝑥 +  (
𝑟 +𝑟

2
) [

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

]  (5) 

𝑃𝑚 = 𝑅𝐷𝑅𝑇  (6) 

𝑤𝑟 =
𝑟−𝑟 

2
  ,   ℎ𝑟 = (

𝑟 +𝑟

2
) (7a) 

𝑅 =  [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] ,   𝐷 = [𝑤𝑟2 0
0 ℎ𝑟2] (7b) 
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Figure 2. The measurement ellipse for the sensor of an agent located at position 𝒙 measuring a noisy relative bearing angle 𝜽 towards 

a target 𝒑. It is assumed that the sensor has a measurement range [ 𝒓, 𝒓 ] and a standard deviation error of 𝝈 [7] 

 

This ellipsoidal measurement modelling approach allows for the use of a simplified fusion 

approach when an agent is fusing a measurement it has taken with its held estimate.  

The ellipsoidal representation as seen in Figure 2, additionally demonstrates the lack of depth 

information conveyed by the measurement, the reference point can be located anywhere within 

the measurement ellipsoid and therefor it can be anywhere within the range of operation of the 

sensor. This reinforces the need for collaborative localisation methods to be applied in order to 

obtain a localisation with a higher accuracy and a decreased uncertainty.  

2.3 Collaborative Localisation Problem Approaches 

In the application of collaborative localisation with a team of mobile robots, there have been a 

variety of approaches developed to model the network topology and fusion architecture. These 

approaches vary in network infrastructure and communication required, optimality of final 

estimations, practicality, and robustness. Based on their starting network topologies, these 

approaches can be differentiated in to top-down approaches and bottom-up approaches. This 

section will provide an overview of these approaches, their benefits, and their drawbacks.  

2.3.1 Top-down Approaches and Centralised Architecture 

In a top-down approach, such as centralised filtering/estimation or collaborative 

filtering/estimation, the problem begins with a centralised fusion architecture, in which a central 

node is responsible for all computations and storage of estimates, taking in measurements 
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provided by agents in the network, as shown in Figure 3. The data processing, computations, 

and storage of estimates are then distributed out, allowing each agent to make their own 

measurements and estimations. This distribution however requires strict control of 

communications and tracking of the cross correlations across the network [7]. If this data is 

correctly maintained and accounted for, and there is no limitation on communications or 

constraint on communication bandwidth the top-down approaches yield theoretically optimal 

solutions to the state estimation [8]. 

 

However, the distributed fusion network formed by the top-down approach has many 

undesirable characteristics, such as its inflexibility to changes in the network architecture, 

reliance on the central node making it susceptible to failures, and the high computational load 

placed on the central node [8]. Additionally, the maintenance and tracking of cross-correlations 

is expensive as it scales quadratically with the number of updates [3]. These factors make the 

top-down approach an impractical choice for a variety of applications despite the optimality of 

the solutions. 

 

 

(a) 

 

(b) 

Figure 3. (a) Graphic (b) Network architecture, representation of centralised fusion for a team of 4 mobile robots where agent 1 acts 

as the central node  

2.3.2 Bottom-up Approaches and Decentralised Architecture 

In a bottom-up approach to collaborative localisation, the initial network is modelled as a 

decentralised fusion architecture, as represented in Figure 4. In this model data is measured by 

each agent and processed independently to obtain a local estimate which is stored by the agent. 

The agents are then allowed to communicate their stored estimates with each other. The bottom-

up approach does not introduce a central node at any point resulting in a notably different final 

network architecture compared to the top-down approach.  
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(a) 

 

(b) 

Figure 4. (a) Graphic (b) Network architecture, representation of decentralised fusion for a pair of mobile robots 

 

The bottom-up approach has the benefit of being flexible in its communications. However, this 

architecture can easily run in to problems with the correlation of data [8]. As there is no 

centralised node keeping records of how data has been correlated, once estimates have been 

communicated between agents of the network, the estimates can no longer be assumed to be 

independent and now have unknown cross correlation with estimates already held by the agent.  

 

The need for methods of mitigating the effects of unknown correlations in the bottom-up 

approach leads to a sacrifice in the optimality of the solution. However, this sacrifice of 

optimality is generally accepted in exchange for the practicality of the decentralised architecture 

[7].  

 

The bottom-up approach is more practical in application as it is inherently more flexible and 

robust to failure, while requiring fewer resources. 

2.4 Data Fusion Algorithms  

In this report, data fusion algorithms specifically refer to algorithms for distributed data fusion 

using ellipsoidal methods, such as covariance intersection and ellipsoidal intersection. These 

methods seek to provide a fused estimate through the calculation of an uncertainty ellipsoid 

containing the intersection of the two uncertainty ellipsoids being fused. This section will cover 

a selection of data fusion algorithms that will be considered in later sections.  
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2.4.1 Kalman Fusion Method 

The Kalman fusion method can be seen as the most basic data fusion algorithm from which 

further algorithms are built. Given a pair of unbiased pair of estimates (𝑥̂𝑖 , 𝑃̂𝑖) and (𝑥̂𝑗 , 𝑃̂𝑗) for 

an unknown point of interest 𝑥 ∈ ℝ𝑛, where 𝑥̂𝑖 , 𝑥̂𝑗 ∈ ℝ𝑛, denote estimated values of point 𝑥, 

and 𝑃̂𝑖 , 𝑃̂𝑗 ∈ ℝ𝑛×𝑛  , 𝑃̂𝑖 , 𝑃̂𝑗 > 0, denote the estimated covariance matrices for the estimation 

errors.  

 

Under the assumption that the prior estimates are independent, it can be shown that the Kalman 

fusion equations below provides a fused estimate (𝑥̂+, 𝑃̂+) that can be considered optimal with 

respect to a variety of criteria [11][7]. The notation of 𝑥̂+and 𝑃̂+represent the updated point 

estimate and updated estimation error covariance following the fusion.  

