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Abstract

A markerless gradient-based 3D hand tracking system that uses colour intensity

and silhouette cues from a pair of video cameras is proposed. The hand tracking

system has been designed with the intention of future use as a gesture interface for

freeform modelling. The tracking system follows a model-based approach and is

comparatively fast, without a heavy compromise to the level of tracking accuracy

that is required for such a gesture interface. This is achieved by using a sparse

point cloud instead of a complete surface hand model for tracking. However, the

point cloud approximation introduces sampling noise into the system. Noise also

arises from the video images themselves. It is not immediately clear whether such

a tracking system can converge to the optimal pose.

The main contribution of this thesis is to show, using stochastic approximation

theory, that it is possible for the tracking system to locally converge to the optimal

pose despite the presence of noise. Key results from this analysis are that the

ideal cost function of the tracking system has a unique global minimum at the

optimal pose for almost all pose configurations and that the Hessian of the ideal

cost function at the unique global minimum is positive definite. To the best of

the author’s knowledge, such an attempt at a convergence analysis for a hand

tracking system has not been undertaken in the literature before.

Also proposed in this thesis is an online adaptive vector-autoregressive mo-

tion (RVAR) predictor. The RVAR predictor augments the tracking system by

initialising a suitable starting point for the tracker’s optimisation routine, based

on both the tracker’s past motion history and the accuracy of the predictor’s past

predictions. This motion predictor substantially improves tracking performance

especially for sequences exhibiting heavy self-occlusion and large finger move-

ments. Experiments also show that tracking in our stochastic setup with the

RVAR predictor is much better than tracking with the näıve deceleration motion

predictor or an auto-regressive model that is trained with motion capture data

obtained from a data glove.
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4.5.5 A Positive Definite Ĥ for the Articulated Hand . . . . . . 67

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Initial Tracking Results 71

5.1 Tracker Implementation . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Hand Model Initialisation . . . . . . . . . . . . . . . . . . 71

5.1.2 Visibility and Occlusion Handling . . . . . . . . . . . . . . 72

5.1.3 Finger Collisions . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Camera Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Segmentation of the Hand . . . . . . . . . . . . . . . . . . 75

5.2.2 Colour Calibration of Images . . . . . . . . . . . . . . . . 76

5.2.3 Image Gradient Approximation . . . . . . . . . . . . . . . 78

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 Real Image Sequence Testing . . . . . . . . . . . . . . . . 80

5.3.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Motion Prediction 107

6.1 Motion Prediction Using a VAR Model . . . . . . . . . . . . . . . 108

6.1.1 VAR Model Formulation . . . . . . . . . . . . . . . . . . . 109



CONTENTS xiii

6.1.2 Estimation of VAR Parameters . . . . . . . . . . . . . . . 110

6.1.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . 111

6.2 Experiments on a Synthetic Sequence . . . . . . . . . . . . . . . . 112

6.2.1 VAR Model Order Selection . . . . . . . . . . . . . . . . . 114

6.2.2 Full-VAR model . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.3 Structured-VAR model . . . . . . . . . . . . . . . . . . . . 116

6.3 Robust VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Experiments on Real Sequences . . . . . . . . . . . . . . . . . . . 123

6.4.1 Sequence 1 - Finger Flexion . . . . . . . . . . . . . . . . . 123

6.4.2 Sequence 2 - Dial Turning . . . . . . . . . . . . . . . . . . 124

6.4.3 Sequence 3 - Pinch . . . . . . . . . . . . . . . . . . . . . . 126

6.4.4 Sequence 4 - Drag and Drop . . . . . . . . . . . . . . . . . 126

6.4.5 Sequence 5 - Palm Rotation . . . . . . . . . . . . . . . . . 128

6.5 Comparison with a Trained AR Predictor . . . . . . . . . . . . . . 131

6.5.1 Sequence 1 - Finger Flexion . . . . . . . . . . . . . . . . . 133

6.5.2 Sequence 2 - Dial Turning . . . . . . . . . . . . . . . . . . 134

6.5.3 Sequence 3 - Pinch . . . . . . . . . . . . . . . . . . . . . . 135

6.5.4 Sequence 4 - Pick and Drop . . . . . . . . . . . . . . . . . 136

6.5.5 Sequence 5 - Palm Rotation . . . . . . . . . . . . . . . . . 137

6.6 Tracking performance under 10000 iterations . . . . . . . . . . . . 138

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusion 145

7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A 149

A.1 Proof for Exception in Case 2 . . . . . . . . . . . . . . . . . . . . 149

B 155

B.1 Choosing the Rotation Coordinate System in Section 4.5.4 . . . . 155

C 157

C.1 The existence of Llong . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.2 The slant of Lhoriz . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D 161

D.1 A non-zero Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xiv CONTENTS

D.2 Structure of 4Yi,x,4Yi,z and Ei . . . . . . . . . . . . . . . . . . . 161

E 165

E.1 Properties of Ψ and Ψ̄ . . . . . . . . . . . . . . . . . . . . . . . . 165

E.2 A Lower Bound on | det(D − CA−1B)| . . . . . . . . . . . . . . . 167

Bibliography 170



Terminology

HCI Human-computer interface

DOF Degrees of freedom

fps Frames per second

AR Auto-regressive

VAR Vector auto-regressive

RVAR Robust vector auto-regressive model

PCA Principal component analysis

ICA Independent component analysis

SGD Stochastic gradient descent

SMD Stochastic meta-descent

BFGS Broyden-Fletcher-Goldfarb-Shanno method

oBFGS Online BFGS

LM Levenberg-Marquardt method

GN Gauss-Newton method

xv





Chapter 1

Introduction

Marker-less tracking of articulated structures, be it the human body or the hu-

man hand, has garnered significant interest in the recent decade in the computer

vision community. Research in articulated body tracking has been spurred on by

a variety of real-life applications ranging from motion capture in the visual effects

industry to human-computer interfaces (HCI). For humans, using hand gestures

is an intuitive mode by which to communicate ideas amongst peers [61]. Com-

puter technology has become powerful enough that adopting hand gestures as an

alternative interface between humans and desktop computers is fast becoming a

realisable possibility. Examples where this mode of interaction is perceived help-

ful include multimodal user interfaces for traffic control [20], freeform modelling

[48, 67], automatic sign language recognition [59, 32] and entertainment consoles

e.g. the Sony EyeToy and more recently, Microsoft’s Project Natal.

The objective of this thesis is to develop a system that tracks the 3D pose of

a moving hand in video sequences. The scope of the tracking work is primarily

focused towards hand gestures that serve as interface commands for freeform

modelling on the average desktop computer.

The inner workings of a gesture-based interface can be generally described

as follows. An initialisation step sets up the tracking system for user input,

and involves aspects such as camera and model calibration, or finding the initial

tracking pose. Next is the extraction of visual cues that are required for pose

estimation, e.g. silhouette information. Given these visual cues, a pose estimation

of the articulated body can be performed on each frame of the video feed. The

pose estimates are subsequently mapped to interface commands in the form of

gesture recognition. This thesis examines the tracking/pose estimation aspect of

the gesture-based interface.

1
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There are many open problems in hand tracking, a selection of which is listed

below (see Section 1.1 for our proposed approach to overcome these problems) :

• Fast finger movements - The small-angle assumption, which states that

the change in pose between time t and t+1 is sufficiently small, is frequently

made in tracking [26]. This assumption is violated more often in hand

tracking than body tracking, as finger flexions are known to reach high

angular speeds. Peak angular velocities of the finger joints typically reach

up to 6 rad/s [45], or equivalently, up to a peak angle change of 10 degrees

per frame for a video captured at 30 frames per second (fps). This issue

can be addressed by video capturing at a higher frame rate (≥ 30 fps).

However, this results in more computations, as more frames are required

for processing. The increased computational load is problematic for online

applications. Alternatively, a motion prediction model can be employed

[93, 42, 7, 33].

• Self-occlusion - Self-occlusion is a common occurrence in hand tracking,

e.g. when a finger movement partially occludes neighbouring fingers or

the palm. Resolving self-occluding poses is not helped by the hand’s weak

and indistinct texture. Having multiple cameras helps e.g. in [28]. Rehg

and Kanade [64] use a layered template model combined with a kinematic

model to track partially occluded fingers. In Gorce et al.’s work [26], texture

gradients at the self-occluding contours are analytically derived to improve

tracking.

• Computational speed - For real-time interactive applications, the com-

putational time spent in tracking needs to be very short. Real-time track-

ing systems have been achieved [63, 93, 72, 33, 55, 91] albeit with caveats.

Many real-time systems can only handle a highly restrictive set of motion

[63, 93, 91]. Tracking solutions that do capture a range of complex motions

in real-time require multiple processors to handle the computational load

[72, 33, 55].

• Tracking analysis - An area in the hand/body tracking literature that

is underdeveloped is the analysis of tracking systems, in particular, con-

vergence analysis. Whether a tracker can inherently converge to the ideal

pose has largely been empirically verified [30]. Generally, the squared sum

of differences between the actual and predicted positions of virtual markers

on the articulated body is used as an empirical measure for convergence e.g.
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[7, 92]. To the author’s knowledge, there is no theoretical convergence anal-

ysis for any of the hand/body tracking systems discussed in the literature,

with the exception of the author’s previous work [21].

1.1 The Approach

In light of these problems, a model-based 3D hand tracking system has been im-

plemented in a stochastic approximation framework. Two cameras are used to

recover 3D pose and help mitigate the effects of self-occlusion. The tracker follows

a gradient-based approach - the goodness of fit for a pose estimate is evaluated

by projecting the 3D hand model into the model image plane which is compared

against the real camera image. Cost evaluation is based on silhouette informa-

tion and colour intensity. Mismatch errors in the image space are propagated

as gradients back to the parameter space of the hand model. An optimisation

algorithm is used to refine the pose based on the error gradients.

Rendering the full 3D hand model to the image plane for the evaluation of

the cost function is computationally expensive. To address this issue, random

samples on the surface of the hand model are selected to approximate the ideal

cost instead. Stochastic approximation theory, like the Robbins-Monro method,

states that such an approximation is valid under unbiased sampling and certain

conditions on the cost function. The ideal cost function of this proposed hand

tracking system is shown analytically to have a well-behaved unique global min-

imum in most scenarios. This property allows the Robbins-Monro method to be

applied and therefore show that the tracker still exhibits, in theory, local con-

vergence under point sampling. Experimental results on various hand tracking

sequences support this empirically.

To address the issue of fast finger movements and self-occlusion, an online

auto-regressive model is introduced as a motion predictor. Many trackers use

the constant velocity motion predictor [41, 7, 80, 77] which is often simple to

implement but primitive. Second-order dynamic models such as [93, 33] should

encapsulate the motion of articulated joints better. These models are trained

offline with ground-truth data obtained from a motion capture device e.g. a data

glove. However offline learning is only effective if the training data is unbiased and

rich enough, and may not generalise well to motions not observed in the training

data. Thus, an online dynamic model is an attractive alternative. An online

Robust Vector-Autoregressive (RVAR) model is presented in this thesis, modeling
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the accelerations of the joint parameters as auto-regressive processes. This model

is also adaptive in that future predictions are dependent on the reliability of the

recent past predictions. Experimental results indicate that the RVAR model is

better than the constant velocity motion predictor or the auto-regressive-based

motion model that is trained offline using motion capture data obtained from a

data glove.

1.2 Thesis Outline

The main contributions of this thesis are:

• A convergence analysis for a gradient-based hand tracking system, using

stochastic approximation theory. Parts of this work have been published in

the International Conference on Computer Vision (ICCV’07) Workshop on

Human Motion [21] and an updated version will be submitted to the IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI).

• An adaptive online dynamic model for the prediction of fast finger motions.

Parts of this work have been published in the International Conference on

Automatic Face and Gesture Recognition (FG’08) [22].

The thesis is structured as follows:

Chapter 2 A literature review of the current state-of-the-art research in hand

tracking is given. Similar research in body tracking is also examined. Both ap-

pearance and model-based approaches are explored, with an emphasis on the

latter. Topics that pertain specifically to the model-based approach are also in-

vestigated, e.g. dimensionality reduction.

