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Abstract 
 

This report is concerned with the numerical implementation of a recently proposed attitude 

estimation filter, the Geometric Approximate Minimum Energy (GAME) filter and the 

evaluation of its performance relative to the Multiplicative Extended Kalman filter (MEKF), 

which is the industry standard attitude estimation filter. Evaluation and comparison of the two 

filtering systems consisted of a MATLAB code suite which evaluated the performance of 

each filter for the same parameters. The solutions of the gain equations for each filter were 

determined using two numerical algorithms: Choi’s method and a simple Euler method. Due 

to numerical difficulties and time constraints, the GAME filter could not be implemented 

using Choi’s method. Instead, a close approximation to the GAME filter, the SO3 filter, was 

implemented using Choi’s method. The results suggest the superior performance of the 

GAME filter at high noise levels, with further research required to determine the performance 

at lower noise levels. 
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I. Glossary and Notation 

GAME Filter = Geometric Approximate Minimum Energy Filter 

EKF = Extended Kalman Filter 

MEKF = Multiplicative Extended Kalman Filter 

RDE = Riccati Differential Equation 

ODE = Ordinary Differential Equation 

ARE = Algebraic Riccati Equation 

BDF = Backwards Differentiation Formulas 

UAV = Unmanned Aerial Vehicle 

 

Backwards Difference Operator 

( )iX t  denotes the backward difference defined below for the base and recursive cases. 
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Lower Index Operator 

For 3[ , , ]Ta b c  , the lower index operator 
3(.) : (3)SO   yields the skew symmetric 

matrix 
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Symmetric Projector 

The symmetric projector s  is defined by 
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II. Aims and Contributions 
 

This report is concerned with the numerical integration of minimum energy filters and their 

implementation and simulation in MATLAB. In particular, the gain equation of a newly 

developed filter, the geometric approximate minimum-energy (GAME) filter [1], is modelled 

as a particular stiff Riccati differential matrix equation (RDE). By using a novel method 

developed by Chiu H. Choi [2] to iteratively determine the solutions of RDEs, the gain 

equation of the GAME filter is solved numerically. 

In order to determine the performance of the GAME filter relative to other filters used in 

industry applications, the process of solving the GAME filter gain equation is implemented in 

MATLAB. This involves extending a previously developed MATLAB code suite which 

simulates the GAME filtering system such that the solution of the filter’s gain equation can 

be numerically determined. In order to develop an informative simulation process, two 

different filters are simulated and each is implemented using two different methods of 

solution for the gain equation. In this way, the relative performance of each filter and method 

of implementation can be compared and evaluated. 

The two filters simulated in this project are the GAME filter and the multiplicative extended 

Kalman filter (MEKF) [3]. The GAME filter, as the focus of this project is a newly developed 

filter which is expected to show high performance results. In order to assess the performance 

of this filter for given situations, it is compared to the MEKF, the industry standard for 

filtering systems used in spacecraft and satellite applications [1]. It is expected that the results 

of these simulations will show the relatively greater performance of the GAME filter in terms 

of its error convergence at a range of noise levels and system parameters. 

For further and more comprehensive analysis, each of the two filtering systems is 

implemented using two different methods. The first method is a simple Euler method, a basic 

numerical integration technique [4]. The second method is Choi’s method, which is another 

numerical integration technique developed for this particular type of Riccati equation [2]. 

Following the implementation of these two filtering systems with each of the two gain 

equation solution algorithms, it was determined that the GAME filter outperformed the 

MEKF in terms of error convergence for a given set of simulations. This confirmed 

expectations of the GAME filter’s superiority and presents a strong and valid argument for 
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the future use of the GAME filter in unmanned aerial vehicle (UAV) applications. This report 

allows an extended assessment of the performance of the GAME filtering system for UAV 

applications, paving the way for more substantial research in this field. 

In the near future, the author of this report and the developers of the GAME filtering system, 

hope to extend this code suite in Python for the comparison of a greater number of filtering 

systems with a standardized set of variables and noise levels. It is expected that this suite will 

provide an excellent tool for the analysis and evaluation of filtering systems yet to be 

developed. 

III. Introduction 
 

Attitude estimation is the process of estimating the orientation of an object or vehicle in three 

dimensional space based on measurements such as remote observations of celestial bodies or 

reference points. Attitude estimation is important in the context of the control of vehicles 

such as spacecraft, satellites and unmanned aerial vehicles (UAV) as it is required in order for 

onboard computers to determine their optimal trajectory. Attitude estimation involves the use 

of sensors such as gyroscopes and magnetometers to measure data which is then used to 

determine the attitude of a system. The signals obtained from these sensors invariably contain 

noise and must be filtered such that the true signal can be determined. As such, the 

development of filtering systems for the purposes of attitude estimation has been an integral 

step in the advancement of aerial vehicles. 

The field of filtering for attitude estimation is a complex and diverse field which has evolved 

with ever-developing technology and applications.  The algorithms that define attitude 

filtering systems such as the Extended Kalman Filter (EKF) [5,6] are used to model and 

predict complex systems in three dimensional space and as such are difficult to solve. Due to 

the complexity of these equations, analytical solution cannot be found. In order to solve these 

filtering problems, various forms of numerical integration must be employed to determine 

accurate solutions to the equations that define the filtering systems. 

This report details the numerical implementation of Choi’s solution [2] to the stiff Riccati 

differential equation in the context of the gain equation of the Geometric Approximate 

Minimum Energy (GAME) filter, a recently developed near-optimal filtering system. The 

solution of the GAME filter is then simulated using Choi’s method and compared against a 



Conor Horgan u5022874 
 

6 
 

similar solution derived using a simple Euler method. The GAME filter is then evaluated 

against the MEKF, the industry standard filter, which is solved using Choi’s method and 

Euler’s method, respectively, as well as the same initial state variables and noise levels. 

The report is organized as follows. Section I introduces the project specific terms and 

notation used. Section II highlights the aims of the report as well as the final result. Section 

III serves as an introduction that details the significance of filtering systems in the context of 

attitude estimation and underlines the purpose and reason for research into the GAME 

filtering system and its potential applications. Section IV serves as an introduction to the field 

of numerical integration and its development with respect to Riccati equations. In addition, 

section IV also serves to contextualize numerical integration with respect to attitude 

estimation filtering. Section V details the experimental procedure used for this research and 

presents the results of the research work and discusses their significance as well as inherent 

limitations and flaws. Finally, in section VI, the conclusion of the report is given, 

highlighting the key contributions of the research presented in this report and outlining the 

future research that follows on from these discoveries. 

 

IV. Literature Survey and Theoretical Background 
 

The field of numerical integration of ordinary differential equations (ODEs) has arisen due to 

the fact that many such equations cannot be solved analytically and instead require that the 

solutions be estimated to a high degree of accuracy [7]. These sorts of ordinary differential 

equations arise in many different fields when various mathematical modelling techniques are 

employed to describe various phenomena arising in fields such as chemistry, physics, 

economics, engineering and biology [4]. Several methods have evolved for solving ODEs, 

with applications to different sorts of ODEs consisting of initial value problems (IVPs) and 

boundary value problems (BVPs) [7]. 

This literature survey will consider some of the general solution algorithms for ODEs and 

describe the basic principles in order to contextualize the concept of numerical integration. 

Following this, methods for the solution of Riccati differential equations (RDEs) will be 

evaluated and compared, leading to an explanation of the chosen algorithm used in 
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determining the solution to the gain equation of the GAME filter with which this report is 

concerned. 

Numerical Integration of ODEs 

The simplest methods for the numerical integration of ODEs are a family of methods known 

as the Euler methods. [8] These consist of the forward Euler method and the backward Euler 

method. Euler methods are used to develop a solution to the general differential equation 

 
0 0'( ) ( , ( ))                     ( )y t f t y t y t y 

 

Where y  is the function and t  represents time. 

The forward Euler method is a simple, explicit method, derived using a Taylor expansion at 

1nt 
 [4], which uses successive tangent lines to approximate the true solution of a curve. By 

rearranging the finite difference approximation, where h  is the time step 
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y t h y t
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h

 
  

and applying the Taylor expansion in a recursive way, this results in the equation for the 

forward Euler method [7]. 

 1 ( , )n n n ny y hf x y    

The implicit backward Euler method is similar to the explicit forward Euler method, except 

instead of applying the original finite difference approximation [7], one applies the analogous 
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y t y t h
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and computes the Taylor expansion centred around nt  [4], the backward Euler method is 

derived.  

  1 1 1,n n n ny y hf t y     

Whilst conceptually simple, the Euler methods are not very accurate and hence unsuitable for 

use with many different ODEs [7]. As such several other methods of solving ODEs have been 

developed [4]. Of these, the most popular single-step method is the Runge-Kutta fourth-order 

method [9], which is a generalization of the previous Euler methods that replaces the slope 
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function f with the weighted slope average in the range 
1n nx x x    [7]. The equation of the 

fourth-order Runge-Kutta method is  

  1 1 1 2 2 3 3 4 4n ny y h w k w k w k w k       

With the parameters 
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such that the formula for the Runge-Kutta agrees with a Taylor polynomial of degree four. 

The most commonly used set of parameters yield the following result [7]: 
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In addition to the usual single step methods such as the Euler methods and the Runge-Kutta 

method, multistep methods such as the Adams-Moulton method are used to solve ODEs. 

These methods use several previously calculated values of 
1, ,...n ny y 

 to calculate the value of 

1ny 
 and work to reduce the local truncation error associated with numerical integration [10]. 

While these numerical integration methods are useful in many different ODE problems, the 

magnitude of their truncation errors leads to poor performance when used with many types of 

ODEs, particular stiff ODEs. The Riccati differential equation (RDE), in particular, is a 

difficult to solve ODE, for which many relatively simple numerical integration techniques are 

unsuitable [11]. 
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The general form of the RDE [2] is 

 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )             ( )         X t Q t X t A t B t X t X t R t X t X t X t t T        

Where ( ) n nA t  , ( ) m mB t  , ( ) m nQ t  , ( ) n mR t  , ( ) m nX t   and t . This has 

been widely studied in the past 30 years [2,12,13,14,15,16,17,18,19,20] due to the numerous 

applications the equation has in fields such as optimal control and robust stabilization [11,15] 

which require numerically accurate and efficient algorithms for solving stiff RDEs. This 

extensive study of the solution of Riccati equations has led to five main classes of methods 

for solving such equations [21,2]. The five approaches considered here are vectorization, 

linearization, Chandrasekhar’s method, superposition and matrix methods. 