 

𝑃̂+ = (𝑃̂𝑖
−1 + 𝑃̂𝑗

−1)
−1

 (8a) 

𝑥̂+ =  𝑃̂+(𝑃̂𝑖
−1𝑥̂𝑖 + 𝑃̂𝑗

−1𝑥̂𝑗) (8b) 

 

The Kalman fusion method, while it can be considered optimal in some cases, makes the 

assumption that the two prior estimates are independent. This assumption puts the Kalman 

fusion method at a disadvantage in bottom-up collaborative localisation problems where data 

that has been communicated between agents often has an unknown correlation.  

 

When Kalman fusion is applied to estimates that are not independent, it loses its optimality and 

can suffer from a phenomenon called the over-confidence problem in the fusion literature. The 

over-confidence problem refers to the Kalman fusion producing an estimated covariance that is 

small enough to inhibit the progress of the algorithm in future steps, while the estimation error 

is still high. An over-confident prior estimate passed to future steps will dominate the update of 

the point estimate, which is calculated as the covariance weighted sum of prior points, shown 

in equation (8b). 

2.4.2 Covariance Intersection 

The Covariance Intersection method (CI) builds upon the Kalman fusion method in order to 

perform fusion under unknown correlation. It provides a fused estimate of the covariance matrix 
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𝑃̂+ of the prior covariances that is guaranteed to contain the intersection, regardless of the actual 

correlation between the two prior estimates [12]. 

 

𝑃̂+ = (𝛼𝑃̂𝑖
−1 + (1 − 𝛼)𝑃̂𝑗

−1)
−1

 (9a) 

𝑥̂+ =  𝑃̂+(𝛼𝑃̂𝑖
−1𝑥̂𝑖 + (1 − 𝛼)𝑃̂𝑗

−1𝑥̂𝑗) (9b) 

Where  𝛼 ∈ [0,1] is a free parameter 

 

The optimal solution of CI can be chosen from the solution set it produces, through the 

manipulation of the parameter 𝛼 . An example of this is selecting 𝛼 such that the resulting 

covariance matrix 𝑃̂+ has a minimal determinant [7][12]. However, CI can be shown to make 

overly conservative estimates, as it does not necessarily produce a tight bounding of the 

intersection. 

2.4.3 Convex Combination Ellipsoid 

The Convex Combination Ellipsoid (CCE) method is similar in structure to CI. However, it can 

be shown to possess a number of properties that make it a more ideal candidate for bearing only 

localisation [7]; these will be discussed in later sections of this report. It can be considered to 

provide a tighter bounding of the intersection, guaranteeing that the intersection is contained 

within the fused estimate of the covariance matrix 𝑃̂+. 

 

𝑃̂+ = 𝑘𝑋  (10a) 

𝑥̂+ = 𝑋(𝛼𝑃̂𝑖
−1𝑥̂𝑖 + (1 − 𝛼)𝑃̂𝑗

−1𝑥̂𝑗) (10b) 

𝑋 = (𝛼𝑃̂𝑖
−1 + (1 − 𝛼)𝑃̂𝑗

−1)
−1

 (10c) 

𝑘 = 1 − 𝑑2  (10d) 

𝑑2 = ‖𝑥̂𝑗 − 𝑥̂𝑖‖
(

𝑃̂𝑖
𝛼

+
𝑃̂𝑗

1−𝛼
)

−1
2

 (10e) 

Where  𝛼 ∈ [0,1] is a free parameter 

 

The optimal solution of CCE can also be determined by optimising the parameter 𝛼 in a similar 

way to CI, such as minimising the determinant of the resulting covariance matrix 𝑃̂+. 
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2.4.4 S-Procedure for Ellipsoidal Containment 

There exists in the literature another algorithm called the S-Procedure for Ellipsoidal 

Containment, however this method has been shown to provide equivalent results as the CCE 

method [13] in the 2-dimensional case considered in this report, while CCE is computationally 

cheaper [9]. Therefore, the S-procedure was not considered further.  

2.4.5 Ellipsoidal Intersection 

The Ellipsoidal Intersection method (EI) was proposed by [14] as a fusion method in which the 

resulting fusion always possesses a higher accuracy than that of the prior estimates. It provides 

an explicit characterisation of the unknown correlations before computing a fusion based on the 

independent components of the estimates. 

 

EI employs the common error term 𝛤 to model the unknown correlations and reports a far less 

conservative result compared to CI [14][15]. 

 

𝑃̂+ = (𝑃̂𝑖
−1 + 𝑃̂𝑗

−1 − 𝛤̂−1)
−1

 (11a) 

𝑥̂+ =  𝑃̂+(𝑃̂𝑖
−1𝑥̂𝑖 + 𝑃̂𝑗

−1𝑥̂𝑗− 𝛤̂−1𝛾) (11b) 

𝛤 = 𝑇𝐷𝛤𝑇𝑇  (11c) 

𝑇 = 𝑆𝑖𝐷𝑖
1 2⁄

𝑆𝑗  (11d) 

𝑄𝑖𝑗 = 𝐷𝑖
1 2⁄

𝑆𝑖
−1𝑃𝑗𝑆𝑖𝐷𝑖

1 2⁄
 (11e) 

𝛾 = (𝑃𝑖
−1 + 𝑃𝑗

−1 − 2𝛤−1 + 2𝜂𝐼𝑛)
−1

× ((𝑃𝑗
−1 − 𝛤−1 + 𝜂𝐼𝑛)𝑥̂𝑖 +

(𝑃𝑖
−1 − 𝛤−1 + 𝜂𝐼𝑛)𝑥̂𝑗) (11f) 

𝜂 = {
0 if |[𝐷𝑗]

𝑞𝑞
− 1| ≥ 10𝜁 , ∀𝑞 = 1, … , 𝑛 

𝜁 else                                                            
 (11g) 

Where 𝜁 is a free parameter 

 

Where 𝑆𝑖  and 𝐷𝑖  are the eigenvectors and eigenvalues respectively resulting from the 

eigenvalue decomposition of 𝑃𝑖 , and 𝑆𝑗  and 𝐷𝑗  is eigenvectors and eigenvalues respectively 

resulting from the eigenvalue decomposition of 𝑄𝑖𝑗. 
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The EI method however has not yet been demonstrated to be a consistent fusion method [14]. 