Chapter 3 The proposed 3D hand tracking system is described. Each aspect of

the tracking pipeline is explored in detail, from the hand model, to the projection

pipeline and the cost function that is based on silhouette and colour information.

Briefly mentioned are the different optimisation algorithms implemented in the

tracker and individually tested in the experiments.
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Chapter 4 Stochastic approximation theory, in particular the Robbins-Monro

method, is introduced. The proposed tracking system is shown analytically to

locally satisfy the conditions required by the Robbins-Monro method. These in-

clude aspects such as the existence of a well-behaved unique global minimum in

the cost function for most scenarios and what it means to achieve unbiased sam-

pling.

Chapter 5 Practical implementation issues and initial experimental results are

presented. A discussion is given on choosing the appropriate gestures to evaluate

the hand tracking system for the purpose of freeform modelling. Experimental

results on synthetic and real video sequences are given.

Chapter 6 In this chapter, an adaptive online VAR model is proposed to model

the dynamics of hand movements and thus allow the tracker to handle fast finger

motions. A robust version of the VAR motion prediction model is given, which is

compared against the constant-velocity model and a VAR model trained off-line

with data obtained from a data glove.

Supplementary Videos Video clips of the tracking results for the real sequences

can be found in the accompanying CD-ROM. The best tracking results achieved

with this tracking system can be found under the directory /Chapter6/10000/Seq-

All/.

1.3 Publication List

This thesis is partly based on the following papers that have been published in

peer-reviewed conferences/workshops:

• D. Chik, J. Trumpf, and N. N. Schraudolph, Using an adaptive VAR model

for motion prediction in 3D Hand Tracking. In 8th Intl. Conf. Automatic

Face and Gesture Recognition, Amsterdam, Netherlands, September 2008.

• D. Chik, J. Trumpf, and N. N. Schraudolph, 3D hand tracking in a stochas-

tic approximation setting. In 2nd Human Motion Workshop - Understand-

ing Modeling, Capture and Animation, Rio de Janiero, Brazil, October 2007.
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The contents of the following related paper do not form part of this thesis:

• D. Chik. Using optical flow for step size initialisation in hand tracking by

stochastic optimisation. In HCSNet Workshop on the Use of Vision in HCI

(VisHCI), volume 56 of Conference in Resarch and Practice in Information

Technology (CRPIT), Canberra, Australia, November 2006.



Chapter 2

Prior Work

We begin at the fundamental level by examining the visual cues used in state-of-

the-art tracking systems in the literature. Next, the many approaches to hand

tracking are explored. These approaches are broadly categorised as appearance-

based and model-based, with an emphasis on the recent advancements in model-

based tracking. Works in body tracking are also examined, as the techniques

used in tracking the articulated human body are usually applicable to the hand

tracking scenario.

2.1 Visual Cues

Camera images are the “eyes” of the tracking system. The questions that imme-

diately arise in designing a tracking system are: 1) what types of visual informa-

tion can be gleaned from the images to aid in tracking, and 2) how many camera

viewpoints are required.

The silhouette of the articulated object is a standard cue used in hand and

body tracking [18, 2, 84, 81, 74, 37]. It constrains the region in the image that the

articulated object can occupy. Most approaches explicitly extract the silhouette

of the articulated object [18, 2, 84, 81, 74] although in Gorce et al.’s work [26],

the silhouette of the hand is implicitly extracted by incorporating a model of the

background in the cost function of the tracking system. Methods for silhouette

extraction include background subtraction [41] or segmentation via a learned

probabilistic colour model of the articulated body, such as skin colour detection

in [11] and [77]. Some systems pre-process multiple silhouettes from different

viewpoints together to perform volume reconstruction [42, 53, 55, 86, 16]. The

reconstructed volume of the body is then used for pose estimation directly. Menier

7
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et al. [53] takes this further by extracting the skeleton from the visual hull and

using it to match that of the body model.

Edges of the articulated body are also used by many [42, 5, 40, 91, 7, 77, 63, 49]

as they are generally invariant to lighting. Edge features are typically extracted

via filters such as the standard Canny edge detector [17]. However, tracking with

edges can become problematic in cluttered scenes. Stray internal edges on the

articulated body (e.g. creases of the subject’s shirt, or a body that is rich in

texture) or edges from background objects can be a distraction for the tracker.

Priors derived from the structure of the articulated body can be used to weed

out unlikely edges [5]. Some systems pre-process the edge map to generate a

contour map of the articulated body based on similarities in the neighbouring

edge directions. These contour maps are then used instead for tracking [27].

Colour intensity is a cue that is sometimes used [42, 26, 76, 49]. Typically

the system has an inherent knowledge of the object’s coloured texture, e.g. via

a learned colour model, which is used to match to the texture seen in the real

images [42, 26]. In Lu et al.’s work [49], shading from lighting in the scene is used

for tracking. In [11], structured lighting is used to recover depth information that

is then used for pose estimation. In [77] a probabilistic colour model is used to

define the likelihood region in which the hand lies.

Motion fields, e.g. optical flow, are yet another type of feature used for track-

ing and provide temporal information. Lu et al. [49] for example, account for

optical flow in pose estimation. In Theobalt et al.’s work [84], the reconstruction

of a 3D motion field is used to help with tracking. In [81], motion and spatial

cues from images are used to recover displacements of the body segments in the

parameter space.

The number of cameras used is dependent on the intended application for the

tracking system. Monocular view approaches have the disadvantage of depth am-

biguity in pose estimation. Nevertheless, using a single camera might be enough

for certain applications such as a gesture recognition interface for a desktop com-

puter. In this situation, working out the exact 3D pose is not so important, as

long as the tracking system can distinguish between the discrete set of command

gestures. For applications that require more precise pose reconstruction where the

exact 3D pose is important, e.g. motion capture or freeform modelling, multiple

cameras are essential.
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2.2 The Appearance-Based Approach

In this approach, the hand state is estimated directly by comparing known 2D

images of the hand with the observed image. These include database-search meth-

ods [72, 5, 76, 77] and learned mappings [66] that map the observed appearance

directly to the hand pose space.

Shimada et al. [72] use template matching to determine the pose of the hand.

A database containing over 16,000 silhouette contours of the hand in various

poses is constructed from a 3D hand model. The silhouette contour of the hand

in the input image is compared against this database. An adjacency map is used

to optimise the search, where poses with similar joint angles are connected to

each other. The search for the pose in the next frame is then limited to the

neighbourhood of the current estimate.

Athitsos and Sclaroff [5] follow a similar path to Shimada et al. [72], using

a database of synthetic images for pose estimation, albeit for a restrictive set of

hand poses. Edges generated by the contours of the hand are used for matching

hand shapes. By exploiting the fact that the edge segments of each digit form a

set of connected ‘nearly straight’ line segments, stray edges can be identified and

removed in a probabilistic framework. This allows the tracking system to handle

images with a cluttered background. Processing time for each frame is about 15

seconds on a 1.2 GHz computer. The authors state that although the retrieval

rate is not reliable enough for the system to work as a stand-alone hand tracker,

the tracking system could be useful for tracking initialisation or error recovery.

In Rosales et al.’s work [66] a silhouette database is generated from rendered

viewpoints of various hand poses obtained from a data glove. These rendered sil-

houettes are represented by their visual feature vectors based on the Hu moments

[34]. A set of specialised mappings, generated via supervised learning, maps the

feature vector to multiple hypotheses in hand pose space. To estimate a particu-

lar hand pose, its feature vector is extracted, from which multiple hypotheses in

the hand pose space are obtained via the set of specialised mappings. The best

candidate is then chosen based on the similarity of the candidate’s feature vector

to the observed feature vector.

Stenger et al. [76, 77] draw on the ideas of grid-based filtering in the search for

the optimal hand pose. The state space, represented by hand appearance tem-

plates, is split into sets of partitions at different resolution levels. The coarsest

partition set forms the starting level of a database tree, which branches into a par-

tition set of a finer resolution as one traverses down a level in the tree. Each level
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of the tree is seen as a grid approximation of the posterior distribution. At any

given level, partitions that pass a fixed likelihood threshold are explored further

down in the next level, thereby refining the pose of the likely candidates. Later

work in [77] introduces learned dynamics into the discrete filtering framework to

increase robustness.

2.3 The Model-Based Approach

For model-based approaches, the tracking system uses an articulated 3D model of

the hand or the body for matching. This can be matching in 2D space, where the

projection of the 3D model (evaluated online) is matched against the observed

2D image of the hand [26, 62, 49, 47, 91, 80]. Alternatively, model matching can

be performed in “21
2
D” or 3D space [42, 11, 53, 55]. Model-based techniques in

the literature for finding the optimal pose can generally be categorised as either

gradient-based or particle filter-based. Dimensionality reduction and dynamic

models are also useful methods for improving efficiency and robustness.

2.3.1 The Gradient-Based Approach

Gradient-based approaches generate gradients from the mismatch error in a cost

function. Via an optimisation algorithm, these gradients guide the tracking sys-

tem to a better pose estimate. The advantage of gradient-based approaches is

that they tend to be computationally fast as the gradient information drastically

narrows the search space. However, convergence to the global optimum is not

always guaranteed, unless the cost function exhibits sufficient properties such as

strict convexity, which is rare in practice. At worst, gradient-based approaches

can converge to local optima. Nevertheless, one can attempt to avoid local min-

ima by running multiple instances of the optimisation algorithm at different initial

states, or by using simulated annealing techniques. This is analogous to the idea

of maintaining multiple hypotheses in particle filtering.

The work of Rehg and Kanade [62, 63, 64] represents some of the earliest

research in model based 3D hand tracking. The DigitEyes tracking system in

[63] has two cameras, and uses fingertip points and occlusion edges for model

alignment. Levenberg-Marquardt is the optimisation algorithm used. Only non-

occluding hand movements are examined in [63], although the issue of self-

occlusion is addressed with the use of edge templates and a kinematic model

in the subsequent work [64].
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In the work of Bray et al. [11] the 3D hand pose is estimated from a depth map

obtained from structured lighting. The cost function utilises depth information

as well as surface normals. A stochastic sampling approach is introduced where

instead of generating the entire synthetic depth map of the hand model for cost

evaluation, sample points on the hand surface are used to evaluate an approximate

of the cost function. The stochastic optimisation algorithm SMD (stochastic

meta-descent)[68] is used.

In the work of Kehl et al. [42] a voxel-based fitting technique is applied,

whereby the model is fitted to a volume reconstruction of the subject in 3D

space. The volume is generated from multiple silhouette views. In addition, 2D

contour edges on the subject’s body are used to make the tracking more robust.

A Gaussian mixture model of the subject’s colour profile is also used as a prior

in the overall cost function to resolve difficult poses where the forearms of the

subject are in front of the torso. Like in Bray’s work, the objective function is

minimised in a stochastic optimisation setting. The sampling approach allows for

a speed up of the processing time to 1 second per frame on average.

In Lu et al.’s work [49] the hand is modelled as a dynamic system influenced

by forces due to edges and shading in the image space. Edge forces are generated

from mismatches between the model edges and the observed edges. Forces due to

intensity change are determined by solving a constraint equation that incorporates

optical flow, the directional change in illumination at a pixel due to motion, and

shading flow, the change in illumination intensity of a point on the hand surface

due to rotational movements. These forces are propagated as gradients back to

the parameter space and are used to recursively update the hand pose.

Kaimakis and Lasenby [37] have used silhouette information from multiple

cameras for hand tracking. Each segment of the hand model is represented by el-

lipsoids. The projections of these ellipsoids form conic fields. Correcting gradients

from the conic fields are analytically derived and are used to correct mismatch

errors. The Gauss-Newton method is the optimisation algorithm used.