Vectorization 

The first approach considered for the solution of differential Riccati equations is the 

vectorization approach which consists of unrolling the matrices in the RDE into vectors and 

then integrating the resulting system of 
2n differential equations [2,21]. This approach, whilst 

relatively simple when compared to other methods of solution, suffers from the fact that it 

requires a nonlinear system with 
2n  unknowns to be solved at each time step. This means that 

if the Riccati equation is stiff, the cost of applying standard backwards differentiation 

formulas (BDF), both in terms of time and space, is very high [2]. As such, given the size, 

complexity and stiffness of the Riccati equation considered for the solution of the GAME 

filter, the vectorization approach is unsuitable for this application. 

Linearization 

The linearization class of methods is based on the transformation of a matrix quadratic 

equation into a system of linear first-order differential equations. One must consider the 

above differential Riccati equation with a different initial condition. 

 
1

0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )            ( )X t Q t X t A t B t X t X t R t X t X t V U       

The transformation of the quadratic RDE into a system of linear first-order matrix differential 

equations yields [13] 
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where ( ) n nU t   and  ( ) n nV t   for some invertible 0

n nU   and 0

n nV  . Given that 

the solution to the Riccati equation exists, then the solution to the above equation gives [13] 

 1

0( ) ( ) ( )                X t V t U t t t T    

While this solution method works well for some variations of the Riccati equations and 

several solution algorithms are based on this general form of solution, the algorithms do not 

handle the differential equations well when they are stiff. This results in algorithms that are 

not very accurate for stiff RDEs and hence this class of methods is unsuitable for applications 

to the GAME filter, for which the equation that defines the gain of the filter is stiff. 

Chandrasekhar’s Method 

A third class of methods, of which the most well-known is the Chandrasekhar method, 

involves the transformation of RDEs into two coupled systems of nonlinear differential 

equations [2]. This class of methods is most applicable to time-invariant RDEs [21] and is 

most efficient when the number of controllers and observers is small [2]. The two coupled 

systems of equations that together make up the Chandrasekhar system are [14,21,2]  

 
  0

0
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,                           (0)
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where ( ) , ( )T TQ t CC R t GG  . Through the construction of the Chandrasekhar system, the 

solution of the RDE can be obtained. While this method has been adapted for linear, time-

varying distributed systems [22], the method is somewhat unstable due to issues relating to 

the numerical integration [21]. As such, this method too, is unsuitable for applications to the 

solution of the GAME filter gain equation. 

Superposition Methods 

In previous work by Harnard [23], a set of superposition principles governing matrix Riccati 

equations was derived. Based on these superposition principles, another class of methods for 

the solution of RDEs has been developed [18,20]. According to Choi, the general solution of 
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an RDE can be expressed as a nonlinear combination of at most five independent solutions 

[2]. In order for these methods to work, they require integration of the RDE several times 

with different initial conditions before the superposition formulas, which are themselves 

computationally complex, can be applied [21]. Given the high computational complexity 

associated with these methods, they too are unsuitable for application to the GAME filter.  

Matrix Methods 

Relatively recently, the class of matrix methods developed for the solution of differential 

Riccati equations has been studied [2,21,24]. These RDE solution methods use the standard 

ODE numerical algorithms detailed earlier in this paper and apply them to RDEs using 

matrix-valued algorithms [21]. Of these matrix based methods, the most relevant for 

application to the gain equation of the GAME filter is Choi’s method. This solution algorithm 

employs implicit backward differentiation formulas (BDFs) to yield a solution to the RDE 

through the transformation of the RDE into an algebraic Riccati equation (ARE) which can 

be solved in each time step [2]. Such implicit methods are well-suited to solving stiff 

equations such as the GAME filter gain equation which is the focus of this paper. As Choi’s 

method is the chosen algorithm for this particular research, its basis and structure will be 

detailed in the following paragraphs. 

Choi’s Method 

As described previously, Choi’s method [2] uses matrix-valued algorithms based on standard 

numerical algorithms for ODEs and applies them to RDEs. Choi considers the matrix Riccati 

differential equation of the form 

 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                ( )X t Q t X t A t B t X t X t R t X t X t X      

where ( ) n nA t  , ( ) m mB t  , ( ) m nQ t  , ( ) n mR t  , ( ) m nX t   and t . By using 

the assumption that 0t t T  , Choi constructs a Newton-backward difference interpolating 

polynomial for a typical entry ijx , of ( )X t . In doing so, he derives another equation to 

approximate the original RDE. 
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Using this equation, and expanding the finite difference operators, Choi develops the 

following algebraic Riccati equation (ARE). 

 
1, 1 1, 1, 1 1 1, 1 0k r k k r k r k k k r kQ X A B X X R X            

where 
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By considering the ARE in the given time interval, Choi then uses Newton’s method to 

develop a good estimate of the unknown solution 
1kX 
. Choi shows that if at the ith iteration, 

the solution 
1kX 
 is given by 

 1 1,( ) 1k k i kX X X     

where   1( )k iX   is the ith approximant to 
1kX 
 and 

1kX 
 is the correction matrix, then the 

ARE can be rearranged by neglecting higher order terms and eliminating 
1kX 
 resulting in 

the equation. 

    1,( 1) 1, 1, 1( ) 1, 1( ) 1, 1,( 1) 1, 1( ) 1, 1( ) 0k i k r k r k i k r k i k r k i k r k i k r k iX A R X B X R X Q X R X                    

This equation takes the form of the standard Sylvester equation 0AX XB C   . By solving 

this Sylvester equation at each time step, the new approximant 1,( 1)k iX    is obtained and thus 

the original RDE is numerically solved. In order to iteratively solve this Sylvester equation at 

each time step, Choi employs an algorithm known as the Hessenburg-Schur method [25]. 

This algorithm is similar to the Bartels-Stewart algorithm [26], which was previously the 

algorithm of choice for Sylvester equations. The significant difference between these two 

algorithms is in the definition of the matrices used to compute transformations of the matrices 

A, B and C. This difference results in the Hessenburg-Schur method being between 30 and 70 

percent faster than the Bartels-Stewart algorithm [25].  
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Figure 1- A Schematic of Choi's Algorithm for the solution of Riccati equations [2] 

Choi’s method represents a fast and efficient method of solving a Riccati differential 

equation. It is suitable for applications involving stiff Riccati equations and as such is a 

suitable algorithm to employ when solving the gain equation of the GAME filter. A 

schematic overview of Choi’s method is shown in the figure 1. 

The GAME Filter 

In order to contextualize the development and solution of the Riccati differential equation, 

this section of the literature survey details the development of the GAME filter, and in 

particular, the gain equation that takes the form of a Riccati equation. 

The GAME filter is a recently developed filter, having been derived in the last four years 

[27]. The filter has been developed in a deterministic framework and aims to have a high 

level of performance relative to the MEKF, the industry standard filter [1]. The GAME filter 

has been developed following significant recent work in the field of geometric non-linear 

observers [28,29,30,31] which present many advantages over the traditional EKF derived 

filters. The implementation of stochastic methods such as the EKF derivatives presents many 

difficulties because of their linearization approach which does not respect the SO(3) 

geometric structure of the state space, a problem not faced by the geometric observers [1,32]. 

The attitude kinematics and measurements for the GAME filter are as follows [27] 
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Where X is the attitude rotation matrix and   is the angular velocity. The signal u  denotes 

the body-fixed frame measured angular velocity input and the signal v  denotes the input 

measurement error. The vectors 
iy  are known reference vectors with 

iy  as their 

measurements and 
iw  as the measurement errors. The matrices B and D are known 

coefficients for the measurement errors with their associated metrics : TQ BB  and 

: T

i i iR D D . 

The equation that defines the GAME filter, as shown in [27], is given by 

 ˆ ˆ ˆ( ) ,            (0)X X u Pl X I    

where the innovation term l is 

      1 1ˆ ˆ ˆ ˆ 2vex
T

i i i i a i i i i

i i

l R y y y y y y R        

and ˆˆ : Ty X y . 

The gain equation of the filter, the Riccati equation that is the basis of this report, is given by 
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The variables in this gain equation are defined as follows 
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As previously stated, the gain equation of the GAME filter shown above is a Riccati 

differential equation. This therefore requires solution by a suitable algorithm, which for the 

purposes of this research, is Choi’s method. The findings of this report discuss the 

implementation of this equation and its solution using Choi’s method. The results are 

evaluated and compared to the MEKF gain equation implementation. This is detailed in the 

results and discussion section below. 
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V. Results and Discussion 

The purpose of this report is to implement Choi’s method of numerically solving a Riccati 

differential equation for the solution of the gain equation of the GAME filter and compare 

this to a solution of the GAME filter gain equation using a simple Euler method. In addition, 

to evaluate the performance of the GAME filter, the same implementations will be used to 

solve the gain equation of the MEKF and compare the performance of each filter in terms of 

their error convergence. 

The gain equation of the GAME filter, as stated above, is given by 

   2sP Q P u Pl PSP PAP


      

The gain filter of the MEKF has not been formally discussed in this report but has been 

shown in [32] to be 

 
1 1

2 2
P Q P u u P PSP      

with the same parameters as for the GAME filter. Both the gain equation for the GAME filter 

and the gain equation for the MEKF are Riccati differential equations of the form  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )X t Q t X t A t B t X t X t R t X t     

This allows both filter gain equations to be solved and compared using Choi’s method 

through a MATLAB implementation. 

MATLAB Implementation 

In order to implement Choi’s method for both the MEKF and the GAME filter using 

MATLAB, a code suite had to first be generated to simulate the measurements that are used 

by the filters as well as the noise levels of those measurements. An implementation was also 

required to define the filter equations which in turn rely on the gain equation to appropriately 

filter the measurement data. The initial implementation of this code suite was completed by 

Mohammad Zamani, a co-developer of the GAME filter [1,27]. 