Additionally, EI requires the tuning of a regularisation parameter 𝜁 in the formation of the 

updated position estimate, as this parameter is a free variable.  

 

It can also be seen that due to the explicit characterisation of the error there are many more 

steps in the process of computing the fusion. 

2.4.6 Inverse Covariance Intersection 

The creation of the Inverse Covariance Intersection method (ICI) was inspired by weak points 

of the Ellipsoidal Intersection method noted in [15], aiming to provide a more consistent fusion 

than that of EI and a more accurate fusion than that of CI. 

 

(𝑃̂+)
−1

= 𝑃̂𝑖
−1 + 𝑃̂𝑗

−1 − (𝛼𝑃̂𝑖 + (1 − 𝛼)𝑃̂𝑗)
−1

 (12a) 

𝑥̂+ = 𝐾𝑥̂𝑖 + 𝐿𝑥̂𝑗  (12b) 

𝐾 = 𝑃̂+ (𝑃̂𝑖
−1 − 𝛼(𝛼𝑃̂𝑖 + (1 − 𝛼)𝑃̂𝑗)

−1
) (12c) 

𝐿 =  𝑃̂+ (𝑃̂𝑗
−1 − (1 − 𝛼)(𝛼𝑃̂𝑖 + (1 − 𝛼)𝑃̂𝑗)

−1
) (12d) 

2.5 Measures of Performance 

This section provides an overview of the measures of performance that will be applied to assess 

the data fusion algorithms in chapter 4.  

2.5.1 Ideal characteristics of fused estimates 

It is desirable that when conducting data fusion, the fused ellipsoid does not overlook any 

possible solution or introduce new errors. In order to define this, there are three ideal properties 

that the fused ellipsoid solution is desired to possess.   

1) The ellipsoid ℰ𝛼 contains the intersection of the two prior ellipsoids, ℰ𝑖 ∩ ℰ𝑗 ⊆  ℰ𝛼 

2) The intersections between the boundaries of ℰ𝑖 and ℰ𝑗 lie on the boundary of ℰ𝛼 

3) The ellipsoid ℰ𝛼 is contained within the union of the two prior ellipsoids, ℰ𝛼 ⊆ ℰ𝑖 ∪ ℰ𝑗   

As pointed out by the authors of [9], and reiterated by the authors of [7], the first and second 

properties ensure a tight bounding of the intersection of the prior ellipsoids, while the third 
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property ensures that the resulting fused uncertainty ellipsoid does not introduce additional 

uncertainties.   

2.5.2 Confidence 

The estimation covariance, measured as the determinant of the covariance matrix of the 

estimate, can be viewed as a measure of confidence in the measurement. A minimal determinant 

represents a smaller area of uncertainty in which the true location can be located, and therefore 

this measurement can be seen as holding a higher level of confidence.  

The property of a fused estimate having a minimal determinant is a property that is also referred 

to as tightness of the estimate [7].  

2.5.3 Statistical Consistency  

A state estimator is said to be consistent if the means of the estimation errors are zero, meaning 

that the estimates are unbiased, and if their covariance matrices of the error are as calculated by 

the fusion algorithm.  

 

The normalised estimation error squared (NEES) is a commonly applied measure for the 

evaluation of the consistency of a state estimator [16] when ground truth information is 

available for comparison to the estimates. It is important to consider the consistency of the fused 

estimates, as if a state estimator is inconsistent and is unable to accurately indicate the quality 

of its estimate, it cannot provide the most optimal result [17].  

 

NEES is a statistical measure that tests both the mean and covariance. It is defined as shown 

below in equation (13) 

𝜖 = (𝑥̂ − 𝑥)𝑇𝑃̂−1(𝑥̂ − 𝑥) (13) 

 

Where 𝑥 ∈ ℝ𝑛 is the true location of the reference, 𝑥̂ ∈ ℝ𝑛 is the estimated location and 𝑃̂ ∈

ℝ𝑛×𝑛, 𝑃 > 0, is the estimated covariance [17].  

 

Under the assumption that the fused estimates are consistent and the distributions of uncertainty 

are Gaussian 𝜖 has an expected value, 𝛦[𝜖] = 𝑛𝑥, where 𝑛𝑥 is the dimension of 𝑥. 
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2.5.4 Noise floor  

The noise floor refers to the level of error or noise remaining when the algorithm converges a 

steady state. Two pieces of information can be taken in regard to this, these being the speed at 

which the algorithm reaches its noise floor, and the residual noise itself at the noise floor. These 

can be used to infer the speed at which the algorithm can be expected to perform and can guide 

a base level of expected accuracy in a given problem scenario. 
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Chapter 3 Methodology 

 

The methodology applied for this report had four stages: an initial selection of data fusion 

algorithms, the implementation of these algorithms in a python environment, experimental 

design, and iterative refinement of the experimentation as new properties and characteristics 

were observed.  

 

In order to best assess the properties of the various data fusion algorithms, and apply a variety 

of performance measures, three general experimental setups were defined: isolated data fusion 

of two ellipses, single simulations of data fusion algorithms in collaborative localisation, and 

Monte Carlo simulations of the data fusion algorithms in collaborative localisation. 