Recently, in Gorce et al.’s work [26] the 3D hand pose from a single view

is recovered using a dynamically estimated texture of the hand and estimated

light sources in the scene. Given the background image, a synthetic image is

generated for a particular hand pose estimate. A cost function penalises differ-

ences in pixel values between the synthetic and the observed image. Sequential

quadratic programming with the BFGS (Broyden-Fletcher-Goldfarb-Shanno) ap-

proximation of the Hessian is used as the optimisation routine. Image gradients

at the self-occluded boundaries are analytically derived for better accuracy. Af-



12 CHAPTER 2. PRIOR WORK

ter the optimised pose is found, the texture model of the hand is updated to

minimise noise introduced by the background. Spatial and temporal smooth-

ness constraints are applied in the texture update routine for robustness. Cast

shadows are not addressed in this work.

2.3.2 The Particle Filter-Based Approach

Particle filtering is a popular technique employed in tracking [91, 47, 33, 7] as it

can approximate prior probability density functions that exhibit multiple modes

of likelihood. The effect of this translates to maintaining multiple hypotheses

about the pose of the articulated body. Keeping track of multiple hypotheses gives

the tracker a better chance of escaping lesser modes of likelihood (or equivalently

a local minimum) when the modes of likelihood evolve with time.

Having a smart particle resampling scheme often dictates how well a particle

filter performs, in particular when the dimensionality is high. For example a

resampling scheme that exploits prior information e.g. human motion dynamics

[91, 33] means that less samples (and consequently, less computational time) are

required to search for the important modes in the probability density function.

Bray et al. [12] propose the use of SMD to propagate the particles to likely min-

ima. Partition sampling [51], annealed particle filtering [24] and non-parametric

belief propagation [80] are further examples of schemes aimed to improve sam-

pling efficiency.

In Lin et al ’s work [47] a combination of particle filtering and a direct search

method is proposed. Firstly the hand configuration space is approximated by a

discrete set of poses captured with a data glove. Then in a two-stage approach, the

Nelder-Mead (NM) search method is used to search for the closest pose estimate

within this discrete set before refining the search in the continuous neighbourhood

of this pose estimate. To address the issue of local minima, particle filtering is

employed to maintain multiple hypotheses for the hand pose. The NM method

is also used to locate the modes of likelihood in the tracking prior.

In Sudderth et al.’s work [80] a graphical model is used to represent the hand.

Each segment of the hand is treated as a set of rigid bodies. Kinematic, structural

and temporal constraints are described as statistical dependencies between the

rigid segments. The estimation problem is posed in a graphical model framework

using Nonparameteric Belief Propagation (NBP).

In Chang et al.’s [19] work a modified form of particle filtering is introduced.

Instead of the traditional Bayesian formulation where the current state is only
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conditionally dependent on the previous state, the current state in the new for-

mulation is also conditioned on a set of “attractors”. These attractors represent

key hand pose states whose observations are known. The attractors aid in pose

transitions by guiding the particle filter to resample near more probable regions

in the state space.

2.3.3 Dimensionality Reduction

Pose estimation is often directly evaluated in the joint angle space of the artic-

ulated model [26, 11, 42]. This space is generally of a high dimensionality (>25

degrees of freedom), unless the set of articulated movements is artificially re-

stricted such as in [76]. The high dimensionality can be problematic, particularly

so for particle filter based trackers where, at worst the number of samples required

for tracking scales exponentially with an increase in dimension [91]. Fortunately,

general human motion has been shown to lie in a lower dimensional subspace or

submanifold of the high dimensional joint angle space [91, 44, 77]. This is due

not only to the structural constraints of the articulated body but also the kinetic

constraints e.g. tendon forces that effect the simultaneous movement of adjacent

digits [85]. Therefore, dimensionality reduction can be applied via techniques

such as Principal Component Analysis (PCA) [40, 3, 77] and a learned manifold

representation of the pose space [91, 44].

In the work by Kato et al. [40] the dimensionality is reduced by applying

PCA on hand motion data captured by a data glove. Independent Component

Analysis (ICA) is then applied to the reduced space to extract feature vectors

of hand motion, in particular, finger articulation. This transforms the problem

to a reduced space of 11 dimensions. Particle filtering on this reduced space is

implemented for hand tracking. Experimental results limited to motions of the

hand in the frontal view show this to be a promising approach.

In Zhou et al.’s work [93] dimensionality is reduced via PCA to a 6D space.

The authors assert that 99.79% of the variance in motion is preserved, although

the type of motion explored represents a very restricted subset of natural articu-

lated hand movements.

In Wu et al.’s work [90, 91] PCA is initially applied to reduce the dimension

of the state space to 7, preserving 95% of the variance. For the specific set

of hand gestures investigated, it is observed that the hand poses lie on linear

manifolds in this reduced space. The importance function of their particle filtering

framework is learned from this set of linear manifolds. Experimental results show
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that using such an importance function outperforms the näıve random search

and the classical condensation [35] approach. However, the authors note that the

system has difficulty handling severe out of plane motion and motion with scale

changes.

2.3.4 Dynamics

Modelling of dynamics allows for motion prediction. With motion prediction,

the pose estimate can be initialised closer to the optimal pose based on the mo-

tion trajectory observed in the past frames. This is especially useful for fast

finger/limb motion and for resolving ambiguities when the fingers are moving

simultaneously. Starting the pose search closer to the optimal value via motion

prediction generally means that the tracker has less local minima to overcome in

order to reach the optimal pose. Motion prediction models of varying complex-

ities have been used, from first order predictors, e.g. zero acceleration/constant

velocity predictors in [42, 7, 80] to motion predictors of higher orders e.g. [2, 33].

Constant velocity predictors are popular and tend to be straightforward to

implement. Many assume parameter independence in the prediction model [42,

80, 7], and models are often tempered with a heuristic damping factor to avoid

overshooting [42, 7]. In Bayesian frameworks the velocity of each pose parameter

is typically modelled as an independent Gaussian stationary process [80, 7]. In

Stenger et al. [77] the initial state for the next frame is predicted via a first order

Markov state transition matrix. This transition matrix is learned via training

data from a data glove.

Zhou et al. [93] present a more sophisticated dynamic model. A linear dy-

namic system is initially trained to model the evolution of the pose estimate in

a reduced PCA space. To improve robustness, “eigen-dynamics analysis” is used

to introduce structural constraints relating to finger dynamics. In essence, the

transition matrix of the linear dynamic system is solved as five de-coupled second

order subsystems. Each subsystem is independently trained and represents the

hand dynamics for a set of movements where the motion of one particular hand

digit dominates.

2.4 Summary

A review of the current research in hand and body tracking has been given in

this chapter. Silhouettes, edges, colour and motion field are all common visual
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cues used for tracking. Both appearance-based and model-based methods are dis-

cussed, although it appears that the latter class of methods has gained popularity

in recent years. The class of model-based methods can be further subdivided into

the gradient-based approach and the particle filtering-based approach. Both have

their advantages and drawbacks. Gradient-based approaches achieve rapid con-

vergence, albeit locally. Particle filtering on the other hand maintains multiple

hypotheses but scales badly to an increase in dimension and requires sensible

resampling schemes, which invariably require offline training. Research into more

robust and computationally efficient forms of tracking include dimensionality re-

duction and incorporating dynamics in the pose estimation process.
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Chapter 3

The Tracking System

The tracking system follows a gradient based approach where mismatch errors

between the projected pose of the 3D hand model and the observed pose are

back-propagated as gradients in the hand pose space. An optimisation algorithm

uses these gradients to refine the hand pose estimate. A cost function based on

silhouette and colour information from a stereo pair of cameras (see Figure 3.1)

provides a measure for the goodness of fit.

Figure 3.1: Diagram of the tracking system setup. A pair of cameras (square boxes)
is placed in a convergent setup facing the hand. A strong light source (yellow arrow)
that points towards the hand from above and behind one of the cameras illuminates
the scene.

Evaluating the cost (thereby generating the error gradients) by projecting

the full 3D model pose onto the image plane for comparison is computationally

expensive. This is equivalent to projecting a sufficiently dense set of sample

points on the hand model surface that faithfully represents the full model pose

17
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Figure 3.2: Flow diagram of the main components in the tracking system. Blue
arrows indicate the forward mode for cost evaluation while the red arrows indicate the
back-propagation of error gradients.

projection. Instead, our tracking system only uses a much smaller subset of

sample points on the hand model surface to evaluate an approximation of the

true cost. This approximate cost is used to refine our pose estimate. One can

show via the Robbins-Monro method [65] in stochastic approximation theory (see

Chapter 4) that running an iterative optimisation scheme on the approximate cost

instead of the true cost is valid under certain conditions.

Figure 3.2 is a flow diagram of the tracking system. With the exception of

the sample point generator, each of the steps depicted in the flow diagram will

be examined in this chapter. The inner workings of the sample point generator

will be dealt with in Chapter 4 as they relate to choosing an unbiased sampling

scheme required by the Robbins-Monro method.

3.1 The Hand Model

Different types of hand models with varying complexity have been used in the

tracking literature. One popular class of methods is to model the body as chains of

discrete rigid bodies linked together. These rigid bodies are typically represented

in a parametric manner using quadrics such as 3D ellipsoids [42] or truncated

cones [77]. Modelling the hand as a collection of rigid parametric bodies has
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the advantage of simplifying (and consequently speeding up) certain calculations

such as model projections in 2D space and contour extractions.

Alternatively, one can use a deformable mesh driven by an underlying skeleton

to represent the articulated body [13, 86, 4]. Although more complex, deformable

mesh models are ideal as they are generally more accurate representations of the

articulated body and consequently allow for more refined pose estimates. A de-

formable mesh model is used in our tracking system for better accuracy. The

increased computational cost associated with the more complex model is man-

ageable and not prohibitive due to the reduced load from sparse point sampling.

Figure 3.3: Left: Skeletal structure of the hand. (Image taken from McDonald et al.
[52]) Middle: The hand model used for hand tracking. Right: The deformable mesh of
the hand model.

We choose to model the human hand as a deformable mesh driven by an

underlying skeleton with 16 joints, totalling 26 degrees of freedom (DOF) [38]. 6

DOFs at the palm joint defines the global rotation and translation of the hand.

The MCP joint of each finger has 2 rotational DOFs to encapsulate the abduction

and flexion movements at the joint. The DIP and PIP joints of the fingers each

have 1 rotational DOF for joint flexion. Finally, the thumb has 2 DOFs for the

CMC and 1 DOF for each of the MCP and PIP joints. Note that the x-rotation

at the CMC joint is modelled as a rotation at an imaginary joint (see Figure 3.3)

further down the kinematic chain to mimic thumb abduction better.

The rotations at all joints are parameterised using Euler angles. The gimbal

lock problem is often associated with the Euler angle parameterisation. This

degeneracy only applies to the palm joint as the other joints have two or less

DOFs. Even so, the set of angles where the degeneracy occurs is finite. Hence

our Euler angle representation for a 3D rotation at the palm is unique almost

everywhere. We find the Euler angle parameterisation to be adequate for our
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purposes in practice.

The dense mesh models the skin surface and is acquired from the 3D scanning

of a real hand. It is bound to the underlying skeleton via linear skin blending [46].

Linear skin blending allows sample points taken near the joint regions to deform

in a more realistic manner when the joint is bent. The movement of each vertex

in the triangulated mesh is influenced by up to 3 different joints. Let hk be a

sample point/vertex on the hand model surface expressed in the local coordinates

of joint k and wk ∈ [0, 1] be the weighted influence of joint k on hk. Also let T 0
k be

the rigid transformation from the local coordinate system of joint k to the world

coordinate system. Then p, the overall position of the sample point in the world

coordinates after linear blending is

p =
∑
k

wkT
0
khk, (3.1)

where ∑
k

wk = 1. (3.2)

In an application scenario, the hand model must be able to generalise to

hands of varying sizes in order for the tracker to correctly estimate the pose of

any observed hand. The aspect of hand model initialisation is discussed later in

Chapter 5.

3.1.1 Hand Model Constraints

The constraints on the hand model include both static and kinematic-based con-

straints. Table 3.1 shows the static range for each joint of the hand model.

We follow the work of McDonald et al. [52] to model the inherent twist that

occurs at the MCP joint of the fingers during flexion. This twist prevents the

fingers from colliding when a fist pose is formed. It is modelled as being linearly

dependent on the y-rotation at the MCP joints. The y-rotation is responsible for

finger abduction/adduction. The slight twisting of the thumb that occurs when

it is brought in front of the palm is also modelled as a linear dependence on the

x-rotation twist of the CMC joint.