For the purposes of this report, the code suite was extended by the author, to simulate each 

filter in an equivalent manner suitable for comparison and evaluation. The following section 

of the report details the important aspects of the implementation. 



Conor Horgan u5022874 
 

16 
 

The MATLAB code suite inherited from previous work contained the variables and functions 

required to implement the GAME filter, solving the gain equation using the simple Euler 

method. The first part of extending this code required duplicating the initialization of 

variables, a variable for each filter type and for each separate implementation. This resulted 

in four variable names for each parameter named as follows. 

q_B_SO3; 

q_B_MEKF; 

q_C_SO3; 

q_C_MEKF; 

The ‘B’ name variable refers to the implementation of the particular filter using the Euler 

method whereas the ‘C’ name variable refers to the implementation using Choi’s method of 

implementation for the gain equation. The SO3 parameter indicates the GAME filter (which 

is formulated directly on the special orthogonal group SO(3)) and the MEKF parameter 

indicates the MEKF filter. 

Using this naming system throughout the MATLAB code suite, four independent sets of 

parameters were developed that are exactly equal in terms of initial state measurements and 

noise levels. This system, while increasing the computational time and complexity, allowed 

for each filter to be independently tested, ensuring that no one variable is having an effect on 

another filter. This also allows for a fair evaluation and comparison of the different filters and 

their implementation methods. 

The MATLAB code suite is arranged in cell mode, to allow for the efficient computation of 

blocks of code. This helps to reduce the computational time, as the initialization values can 

be pre-calculated. Initial variables such as the time-step, state X, initial state angle, angle of 

rotation, process noise, and measurement noise were initialized and defined for each of the 

different filters and implementations.  

The next, significant code block is the time loop in which the filter equations and the gain 

equations, including all relevant parameters, are calculated. The calculation of the filter 

equations and the filter gain equations is a complex map, which relies on the calculation of 

each parameter in the previous time step. Figure 2 below details the calculations and the 

dependencies of each parameter on other parameters in the time loop. 
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Figure 2- Parameter Dependency Map of GAME Filter Gain Equation 

In order to calculate the values of each parameter for each time step, several user-defined 

functions needed to be implemented. These user-defined functions include 

LowerIndexOperator which calculates the lower index operator of a column vector as defined 

in the glossary and notation section and SymmetricProjector which similarly calculates the 

symmetric projection of a matrix as defined in the glossary and notation section. In addition, 

several user-defined functions were included in the code suite, which were used to calculate 

transformations of variables.  

The extension of the MATLAB code suite to include an implementation of Choi’s algorithm 

for the solution of Riccati differential equations required several functions to be written to 

compute various parameters. The functions Choi_ABar, Choi_BBar, Choi_QBar and 

Choi_Rbar were written to calculate the variables 
1,k rA 

, 
1,k rB 

, 
1,k rQ 

 and 
1,k rR 

 as defined in 

the ‘Choi’s Method’ subsection of section IV of this report. As an example, the function 

Choi_QBar is shown in figure 3below. The full code suit is reproduced in Appendix A. 
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Figure 3- The User-Defined MATLAB Function Choi_QBar 

Using these functions at each time step, one derives the algebraic Riccati equation outlined in 

Choi’s paper. 

 
1, 1 1, 1, 1 1 1, 1 0k r k k r k r k k k r kQ X A B X X R X            

Choi’s solution, which is outlined in [2], next uses Newton’s method to derive a Sylvester 

equation based on the ARE above. The process of using Newton’s method and the 

approximation made to arrive at the Sylvester equation are outlined in Choi’s paper. In 

addition Choi presents the Sylvester equation for the reader. As such, in the implementation 

of Choi’s Method in MATLAB, only the Sylvester equation derived from the ARE must be 

solved. In order to solve this equation, a user-defined MATLAB function 

Choi_SylvesterSolver, is used. This function, shown below, uses a MATLAB defined 

function sylv to solve the Sylvester equation. This is one of MATLAB’s two Sylvester 

equation solver functions, the other being lyap. The function sylv was chosen because it 

implements the Hessenberg-Schur algorithm which Choi also employs, rather than the 

Bartels-Stewart algorithm, which is used in the lyap function. 
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Figure 4- User-Defined MATLAB Function Choi_SylvesterSolver 

This user-defined MATLAB function is then called in the time-loop of the MATLAB code 

suite to solver the gain equations of the MEKF and the GAME filter. The MATLAB 

implementation of each of the gain equations using the two different solution algorithms is 

shown in the figure below. 

 

Figure 5- MATLAB Implementation of Filter Gain Equations 

Results 

The final implementation of the filter gain equations required the designation of two 

important parameters. Firstly the parameter r, as defined in Choi’s paper, represents the 

number of iterations of the backwards difference operator used in determining the ARE. For 

the purposes of testing, a value of 6 was initially chosen, but it was later determined that a 
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value between 1 and 3 was best. The second parameter that needed to be defined was the 

number of iterations used for Newton’s method. The variable name given to this parameter 

was Choi_NewtonIterations. For much of the testing phase, this value remained at 5. 

For initial implementations, the noise levels for both the process noise and the measurement 

noise were set to high levels. This is because a filtering system works better when there is a 

greater amount of noise as compared with a system that has very little noise because the 

equations that define the filter can more easily determine what is relevant and what is not. 

The equations that define filtering systems are not designed for the case where the input 

signal has no noise, and as such, for signals with low levels of noise, implementing a filtering 

system is difficult. High levels of noise are indicative of the noise levels on UAV systems 

whereas low noise levels are reflective of the noise levels in spacecraft and aerospace 

applications. The initial value of the process noise was pi/4 and the initial value for the 

measurement noise was pi/3. These values are reflective of UAV noise levels as determined 

for simulation purposes in [1]. 

Before detailing the results of the implementations of each of these filtering systems in 

MATLAB, a note must be made about the GAME filter and the implementation of its gain 

equation using Choi’s method. The symmetric projector term in the equation 

   2s P u Pl


  

introduces a complex term which has both quadratic and linear terms in one. For the solution 

of this equation using Choi’s method to be accurate, this term must be separated into its 

constituent quadratic and linear parts in order to assemble a Riccati equation analogous to the 

RDE considered by Choi’s method. As previously indicated, this complex disassembly of the 

term has not been included in this report due to time constraints and as such the 

implementation of the GAME filter using Choi’s method is not possible. In its place, a filter 

that closely approximates the GAME filter is implemented using Choi’s method for the 

purposes of comparison with the MEKF. This filter is termed the SO3 filter due to it 

formulation on the special orthogonal group SO(3). 

Instead, to limit the scope of the report, the analysis focuses on the comparison between the 

error convergence of both MEKF and the GAME filter, when implemented using the simple 

Euler method. In addition, the performances of Euler’s method and Choi’s method are 
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compared in terms of the MEKF, in order to establish the superiority of one method over 

another in terms of the error convergence of the filter. 

For the purposes of implementation of the two filtering systems using Choi’s method, the 

GAME filter is modelled as an MEKF with an adjusted quadratic term. This provides a 

reasonable estimate of what the derived gain equation of the GAME filter might be and is 

used purely for visualization purposes. 

The initial evaluation of the two filtering systems had the following parameters. The results 

of this simulation are shown below. 

r = 1 

Choi_NewtonIterations = 5 

Process Noise = pi/4 

Measurement Noise = pi/3 

The results of the MATLAB implementation are displayed in a graphical form, which allows 

for a convenient method of analysis. There are two MATLAB plots generated for each 

simulation, with each containing six subplots. The first plot details the results of the 

simulation for the MEKF using both Choi’s method and the simple Euler method. The second 

plot details the results of the GAME filter using both Choi’s method and the simple Euler 

method. There are three subplots for each method of solution. The first shows the rotation 

angle of the current state and the second shows the rotation angle of the filter estimate. These 

two subplots together give an indication of the level of accuracy of the filter in determining 

the rotation angle of the system state. The third and most important subplot depicts the 

estimation error comparison between the previous two subplots, that is, it looks at the 

difference in the actual rotation angle and the rotation angle estimate of the filter. 

Figure 6 is significant for comparing the effectiveness of Choi’s method for solving the gain 

equation of the MEKF as compared to the simple Euler method. As the parameters used for 

each implementation are the same, the only difference between the two methods is the 

method of solving the gain equation of the filter. At the high level of noise used for this 

simulation, there is a significant difference in the performance of the MEKF using the two 

different algorithms. The graphs of the error convergence show a much faster error 

convergence for the MEKF implementing Choi’s algorithm than for the MEKF which 

implements the simple Euler method. 
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Figure 6- Graphical View of Results of MEKF Simulation 
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Figure 7- Graphical View of Results of GAME Filter Simulation 
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While it was anticipated that Choi’s implementation would result in a slightly faster error 

convergence compared to an implementation employing the simple Euler method, the results 

show that Choi’s algorithm far outperforms the simple Euler algorithm. This is an unexpected 

result given the nature of each of the two algorithms. Both algorithms are methods of 

numerical integration that are used to approximate the solution of the gain equation at each 

time step. The fact that each algorithm quickly converges to a level that is close to zero 

indicates that the algorithm is working as expected and is returning an accurate 

approximation. 

Given the much greater performance of Choi’s algorithm, this could suggest that there is an 

unknown aspect of the particular variables in the MEKF gain equation that results in Choi’s 

method being far superior to the Euler method. Alternatively, this unusual degree of 

performance could suggest an error in the implementation of Choi’s method as will be further 

discussed later in the report. 

An alternative theory that describes the unexpected results obtained from the simulation of 

the two filtering systems relates to the nature of the numerical solution of Choi’s method. As 

detailed throughout this report, the purpose of a filtering equation is to model and predict the 

state equation of the system and the purpose of the gain equation is to in turn determine the 

solution to the filtering equation. As such, one can consider two levels of numerical 

estimation that are used to determine the state of the system. A numerical algorithm can be 

expected to oscillate above and below the true solution of an equation, without ever perfectly 

fitting the equation. The significant superior performance of Choi’s method relative to the 

Euler method could suggest that through the iteration process, as the filter equation pushes 

the filter equation closer to the true state equation, the movement of the filter equation 

towards the state equation accumulates. This could explain the much faster convergence of 

the filtering equations when implemented using Choi’s method and requires further analysis 

to determine the true answer.  