3.1 Selection of Data Fusion Algorithms  

The data fusion algorithms to be studied were selected from the literature. All algorithms 

discussed in section 2.4 were chosen to be candidates, excluding Ellipsoid Containment using 

the S-Procedure, as it has been shown to yield the same results as the Convex Combination 

Ellipsoid for the intersection of 2 ellipsoids [13]. However, the CCE method has been proven 

to be computationally cheaper than the S-Procedure based method [9]  

 

The algorithms selected are believed to be a good sampling of the field and encompass some of 

the most commonly researched and applied fusion methods as well as some more modern 

inclusions.  

3.2 Implementation Environment  

An implementation environment was developed in Python by the authors of [7]. This 

environment was then provided for use in this report. The provided implementation 

environment was extended through the addition of the Ellipsoidal Intersection algorithm, and 

the NEES and noise floor performance measures. Details of the implementation environment 

and attribution of work can be found in Appendix A. 
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3.3 Experimental Designs 

In order to give a good understanding of the characteristics and behaviours of the selected data 

fusion algorithms, three phases of experimentation were conducted. This section outlines the 

setup and procedures for each experiment.  

3.3.1 Isolated Data Fusion 

Prior to the application of the data fusion algorithms to a collaborative localisation problem, the 

algorithms were trialled on isolated cases, where two prior uncertainty ellipsoids, ℰ(𝑥̂𝑖 , 𝑃̂𝑖) and 

ℰ(𝑥̂𝑗 , 𝑃̂𝑗) were given as input and a single fusion step was conducted for each algorithm.  

 

This isolated fusion experiment was selected as a method to visualise the behaviour of each 

data fusion algorithm, and allows for an analysis of the performance of the algorithms with 

regard to the ideal fused estimate characteristics outlined in section 2.5.1.  

 

Additionally, as illustrative examples of fusion algorithms are often given using this method in 

the data fusion literature, this experimental setup was used to conduct replications of these data 

fusion examples from literature to ensure the fusion algorithms were correctly implemented.  

3.3.2 Collaborative Localisation Problem Formulation 

The collaborative localisation problem examined in this report is the problem of estimating a 

reference position 𝑝 ∈ ℝ𝑛  collaboratively with 𝑚  agents located at positions 𝑥𝑖 ∈ ℝ𝑛 , 𝑖 =

1, … , 𝑚. For the purposes of this report only the 2-dimensional case was considered, using 2 

agents, therefore 𝑛 = 𝑚 = 2. 

 

Agent 𝑖 , with the use of local measurement data, and communicated estimates from its 

neighbour agent  𝑗 calculates 𝑥̂𝑖 ∈ ℝ𝑛 as a point estimate for the reference position 𝑝, along 

with 𝑃̂𝑖 ∈ ℝ𝑛×𝑛 as the estimate of the estimation error covariance 𝑃𝑖 ∈ ℝ𝑛×𝑛. 

 

The following collaborative localisation approach outlined in algorithm 1 that was proposed in 

[7] was used for the application of data fusion algorithms to collaborative localisation for this 

report. This algorithm is taken directly from the literature. The following sections outline the 

definition of the bearing measurement model applied to the specific collaborative localisation 
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problem, further description of the collaborative localisation algorithm and a procedure for 

handling non-overlapping ellipsoids in communications and measurements.  

3.3.2.1 Measurement Model 

The measurement model used is the same as that described in section 2.2.1, with the only 

difference being that each calculation and piece of sensor data now possesses the subscript 

associated with the relevant agent.  

3.3.2.2 Collaborative Bearing Localisation Algorithm 

Algorithm 1 Collaborative Bearing Localisation 

Require: initial belief ℰ𝑖(𝑥̂𝑖 , 𝑃̂𝑖), 𝑃̂𝑖 > 0 

Require: sensor parameters 𝑟𝑖 , 𝑟𝑖 and 𝜎𝑖 

    while estimating reference do 

        Broadcast (𝑥̂𝑖 , 𝑃̂𝑖) to other nodes on the network 

        if new measurement 𝜃𝑖 is received then 

            Calculate a measurement ellipse ℰ𝑖
𝑚(𝑐𝑚𝑖 , 𝑃𝑚𝑖) (Section 3.3.2.1) 

            Check if measurement overlaps ℰ𝑖(𝑥̂𝑖 , 𝑃̂𝑖) (Section 3.3.2.3) 

            if there is overlap then 

                Calculate 𝑥̂𝑖
+ and 𝑃̂𝑖

+ using the Kalman Fusion method (Equations (8a-8b)) 

            else 

                Discount the measurement 𝑃𝑚𝑖  ← 𝑑𝑚𝑃𝑚𝑖 (Section 3.3.2.3) 

                Calculate 𝑥̂𝑖
+ and 𝑃̂𝑖

+ using the Kalman Fusion method (Equations (8a-8b)) 

            end if 

            (𝑥̂𝑖 , 𝑃̂𝑖) ← (𝑥̂𝑖
+, 𝑃̂𝑖

+) 

        else if communication ℰ𝑗(𝑥̂𝑗 , 𝑃̂𝑗) is received then 

            Check if communication overlaps ℰ𝑖(𝑥̂𝑖 , 𝑃̂𝑖) (Section 3.3.2.3) 

            if there is overlap then 

                Calculate 𝑥̂𝑖
+ and 𝑃̂𝑖

+ using a specified data fusion method 

            else 

                Discard the communication 

            end if 

            (𝑥̂𝑖 , 𝑃̂𝑖) ← (𝑥̂𝑖
+, 𝑃̂𝑖

+) 

        end if 

    end while 
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The Kalman Fusion method is employed in the fusion of the held estimate and the local 

measurement as the new measurement and the held estimate can be assumed to be independent 

from each other. This independence allows the Kalman Fusion method to provide the optimal 

fusion in this instance.  