3.2 The Projection Pipeline

The projection pipeline projects the ith sample point pi on the hand model surface

to the camera model image plane. Assume that pi are given in homogenous
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Table 3.1: The range of joint angles

Digit Joint Angle range (◦) Digit Joint Angle range (◦)

Thumb CMC (x-rot) -80 — -5 Ring MCP (y-rot) -21— 34

CMC (y-rot) -70 — -20 MCP (z-rot) -10 — 90

MCP 0 — 90 PIP -10— 115

PIP -15 — 90 DIP 0—90

Index MCP (y-rot) -33 — 22 Little MCP (y-rot) -11— 44

MCP (z-rot) -10 — 90 MCP (z-rot) -10— 90

PIP -10 — 115 PIP -10— 115

DIP -0— 90 DIP 0— 90

Middle MCP (y-rot) -25 — 30

MCP (z-rot) -10 — 90

PIP -10 — 115

DIP 0 — 90

coordinates in the world coordinate frame. Let T j0 be the rigid transformation

that takes a point in the world coordinates and transforms it to the jth camera

coordinates. It has the general form of

T : R4 → R4, p 7→

(
R t

0 1

)
p, (3.3)

where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. Let

Kj be the projection matrix for the jth camera. Kj has the general form of the

calibration matrix of a CCD camera [29] i.e.,

K :=

αx 0 ox 0

0 αy oy 0

0 0 1 0

 , (3.4)

where αx, αy are the camera focal lengths with respect to the x and y directions

in the image plane and (ox, oy) is the camera’s principal point. The cameras

are assumed to be pre-calibrated prior to tracking. Lastly, let Di be the depth

normalisation function i.e.
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Di : R3 → R2,

xy
z

 7→ (
1
z
x

1
z
y

)
. (3.5)

Then si,j, the projection of the ith sample point on the jth model image plane,

is given as

si,j = DiKjT
j
0 pi. (3.6)

Note that si,j is dependent on x ∈ R26, the vector of hand parameters that defines

the hand pose. This is because the positions of the sample points pi are dependent

on x.

3.3 The Cost Function

Given a set of sample point projections on the model image plane, one can look at

the corresponding pixel coordinates in the real and data images, respectively, to

evaluate the cost∗. The overall cost function uses silhouette and colour intensity

to determine the goodness of fit. It is the weighted sum of a silhouette cost

function Cs, a filling cost function Cf and a photo-consistency cost function Cp.

Let x∗ be the vector of optimal hand parameters, corresponding to a perfect

fit of the model to the actual pose. The overall cost function Cx∗ is given as

Cx∗(x) = αCs(x) + βCf (x) + Cp(x), (3.7)

evaluated over a sufficiently dense set of sample points chosen from the hand

model surface. α and β are scalar weights. It is shown in Chapter 4 that this

overall cost function is well-behaved at its unique global minimum.

3.3.1 The Silhouette Cost Function Cs

The silhouette cost function penalises the tracker when the projected hand model

does not lie within the silhouette of the real hand in the camera images. The

cost function uses a distance map obtained from applying a chamfer distance

transform [9] over the silhouette image extracted from the real images. It assigns

∗Unless stated otherwise, the word cost is henceforth taken to mean the true cost, i.e. the
cost evaluated from a sufficiently dense set of sample points. One should note its distinction
from the approximate cost, i.e. the cost value obtained from sparse point sampling.
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a distance value V to each pixel based on the pixel’s proximity to the closest

pixel that belongs to the hand silhouette. Thus, the silhouette cost function over

j camera views is given by

Cs(x) =
1

N

N∑
i=1

2∑
j=1

V (si,j)
2, (3.8)

where N is the cardinality of a sufficiently dense set of sample points. Note that

V is dependent on the set of optimal hand parameters x∗ in the sense that x∗

determines the hand pose seen in the real camera images.

3.3.2 The Filling Cost Function Cf

The filling cost function Cf penalises the tracker when the projection of the hand

model does not fill the hand silhouette completely. A dense set of sample pixels

is randomly chosen from within the silhouette to evaluate Cf . Let ŝi,j be the

pixel coordinate of the ith sample pixel chosen inside the silhouette in the jth

camera view. Let hi,j(x) be the pixel coordinate of the point on the hand model

projection that is closest to ŝi,j. Then the filling cost function over two camera

views is given as

Cf (x) =
1

M

M∑
i=1

2∑
j=1

1

2
||ŝi,j − hi,j(x)||2, (3.9)

where M is the cardinality of the dense set of sample points. Note from (3.9)

that sample pixels which are covered by the projection of the hand model do not

contribute to the filling cost since ŝi,j = hi,j(x) in such a situation.

3.3.3 The Photo-Consistency Cost Function Cp

The photo-consistency cost function is used for local fine-tuning by resolving pose

ambiguities in the silhouette information. We first assume the hand surface to be

well approximated by the Lambertian surface model [25]. As such, one expects

to observe the same YUV colour intensity for a given point on the hand surface

regardless of the camera viewpoint. Thus, the photo-consistency cost function

penalises the tracker when the observed YUV values of the projections of a sample

point in the two camera views are not equal. The rationale is that differing YUV

values suggest that the projections do not correspond to the same point on the

hand surface, implying that the pose estimate is incorrect.
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Let I be the function that maps a given pixel coordinate to a YUV value. I

is also dependent on x∗ since x∗ determines the YUV values of the pixels in the

real camera images. For two camera views, the photo-consistency cost function

is given as

Cp(x) =
1

N

N∑
i=1

1

2
||I(si,1)− I(si,2)||2, (3.10)

where N is the cardinality of a sufficiently dense set of sample points.

3.4 Gradients

The chain rule is used to propagate the error gradients in the camera projective

space to the hand parameter space. As an example, suppose we wish to determine

the change in cost C with respect to a change in the world coordinate space, i.e.
dC
dp

. Given that the error gradient in the image space dC
dD

is known, we apply the

chain rule to get

dC

dp
=

dC

dD
· dD
dK
· dK
dT
· dT
dp

(3.11)

= RTKT dD

dK

T dC

dD
. (3.12)

The chain rule is continually applied until the hand parameter space is reached.

So far we have assumed that each module in the derivative chain is analytically

differentiable. This is not the case for the distance map function V (sj) used by

the silhouette cost function and the colour intensity mapping function I(sj) used

by the photo-consistency cost function. In practice, the image gradients dV
dsi,j

and
dI
dsi,j

are determined empirically by running a derivative filter over the data images

to obtain the image gradients. Implementation details of this can be found in

Chapter 5.

3.5 Optimisation Algorithms

Gradients generated by the tracking system pipeline are used by the optimisation

algorithm to refine the hand pose. More precisely we wish to find the optimal

hand pose, x∗,

x∗ = arg min
x

Cx∗(x), (3.13)

subject to x ∈ ϕ, (3.14)
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where ϕ is the set of allowable hand poses governed by the static constraints of

the hand model.

In practice, we cannot observe the true cost Cx∗(x) but we do observe the

approximate cost Cx∗(x,Φ). Here, the approximate cost is dependent on the ran-

dom variable Φ which represents the effects of noise due to sparse point sampling

and also camera noise. At best, we can only seek to minimise the expectation of

the approximate cost,

x∗φ = arg min
x

EΦ[Cx∗(x,Φ)], (3.15)

subject to x ∈ ϕ. (3.16)

Stochastic approximation theory states that under suitable conditions, x∗Φ →
x∗, a.s. at the limit. This will be elaborated further in the next chapter. For

now one should observe that the true gradients OCx∗(xt) are not used in the

optimisation algorithm, but rather the gradient estimates OCx∗(xt, φt
†).

The choice of optimisation algorithm to use in the tracking system is up

to the user. Several optimisation algorithms are tried out in the experiments

for comparison. These are explored in the following subsections. Note that

the Robbins-Monro method (see chapter 4) used to prove the theoretical local

convergence of the tracker at the limit requires a bound on the optimisation

algorithm’s step size. SGD and oBFGS can be proven to satisfy this bound on

step size.

3.5.1 Stochastic Gradient Descent

The iterate update equation for SGD can be expressed as

xt+1 = xt − η0
τ

τ + t
OCx∗(xt, φt), (3.17)

where η0 > 0 is the initial step size and τ > 0 is a tuning parameter. xt+1 is

checked at each iteration to see if it lies within the set of hand poses bounded

by the static hand constraints (Table 3.1). Any outlying parameters are mapped

back onto the boundary of the feasible region.

3.5.2 Stochastic Meta-Descent

Stochastic meta-descent (SMD) [68] has been used in both hand [11, 13] and body

tracking [42] and is empirically shown to achieve fast convergence in stochastic

†φt is the realisation of Φ at time t.
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approximation settings. The iterative update equation for SMD differs from SGD

in that it follows an adaptive scheme for choosing an appropriate step size vector

ηt ∈ R26. The step size adaptation takes into account the past history of step

sizes as well as the curvature information of the cost function via the Hessian Ht.

The iterative update equations are given as

ηt+1 = ηt ·max(
1

2
, 1− µOCx∗(xt, φt) · vt), (3.18)

xt+1 = xt − ηt+1 · OCx∗(xt, φt), (3.19)

vt+1 = λvt − ηt+1 · (OCx∗(xt, φt) + λHtvt), (3.20)

where · denotes the Hadamard product and µ ≥ 0 and λ ∈ [0, 1] are tuning

parameters. The initial value of v0 is set to be the zero vector.

Since our cost function is non-convex, Ht will not be positive definite every-

where. This is undesirable in practice as it can lead to divergence. An alternative

is to use the extended Gauss-Newton matrix Gt [69] to approximate Ht. Note that

there are fast O(n) methods available for calculating the Gauss-Newton vector

product Gtvt [69].

To incorporate hand constraints, outlying parameters are mapped back onto

the boundary of the feasible region just like in SGD. Let xct+1 be the parameter

vector that has been mapped back to the feasible region. For consistency, this

change must be reflected in the vt+1 update, which consequently affects the next

step size evaluation ηt+2. This is done by calculating the hypothetical constrained

gradient OcCx∗(xt, φt), as outlined in [11] as

OcCx∗(xt, φt) =
xt − xct+1

ηt+1

. (3.21)

This constrained gradient replaces OCx∗(xt, φt) in the vt+1 update in Equation

(3.20).

3.5.3 Online BFGS

The online Broyden-Fletcher-Goldfarb-Shanno method (oBFGS) [71] is an adap-

tation of the traditional BFGS method [57] to the stochastic approximation set-

ting. oBFGS differs from BFGS in that the update of the inverse Hessian estimate

Bt is slightly different and that the line search routine is absent in oBFGS. The

iterative update equation for oBFGS is given as

xt+1 = xt −
ηt
c
Bt · OCx∗(xt, φt), (3.22)
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where 0 < c ≤ 1 is a tuning parameter and nt is a real sequence of the following

form

ηt = η0
τ

τ + t
. (3.23)

The starting inverse Hessian estimate is taken to be B0 = εI, ε > 0. Bt is updated

as follows; let

st = −ηt
c
Bt · OCx∗(xt, φt) (3.24)

and

yt = OCx∗(xt+1, φt)− OCx∗(xt, φt) + λst, (3.25)

where λ ≥ 0 is the trust region factor. Also let

%t = (sT
t yt)

−1. (3.26)

Then the update equation for Bt is given as

Bt+1 = (I − %tstyT
t )Bt(I − %tytsT

t ) + c%tsts
T
t . (3.27)

One should note that at t = 0, B0 in the Bt+1 update Equation (3.27) is not εI

but
sTt yt
yTt yt

I. See [71] for further details.

Both oBFGS and BFGS require sT
t yt > 0 for all t so that Bt is positive definite.

This is not guaranteed in our situation since the cost function is non-convex. To

ensure that sT
t yt > 0 is satisfied, Equation (3.25) can be changed to

yt = Gtst, (3.28)

where Gt is the extended Gauss-Newton matrix described in [69].