The next interesting result gained from the initial simulation is the comparison between the 

MEKF performance and the GAME filter performance. While these two filters cannot be 

directly compared based on their implementation using Choi’s algorithm as described 

previously, both filters can be correctly implemented and compared at each a range of noise 

levels. 
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The simulation results for the error convergence of each of the two filters using the Euler 

method show a clear superiority of the GAME filter over the MEKF. The gradient of the 

initial part of the graph is far steeper for the GAME filter than for the MEKF which indicates 

its much faster error convergence. This is an expected and encouraging result that suggests 

the greater performance of the GAME filter over the MEKF for the given parameters and 

noise levels. This result agrees with the results of analysis in previous literature [1] which 

states that “the proposed filter [GAME] outperforms the industry standard filter, the MEKF, 

in simulations by showing faster error convergence.” It is also suggested that this improved 

performance is due to the additional terms in the Riccati equation which provide more 

information about the system being measured, which in turn improves the accuracy and error 

convergence of the method of implementation. 

While the performance of the GAME filter under these initial parameters has been shown by 

the simulation to be greater than that of the MEKF, the parameters chosen were relatively 

‘easy’.  This means that the high level of noise ensures that the filtering systems will operate 

as expected. In order to prove the superior performance of the GAME filter with respect to 

the MEKF, both must be tested with parameters at different initial states and different noise 

levels. 

The determination of a noise level designed to vigorously test the performance of the GAME 

filter is garnered from [33]. The parameters chosen in this paper were used to evaluate the 

performance of five different major filters in the field of attitude estimation at very low levels 

of noise. The results of this analysis had shown the lack of performance of each of the filter 

types as well as a good level of performance at slightly higher noise levels. As such, this low 

level of noise is employed to determine the high level of performance of the SO3 filter, which 

is a close approximation of the GAME filter. 

The parameters determined from the literature for use in the testing of the filtering system 

are. 

Process Noise = 
72.6875 10  

Measurement Noise = /180pi  

The graphical results for the MEKF, the GAME filter and the SO3 filter using the above 

values for the noise level parameters as well as values of r = 1 and Choi_NewtonIterations = 



Conor Horgan u5022874 
 

26 
 

5, are shown in figures 8 and 9 below. As expected these parameter values have resulted in 

some interesting results. 

The performance of the MEKF is clearly shown to be very poor for the given low noise level 

parameters, as determined through simulation in previous literature [33]. Using the simple 

Euler implementation, it can be seen that the filter equation ‘blew up’. This occurred because 

the Euler method used to numerically solve for the gain of the filter diverged very quickly 

from the true value due to the inaccuracy of the method at these parameters. This lack of 

performance is entirely expected given the previous simulation results of the MEKF at these 

levels as well as the unsuitability of the Euler method for determining the solution of a 

Riccati differential equation. 

The MEKF results using Choi’s implementation are themselves quite informative about the 

success of the method of implementation. At the beginning of the simulation, there is a clear 

divergence between the filter estimate and the true state. The jagged graph shows the high 

inaccuracy and oscillation of the filtering estimates around a value of pi. However, after 6000 

time units, the filter eventually converges on the true state of the system. This is shown by the 

graph of the filter estimate rotation angle in the second subplot beginning to correlate with 

the rotation angle of the state. In the third subplot too, the graph begins to converge towards 

zero. 

There are many interesting aspects of these results that must be discussed. Firstly, part of the 

simulation process involves the introduction of random variables to simulate noise. This 

results in different simulation results with every test. In previous simulations using Choi’s 

method for the MEKF, as the filter eventually converges to zero, it ‘blows up’ once more. 

This is indicative of possibly two scenarios. Firstly, the MEKF, as shown by previous 

simulations, is unable to perform at these low levels of noise. If this were the case, it would 

suggest the high performance of the Choi algorithm despite the low levels of noise and the 

suboptimal filtering system. Alternatively, these results suggest an issue in the 

implementation of Choi’s method. The second possibility arises due to the oscillations of the 

graph of error convergence around pi, suggesting that the solution of the Riccati equation is 

wrapping around on itself due to the parameters chosen in the implementation of Choi’s 

method. 

The implementation of the GAME filter shows similar results to that of the MEKF. Using the 

Euler method implementation, the filter also ‘blows up’ due to the divergence of the filter 
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estimate from the true state. Also similar to the MEKF, the implementation of the GAME 

filter using Choi’s method also shows eventual convergence to some degree. However, as 

previously stated, the implementation of the GAME filter using Choi’s method is not a true 

implementation of the GAME filter due to some mathematical complexities and must be 

further analysed before results can be obtained. 
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Figure 8- Graphical View of Results of MEKF Simulation with Low Noise Levels 
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Figure 9- Graphical View of Results of GAME Filter and SO3 Filter with Low Noise Levels
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Discussion 

The analysis of the filtering systems considered in this report present some interesting results. 

While much of the analysis has promise in that it appears to agree with expected results, there are 

also many factors which must be further analysed in order to make comprehensive conclusions 

as to the nature of the filtering systems and their comparative performances. 

The performance of Choi’s implementation has been shown to be significantly better in giving an 

accurate numerical integration of the filter gain equations for both the MEKF and the GAME 

filter than the simple Euler method implementation at high noise levels. While this result can be 

stated conclusively for the MEKF at high noise level parameters, due to the difficulties 

implementing this method for the GAME filter, the same conclusion cannot be reached for the 

implementation at low noise levels. Instead the performance of the SO3 filter was compared to 

the performance of the MEKF at low noise levels using Choi’s implementation. However, due to 

issues with the implementation of Choi’s method, results are inconclusive. For a more 

comprehensive analysis of the performance of Choi’s implementation, the gain equation for the 

GAME filter must be rearranged into a suitable form for Choi’s method and the simulation 

results analysed. 

The performance analysis and comparison of the MEKF and the GAME filter at the high noise 

levels using the simple Euler implementation showed that the GAME filter far outperformed the 

MEKF, which agreed with the results of previous research. However, results at lower noise 

levels are somewhat inconclusive. Testing at intermediate noise levels, that is, noise levels 

between the designated high and low values, showed faster error convergence for the MEKF 

than the GAME filter in some cases. This result suggests some limitation in the performance of 

Choi’s implementation that could be linked to the chosen parameter values for r and 

Choi_NewtonIterations. Further analysis is required to determine if changes in the value of the 

parameters can extract a better performance from the GAME filter. An alternative explanation 

lies in the actual MATLAB implementation of the filter or Choi’s algorithm. Before and 

conclusions can be made, the source of this error must be determined. 

The results of the analysis completed to date suggest two significant issues in the implementation 

of Choi’s method for solving the gain equations of the two filtering systems. The first potential 

issue is an incorrect implementation of the algorithm in MATLAB. Implementation of these 
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systems requires a number of complex parameters to be defined and calculated at each time step. 

The implementation of the filtering systems in particular, is quite sensitive, with the assigned 

sign values of particular variables determining the success or failure of the MATLAB 

implementation. This highlights the sensitivity of the methods being implemented and the 

potential for small implementation errors which could potential explain the reduced performance 

of the GAME filter and of Choi’s method at lower noise levels. 

A second significant problem the results have unearthed is the possibility that the method of 

solving the Riccati differential equations could be extremely sensitive. This observation has 

arisen due to the large variations in filter performance with relatively small changes in the noise 

level parameters discovered through the testing process. This could potentially have significant 

drawbacks for future implementation of either Choi’s method or the GAME filter given the 

sensitivity could lie in either process. This is an extremely undesirable characteristic of a filtering 

system which experiences a range of noises levels and measurement data in applications. 

In addition to the issues relating to the implementation of the GAME filter, further research is 

required in order to determine the performance of the GAME filter in comparison to other 

commonly used filters in industry applications. Such research would require the implementation 

of other filters using the same parameters as the GAME filter in order to assess its relative 

performance. 

Regardless of the source of error in the implementation of the GAME filtering system in the 

MATLAB simulation, a great deal of further analysis is required before any significant 

conclusions as to the performance of either Choi’s method or the GAME filter can be drawn. 

 

VI. Conclusion 

The purpose of this report has been to analyse, evaluate and compare two filtering systems, the 

GAME filter and the MEKF. In order to complete this analysis, each filtering system was 

implemented using two numerical integration techniques, a simple Euler method and Choi’s 

method. The implementation of each system was completed in MATLAB, with common initial 

parameters used to comparatively measure the performance of each.  



Conor Horgan u5022874 
 

32 
 

Initial results have indicated the greater performance of the GAME filter over the MEKF at high 

noise levels, as well as the greater performance of Choi’s method over the simple Euler method 

at high noise levels. However, due to difficulties in the implementation of Choi’s method for the 

GAME filter and unexpected sensitivities, results for each system at low noise levels are 

inconclusive. 

The results do however indicate the likelihood of the GAME filter outperforming the MEKF at 

lower noise levels if the implementation of the system is correctly completed. This is because of 

the trend towards convergence of the filtering equations before they appear to ‘blow up’ upon 

reaching a level that is close to zero. This activity suggests an error in implementation that can 

potentially be improved. 

The results of this report do show significant promise for the future implementation of the 

GAME filtering system and UAV systems given its greater performance in terms of error 

convergence than the industry standard filter, the MEKF [1]. If the implementation of the GAME 

filter is corrected, it is likely that it will be implemented on future industry applications and thus 

could play a significant role in the future filtering for attitude estimation of autonomous aerial 

vehicle systems. 

It is clear that while positive results can be taken from the findings of this report, much works 

needs to be done before any concrete conclusions can be drawn. Firstly, the source of error in the 

implementation of the GAME filtering system using Choi’s method must be determined. This 

will require significant testing and the mathematical formulas evaluated and ensuring that the 

results produced are as expected. In addition, further research into the effect of the iteration 

parameters on the performance of the filtering implementation must be conducted. 