 

In the step where fusion is called for, in the case where an overlapping communication is 

received, the algorithm  states to calculate the updated fused estimate using a specified fusion 

method. This was stated in an open way as this is where the application of each of the candidate 

data fusion algorithms occurs. In the implementation environment an estimate is held by each 

agent using each fusion method allowing the tracking of performance of multiple data fusion 

algorithms over the same simulation with the same conditions. 

3.3.2.3 Dealing with Non-overlapping Cases 

An issue that can arise in the application of fusion algorithms that seek to bound the intersection 

of the prior ellipsoids is that the two ellipsoids provided may not overlap. As stated in [9] the 

fusion of two ellipsoids is only defined if the intersection exists. This is done to avoid the 

potential attempts of the algorithms to minimise infinite volumes.  

 

A measure called the Mahalanobis distance can be employed to verify if the intersection exists, 

shown below in equation (14). 

𝑑𝑚(𝑥̂𝑖 , 𝑥̂𝑗) = ‖𝑥̂𝑖 − 𝑥̂𝑗‖
(𝑃̂𝑖+𝑃̂𝑗)

−1 (14) 

The intersection is non-zero if the 𝑑𝑚 ≤ 2  allowing the assertion that these ellipsoids are 

overlapping. 

ℰ𝑖(𝑥̂𝑖 , 𝑃̂𝑖) ∩ ℰ𝑗(𝑥̂𝑗 , 𝑃̂𝑗) ≠ ∅ ⇔ 𝑑𝑚 ≤ 2  (15) 

 

If 𝑑𝑚 > 2 however, the ellipsoids are said to be disjoint. In the case of a disjoint measurement 

ellipsoid, it is proposed by [7] that this measurement be discounted by 
1

𝑑𝑚
 , as the measurement 

is assumed to be independent to the held estimate, the measurement could still contain 

corrective information.  

 

In the case that a communication is received that is disjoint with the held estimate, then this 

communication should be discarded as there is no evidence that the communication should be 

favoured over the estimate already held by the agent.  
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3.3.3 Data Fusion in Collaborative Localisation, Plausibility Study 

The collaborative localisation algorithm using data fusion algorithms, described in section 3.3.2 

was applied in a handful of initial plausibility studies where a singular collaborative localisation 

scenario was analysed over numerous time steps. 

 

The scenario considered used two stationary agents, collaboratively estimating the location of 

the reference point in a 2-dimensional plane. For this scenario the agents are intentionally 

positioned so that neither agent is able to individually make a good localisation.  

 

The scenario configuration depicted in Figure 5 shows the locations of the two agents, the 

location of the reference point, the shared initial belief, and noisy measurements made by the 

agents over the simulation.  

 

Figure 5. A 2 agent bearing localisation scenario with stationary agents and a stationary reference point. Where the shared initial 

belief is circular and is centred at [𝟐, −𝟏]𝑻 and the target reference point is located at [𝟏𝟎, −𝟏𝟐]𝑻. The noisy measurements of each 

agent are depicted in their respective colour. 

 

Simulations run in this scenario were conducted with the following parameters, the target or 

reference point is located at 𝑝 = [10, −12]𝑇, agent 1 and agent 2 are located at 𝑥1 = [−15,0]𝑇 

and 𝑥2 = [8, 15]𝑇  respectively. The initial belief held by each agent is 𝑥̂1 = 𝑥̂2 = [2, −1]𝑇 , 

𝑃̂1 = 𝑃̂2 = 36𝐼2×2.  The sensor parameters are 𝑟1 = 𝑟2 = 2 (m) , 𝑟1 = 𝑟2 = 65 (m) , 𝜎1 =

14 (deg), and 𝜎2 = 9 (deg). Lastly the EI regularisation parameter is 𝜁 = 0.0001 
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These parameters were held constant across the simulations presented for the singular instance. 

Two instances were run at 300 steps to allow for an evaluation of the estimation error, 

covariance, and NEES. An addition instance was run at 1000 steps to evaluate the noise floor 

of the algorithms.   

3.3.4 Data Fusion in Collaborative Localisation, Monte Carlo Simulation 

Following the assessment of the data fusion algorithms’ performances in the singular instance 

simulation a Monte Carlo simulation was conducted to evaluate the performance of the data 

fusion algorithms more broadly in the scenario described above. The variables of the scenario 

were randomised as follows.  

 

Initial estimates were given by 𝑥̂1 = 𝑝 + 𝑒1 and 𝑥̂2 = 𝑝 + 𝑒2 where 𝑒1 and 𝑒2 are error vectors, 

randomised through the use of two random standard deviations 𝜍1, 𝜍2 ∽ 𝒩(10, 100), defining 

the error vectors as 𝑒1 ∽ 𝒩([0,0]𝑇, [𝜍1
2, 𝜍1

2]𝑇) and 𝑒2 ∽ 𝒩([0,0]𝑇, [𝜍2
2, 𝜍2

2]𝑇). The associated 

initial covariances are given by 𝑃̂1 = 𝜍1
2𝐼2×2 and 𝑃̂2 = 𝜍2

2𝐼2×2.  

 

Sensor characteristics were assigned through the randomisations 𝑟1, 𝑟2 ∽ 𝒩(2, 25) (m) , 

𝑟1, 𝑟2 ∽ 𝒩(80, 400) (m) , and 𝜎1, 𝜎2 ∽ 𝒩(5, 25) (deg). 

 

These randomisations were used in [7] and are believed to cover a sufficient range of 

possibilities that through the use of the Monte Carlo simulation with a sufficient number of 

instances, broader and more general analysis can be made about the rankings of the performance 

of the data fusion algorithms in this application.  
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Chapter 4 Results and Analysis 

 

This section discusses the results of the simulations conducted. It is divided into four sections: 

first, the verification of implementation measures conducted, secondly, the results of isolated 

data fusion cases, thirdly, the results of plausibility study simulations, and finally, the results of 

Monte Carlo simulation. Within these sections, the performance of each data fusion algorithm 

method is assessed and compared. 