To incoporate hand constraints, an outlying xt+1 is mapped back to xct+1. The

constrained sct
sct = xct+1 − xt, (3.29)

replaces st in the Bt update to ensure consistency.

3.6 Summary

An overview of the model-based tracking system has been presented. A de-

formable mesh model is chosen over parametric hand models for accuracy. A

sparse set of sample points on the model surface are used to evaluate an approxi-

mate cost. The tracker’s overall cost function uses silhouette and colour intensity

information as an indication of the goodness of fit. Error gradients from the ap-

proximate cost function are back-propagated to the parameter space of the hand
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model by applying the chain rule. These gradients are noisy estimates of the true

gradients from the true cost function. The gradient estimates are used by one of

several stochastic optimisation algorithms to find the optimal pose.



Chapter 4

Stochastic Approximation

Measurement noise is an unavoidable phenomenon in any tracking system. Sources

of noise include camera calibration noise, colour calibration noise and interest-

ingly, noise due to point sampling. Point sampling noise occurs when the tracking

system samples sparsely on the hand model surface to reduce computational load.

As a result, the true cost (see Section 3.3) can never be evaluated by the tracking

system in practice. Only a noisy approximate of the true cost can be measured.

Stochastic approximation theory [65, 8, 43, 87] provides a class of techniques

for finding a root of a function f(x) where only noise-corrupted measurements of

the function values are available. This can be applied to an optimisation setting

like the one in the tracker if we take f(x) to be the gradient, OCx∗(x), of the

tracker’s true cost function Cx∗ . Then finding a root of f equates to finding a

critical point (a minimum) of Cx∗ .

One can prove that Cx∗ has a unique global minimum for most hand poses

(see Section 4.5.1) and that the Hessian at the unique global minimum is positive

definite (see Section 4.5.2). Furthermore the tracking system is shown to fit in

the stochastic approximation framework. The tracking system locally satisfies the

conditions of the Robbins-Monro method [65, 8]. The implication of this is that

it is possible for the tracker estimate to converge locally to the optimal pose with

probability 1 despite using gradient measurements that are noise-corrupted. The

local convergence property is conditional on the noise statistics and the behaviour

of the cost function. These conditions, and the extent to which they are satisfied,

are explored in this chapter. Note that parts of Section 4.5.1 in this chapter have

been published [21]. Section 4.5.2 contains new results that complete the proof

for a well-behaved unique global minimum.

29
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4.1 The Robbins-Monro Method

Recall from Section 3.5 in the last chapter that OCx∗(xt, φt) is the gradient es-

timate used by the optimisation algorithm to find the optimal pose x∗ and is

corrupted by noise, modelled as a random variable Φ. OCx∗(xt, φt) is modelled

as the realisation of the random variable OCx∗(xt,Φ). Let at be the step size

in our optimisation procedure. Then one possible iterative scheme for stochastic

approximation is

Xt+1 = Xt − atOCx∗(xt,Φ), (4.1)

where Xt is a random variable and xt is the actual event of Xt at time t. The

Robbins-Monro theory [65, 8] states that Xt converges to the optimal pose x∗ in

mean square and with probability 1, i.e.

lim
t→∞

E[(Xt − x∗)2] = 0 and P ( lim
t→∞

Xt = x∗) = 1, (4.2)

if the following conditions are met:

1. A bound on the step size at, namely

∞∑
t=1

at =∞,
∞∑
t=1

a2
t <∞. (4.3)

2. OCx∗(xt,Φ) is unbiased, i.e.

EΦ[OCx∗(xt,Φ)] = OCx∗(xt). (4.4)

3. OCx∗(xt,Φ) has uniformly bounded variance in the sense that

sup {V ar(OCx∗(xt,Φ)) : xt ∈ RK} <∞. (4.5)

4. OCx∗(xt) is well-behaved around x∗ in the sense that

inf {(x− x∗) TOCx∗(x) : ε < ||x− x∗|| < ε−1} > 0, (4.6)

for all ε ∈ R, 0 < ε < 1.

The following sections demonstrate the extent to which the hand tracking

system meets these requirements.
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4.2 A Bound on the Step-size

Conceptually, the controlled decay of at serves to average out the noise as the

iterative scheme progresses. The evolution of the step-sizes for the optimisation

algorithms SGD (Section 3.5.1) and oBFGS (Section 3.5.3) can be proven to

satisfy these bounds [87, 82].

The use of SGD in practice may be undesirable due to its slow convergence

speed. Instead one can use oBFGS or SMD (Section 3.5.2), both of which have a

faster rate of convergence. Although there is no convergence proof available yet

for SMD, it has been shown empirically to converge well under noisy conditions

in many practical situations. Prior applications of SMD to body/hand tracking

work include [11, 42].

Note that the arguments for satisfying the remaining conditions (4.4), (4.5),

(4.6) are independent of the chosen optimisation algorithm.

4.3 An Unbiased Gradient Estimate

Noise enters the tracking system via the real image gradients and the sparse

point sampling scheme, resulting in noisy gradient measurements. Noise in the

image gradients is largely uncontrollable. It derives from lens distortion, differing

colour profiles between the two cameras, imperfect silhouette and the discretized

approximation of the image gradients. The effects of lens distortion and differing

colour profiles are minimised and assumed to be unbiased in practice by per-

forming camera calibration with a checkerboard and a colour palette. Noise in

the extracted silhouette is reduced via dilation and erosion techniques [75]. As

for the approximation of the image gradients, this is done by applying a discrete

Gaussian derivative filter [25] over the camera image. Noise due to this gradient

approximation is unbiased since the filter is symmetric.

Sparse point sampling also introduces noise into the tracking system. How-

ever, this noise will be unbiased as the surface points are chosen via random

sampling. So far, the cost function defined in Chapter 3 is ambiguous in the

sense that the “ideal” distribution of surface points on the hand model has not

been set. The distribution of surface points is important as it shapes the cost

function∗. The ideal distribution of surface points is taken to be the one that

is most effective for the purposes of tracking. In practice, the sample points are

∗Note however that a redistribution of sample points does not change the position of the
unique global mininum in the cost function.
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chosen from the vertices of the mesh. The distribution of the vertices on the

mesh is taken to be an unbiased estimate of the ideal point distribution. This

ideal point distribution is empricially determined. Chapter 5 details the effects

of varying the distribution of vertices on the mesh.

4.4 A Uniformly Bounded Variance

The gradient estimate has a uniformly bounded variance: the variance in the

Chamfer distance estimation process [9] for the noisy silhouette images is uni-

formly bounded by the size of the image. Therefore the variance in the gradient

estimates generated by the silhouette and filling cost functions via finite differ-

ences will also be uniformly bounded. The variance due to the image gradients

derived from the photo-consistency cost function is also uniformly bounded since

the range of YUV values at each pixel is uniformly bounded.

4.5 A Well-behaved Minimum

Having a unique global minimum and a positive definite Hessian of Cx∗ at x∗ is

sufficient to satisfy condition (4.6) locally. We first show that a unique global

minimum exists at x∗ for almost all hand poses. Exceptions to this will be

highlighted. We will then prove that the Hessian at the unique global mininum

is positive definite. The general assumptions made to facilitate both parts of the

analysis are:

1. The y-axis of the two camera coordinate frames are parallel to each other.

See Figure 3.1.

2. There is only one directional light source illuminating the scene from the

front. See Figure 3.1.

3. The hand model has a Lambertian surface and has a uniform texture. Hence

the YUV value of a point on the hand is completely determined by the

surface normal and the light direction. Of course, a real hand exhibits

additional texture derived from veins and pigments beneath the skin etc.

But we argue that this additional structure only makes the choice of sample

points for achieving a unique global minimum (Proposition 4.5.1) and a

positive definite Hessian (Proposition 4.5.2) at x∗ easier. Therefore the

additional structure can be ignored in the analysis.
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4. Cast shadows from the digit segments are ignored. Any surface neighbour-

hood that lies inside the cast shadow will have the same YUV value (namely

black) under a single light source and therefore will be ineffective for real-

ising Propositions 4.5.1 and 4.5.2. However, we argue that the boundary

between the shadowed and the lighted region adds structure to the hand

and will be informative enough to compensate for the lack of structure in

the shadowed region. We also argue that the observable shadow-free regions

of the hand are rich enough to realise Propositions 4.5.1 and 4.5.2.

5. For each segment of the hand, one can find at least a small region on

the surface that is visible in both camera views. This assumption is used

to exclude ambiguous poses for which a unique global minimum will never

exist due to certain digit segments being completely hidden from the camera

views. One example is a fisted hand with the back of the palm facing the

cameras. In a practical HCI context, such occurrences are rare as most

hand poses involve the palm facing towards the cameras.

Additional assumptions that are specific to the first part of the analysis only

(showing a unique global minimum at x∗ in Section 4.5.1) are

6. The palm is modelled by a rectangular cuboid and the digits of the hand

are modelled by chains of cylinders. Our proof of Proposition 4.5.1 for a

unique global minimum will rely on a suitable choice of sample points. We

argue that this choice only becomes easier for a hand model that has a more

structured or irregular surface. Hence the proof applies a fortiori to our

hand model used in tracking (Figure 3.3).

7. The baseline of the camera pair is longer than the length of any given digit

segment.

Additional assumptions that are specific to the second part of the analysis only

(showing a positive definite Hessian at x∗ in Section 4.5.2) are

8. Without loss of generality, we restrict the analysis of the photo-consistency

cost function in the proof to just the Y channel for convenience, ignoring

the U and V channels. This is valid since Cp can be decomposed as a

linear combination of costs from the Y, U and V channels respectively. The

inclusion of U and V channels will only make it easier to achieve a positive

definite Hessian at x∗ (cf. Section 4.5.2).
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9. Assume that both cameras share the same calibration/projection matrix K

which has the form

K :=

αx 0 ox

0 αy oy

0 0 1

 . (4.7)

Without loss of generality, we assume for convenience that K is the identity,

i.e. K has a unity focal length for both image axes and its principal point

at (0,0). Having a non-unity focal length merely scales the problem and

does not affect the overall proof. Setting the principal point to (0,0) is valid

as the principal point is just an arbitrary shift in the coordinate frame of

the image plane.

10. We assume that the hand surface can be approximated well by sections of

quadric C2 surfaces stitched together e.g. spherical surfaces for the knuck-

les and fingertips of the hand, and ellipsoids for sides of the palm, and

cylindrical surfaces for the digit segments. Note that this assumption is

less restrictive than Assumption 6 that is used for proving a unique global

minimum.

4.5.1 A Unique Global Minimum of Cx∗ at x∗

A unique global minimum for Cx∗ does not exist for all x∗, i.e. every possible

hand pose observed in the pair of real camera images. Nevertheless, we will show

that for a substantial subset of the possible x∗, there is always a unique global

minimum at x∗. We use the term ‘substantial’ to mean that the exceptions can

be described by a finite set of (not necessarily polynomial) equations.

Proposition 4.5.1. The cost at the optimal position Cx∗(x
∗) = 0. Under As-

sumptions 1 to 7, perturbing x∗ to x 6= x∗ strictly increases Cx∗(x).†

The first part of the Proposition is obvious, because at the optimal position all

the sample points lie within the silhouette and for each point on the Lambertian

surface of the hand model, the observed YUV value from the different camera

views will be the same. In the latter part, perturbing x∗ will cause certain parts

of the hand to move. We denote the points on the hand surface affected by this

†Note that Proposition 4.5.1 does not preclude the existence of other stationary points in
the cost function.
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CASE 1

all points have no new 
projections

CASE 2

both projections of all 
points remain in their 

respective segment region A

CASE 4

the background is not within 
the silhouette

At least 1 point has a new 
projection in at least 1 camera view

At least 1 projection of at least 1 
point lies outside its respective 

segment region A

Exactly 1 projection of at least 1 
point lies outside A,  i.e. in the 

background CASE 3

both projections of at least 
1 point lie outside A

CASE 5

the background is 
the palm

CASE 6

the background is 
another segment 

of a digit

Perturbation of 
parameter(s)

Figure 4.1: All the possible scenarios that can occur for the active points under a
perturbation of parameters. Note that A denotes the projected area of the segment (at
the optimal hand pose x∗) that an active point belongs to.

perturbation as ‘active points’. For Proposition 4.5.1 to be true at least one of

these active points must cause the cost to increase.