Once the implementation of the GAME filtering system and Choi’s method is perfected, research 

must be conducted into the performance of both the MEKF and the GAME filter at low noise 

levels using Choi’s method. This research will give a better picture of the relative performance of 

the GAME filter and the MEKF as well as the feasibility of an implementation using Choi’s 

method. Depending on the results of this analysis, further research could then be conducted 

regarding the performance of the GAME filter and in particular, its performance compared to 

other filtering systems commonly used in industry applications. 
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Appendix A 

% Author: Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: Choi_ABar.m 
% Date: 29/09/2012 

  
% The mathematics and formulas detailed in this script are based on  
% derivations from the following paper: 

  
% Title:     Efficient Matrix-Valued Algorithms for Solving Stiff Riccati 
% Differential Equations 
% Authors:   Chiu H. Choi, Alan J. Laub 
% Journal:   IEEE Transactions on Automatic Control, vol.35, no.7, 1990   

  

  
% This function comptues the ABar value, as defined in equation 3.9 of  
% Chui H. Choi's paper. The ABar value is calculated as part of the process 
% of transforming the Riccati Differential Equation (RDE) (eq 1.1) into an 
% Algebraic Riccati Equation (ARE) (eq 3.9). 

  
% Input Variables: 
% A: The matrix A(t) of the RDE defined in eq 3.1 
% h: The step size of the RDE defined in eq 3.2 
% r: The number of iterations used for the backwards difference operator to 
% construct the ARE in eq 3.9 

  
% Output Variable: 
% ABar: The matrix ABar of the ARE as defined in eq 3.9 

  
% Function Description: 
% This function computes a summation from 1 to the value of r and ceates a 
% matrix of this value by multiplying it by the identity matrix of correct 
% size. This matrix is then added to the original matrix A(t) multiplied by 
% the step size, h. The returned value is ABar. 

  
function ABar = Choi_ABar(A, h, r) 
sumA = 0; 
for i = 1:r 
    sumA = sumA + 1/i; 
end 
ABar = (-1 * (0.5 * sumA) * eye(3)) + (h * A); 
end 
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% Author: Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: Choi_BBar.m 
% Date: 29/09/2012 

  
% The mathematics and formulas detailed in this script are based on  
% derivations from the following paper: 

  
% Title:     Efficient Matrix-Valued Algorithms for Solving Stiff Riccati 
% Differential Equations 
% Authors:   Chiu H. Choi, Alan J. Laub 
% Journal:   IEEE Transactions on Automatic Control, vol.35, no.7, 1990   

  

  
% This function comptues the BBar value, as defined in equation 3.9 of  
% Chui H. Choi's paper. The BBar value is calculated as part of the process 
% of transforming the Riccati Differential Equation (RDE) (eq 1.1) into an 
% Algebraic Riccati Equation (ARE) (eq 3.9). 

  
% Input Variables: 
% B: The matrix B(t) of the RDE defined in eq 3.1 
% h: The step size of the RDE defined in eq 3.2 
% r: The number of iterations used for the backwards difference operator to 
% construct the ARE in eq 3.9 

  
% Output Variable: 
% BBar: The matrix BBar of the ARE as defined in eq 3.9 

  
% Function Description: 
% This function computes a summation from 1 to the value of r and ceates a 
% matrix of this value by multiplying it by the identity matrix of correct 
% size. This matrix is then added to the original matrix B(t) multiplied by 
% the step size, h. The returned value is BBar. 

  
function BBar = Choi_BBar(B, h, r) 
sumB = 0; 
for i = 1:r 
    sumB = sumB + 1/i; 
end 
BBar = (-1 * (0.5 * sumB) * eye(3)) + (h * B); 
end 
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% Author: Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: Choi_QBar.m 
% Date: 29/09/2012 

  
% The mathematics and formulas detailed in this script are based on  
% derivations from the following paper: 

  
% Title:     Efficient Matrix-Valued Algorithms for Solving Stiff Riccati 
% Differential Equations 
% Authors:   Chiu H. Choi, Alan J. Laub 
% Journal:   IEEE Transactions on Automatic Control, vol.35, no.7, 1990   

  

  
% This function comptues the QBar value, as defined in equation 3.9 of  
% Chui H. Choi's paper. The QBar value is calculated as part of the process 
% of transforming the Riccati Differential Equation (RDE) (eq 1.1) into an 
% Algebraic Riccati Equation (ARE) (eq 3.9). 

  
% Input Variables: 
% Q: The matrix Q(t) of the RDE defined in eq 3.1 
% h: The step size of the RDE defined in eq 3.2 
% r: The number of iterations used for the backwards difference operator to 
% construct the ARE in eq 3.9 

  
% Output Variable: 
% QBar: The matrix QBar of the ARE as defined in eq 3.9 

  
% Function Description: 
% This function computes a summation from 1 to the value of r which is 
% then multiplied by the binomial coefficient of (r,i). The resulting value 
% is then multiplied by a previously calculated value of the matrix X(t) 
% computed according to the index, i. The resultant matrix is added to the 
% Q(t) matrix multiplied by the time step, h. The resulting value is QBar. 

  
function QBar = Choi_QBar(Q, h, X, r) 
sumQ = 0; 
for i = 1:r 
    if ((size(X,3) - i + 1) <1) 
        sumQ = sumQ + (((-1)^(i-1))/i) * nchoosek(r,i) * X(:,:,1); 
    else         
    sumQ = sumQ + (((-1)^(i-1))/i) * nchoosek(r,i) * X(:,:,end-i+1); 
    end 
end 
QBar = sumQ + (h * Q); 
end 
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% Author: Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: Choi_RBar.m 
% Date: 29/09/2012 

  
% The mathematics and formulas detailed in this script are based on  
% derivations from the following paper: 

  
% Title:     Efficient Matrix-Valued Algorithms for Solving Stiff Riccati 
% Differential Equations 
% Authors:   Chiu H. Choi, Alan J. Laub 
% Journal:   IEEE Transactions on Automatic Control, vol.35, no.7, 1990   

  

  
% This function comptues the RBar value, as defined in equation 3.9 of  
% Chui H. Choi's paper. The RBar value is calculated as part of the process 
% of transforming the Riccati Differential Equation (RDE) (eq 1.1) into an 
% Algebraic Riccati Equation (ARE) (eq 3.9). 

  
% Input Variables: 
% R: The matrix R(t) of the RDE defined in eq 3.1 
% h: The step size of the RDE defined in eq 3.2 

  
% Output Variable: 
% RBar: The matrix RBar of the ARE as defined in eq 3.9 

  
% Function Description: 
% This function multiplies the matrix R(t) by the step size, h. The 
% returned value is RBar. 

  
function RBar = Choi_RBar(R, h) 
RBar = h*R; 
end 
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% Author: Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: Choi_SylvesterSolver.m 
% Date: 29/09/2012 

  
% The mathematics and formulas detailed in this script are based on  
% derivations from the following paper: 

  
% Title:     Efficient Matrix-Valued Algorithms for Solving Stiff Riccati 
% Differential Equations 
% Authors:   Chiu H. Choi, Alan J. Laub 
% Journal:   IEEE Transactions on Automatic Control, vol.35, no.7, 1990   

  

  
% This function finds the solution the equation AX + XB = C using the  
% Hessenberg-Schur method for solving Sylvester equations, where the 
% values of A,B and C are derived in Choi's paper.  

  
% Input Variables: 
% Q: The matrix Q(t) of the RDE defined in eq 3.1 
% A: The matrix A(t) of the RDE defined in eq 3.1 
% B: The matrix B(t) of the RDE defined in eq 3.1 
% R: The matrix R(t) of the RDE defined in eq 3.1 
% h: The step size of the RDE defined in eq 3.2 
% X: The matrix X(t) of the RDE defined in eq 3.1 
% r: The number of iterations used for the backwards difference operator to 
% construct the ARE in eq 3.9 
% Choi_NewtonIterations: The number of iterations used in solving the 
% Sylvester equation ate each time step 

  
% Output Variable: 
% QBar: The matrix QBar of the ARE as defined in eq 3.9 

  
% Function Description: 
% This function determines the value of the matrices A,B and C used in the 
% Sylvester equation as derived in Choi's paper. The Sylvester equation is 
% the solved using the MATLAB function 'sylv' which solves the Sylevester 
% equation using the Hessenberg-Schur method. This returns the value of X 
% for the next time step. 

  
function Y = Choi_SylvesterSolver(Q, A, B, R, h, X, r, Choi_NewtonIterations) 

  
for i = 0:Choi_NewtonIterations 

     
    A_Sylvester = Choi_BBar(B,h,r) - (X * Choi_RBar(R,h)); 
    B_Sylvester = Choi_ABar(A,h,r) - (Choi_RBar(R,h) * X); 
    C_Sylvester = (Choi_QBar(Q,h,X,r)) +(X * Choi_RBar(R,h) * X); 

     
    Y = sylv(A_Sylvester, B_Sylvester, C_Sylvester); 
    X = Y; 
end 

  
end 
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% Author: Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: LowerIndexOperator.m 
% Date: 26/09/2012 

  
% The mathematics and formulas detailed in this script, are based on  
% derivations from the following paper: 

  
% Title:     Minimum-Energy Filtering for Attitude Estiamtion: A Geometric 
% Correction to the Multiplicative Extended Kalman Filter 
% Authors:   Mohamad Zamani, Jochen Trumpf and Robert Mahony 
% Journal:   DRAFT PAPER 

  
% Input Variable: 
% X: A 3x1 vector 

  
% Output Variable: 
% Y: A skew symmetric matrix of the vector X 

  
% Function Description: 
% This function computes the lower index operator of vector X as defined on  
% page 4 of the above paper. 

  
function Y = LowerIndexOperator(X) 

  
if (size(X) == [3 1]) 
    Y =[ 0 -X(3) X(2); 
        X(3) 0 -X(1); 
        -X(2) X(1) 0;]; 
else 
    error('Error:DimensionError', 'Input matrix X must be of size (3x1)') 
end 
end 
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% Authors: Mohammad Zamani, Conor Horgan 
% Supervisors: Jochen Trumpf, Mohammad Zamani, Robert Mahony 
% Script: Simulator.m 
% Date: 30/09/2012 

  
% The mathematics and formulas detailed in this script, for the 
% construction and solution of the GAME are based on derivations from the 
% following paper and thesis: 

  
% Paper- 
% Title:     Minimum-Energy Filtering for Attitude Estiamtion: A Geometric 
% Correction to the Multiplicative Extended Kalman Filter 
% Authors:   Mohamad Zamani, Jochen Trumpf and Robert Mahony 
% Journal:   DRAFT PAPER 

  
% Thesis- 
% Title:     Deterministic Attitude and Pose Filtering, an Embedded Lie 
% Groups Approach 
% Author:   Mohamad Zamani 
% Institution:   DRAFT THESIS, Australian National University 

  
% This script is designed to simulate the filter and gain equations, 4.3, 
% 4.4, 4.5 and 4.6 on page 28, chapter 4, of Behzad's Thesis draft copy. 
% The code is based on a code suite written by Mohammad Zamani and has been 
% extended for the simulation of the SO3 and MEKF filters implemented using 
% an Euler method and Choi's method for solving the gain equations of both 
% filters. 