4.1 Verification of Implementation 

An initial test that was conducted prior to further experimentation was a verification of the 

implementation environment, through replication of other works. Of main concern was the EI 

algorithm as this was new in the implementation environment so it was important to verify its 

correctness. Following this a reverification was done of the Kalman fusion, CI, ICI, and CCE 

implementations by replicating the results of a single fusion as presented in [7].  

4.1.1 Verification of EI 

The example provided in the paper [14] for the fused estimates of EI characterises the prior 

estimates to be fused as 𝑥̂𝑖 = (
0.5
1

) , 𝑃̂𝑖 = (
2.5 −1
−1 1.2

) , 𝑥̂𝑗 = (
2
1

) , 𝑃̂𝑖 = (
0.8 −0.5

−0.5 4
)  and 

presents two fused results, using , ζ1 = 10−6, ζ2 = 0.1. The results of the fusion provided by EI 

and CI in the implementation environment and by the paper [14] for these parameters can be 

seen in Figure 6. 
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(a) 

 

(b) 

Figure 6. The prior and fused estimates according to EI and CI, with two cases of EI, 𝜻𝟏 = 𝟏𝟎−𝟔, 𝜻𝟐 = 𝟎. 𝟏 (a) shows a replication of 

(b) sourced from [14].  

 

It can be seen from the replication that the EI algorithm was implemented as was described in 

the literature. It can also be seen that the value of 𝜁 in the EI algorithm does not impact its 

determinant, this parameter only impacts where the algorithm places the centre or mean of the 

fused estimate.  

 

It can also be observed that as presented in the literature the EI algorithm is not guaranteed to 

contain the entire intersection of the prior estimates. This could suggest that the EI algorithm is 

susceptible to the over confidence problem.  

4.1.2 Verification of Kalman Fusion, CI, CCE, and ICI 

As a measure to check that the implementation of new material in the environment did not 

interfere with the algorithms that had been implemented prior to this work a replication was 

done of the tightness example given by [7]. The prior ellipses were defined by the centres 𝑥̂1 =

[3, 2]𝑇, 𝑥̂2 = [6.5, 4]𝑇 and the uncertainty matrices 𝑃1 and 𝑃2 were defined by the parameters 

𝑤𝑟1 = 4.4, ℎ𝑟1 = 2.6, and 𝜃1 = −20 (deg), and 𝑤𝑟2 = 4.4, ℎ𝑟2 = 3.2, and 𝜃2 = 90 (deg). 

It can be seen in Figure 7 that the fusion results generated matched those published, and 

therefore the implementation environment is considered to accurately represent the data fusion 

algorithms.  
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(a) 

 

(b) 

Figure 7. The prior and fused estimates according to Kalman, CCE, CI and ICI (a) shows a replication of (b) sourced from [7]  

 

4.2 Isolated Data Fusion  

In this section three cases of isolated data fusion are considered; each will be analysed with 

regard to one of the specific ideal characteristics for fused estimates discussed in section 2.5.1. 

 

The centres of the prior ellipses were held constant across all trials and are defined as, 𝑥̂1 =

[3, 2]𝑇, 𝑥̂2 = [6.5, 4]𝑇. The uncertainty matrices 𝑃1 and 𝑃2 were defined using the method of 

ellipsoidal representation discussed in equation (6) with the parameters 𝑤𝑟, ℎ𝑟, and 𝜃. 

The uncertainty matrix 𝑃1  was held constant across all trials, defined with the parameters, 

𝑤𝑟1 = 5.6, ℎ𝑟1 = 2.7, and 𝜃1 = −30 (deg). The parameters of 𝑃2 as defined in each trial will 

be given in their respective sections.  

 

Two values were considered for the parameter 𝜁 in the EI method. For simplicity and clarity in 

discussion of EI the value of 𝜁 used for the version of EI discussed will be shown as a subscript. 

For the isolated fusion trials EI with 𝜁 = 0.1 , EI0.1  and EI with 𝜁 = 10−6 , EI10−6   were 

considered.  

4.2.1 Property 1, Intersection Containment  

The first ideal property is that the resulting ellipsoid ℰ𝛼 contains the intersection of the two 

prior ellipsoids, ℰ1 ∩ ℰ2 ⊆  ℰ𝛼. In this trial the matrix 𝑃2 was defined by the parameters 𝑤𝑟2 =

3.2, ℎ𝑟2 = 5.6, and 𝜃2 = 60 (deg). 
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From Figure 8 a few different behaviours can be seen. CI and ICI have both chosen to disregard 

ℰ2 and wholly favour ℰ1, however, their resulting fusion ellipses both contain the intersection. 

CCE displays a tighter bounding, containing the intersection. The result that property 1 holds 

for CI, ICI and CCE can be considered typical of these algorithms.  

 

The Kalman fusion method can be seen to partially contain the intersection however it does not 

contain its entirety, it can be considered typical of Kalman fusion that property 1 does not hold. 

 

Finally, the EI methods, EI0.1 and EI10−6   show that the EI method does not always contain the 

intersection, and this property is influenced by the decision of 𝜁 , as EI0.1  contains the 

intersection where EI10−6  does not.  

 

Notably, CI, ICI, EI0.1 and EI10−6   all have the same determinant of the uncertainty matrix. This 

being 228.61 matching that of ℰ1.  

 

 

Figure 8. Isolated fusion example demonstrating ideal fusion property 1.  

4.2.2 Property 2, Boundary Intersections 

The second ideal property states that the intersections between the boundaries of ℰ1 and ℰ2 

should lie on the boundary of ℰ𝛼 . From Figure 9, where the matrix 𝑃2 was defined by the 
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parameters 𝑤𝑟2 = 5.6, ℎ𝑟2 = 3.2, and 𝜃2 = 60 (deg), it can be seen that CCE is the only 

algorithm for which this property holds and this can be considered typical.  