In the analysis the hand will be divided into 16 segments based on the hand

joints, i.e. 1 segment for the palm and 3 segments for each digit. Each active

point belongs to a segment. Let Aij be the ‘original’ projected area (in the jth

camera view) of the segment that the ith active point belongs to, at the optimal

hand pose x∗. Then Figure 4.1 shows the tree of possibilities that can occur to

the projections of the active points. We can classify the set of active points into

subsets based on these six cases in the tree. Each subset will be individually

examined as to whether it will cause Cx∗ to increase after a perturbation. Ex-

ceptions where the subset does not cause the cost to increase are highlighted at

the end of each case. Note that Proposition 4.5.1 fails to hold only if none of the

six subsets increase Cx∗ upon a perturbation.

Case 1 (All points have no new projections)

Eight points that lie in a non-degenerate configuration in Euclidean space uniquely

define the epipolar geometry of the camera pair [29]. Conversely, a known epipo-
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lar geometry uniquely defines the projections of eight points that belong to a

non-degenerate configuration. Let γ be a set of eight points in a non-degenerate

configuration, chosen from the set of active points on a rigid segment of the hand.

This is always possible as the set of active points is dense. Then, a perturbation

will move at least one of the eight points in γ. Thus Case 1 cannot occur.

Case 2 (Both projections of all points remain on their original segment)

We ignore the trivial example of a cylindrical segment rotating around the main

cylindrical axis as this type of movement is not possible for the digits of the

hand without making the palm rotate, which in turn causes other digits to move

outside their original positions.

For a cylindrical segment to lie inside the original region of a given camera

view after perturbation, it can only move in a conic region of the plane spanned

by the end points of the cylinder and the camera’s optical centre. Given that

there are two cameras (see Figure 4.2), the intersection of the two conic planes is

the only region where movement is allowed.

Figure 4.2: Foreshortening of a cylindrical segment when the main axis does not lie
on the epipolar plane.

This intersection specifies the position of the cylinder uniquely unless the conic

regions lie on the same plane, namely the epipolar plane spanned by one end of

the cylinder (see Figure 4.3, right). If the cylinder’s main axis lies on this plane,

then movements on the plane can cause the resulting projection to lie within the

original segment for both cameras. For convenience, we shall denote this set of

movements as κ.

Pure translational movements on the plane belong to κ (see Figure 4.3, left)

only if the projection of the cylindrical segment is longer than the baseline of

the camera pair. The baseline is much longer than any of the segments of the
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hand in our setup (as per Assumption 7), so pure translational movements can

be ignored.

!

!! !"

Figure 4.3: Left: A cylinder undergoing a pure translation violates the condition for
Case 2, unless the camera baseline is shorter than the length of the cylinder (e.g. 2nd
diagram from the left). The dark yellow area indicates the region where the cylinder
can translate to. Right: Foreshortening in both cameras when the cylindrical segment
rotates on the epipolar plane spanned by a, the centre of rotation.

A combination of rotational and translational movements on the plane belong

to κ if the projection of the cylinder’s main axis to the camera image plane

is shorter in both cameras after the rotational movement, and the translation

movement only moves the perturbed segment within the original region.

Without loss of generality, we take the epipolar plane to be the plane spanned

by the x and z axis in the world coordinates. Let θ be the original angle of

rotation prior to the perturbation (see Figure 4.3). Then one can show that for

Cx∗ not to increase after a perturbation,

θ = tan−1(−Dz

Dx

)− θr, (4.8)

where θr, the rotation angle, and D, the translation vector, are the transforma-

tion parameters that convert points from the local coordinates of camera 1 to

camera 2 (See Appendix A for details). Hence (4.8) is the only choice for θ (and

consequently x∗) that might not cause Cx∗ to increase.

The same argument can be applied to the palm, as the palm is attached to

the digits, which are cylindrical chains. However, this ambiguity for the palm can

only occur if additionally a) the palm and the digits all lie on the epipolar plane

or b) all digits of the hand are touching their adjacent digits to form a convex

shape. Condition b) ensures that there are no gaps between the fingers that

would otherwise lead to Case 4 when movement occurs on the epipolar plane.



38 CHAPTER 4. STOCHASTIC APPROXIMATION

Case 3 (Both projections lie outside of the original segment)

Using a simple continuity argument, one can show that it is impossible to move a

hand segment such that its new projection lies completely outside of its original

projection at x∗ without causing other segments along the kinematic chain to

partially leave their original projections or to leave the silhouette. Therefore one

can use the arguments in Cases 4, 5 or 6 for the active points on the adjoining

segments to show that Cx∗ increases.

Case 4 (One of the projections lies outside of the silhouette)

If one of the active point projections lies outside the original segment and falls

outside the silhouette region, then Cx∗ increases due to the silhouette cost function

Cs.

Case 5 (One of the projections lies on the palm)

Let p1, p2 be the projections of an active point p in the two camera views. p1

is projected to a surface point sc on the original cylindrical segment while p2 is

projected onto a surface point sp on the palm. Suppose the YUV value at p1 is

the same as in p2, which implies that the surface normals np and nc at sp and

sc respectively are equidistant to the light direction l. Then this point will not

increase Cx∗ .

However note that a reasonably-sized neighbourhood of p will also be projected

onto the palm. This statement is valid since the set of all sample points on a

segment of the hand surface is closed and thus its projection into the image plane

is also closed with a non-trivial interior. We can always choose a p′ from this

neighbourhood such that the surface normal at s′c and sc are not equidistant to

the light direction. Since the palm is locally planar, it has a constant surface

normal. Therefore the colour intensity at p′1 will be different to p′2, and so p′

increases Cx∗ .

Ambiguity occurs when the YUV values at p1 and p2 are completely black

i.e. when both np · l ≥ 0 and nc · l ≥ 0. In this situation the neighbourhood of

sp (on the palm) will be completely black. Similarly there will be a closed set of

points with different surface normals at the neighbourhood of sc (on the cylinder)

that is completely black, due to the inequality in the lighting equation nc · l ≥ 0.

Therefore it becomes unclear whether the active points in the neighbourhood of

p will increase Cx∗ .
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Let γ be the entire set of active points belonging to Case 5. In light of the

above ambiguity, γ will not increase Cx∗ only if the YUV values at the projections

of all active points in γ are black. This will not occur if we have a frontal light

source, as per Assumption 2.

Case 6 (One of the projections lies on another digit segment)

For almost all x∗, the set of active points that belong to this case will increase

Cx∗ upon a perturbation. Let p1, p2 be the projections of an active point p in

the camera views 1 and 2 respectively. p1 is projected to a surface point sc on

the original cylindrical segment C while p2 is projected onto a surface point sd of

another cylindrical segment D (see Figure 4.4, left). Both projections of p have

the same YUV value, which we will denote as η.

Figure 4.4: Left: The green surface is a patch of the hand segment that has been
perturbated from x∗. An active point p lies on a trajectory d1,η (marked in red). The
projection of d1,η onto cylinder C lies on a line with a constant YUV value. The
projection of d1,η on cylinder D however will almost always lie on a curve (marked in
blue) with a non constant YUV value. Right: A perturbation where both projections of
d1,n have the same YUV value. One can always choose active points from a neighbouring
trajectory d′ (marked in white) to increase Cx∗ , due to the forshortening effect of
cylinder D observed from camera 2.

One can trace a trajectory d1,η in the neighbourhood of p (see Figure 4.4, Left)

where the projections of the active points on d1,η in camera view 1 have the same

YUV value, η. The projection of d1,η in camera view 1 is a line on the cylindrical

surface where the surface normal is constant. However the projection of d1,η in

camera view 2 will not lie on the equivalent line on the other cylinder. Hence the
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set of active points on d1,η will increase Cx∗ for this particular perturbation. This

is not enough to satisfy Proposition 4.5.1, which requires the above statement to

be true for all perturbations where x 6= x∗. Unfortunately, there will always be

one perturbation where this is false (see Figure 4.4, Right). Under this pertur-

bation, d1,η on the perturbed cylinder is aligned to the intersection of the two

planes whose line projections (in the appropriate camera views) have the same

YUV value η. Here, the active points on d1,η will not increase Cx∗ . However,

suppose we choose another trajectory d′ that is parallel to d1,η on the projected

cylinder. The projection of d′ will have a constant YUV value in camera 1 but

not in camera 2, due to the foreshortening effect present in camera 2 but not

camera 1. Hence Cx∗ will increase due to active points belonging to d′.

This result leads us to an exception set of x∗, denoted as ε, where the set of

active points belonging to this case will not increase Cx∗ . Firstly, let us define

Υ, the set of x∗ with the following property : the pose contains (at least) two

digit segments C and D exhibiting the same foreshortening effect in camera 1

and 2 respectively, such that there exists a perturbation δ where the trajectory

d1,η and its neighbourhood of parallel trajectories d′ all project to ‘equivalent’

line segment patterns in both camera views. Figure 4.5 is an example of one such

x∗ that belongs to Υ.

Figure 4.5: x∗ belongs to Υ if d1,η and its neighbourhood of parallel trajectories d′

all project to ‘equivalent’ line segment patterns in both camera views.

Recall that sc and sd are the projections of the active point p (belonging to

d1,η) on the surface of cylinders C and D respectively. The exception set ε is

a subset of Υ, where the surface normals at sc and sd are the same under the
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perturbation δ.

If the surface normals at sc and sd are different‡, then it is always possible

to increase Cx∗ by choosing another active point in the neighbourhood of p. To

illustrate this, we take a simple pose belonging to Υ where the main axes of

cylinders C and D are parallel to the y-axes of both cameras (see Figure 4.6).

Figure 4.6: Left: The setup of a simple situation where x∗ belongs to Υ. Right:
The cross-section of the setup. l indicates the projected light direction. The dotted
circle indicates the perturbed cylinder. The lighter regions are parts where the YUV
value is greater than u.

p1 and p2 (and thus sc and sd) have the same YUV value η since the light

direction is equidistant to nc and nd. This produces the lighting pattern as seen

in Figure 4.6. Points to the right (anticlockwise) of sc on the cylinder are darker

than u while points to the left are lighter than u. This pattern is reversed on d,

where points to the right of sd are lighter than u. One can choose another point

p′ to the right of p on the projected cylinder such that p′1 lands on the lighter

region while p′2 lands on the darker region, thereby increasing Cx∗ .

Conversely, if the surface normals at sc and sd are the same in this situation,

then the reverse lighting pattern argument does not hold. Since the lighting

patterns match and the projections of the neighbourhood of p match, active

points in this neighbourhood will not cause Cx∗ to increase.

Note that the occurrence of x∗ belonging to the exception set is rare. Thus far

we have only treated the hand segments as discrete rigid bodies. It is likely that

the set ε will shrink further after accounting for restrictions due to the structural

configuration of the hand. Finally it is still possible for Cx∗ to increase even if the

‡surface points with different surface normals can have the same YUV value as long as the
angles between the surface normals and the light source are the same
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pose x∗ being considered belongs to ε, as long as the active points belonging to

the other cases cause Cx∗ to increase. Given the articulated nature of the hand,

it is extremely likely that the perturbation δ (for a given x∗ ∈ ε) will cause other

cases in the possibility tree to be violated, thereby increasing Cx∗ .

This completes the proof of Proposition 4.5.1. The next subsection will ad-

dress the positivity of the Hessian at the unique global mininum.
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4.5.2 The Positivity of the Hessian of Cx∗ at x∗

For cases where a unique global minimum exists, we now show analytically that

the cost function has a positive definite Hessian at the unique global minimum.

This is sufficient to satisfy condition (4.6) locally.

Proposition 4.5.2. Under Assumptions 1 to 5 and 8 to 10, the Hessian of Cx∗

at x∗ is postive definite for cases where a unique global minimum exists.