  
% The functions and parameters in this script are all calculated four times 
% for the two filtering systems and the two implementation methods for the 
% solution of the filter gain equations. The naming convention used is as 
% follows: 

  
% _B_SO3:   The GAME filter implemented with Euler method 
% _B_MEKF:  The MEKF implemented with Euler method 
% _C_SO3:   The GAME filter implemented with Choi's method 
% _C_MEKF:  The MEKF implemented with Choi's method 

  

  
clc 
clear all 
close all 

  

  
% Time Variables 
dt = 0.001;         % Time Step 
Tf = 1;             % Maximum Time 
tf = Tf/dt; 
t = 0:dt:Tf-dt; 

  
% Iterations Variables 
Choi_NewtonIterations = 5;  % Newton Equation Iterations 
r = 1;                      % Backwards Difference Operator Iterations 

  
warning('off', 'all'); 

  

  
% Input Frequency 
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inpfreq = 2; 

  
% Noise Level and Eigenvalue Control 
%************************************************************************** 
eigenvalues = 'OFF';            % Set to 'ON' to calculate eigenvalues 
noise = 'LOW';                  % Set to 'HIGH' or 'LOW' 

  
eigen_B_SO3(:,:,1) = [0;0;0]; 
eigen_B_MEKF(:,:,1) = [0;0;0]; 

  
eigen_C_SO3(:,:,1) = [0;0;0]; 
eigen_C_MEKF(:,:,1) = [0;0;0]; 

  
%************************************************************************** 

  
%% System variables 

  

  
% State X represented with a normalized quaternion 4-vector q 
q_B_SO3 = zeros(4,tf); 
q_B_MEKF = zeros(4,tf); 

  
q_C_SO3 = zeros(4,tf); 
q_C_MEKF = zeros(4,tf); 

  
% Zero quaternion associated to X=I 
e = [1;0;0;0]; 

  
% Initial State 
% ***small angle initial state 
% q(:,1) = [10;-3;-3;-1]; 
% ***medium angle initial state 
% q(:,1) = [5.5;-3;-3;-1]; 
% ***large angle initial state 
% q(:,1) = [-1.5;-9;0;-10]; 
% 120 degrees 
q_B_SO3(:,1) = [-7.5;-9;0;-10]; 
q_B_MEKF(:,1) = [-7.5;-9;0;-10]; 

  
q_C_SO3(:,1) = [-7.5;-9;0;-10]; 
q_C_MEKF(:,1) = [-7.5;-9;0;-10]; 

  
% 104 degrees 
% q(:,1) = [-10.5;-9;0;-10]; 
% q_0=[1;2;1;1]; 

  

  
% Normilizing the initial quaternion 
q_B_SO3(:,1) = q_B_SO3(:,1)/norm(q_B_SO3(:,1)); 
q_B_MEKF(:,1) = q_B_MEKF(:,1)/norm(q_B_MEKF(:,1)); 

  
q_C_SO3(:,1) = q_C_SO3(:,1)/norm(q_C_SO3(:,1)); 
q_C_MEKF(:,1) = q_C_MEKF(:,1)/norm(q_C_MEKF(:,1)); 

  

  

  
% Initial states angle in degrees 
inistateang_B_SO3 = quat2angle(q_B_SO3(:,1),e); 
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inistateang_B_MEKF = quat2angle(q_B_MEKF(:,1),e); 

  
inistateang_C_SO3 = quat2angle(q_C_SO3(:,1),e); 
inistateang_C_MEKF = quat2angle(q_C_MEKF(:,1),e); 

  

  

  

  
% Angle of rotation of the state 
qangle_B_SO3 = zeros(tf,1); 
qangle_B_SO3(1) = inistateang_B_SO3; 
qangle_B_MEKF = zeros(tf,1); 
qangle_B_MEKF(1) = inistateang_B_MEKF; 

  
qangle_C_SO3 = zeros(tf,1); 
qangle_C_SO3(1) = inistateang_C_SO3; 
qangle_C_MEKF = zeros(tf,1); 
qangle_C_MEKF(1) = inistateang_C_MEKF; 

  

  
%--------- Reference directions 

  
% y_0 =[-0.4925  0.3419; 0.2111  -0.9117; 0.8443   -0.2279]; 
% 
% Alternative reference directions 
% 
% y_0 = eye(3); 
% 
%-----2 directions very close to each other 
%y_0 =[-0.4925  -0.4925; 0.2111  0.2111; 0.8443   0.8443]; 
%----------- 
% y_0 = [0.2182 -0.9701; -0.4364 -0.2425; 0.8729 0]; 
% y_0 = [0.2182 ; -0.4364 ; 0.8729]; 
% y_0 = [1 ; 2 ; 3]; 
% y_0 = [1*sin(3*t);cos(3*t);0*t]; 
% y_0 = [0.2182*ones(1,tf);-0.4364*ones(1,tf);0.8729*ones(1,tf)]; 

  
% ***Large: 90 degree angle*** 
y_B_SO3_0 = [1 0;0 1; 0 0]; 
y_B_MEKF_0 = [1 0;0 1; 0 0]; 

  
y_C_SO3_0 = [1 0;0 1; 0 0]; 
y_C_MEKF_0 = [1 0;0 1; 0 0]; 
% 
% *** 31.3 degree angle*** 
% y_0=[-0.4925   -0.7947;0.2111    0.4122;0.8443    0.4455]; 

  
% *** Mediaum: 50.6 degree angle 
% y_0=[-0.4925   -0.347;0.2111    0.4122;0.8443    0.4455]; 

  
% *** 3.7 degrees angle*** 
%  y_0 =[-0.4925   -0.4533;0.2111    0.2626;0.8443    0.8518]; 

  
%*** Small: 10.1 degrees angle 
% y_0=[-0.4925   -0.6006 ; 0.2111    0.3049 ; 0.8443    0.7392]; 

  

  
% Angle between the two reference vector 
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refvecang_B_SO3 = 180/pi * acos(abs(y_B_SO3_0(:,1)' * y_B_SO3_0(:,2))); 
refvecang_B_MEKF = 180/pi * acos(abs(y_B_MEKF_0(:,1)' * y_B_MEKF_0(:,2))); 

  
refvecang_C_SO3 = 180/pi * acos(abs(y_C_SO3_0(:,1)' * y_C_SO3_0(:,2))); 
refvecang_C_MEKF = 180/pi * acos(abs(y_C_MEKF_0(:,1)' * y_C_MEKF_0(:,2))); 

  

  
% Number of reference directions---currently only works for two directions 

  
%n = size(y_B_SO3_0,2); 
n = 2; 

  

  

  
% -------------------------------Noise Signals 

  
% Process noise standard deviation (std) 
%************************************************************************** 
if (strcmp(noise, 'HIGH')) 
    % The noise levels associated with UAV applications 
    procnoisstd_B_SO3 = pi/4; 
    procnoisstd_B_MEKF = pi/4; 

     
    procnoisstd_C_SO3 = pi/4; 
    procnoisstd_C_MEKF = pi/4; 

     
elseif (strcmp(noise, 'LOW')) 
    % The noise levels associated with spacecraft applications 
    procnoisstd_B_SO3 = 2.6875 * 10^-7; 
    procnoisstd_B_MEKF = 2.6875 * 10^-7; 

     
    procnoisstd_C_SO3 = 2.6875 * 10^-7; 
    procnoisstd_C_MEKF = 2.6875 * 10^-7; 

     
end 

  
% Omega v 
%************************************************************************** 

  
% Process noise coefficient 
B_B_SO3 = procnoisstd_B_SO3 * eye(3); 
B_B_MEKF = procnoisstd_B_MEKF * eye(3); 

  
B_C_SO3 = procnoisstd_C_SO3 * eye(3); 
B_C_MEKF = procnoisstd_C_MEKF * eye(3); 

  

  
Q_B_SO3 = B_B_SO3*B_B_SO3'; 
Q_B_MEKF = B_B_MEKF*B_B_MEKF'; 

  
Q_C_SO3 = B_C_SO3*B_C_SO3'; 
Q_C_MEKF = B_C_MEKF*B_C_MEKF'; 
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% % % %************* OPTION 2 TAC 2011 WHERE R,Q ~= I***************** 
% measurement noise std 
%************************************************************************** 
if (strcmp(noise, 'HIGH')) 
    % The noise levels associated with UAV applications 
    %60 degrees 
    measnoisstd_B_SO3 = pi/3; 
    measnoisstd_B_MEKF = pi/3; 

     
    measnoisstd_C_SO3 = pi/3; 
    measnoisstd_C_MEKF = pi/3; 
elseif (strcmp(noise, 'LOW')) 
    % The noise levels associated with spacecraft applications 
    %1 degree 
    measnoisstd_B_SO3 = 1 * pi/180; 
    measnoisstd_B_MEKF = 1 * pi/180; 

     
    measnoisstd_C_SO3 = 1 * pi/180; 
    measnoisstd_C_MEKF = 1 * pi/180; 

     
end 

  
%************************************************************************** 

  
% 1 degree 

  
% ---Measurement noise coefficient 
D_B_SO3 = measnoisstd_B_SO3 * eye(3); 
D_B_MEKF = measnoisstd_B_MEKF * eye(3); 

  
D_C_SO3 = measnoisstd_C_SO3 * eye(3); 
D_C_MEKF = measnoisstd_C_MEKF * eye(3); 
% D = 1*diag([pi/12 pi/9 pi/6]); 
% v = pi/12 * (randn (3,n,tf)+randn (3,n,tf)); 

  

  

  