 

 

Figure 9. Isolated fusion example demonstrating ideal fusion property 2. 

4.2.3 Property 3, Containment in the Union 

The final desired propety is that the ellipsoid ℰ𝛼 is contained within the union of the two prior 

ellipsoids, ℰ𝛼 ⊆ ℰ1 ∪ ℰ2 . Ensuring that no additional error is introduced through the fusion.  

 

In Figure 10, where the matrix 𝑃2 was defined by the parameters 𝑤𝑟2 = 5.6, ℎ𝑟2 = 3.2, and 

𝜃2 = −60 (deg), that this property holds for CCE and Kalman Fusion. However, CI, ICI, EI0.1 

and EI10−6   all exist outside of the union of the prior ellipses. While these algorithms do not 

possess property 3, and can potentially introduce additional uncertainty, they can still be seen 

in this example to be potentially providing corrective information as the centres of the fused 

ellipses have been updated in expected manner, moving to be between the centres of the prior 

estimates. 
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Figure 10. Isolated fusion example demonstrating ideal fusion property 3. 

4.3 Plausibility Study Simulation 

In this section three experiments were conducted according to the scenario configuration 

outlined in 3.3.3. As stated in 3.3.3, two instances were run at 300 steps to allow for an 

evaluation of the estimation error, covariance, and NEES. An additional instance was run at 

1000 steps to evaluate the noise floor. 

 

From the first instance run at 300 steps, Figures 11, 12 and 13 were generated. In Figure 11 the 

estimation error at each time step can be seen, for each agent using each method.  

 

Figure 11. Estimation error over time for the non-collaborative, Kalman, CI, ICI, CCE, and EI methods for each agent. 
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It can be seen that the EI method performs very well here, with a final estimation error just 

above 2m, while starting at an initial estimation error of 14m. While CCE follows closely 

behind achieving a final estimation error of around 4m. The ICI method marginally outperforms 

the CI method reaching a final error of approximately 7m. The non-collaborative agents, which 

do not make any communications between each other, reach final errors close to 8m and 9m 

respectively. Lastly the Kalman fusion quickly becomes overconfident, non-longer improving 

with new information incredibly early, converging to a final estimation error just above 10m. 

 

The estimation error covariance can be seen over time in Figure 12. This demonstrates the 

Kalman fusion method’s estimation error covariance converges with incredible haste, due to 

the issue of the independence assumption, as was described in Section 2.4.1. It can also be seen 

that the CCE method produces the most confident results of the more conservative methods. 

This is followed closely by EI. It can also be seen that the non-collaborative agents are very 

slow to improve in their confidence. This is expected as the lack of combined information leads 

to a worsened localisation with greater uncertainty than collaborative methods.  

 

 

Figure 12. The determinant of the estimated error covariance, tracked over time, for the non-collaborative , Kalman, CI, ICI, CCE, 

and EI methods for each agent. The figure is zoomed to the first 50 steps of the simulation. 

 

Additionally, the Normalised Estimation Error Squared (NEES) was examined to see the 

statistical consistency of the algorithms. However, as can be seen in Figure 13, the NEES did 

not converge to the expected value of 2 for any data fusion method. Yet, it can be seen that the 

produced information from this test supports the conclusions that can be drawn from the other 

measures of performance applied in this trial, in regard to the rankings of performance of the 

data fusion methods.  
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Additionally, the average NEES (ANEES) was computed at each time step. The ANEES 

produce results of the same trajectory as NEES however the resulting figure only smoothed the 

results, providing no additional information.   

 

 

Figure 13. The NEES over time for the non-collaborative, CI, ICI, CCE and EI methods for each agent. 

 

Lastly an addition instance of the 300-step simulation was run, in order to demonstrate the 

NEES measure applied to the Kalman fusion method. Its error grows excessively, to numbers 

of such magnitude that other algorithms cannot be visualised on the same figure. 

 

 

Figure 14. The NEES over time for the non-collaborative, Kalman, CI, ICI, CCE and EI methods for each agent. The Kalman fusion 

method’s NEES grows to such a magnitude that measures cannot be seen for any other method. The final marking on the y axis is 

𝟏. 𝟔 × 𝟏𝟎𝟓𝟒 
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4.3.1 Noise Floor Measurements 

As explained in Section 2.5.4 the noise floor represents the level of noise remaining when the 

algorithm converges to a steady state, for the estimation error. The simulation instance for this 

test was run to 1000 steps to ensure convergence to the steady state for all algorithms.  

 

The estimation errors tracked over time for this instance can be seen below in Figure 15, and 

these results show the same ranking of performance that was seen in the 300-step simulation 

shown in Figure 11.  

 

 

Figure 15. Estimation error over time for the non-collaborative, Kalman, CI, ICI, CCE, and EI methods for each agent. 

  

The convergence of the estmiation error was determined by taking the average of the change in 

the position estimate over the previous 10 steps. The estimation error was said to have 

converged to the noise floor when the when this average was under a threshold of 0.015m.  

 

The average change of position over time can be seen in Figure 16. From this two pieces of 

information can be determined, the noise floor itself, and the number of steps taken to reach the 

convergence. A summary of these approximate results for agent 1 of each method can be seen 

in Table 1.  



Results and Analysis  

  31 

 

Figure 16. Average change of position estimate over time for the non-collaborative, Kalman, CI, ICI, CCE, and EI methods for each 

agent 

 

Table 1. Summary of Results of Noise Floor Test 

Method Estimation Error Noise Floor (m) Steps Taken to Converge 

EI 2.10 663 

CCE 3.60 554 

ICI 7.25 296 

CI 7.30 259 

Kalman 11.10 20 

Non-Collaborative 9.25 1000+ 

 

From these results it can be seen that the EI method has the highest capacity to improve its 

measurements regarding the underlying noise in the scenario, however it took the longest time 

to reach its noise floor. The CCE method is 1.5m worse but reached its noise floor over 100 

steps faster.  