We first rewrite the overall cost function as

Cx∗(x) =
1

N

N∑
i=1

C ◦Mi(x), (4.9)

where C is the cost function with respect to a set of visual cues and M is the

function that evaluates the set of visual cues for the ith sample point (see next

Section 4.5.3 for details on the derivation). Because Cx∗(x
∗) = 0 (see Proposition

4.5.1), the Hessian H of Cx∗ at x∗ can be rewritten [70] as

H =
1

N

N∑
i=1

JMi

THcJMi
, (4.10)

where Hc is the Hessian of C and JMi
is the Jacobian of M for the ith sample

point. Each of the summands in (4.10) is at least positive semi-definite. Thus

achieving a positive definite H is equivalent to adding enough summands in (4.10)

such that H becomes a full rank matrix.

Hc is the sum of the Hessian of the photo-consistency cost function Hcp , the

Hessian of the silhouette cost function Hcs , and the Hessian of the filling cost

function Hcf . Note that

rank(H) ≥ rank(Ĥ), where Ĥ =
1

N

N∑
i=1

JMi

THcpJMi
. (4.11)

Showing that Ĥ has full rank (and therefore is positive definite) at the minimum

is sufficient to satisfy condition (4.6) locally. The analysis will explore a constella-

tion of sample points on the hand model surface that makes Ĥ (and consequently

H) a full rank matrix.
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4.5.3 The Structure of Ĥ

In this section we show that one can rearrange the expression for Ĥ as a sum of

matrices generated by the outer product of a set of vectors φi, i.e.

Ĥ =
1

N

N∑
i=1

φiφ
T
i . (4.12)

Then proving that Ĥ has full rank is equivalent to finding a linear independent

set of φi. To see why this is so, consider the following lemma.

Lemma 4.5.3. Let φi ∈ Rm, i = 1, ...,m be a set of linearly independent vectors.

Then the matrix

A :=
m∑
i=1

φiφ
T
i (4.13)

is a full rank matrix.

Proof. Let x ∈ Rm. Expanding Ax gives

Ax =
m∑
i=1

φiφ
T
i x (4.14)

= φ1(φ T
1 x) + ...+ φm(φ T

mx). (4.15)

Rearranging gives

Ax = M(M Tx) (4.16)

where

M :=
[
φ1 . . . φm

]
. (4.17)

M has full rank since the set of φi’s are linearly independent. Therefore A =

MM T will also have full rank.

We now examine how Ĥ can be expressed in terms of the vectors φi. The

Hessian of the photo-consistency cost function, Hcp , in Ĥ is

Hcp =

[
I3×3 −I3×3

−I3×3 I3×3

]
. (4.18)

Assumption 8 simplifies Hcp to

Hcp =

[
1 −1

−1 1

]
. (4.19)
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JMi
is the Jacobian of Mi(x). Mi(x) is the function that takes the ith sample

point, ωi, on the surface of a hand segment as input and evaluates the intensity

value (i.e. the Y channel) at the sample point projection in both camera views.

We now examine the structure of JMi
.

Let Γi(ωi,x) be a chain of Euclidean transformations that transforms the

sample point ωi on a hand segment b to the world coordinates. For example,

suppose a sample point ωi is chosen from the palm. Let T gh (ωi,x) denote the

Euclidean transformation that transforms ωi in the h coordinate system to the g

coordinate system. Then

Γi(ωi,x) = T 0
palm(ωi,x). (4.20)

The dependency on x comes from the fact that the rotation and translation

parameters governing T 0
palm are elements of x. If ωi belongs to another hand

segment, say the DIP joint of the index finger, then

Γi(ωi,x) = T 0
palm ◦ T

palm
PIP ◦ T

PIP
DIP (ωi,x). (4.21)

Let T j0 denote the Euclidean transformation that transforms a point in the

world coordinate frame to the coordinate frame of the jth camera. T j0 can be

written out in full as

T j0 (ωi) := Rj
0ωi + tj0, (4.22)

where R0
b is a 3× 3 rotation matrix and t0b is a translation vector. Also, let Kj be

the projection function that maps a point in the world coordinates to the image

plane of camera j

Kj(p) :=

αj,x 0 oj,x

0 αj,y oj,y

0 0 1


pxpy
pz

 . (4.23)

αj,x and αj,y are the focal length parameters and oj,x and oj,y are the coordinates

of the camera’s principal point. Via assumption 9, Kj is taken without loss of

generality to be the identity function, i.e. αj,x = αj,y = 1 and oj,x = oj,y = 0.

Finally, let Dj be the depth normalisation function,

Dj(kj) :=

[
1
kj,z

0 0

0 1
kj,z

0

]kj,xkj,y

kj,z

 . (4.24)
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Then Mi can be expressed as

Mi(x) =

[
Mi,1(x)

Mi,2(x)

]
, (4.25)

where Mi,j(x) is

Mi,j(x) := Ij ◦Dj ◦Kj ◦ T j0 ◦ Γi(ωi,x). (4.26)

Note that Ij is the function that evaluates the intensity value at the pixel of

the sample point projection in the jth camera view. Ij is used for evaluating

the photo-consistency cost function (cf. Section 3.3.3). For convenience in the

analysis, let Aj := Ij ◦Dj ◦Kj ◦ T j0 and express Mi,j(x) as

Mi,j(x) = Aj ◦ Γi(ωi,x). (4.27)

This split in (4.27) allows us to separate parts of the function Mi(x) that are de-

pendent on the geometry of the camera setup (i.e. Aj) from the model-parameter-

dependent parts. Let hi := Γi(ωi,x), pj := T j0 (hi), kj := Kj(p), dj := Dj(kj).

Then the Jacobian of Mi(x) can be written as

JMi
(x) = JA(hi)JΓi(x) =:

[
Yi,1

Yi,2

]
JΓi(x), (4.28)

where Yi,k ∈ R1×3 is defined as

Yi,j := ∇(Ij ◦Dj ◦Kj ◦ T j0 (hi)) (4.29)

= ∇Ij(dj)JDj(kj)JKj(pj)JT j0 (hi) (4.30)

= ∇Ij(dj)F T
j IRj

0 (4.31)

= ∇Ij(dj)F T
j Rj

0, (4.32)

with Fj being

Fj :=


1
kj,z

0

0 1
kj,z

−kj,x
k2
j,z
−kj,y
k2
j,z

 . (4.33)

Note that JΓi(ωi) ∈ R3×m, where m is the number of model parameters in x.

Finally, let 4Yi := Yi,1 − Yi,2, and define φi ∈ Rm as

φi := (4YiJΓi(x)) T, (4.34)

then one can rewrite Ĥ as

Ĥ =
1

N

N∑
i=1

φiφ
T
i . (4.35)



4.5. A WELL-BEHAVED MINIMUM 47

To prove Proposition 4.5.2, we show in the following sections how one can

achieve a linear independent set of φi’s by choosing a suitable constellation of

sample points on the hand model surface. First, we just examine the palm of

the hand (ignoring the fingers) as a single rigid body exhibiting rotational and

translational movements (6 DOFs), and show that the corresponding Ĥ for the

6 DOF palm can achieve full rank with a suitable choice of sample points. After-

wards we extend the proof in a straightforward manner to an articulated body,

i.e. the rest of the hand with movable joints.

4.5.4 A Positive Definite Ĥ for a Rigid Body

Six degrees of freedom parameterise the rotation and translation movement of a

rigid body and thus φi ∈ R6 in this instance. As an overview, we show how one

can find a linearly independent set of Ψ := {φ1, ..., φ6} (required for the positivity

of Ĥ) by choosing an appropriate corresponding {ω1, ..., ω6} set on a rigid body.

Specifically Ψi has the following structure:

Ψ := {φ1, ..., φ6} = {



∗
0

∗
δ∗
∗
δ∗





∗
0

∗
δ∗
∗
δ∗





∗
0

∗
δ∗
∗
δ∗





∗
0

∗
∗
∗
∗





∗
0

∗
∗
∗
∗





∗
∗
∗
∗
∗
∗


}, (4.36)

where ∗ denotes some unknown non-zero real value and δ << 1.

The proof of Ψ being a linearly independent set is as follows; we initially

show how one can pick a set of sample points, {ω1, ω2, ω3}, on the rigid body

such that the corresponding set of φi’s (i.e the φ1, φ2, φ3 entries in Ψ) are linearly

independent. Choosing these sample points will increase the rank of Ĥ to 3.

Then we choose another set of sample points, {ω4, ω5}, whose corresponding φi’s

(i.e the φ4, φ5 entries in Ψ) can be shown to be linearly independent of each

other based solely on the 4th and 6th entries of the φi’s. Adding {ω4, ω5} to the

previous set increases the rank of Ĥ to 5. Finally, we show how one can choose

a sample point ω6 such that its corresponding φ has the structural form of φ6 in

Ψ. Adding ω6 completes the Ψ set, promoting the rank of Ĥ to 6.
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Decomposing φi

To appreciate how one can obtain the φi’s in Ψ, the structure of φi as a function

of the corresponding sample point ωi needs to be examined. Recall from Equation

(4.34) that

φi := (4YiJΓi(x)) T. (4.37)

There are 6 degrees of freedom for a rigid body - 3 DOF for the translation vector

t ∈ R3 and 3 Euler angles, θx, θy, θz, that parameterise the rotation matrix. Note

that the model parameter vector x∗ for a rigid body is defined as

x := [tx, ty, tz, θx, θy, θz]. (4.38)

Therefore, JΓi(x) is a R3×6 matrix. Each column of JΓi represents the partial

derivative with respect to a particular model parameter, i.e.

JΓi(x) = [
∂Γi
∂tx

,
∂Γi
∂ty

,
∂Γi
∂tz

,
∂Γi
∂θx

,
∂Γi
∂θy

,
∂Γi
∂θz

]. (4.39)

It can be shown that

JΓi(x) = [

1 0 0

0 1 0

0 0 1

 , ∂Γi
∂θx

,
∂Γi
∂θy

,
∂Γi
∂θz

]. (4.40)

The structure of ∂Γi
∂θx
, ∂Γi
∂θy
, ∂Γi
∂θz

depends on the coordinate system used to param-

eterise the rotation matrix. Without loss of generality, we choose to parameterise

the coordinate system for the rotation matrix to be the coordinate system of

camera 1 that has been shifted by a translation vector t10 (see Figure 4.7). Under

this coordinate system (denoted as C̃), JΓi(x) becomes

JΓi(x) =

1 0 0 0 ωi,z −ωi,y
0 1 0 −ωi,z 0 ωi,x

0 0 1 ωi,y −ωi,x 0

 . (4.41)

Choosing this coordinate system does not result in a loss of generality and is

possible for all poses x∗ by pre-multiplying sample points in the 3D-2D pipeline

by an offset rotation matrix. The purpose of the coordinate change is to make the

analysis easier. See Appendix B for further details on this issue and how Equation

(4.41) is derived. Note that from here onwards, ωi is taken to be expressed in the

C̃ coordinate system.
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Figure 4.7: The coordinate system, C̃, of the rigid body is aligned with the coordinate
system of camera 1.

We now examine the structure of 4Yi. Using Equation (4.32), 4Yi can be

expanded out to

4Yi = Yi,1 − Yi,2 (4.42)

= ∇I1(d1)F T
1 R1

0 −∇I2(d2)F T
2 R2

0. (4.43)

Note that dj is dependent on the ith sample point. We drop this dependence from

our notation for the sake of simplicity. ∇Ij(dj) is the intensity gradient observed

at the pixel coordinates of dj of the projection of ωi on the image plane of cam-

era j. It is the projection of the “3D colour intensity gradient” observed on the

surface of the hand. To be precise, the 3D colour intensity gradient is a surface

tangent at ωi whose direction indicates the greatest change in colour intensity.

How ∇Ij(dj) is derived from the 3D colour intensity gradient is explained below.