  
Rinv_B_SO3 = (D_B_SO3*D_B_SO3')^-1; 
Rinv_B_MEKF = (D_B_MEKF*D_B_MEKF')^-1; 

  
Rinv_C_SO3 = (D_C_SO3*D_C_SO3')^-1; 
Rinv_C_MEKF = (D_C_MEKF*D_C_MEKF')^-1; 

  

  

  

  

  
%---------------------- measurement outputs 
% Big matrix storing all the measurements through time of y 
Y_B_SO3 = zeros(3,n,tf); 
Y_B_MEKF = zeros(3,n,tf); 

  
Y_C_SO3 = zeros(3,n,tf); 
Y_C_MEKF = zeros(3,n,tf); 

  
% A matrix storing the current time measurement y 
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y_B_SO3 = zeros(3,n); 
y_B_MEKF = zeros(3,n); 

  
y_C_SO3 = zeros(3,n); 
y_C_MEKF = zeros(3,n); 

  
% Function quattrans(q,y_0) does X'*y_0 
for j=1:n 
    y_B_SO3(:,j)= 

quattrans(q_B_SO3(:,1),y_B_SO3_0(:,j))+D_B_SO3*randn(3,1); 
    y_B_MEKF(:,j)= 

quattrans(q_B_MEKF(:,1),y_B_MEKF_0(:,j))+D_B_MEKF*randn(3,1); 

     
    y_C_SO3(:,j)= 

quattrans(q_C_SO3(:,1),y_C_SO3_0(:,j))+D_C_SO3*randn(3,1); 
    y_C_MEKF(:,j)= 

quattrans(q_C_MEKF(:,1),y_C_MEKF_0(:,j))+D_C_MEKF*randn(3,1); 
end 

  

  

  
%-------------- SO(3) filter parameters 
% State Xhat in quaternions 
qs_B_SO3 = zeros(4,tf); 
qs_B_SO3_0 = e; 
qs_B_SO3(:,1) = qs_B_SO3_0; 

  
qs_B_MEKF = zeros(4,tf); 
qs_B_MEKF_0 = e; 
qs_B_MEKF(:,1) = qs_B_MEKF_0; 

  
qs_C_SO3 = zeros(4,tf); 
qs_C_SO3_0 = e; 
qs_C_SO3(:,1) = qs_C_SO3_0; 

  
qs_C_MEKF = zeros(4,tf); 
qs_C_MEKF_0 = e; 
qs_C_MEKF(:,1) = qs_C_MEKF_0; 

  

  

  
% Gain of the Riccati 
Ps_B_SO3 = eye(3); 
Ps_B_SO3_0 = 1 * eye(3); 

  
Ps_B_MEKF = eye(3); 
Ps_B_MEKF_0 = 1 * eye(3); 

  
Ps_C_SO3 = eye(3); 
Ps_C_SO3_0 = 1 * eye(3); 

  
Ps_C_MEKF = eye(3); 
Ps_C_MEKF_0 = 1 * eye(3); 

  

  
% Rotation angle of the state 
qsangle_B_SO3 = zeros(tf,1); 
qsangle_B_MEKF = zeros(tf,1); 
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qsangle_C_SO3 = zeros(tf,1); 
qsangle_C_MEKF = zeros(tf,1); 

  

  
% Rotation angle error between the state and the systems angle 
qseang_B_SO3 = zeros(tf,1); 
qseang_B_SO3(1) = quat2angle(qs_B_SO3(:,1),q_B_SO3(:,1)); 

  
qseang_B_MEKF = zeros(tf,1); 
qseang_B_MEKF(1) = quat2angle(qs_B_MEKF(:,1),q_B_MEKF(:,1)); 

  
qseang_C_SO3 = zeros(tf,1); 
qseang_C_SO3(1) = quat2angle(qs_C_SO3(:,1),q_C_SO3(:,1)); 

  
qseang_C_MEKF = zeros(tf,1); 
qseang_C_MEKF(1) = quat2angle(qs_C_MEKF(:,1),q_C_MEKF(:,1)); 

  

  

  
%% Display code variables 

  
disp('################### S Y S T E M    P A R A M E T E R 

S#######################') 
disp('') 
disp(['Simulation time step=',num2str(dt) ]) 
disp('') 
disp(['Simulation final time=',num2str(Tf)]) 
disp('') 
disp('Systems initial angle quat2angle(q(1)) in degrees=') 
disp('') 
display(180/pi * inistateang_B_SO3) 
disp('') 
disp('') 
disp(['Input Frequency : inpfreq =',num2str(inpfreq)]) 
disp('Omega = [2*sin(inpfreq*t);-5*cos(inpfreq*t);-2*cos(inpfreq*t)]') 
disp('') 
disp(['Process noise STD in degrees =',num2str(180/pi * 

procnoisstd_B_SO3)]) 
disp('') 
disp(['Measurement noise STD in degrees =',num2str(180/pi * 

measnoisstd_B_SO3)]) 
disp('') 
disp('Reference directions in a matrix ') 
disp('') 
display(y_B_SO3_0) 
disp('') 
disp('Angle between the two reference vectors in degrees=') 
disp('') 
display(refvecang_B_SO3) 
disp('#####################################################################

########') 

  

  

  
%% Time evolution 

  
for i = 1:tf-1 
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    %% --------------------------------System evolution 
    time = i 

     
    % Angular velocity input 
    t = dt*i; 
    omega_B_SO3 = [2*sin(inpfreq*t);-1*cos(inpfreq*t);2*cos(1*inpfreq*t)]; 
    omega_B_MEKF = [2*sin(inpfreq*t);-1*cos(inpfreq*t);2*cos(1*inpfreq*t)]; 

     
    omega_C_SO3 = [2*sin(inpfreq*t);-1*cos(inpfreq*t);2*cos(1*inpfreq*t)]; 
    omega_C_MEKF = [2*sin(inpfreq*t);-1*cos(inpfreq*t);2*cos(1*inpfreq*t)]; 

     
    % Measurement of Omega 
    u_B_SO3 = omega_B_SO3 + (B_B_SO3 * randn(3,1)); 
    u_B_MEKF = omega_B_MEKF + (B_B_MEKF * randn(3,1)); 

     
    u_C_SO3 = omega_C_SO3 + (B_C_SO3 * randn(3,1)); 
    u_C_MEKF = omega_C_MEKF + (B_C_MEKF * randn(3,1)); 

     

     

     
    % Numerical integrator for quaternions 
    q_B_SO3(:,i+1) = expm(dt * tangquat(omega_B_SO3)) * q_B_SO3(:,i); 
    q_B_MEKF(:,i+1) = expm(dt * tangquat(omega_B_MEKF)) * q_B_MEKF(:,i); 

     
    q_C_SO3(:,i+1) = expm(dt * tangquat(omega_C_SO3)) * q_C_SO3(:,i); 
    q_C_MEKF(:,i+1) = expm(dt * tangquat(omega_C_MEKF)) * q_C_MEKF(:,i); 

     

     

     
    y_B_SO3 = zeros(3,n); 
    y_B_MEKF = zeros(3,n); 

     
    y_C_SO3 = zeros(3,n); 
    y_C_MEKF = zeros(3,n); 

     

     
    for j = 1:n 

         
        y_B_SO3(:,j) =  quattrans(q_B_SO3(:,i+1),y_B_SO3_0(:,j)) + D_B_SO3 

* randn(3,1); 
        y_B_MEKF(:,j) =  quattrans(q_B_MEKF(:,i+1),y_B_MEKF_0(:,j)) + 

D_B_MEKF * randn(3,1); 

         
        y_C_SO3(:,j) =  quattrans(q_C_SO3(:,i+1),y_C_SO3_0(:,j)) + D_C_SO3 

* randn(3,1); 
        y_C_MEKF(:,j) =  quattrans(q_C_MEKF(:,i+1),y_C_MEKF_0(:,j)) + 

D_C_MEKF * randn(3,1); 

         
    end 
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    %% ------------------------------------------------SO(3) Filter 

     
    % The innovation term 
    inos_B_SO3 = zeros(3,1); 
    inos_B_MEKF = zeros(3,1); 

     
    inos_C_SO3 = zeros(3,1); 
    inos_C_MEKF = zeros(3,1); 

     

     
    % The quadratic matrix in the Riccati 
    quads_B_SO3 = zeros(3); 
    quads_B_MEKF = zeros(3); 

     
    quads_C_SO3 = zeros(3); 
    quads_C_MEKF = zeros(3); 

     
    for j = 1:n 
        % Calculating \hat(y)_j s 
        yhats_B_SO3 =  quattrans(qs_B_SO3(:,i),y_B_SO3_0(:,j)); 
        yhats_B_MEKF =  quattrans(qs_B_MEKF(:,i),y_B_MEKF_0(:,j)); 

         
        yhats_C_SO3 =  quattrans(qs_C_SO3(:,i),y_C_SO3_0(:,j)); 
        yhats_C_MEKF =  quattrans(qs_C_MEKF(:,i),y_C_MEKF_0(:,j)); 

         
        % Summation in the innovation terms 
        inos_B_SO3 = inos_B_SO3 + cross((Rinv_B_SO3) * (yhats_B_SO3-

y_B_SO3(:,j)),yhats_B_SO3); 
        inos_B_MEKF = inos_B_MEKF + cross((Rinv_B_MEKF) * (yhats_B_MEKF-

y_B_MEKF(:,j)),yhats_B_MEKF); 

         
        inos_C_SO3 = inos_C_SO3 + cross((Rinv_C_SO3) * (yhats_C_SO3-

y_C_SO3(:,j)),yhats_C_SO3); 
        inos_C_MEKF = inos_C_MEKF + cross((Rinv_C_MEKF) * (yhats_C_MEKF-

y_C_MEKF(:,j)),yhats_C_MEKF); 

         

         

         
        % The symmetric projection in the Quadratic term 
        C_B_SO3 = projsym((Rinv_B_SO3 * (yhats_B_SO3-y_B_SO3(:,j))) * 

yhats_B_SO3'); 
        C_B_MEKF = projsym((Rinv_B_MEKF * (yhats_B_MEKF-y_B_MEKF(:,j))) * 

yhats_B_MEKF'); 