 

This seems to imply a trade off in the algorithms that in order to achieve high levels of accuracy 

a large number of recursive steps must be taken. However, it can be seen in both Figure 15 and 

16, that the estimation errors reach values close to the noise floor many steps prior to 

convergence.  
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4.4 Monte Carlo Simulation  

The Monte Carlo simulation setup outlined in Section 3.3.4 was conducted for 1000 runs, to a 

depth of 150 steps per run. From the histogram of final estimation errors, shown in Figure 17. 

It can be seen in a more general context over the 1000 runs where each method’s final estimation 

errors lie and their relative performance to each other the entire simulation.  

 

The ranked histogram shown in Figure 18 shows performance of the data fusion algorithms in 

context of each other for each individual run. In order to rank the algorithms in each simulation 

run, the final estimation errors were taken, and each method was ranked in order, with the 

minimal estimation error being placed in first position. The histogram represents how many 

occurrences of each ranking the algorithm received.  

 

Data from agent 2 has been omitted from these figures to simplify them.  

 

Figure 17. Histogram of the final estimation error of the Kalman, CI, ICI, CCE, and EI methods at the final fusion step. Run for 

1000 simulations to 150 steps. 

It can be seen above in Figure 17 that the EI method performs the best, having the most 

occurrences of minimal estimation error, with CCE following closely in second. 

 

This is in agreement with Figure 18 seen below where EI is ranked 1st in the greatest number 

of simulation runs, followed by CCE. These results obtained from the Monte Carlo study 

broadly agree with the performances for each method shown by the measures applied in the 

plausibility study in section 4.3. 
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Figure 18. Histogram of the rankings of the final estimation error of the Kalman, CI, ICI, CCE, and EI methods in context to each 

other at the final simulation step. Run for 1000 simulations to 150 steps.  
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Chapter 5 Conclusions and Future Work 

In this report, several data fusion algorithms were assessed in their application to collaborative 

bearing localisation algorithms, through a variety of experimental setups, applying several 

measures of performance.  

 

From the analysis conducted, it can be concluded that there exist data fusion algorithms that 

provided a suitable level of performance to be used in bearing only collaborative localisation. 

Data fusion algorithms that showed particular promise for application to the problem discussed 

in this report are the Ellipsoidal Intersection method and the Convex Combination Ellipsoid 

method.  

 

A measure of performance that can be useful in the selection of candidate data fusion 

algorithms, are the ideal characteristics of fused estimates. However, these did not translate well 

to the performance of the algorithms in application in the case of EI, which consistently showed 

the best performance in metrics associated with application, while not typically possessing any 

of these characteristics.  

 

When assessing the performance of data fusion algorithms applied to a collaborative bearing 

localisation problem, the estimation error and noise floor metrics provide useful information 

from which to draw comparisons and conclusions. The normalised estimation error squared was 

not found to be a useful measure of performance for this application, as no algorithm converged 

to the expected value; however, the NEES supported the conclusions that can be drawn from 

alternate measures of performance used.  

 

From these metrics EI showed great promise in this application. However further assessment 

will be needed to capture the full characteristics and potential of EI, as it was seen that changes 

to 𝜁 made a significant difference in the location of the point estimate. The free parameter 𝜁 

will either need to be more extensively researched to find the optimal tuning for a problem, or 

an optimisation of some kind could be applied to this parameter to ensure the ideal 

characteristics of fused estimates are met, ensuring a more reliable performance across 

applications.  
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Additionally, EI proved to be initially numerically unstable over recursive fusions. Due to the 

large amount of explicit calculations, when implemented in the python environment EI suffered 

a rounding accumulation error which over time degraded the symmetry of the 𝑃̂+ matrix. This 

required rounding the numerical precision to 10 decimal places to preserve symmetry through 

recursion.  

 

Further, there is more modern literature on EI that report corrections; these papers may have 

investigated and corrected these deficiencies and should be looked in to for future work.  

 

Additionally, a different measure of statistical consistency should be investigated for 

application to this problem, as NEES could not prove statistical consistency for any data fusion 

algorithm in this scenario.  

 

Lastly, a further line of research on this application would be to investigate the ability to tune 

the level of communication allowed in the bottom-up approach, potentially employing 

measures of robustness to the network to see how it can function in the event of additional 

disturbances.  
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Appendix A 

The implementation environment was written in Python, and consists of a collection of utility 

files of functions, which are put together in Jupyter notebooks to construct the experimental 

environments.  

 

These function files are called collaborative_bearing_estimation.py, Gamma_and_gamma.py, 

Geometry.py, and Utilities.py.  

 

The Jupyter Notebooks used for this report are called 

Monte_Carlo_Collaborative_Bearing_Estimation_Demo_3_ICI.ipynb and 

collaborative_bearing_estimation_demo_ICI.ipynb. 

 

The original contributions to the environment written for this report are all function written in 

Gamma_and_gamma.py, this file is used to calculate the values for the correction terms 𝛤 and 

𝛾 in the Ellipsoidal Intersection method. Additionally, the fuse_EI_opt function in Utilities.py 

in order to compute the Ellipsoidal Intersection method fusion using the parameters calculated.  

 

Further the functions nees, anees, anees_moving_frame, noiseFloor, and avgnoiseFloor were 

written in to collaborative_bearing_estimation.py in order to compute the NEES and noise 

floor. 

 

Lastly the functionality to keep track of and rank performance per simulation, producing the 

ranking histogram of the Monte Carlo simulation was written in to 

Monte_Carlo_Collaborative_Bearing_Estimation_Demo_3_ICI. 

 

The complete code can be found here 

https://github.com/CaitlinLovejoy/Data_Fusion_and_Collaborative_Localisation  
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