         
        C_C_SO3 = projsym((Rinv_C_SO3 * (yhats_C_SO3-y_C_SO3(:,j))) * 

yhats_C_SO3'); 
        C_C_MEKF = projsym((Rinv_C_MEKF * (yhats_C_MEKF-y_C_MEKF(:,j))) * 

yhats_C_MEKF'); 

         
        % The geometric quadratic term in the Riccati 
        A_B_SO3 = trace(C_B_SO3) * eye(3) - C_B_SO3; 
        A_B_MEKF = trace(C_B_MEKF) * eye(3) - C_B_MEKF; 

         
        A_C_SO3 = trace(C_C_SO3) * eye(3) - C_C_SO3; 
        A_C_MEKF = trace(C_C_MEKF) * eye(3) - C_C_MEKF; 

         
        % The ususal quadratic term 
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        S_B_SO3 = skew(yhats_B_SO3) * Rinv_B_SO3 * skew(yhats_B_SO3); 
        S_B_MEKF = skew(yhats_B_MEKF) * Rinv_B_MEKF * skew(yhats_B_MEKF); 

         
        S_C_SO3 = skew(yhats_C_SO3) * Rinv_C_SO3 * skew(yhats_C_SO3); 
        S_C_MEKF = skew(yhats_C_MEKF) * Rinv_C_MEKF * skew(yhats_C_MEKF); 

         
        % Summation of quadratic terms 
        quads_B_SO3 = quads_B_SO3 + A_B_SO3 + S_B_SO3; 
        quads_B_MEKF = quads_B_MEKF + S_B_MEKF; 

         
        quads_C_SO3 = quads_C_SO3 - A_C_SO3 + S_C_SO3; 
        quads_C_MEKF = quads_C_MEKF + S_C_MEKF; 
    end 

     
    % The observer equation for the SO(3) filter 
    % tangquat returns the 4by4 skew matrix of the quaternion tangent space 
    qs_B_SO3(:,i+1) = expm(dt * tangquat(u_B_SO3 - Ps_B_SO3(:,:,i) * 

inos_B_SO3)) * qs_B_SO3(:,i); 
    qs_B_MEKF(:,i+1) = expm(dt * tangquat(u_B_MEKF - Ps_B_MEKF(:,:,i) * 

inos_B_MEKF)) * qs_B_MEKF(:,i); 

     
    qs_C_SO3(:,i+1) = expm(dt * tangquat(u_C_SO3 - Ps_C_SO3(:,:,i) * 

inos_C_SO3)) * qs_C_SO3(:,i); 
    qs_C_MEKF(:,i+1) = expm(dt * tangquat(u_C_MEKF - Ps_C_MEKF(:,:,i) * 

inos_C_MEKF)) * qs_C_MEKF(:,i); 

     

     

     
    % Solution for P, the gain of the filters 
    Ps_B_SO3(:,:,i+1) = Ps_B_SO3(:,:,i) + dt * ((1 * 

projsym(Ps_B_SO3(:,:,i)... 
        * LowerIndexOperator(2 * u_B_SO3-(Ps_B_SO3(:,:,i) * inos_B_SO3)))) 

+ ... 
        Q_B_SO3 + Ps_B_SO3(:,:,i) * (quads_B_SO3) * Ps_B_SO3(:,:,i)); 

     
    Ps_B_MEKF(:,:,i+1) = Ps_B_MEKF(:,:,i) + dt *(Q_B_MEKF + 

(Ps_B_MEKF(:,:,i)... 
        *0.5*LowerIndexOperator(u_B_MEKF)) - 

(0.5*LowerIndexOperator(u_B_MEKF)... 
        *Ps_B_MEKF(:,:,i)) + (Ps_B_MEKF(:,:,i)* (quads_B_MEKF) * 

Ps_B_MEKF(:,:,i))); 

  

     
    Ps_C_SO3(:,:,i+1) = Choi_SylvesterSolver(Q_C_SO3, 0.5 * 

LowerIndexOperator(u_C_SO3),... 
        -0.5 * LowerIndexOperator(u_C_SO3), quads_C_SO3, dt, 

Ps_C_SO3(:,:,i), r, Choi_NewtonIterations); 

     
    Ps_C_MEKF(:,:,i+1) = Choi_SylvesterSolver(Q_C_MEKF, 0.5 * 

LowerIndexOperator(u_C_MEKF),... 
        -0.5 * LowerIndexOperator(u_C_MEKF), quads_C_MEKF, dt, 

Ps_C_MEKF(:,:,i), r, Choi_NewtonIterations); 

     

     

     

     
    

%************************************************************************** 
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    if (strcmp(eigenvalues, 'ON')) 
        eigen_B_SO3(:,:,i) = eig(Ps_B_SO3(:,:,i)); 
        eigen_B_MEKF(:,:,i) = eig(Ps_B_MEKF(:,:,i)); 

         
        eigen_C_SO3(:,:,i) = eig(Ps_C_SO3(:,:,i)); 
        eigen_C_MEKF(:,:,i) = eig(Ps_C_MEKF(:,:,i)); 

         
    end 
    

%************************************************************************** 

     

     

     
    %% variable storage 

     
    % Storing the measurements 
    for j = 1:n 
        Y_B_SO3(:,j,i+1) = y_B_SO3(:,j); 
        Y_B_MEKF(:,j,i+1) = y_B_MEKF(:,j); 

         
        Y_C_SO3(:,j,i+1) = y_C_SO3(:,j); 
        Y_C_MEKF(:,j,i+1) = y_C_MEKF(:,j); 
    end 

     

     
    % Rotation angle of the current state (as compared to zero) 
    qangle_B_SO3(i+1) = quat2angle(q_B_SO3(:,i+1),e); 
    qangle_B_MEKF(i+1) = quat2angle(q_B_MEKF(:,i+1),e); 

     
    qangle_C_SO3(i+1) = quat2angle(q_C_SO3(:,i+1),e); 
    qangle_C_MEKF(i+1) = quat2angle(q_C_MEKF(:,i+1),e); 

     

     

     
    % Rotation angle of the filter's estimate (as compared to zero) 
    qsangle_B_SO3(i+1) = quat2angle(qs_B_SO3(:,i+1),e); 
    qsangle_B_MEKF(i+1) = quat2angle(qs_B_MEKF(:,i+1),e); 

     
    qsangle_C_SO3(i+1) = quat2angle(qs_C_SO3(:,i+1),e); 
    qsangle_C_MEKF(i+1) = quat2angle(qs_C_MEKF(:,i+1),e); 

     
    % Rotation angle of the filter's estimate (as compared to current 

state's angle) 
    qseang_B_SO3(i+1) = quat2angle(qs_B_SO3(:,i+1),q_B_SO3(:,i+1)); 
    qseang_B_MEKF(i+1) = quat2angle(qs_B_MEKF(:,i+1),q_B_MEKF(:,i+1)); 

     
    qseang_C_SO3(i+1) = quat2angle(qs_C_SO3(:,i+1),q_C_SO3(:,i+1)); 
    qseang_C_MEKF(i+1) = quat2angle(qs_C_MEKF(:,i+1),q_C_MEKF(:,i+1)); 

     

     

     
end 

  

  
%% Data Plotting 

  
% % Angle Trajectories 
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% figure(1) 
% plot(t,y_disp,'+g',t,qangle,'b',t,qsangle,'r','LineWidth',2) 
% title('tracking systems trajectory rotation angle') 
% Maximize(1) 
figure(1) 
subplot(2,3,1) 
plot(qangle_B_SO3,'r','LineWidth',2) 
title('SO3 (Behzad) Rotation Angle of the Current State (as compared to 

zero)'); 

  
subplot(2,3,2) 
plot(qsangle_B_SO3,'r','LineWidth',2) 
title('SO3 (Behzad) Rotation Angle of the Filter Estimate (as compared to 

zero)'); 

  
subplot(2,3,3) 
plot(qseang_B_SO3,'r','LineWidth',2) 
title('SO3 (Behzad) Estimation Error Comparison Between the Proposed Filter 

and the MEKF') 
xlabel('Time (Units)') 
ylabel('Estimation Error Angle of Rotation (Radians)') 

  

  
subplot(2,3,4) 
plot(qangle_C_SO3,'r','LineWidth',2) 
title('SO3 (Choi) Rotation Angle of the Current State (as compared to 

zero)'); 

  
subplot(2,3,5) 
plot(qsangle_C_SO3,'r','LineWidth',2) 
title('SO3 (Choi) Rotation Angle of the Filter Estimate (as compared to 

zero)'); 

  

  
subplot(2,3,6) 
plot(qseang_C_SO3,'r','LineWidth',2) 
title('SO3 (Choi) Estimation Error Comparison Between the Proposed Filter 

and the MEKF') 
xlabel('Time (Units)') 
ylabel('Estimation Error Angle of Rotation (Radians)') 

  
%************************************************************************** 
figure(2) 
subplot(2,3,1) 
plot(qangle_B_MEKF,'r','LineWidth',2) 
title('MEKF (Behzad) Rotation Angle of the Current State (as compared to 

zero)'); 

  
subplot(2,3,2) 
plot(qsangle_B_MEKF,'r','LineWidth',2) 
title('MEKF (Behzad) Rotation Angle of the Filter Estimate (as compared to 

zero)'); 

  

  
subplot(2,3,3) 
plot(qseang_B_MEKF,'r','LineWidth',2) 
title('MEKF (Behzad) Estimation Error Comparison Between the Proposed 

Filter and the MEKF') 
xlabel('Time (Units)') 
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ylabel('Estimation Error Angle of Rotation (Radians)') 

  
subplot(2,3,4) 
plot(qangle_C_MEKF,'r','LineWidth',2) 
title('MEKF (Choi) Rotation Angle of the Current State (as compared to 

zero)'); 

  
subplot(2,3,5) 
plot(qsangle_C_MEKF,'r','LineWidth',2) 
title('MEKF (Choi) Rotation Angle of the Filter Estimate (as compared to 

zero)'); 

  

  
subplot(2,3,6) 
plot(qseang_C_MEKF,'r','LineWidth',2) 
title('MEKF (Choi) Estimation Error Comparison Between the Proposed Filter 

and the MEKF') 
xlabel('Time (Units)') 
ylabel('Estimation Error Angle of Rotation (Radians)') 

 

 

 