Derivation of ∇Ij(dj)

Let Q̃ : ζ ⊂ R3 → R be the mapping from the surface of the hand, ζ, to an

intensity value and Ij : R2 → R be the mapping from the image coordinates

dj = (uj, vj) in camera j to an intensity value. Then Ij is related to Q̃ via

Ij(dj) = Ij(uj, vj) = Q̃ ◦ (T j0 )−1 ◦K−1 ◦D−1
ζ,j (uj, vj). (4.44)
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Note that the inverse projection mapping K−1 ◦D−1
ζ,j is unique since the camera

can only view the side of the hand that is facing towards it. Once again note

that Ij(dj) is dependent on the ith sample point, since the image coordinates dj

depend on ωi. Let d̃j := D−1
ζ,j (u, v), k̃j := K−1(d̃j), p̃ := (T j0 )−1(k̃j). Therefore,

∇Ij(dj) = ∇Q̃(p̃)J(T j0 )−1(k̃j)JK−1(d̃j)JD−1
ζ,j

(uj, vj). (4.45)

= ∇Q̃(p̃)(Rj
0) TK−1


∂D−1

ζ,j

∂uj
0

0
∂D−1

ζ,j

∂vj

0 0

 . (4.46)

Note that p̃ is in fact ωi and that ∇Q̃(p̃) ∈ R3 is the gradient of the colour

intensity at the point p̃, i.e the 3D colour intensity gradient at ωi. For convenience

let gi := ∇Q̃(p̃). The subscript i in gi is to remind readers that the 3D colour

intensity gradient is dependent on ωi. Thus equation (4.46) becomes

∇Ij(dj) = g T
i (Rj

0) TK−1


∂D−1

ζ,j

∂uj
0

0
∂D−1

ζ,j

∂vj

0 0

 . (4.47)

Let σj :=
∂D−1

ζ,j

∂uj
and ϕj :=

∂D−1
ζ,j

∂vj
for convenience. Since we assume K to be the

identity (via Assumption 9), Equation (4.47) becomes

∇Ij(dj) = g T
i (Rj

0) T

σj 0

0 ϕj

0 0

 . (4.48)

Finding σj and ϕj

σj and ϕj denote the changes in depth with respect to a change in the image

coordinates uj and vj, respectively. They are dependent on the surface of the

rigid body. To evaluate these variables, an assumption on the local surface cur-

vature of the rigid body is required. As per Assumption 10, we assume that the

hand surface can be well approximated locally by sections of quadric C2 surfaces

stitched together. In the case of the palm, one can assume locally spherical sur-

faces for the knuckles on the back of the palm and ellipsoidal surfaces for sides

of the palm (see Figure 4.10 on page 56). Under this assumption, one can derive

equations that describe σj and ϕj.
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Suppose we choose a sample point ωi on a quadric. Let sj be ωi in the camera

coordinates of the jth camera, i.e.

sj := Rj
0ωi + tj, (4.49)

where tj is the translation vector from the camera to the world coordinates.

Rearranging (4.49) gives

ωi = (Rj
0)−1(sj − tj) (4.50)

= R0
j (sj − tj). (4.51)

The neighbourhood of ωi belongs to a quadric surface and thus satisfies the fol-

lowing implicit equation,

ω T
i Qωi = r. (4.52)

The symmetric matrix Q ∈ R3×3 and constant r determine the type of quadric

surface. Let Qj := R0
j

T
QR0

j . Since Q is symmetric, it follows that Qj = Q T
j ,

since

Qj = R0
j

T
QR0

j (4.53)

= (R0
j

T
Q TR0

j )
T (4.54)

= (R0
j

T
QR0

j )
T (4.55)

= Q T
j . (4.56)

Thus, using (4.51), Equation (4.52) can be expressed in the jth camera coordinate

frame as

(R0
j (sj − tj)) TQ(R0

j (sj − tj)) = r or (4.57)

s T
j Qjsj − 2t T

j Qjsj + t T
j Qjtj = r. (4.58)

One can view sj as a ray of a finite length that originates from the jth camera

origin to ωi. To be precise, sj can be expressed as

sj = kj,z

ujvj
1

 = kj,zdj. (4.59)

At this point one should make note of the fact that ϕj is
∂kj,z
∂vj

. This is straight-

forward to see; as denoted in Equation (4.48), ϕj is the change in depth in the

jth camera coordinate frame (i.e. D−1
ζ,j (dj) or kj,z) with respect to a change in
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the v coordinate of the jth camera image plane (i.e.
∂kj,z
∂vj

). Substituting (4.59)

into (4.58) gives

k2
j,zd

T
j Qjdj − 2kj,zt

T
j Qjdj = r2 − t T

j Qjtj. (4.60)

Differentiating (4.60) implicitly for
∂kj,z
∂vj

gives

(2kj,zd
T
j Qjdj

∂kj,z
∂vj

+ 2k2
j,zd

T
j Qje2)− (4.61)

(2t T
j Qjdj

∂kj,z
∂vj

+ 2kj,zt
T
j Qje2) = 0. (4.62)

Rearranging this gives

∂kj,z
∂vj

=
kj,zt

T
j Qje2 − k2

j,zd
T
j Qje2

kj,zd T
j Qjdj − t T

j Qjdj
, (4.63)

which simplifies to
∂kj,z
∂vj

= kj,z
t T
j Qje2 − kj,zd T

j Qje2

kj,zd T
j Qjdj − t T

j Qjdj
. (4.64)

Taking into account that sj = kj,zdj, ϕj is thus

ϕj =
∂kj,z
∂vj

= −kj,z
(sj − tj) TQje2

(sj − tj) TQjdj
. (4.65)

Similarly σj is thus

σj =
∂kj,z
∂uj

= −kj,z
(sj − tj) TQje1

(sj − tj) TQjdj
. (4.66)

Finding φi’s with a zero 2nd entry

Recall from Equation (4.36) the type of φi’s in the set Ψ:

Ψ := {φ1, ..., φ6} = {



∗
0

∗
δ∗
∗
δ∗





∗
0

∗
δ∗
∗
δ∗





∗
0

∗
δ∗
∗
δ∗





∗
0

∗
∗
∗
∗





∗
0

∗
∗
∗
∗





∗
∗
∗
∗
∗
∗


}. (4.67)

We now examine where one can choose sample points on a rigid body to generate

these φi’s with a guaranteed zero in the second entry (denoted as φi,2). For



4.5. A WELL-BEHAVED MINIMUM 53

simplicity, we first assume the rigid body to be an ellipsoid and explore how one

can choose the corresponding Ψ set. This is further generalised to the palm by

arguing that the complex shape of the palm can be approximated by patches of

quadric surfaces stitched together and that a Ψ set can be constructed by taking

sample points from these patches (see Figure 4.10 on page 56).

As we will see later, there exist trajectories on the rigid body that host such

sample points. One can then show that φ1, ..., φ5 in Ψ can be chosen from these

paths. Being able to choose φ1, ..., φ5 that have a zero second entry is convenient

as it makes choosing the last sample point φ6 in Ψ fairly trivial. By Equation

(4.37) and (4.41), φi,2 is given as

φi,2 = 4Yi ·

0

1

0

 = 4Yi,2. (4.68)

Substituting the expression in (4.43) for 4Yi gives

φi,2 = (∇I1(d1)F T
1 R1

0 −∇I2(d2)F T
2 R2

0)e2. (4.69)

Substituting the expression in (4.48) for ∇I1(d1) and ∇I2(d2) gives

φi,2 = g T
i

R1
0

T

σ1 0

0 ϕ1

0 0

F T
1 R1

0 −R2
0

T

σ2 0

0 ϕ2

0 0

F T
2 R2

0

 e2 (4.70)

= g T
i R

1
0

T


σ1 0

0 ϕ1

0 0

F T
1 −R2

1
T

σ2 0

0 ϕ2

0 0

F T
2 R2

1

R1
0e2. (4.71)

Since we have chosen the C̃ coordinate system, R1
0 becomes the identity. This

simplifies Equation (4.71) to

φi,2 = g T
i


σ1 0

0 ϕ1

0 0

F T
1 −R2

1
T

σ2 0

0 ϕ2

0 0

F T
2 R2

1

 e2. (4.72)

The assumption made for the camera view configuration (see Assumption 1)

means that R2
1 has the following form

R2
1 =

 cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 . (4.73)
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It is straightforward to show that R2
1 can be omitted, i.e. Equation (4.72) is

equivalent to the following

φi,2 = gi


σ1 0

0 ϕ1

0 0

F T
1 −

σ2 0

0 ϕ2

0 0

F T
2

 e2. (4.74)

After substituting the expressions for F1 and F2 (see Equation (4.33)) and using

some algebraic manipulation

φi,2 = (
ϕ1

k1,z

− ϕ2

k2,z

)gi,y, (4.75)

where gi,y = gie2.

The easiest options for setting φi,2 = 0 are to find regions on the rigid body

where either gi,y = 0 or ϕ1 = ϕ2 = 0.

Under the assumptions of a single light source (Assumption 2) and a Lam-

bertian surface (Assumption 3), there is a closed path on the rigid body where

the corresponding gi,y’s of the sample points are zero. The shape of the path is

dependent on the direction of the light source. From now on, this path on the

rigid body will be denoted as Llight. Figure 4.8 shows the dependency of this

closed path on the light direction for a spherical surface.

Figure 4.8: The ring on the spherical surface indicates the trajectory Llight where
gi,y = 0. The shape and size of Llight varies depending on the elevation angle between
the light source and the horizontal plane. Llight for elevation angles of 10 deg (left),
30 deg (middle) and 50 deg (right) are shown.

For the case ϕ1 = ϕ2 = 0, we need to examine the structure of ϕ1 and ϕ2.

Substituting the expression for ϕj (Equation (4.65)) into Equation (4.75) gives

φi,2 = −
[

(s1 − t1) TQ1e2

(s1 − t1) TQ1d1

− (s2 − t2) TQ2e2

(s2 − t2) TQ2d2

]
gi,y. (4.76)
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One can show that (s1−t1) TQ1e2 = (s2−t2) TQ2e2, given the fact that R1
2e2 = e2,

since

(s2 − t2) TQ2e2 = (s2 − t2) TR0
2

T
QR0

2e2 (4.77)

= ω TQR0
1R

1
2e2 (4.78)

= ω TQR0
1e2 (4.79)

= (s1 − t1) TR0
1

T
QR0

1e2 (4.80)

= (s1 − t1) TQ1e2. (4.81)

Let

ςi,j := (sj − tj) TQjdj. (4.82)

Then

φi,2 = −(s1 − t1) TQ1e2

[
1

ςi,1
− 1

ςi,2

]
gi,y. (4.83)

Figure 4.9: Trajectories on a spherical surface where φi,2 = 0 are indicated in red and
blue. The red trajectory, Lhoriz, is the equator of the sphere. The dark green region on
the sphere represents the portion of the sphere visible in both camera views. One can
show that the blue trajectory, Llong, always exists within the mutually visible region of
the sphere. Note that the open angle of the mutually visible region is much larger in
practice than that depicted above. The fact that the spherical surface patches on the
hand are small in comparison with the distances between the hand and the cameras
means that the opening angle reaches close to 150◦ for our camera arrangement (see
Figure 3.1).

In addition to Llight, there are two trajectories on the mutually visible portion

of the ellipsoid (i.e. the portion visible in both camera views) where the sample
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points’ corresponding φi,2’s are equal to 0. One runs longitudinally (see Figure

4.9) and will be denoted as Llong. Its exact location on the ellipsoid varies de-

pending on the calibration matrices of the cameras, the stereo configuration, the

curvature and the relative position of the ellipsoidal surface. Nevertheless, one

can show that this trajectory always exists within the mutually visible portion of

the ellipsoid (see Appendix C for further details).

The other trajectory runs roughly horizontally§ across the ellipsoid where

(s1 − t1) TQje2 = 0. This trajectory will be denoted as Lhoriz. For a spherical

rigid body, Lhoriz runs exactly horizontally. For other ellipsoids, the trajectory

has a slight slant - the slanting angle is dependent on the ratios of the ellipsoid’s

principal axes and the ellipsoid’s orientation (see Appendix C for further details).

Figure 4.10: Various sections of the palm can be well approximated by ellipsoids.
The red lines indicate the typical positions of Lhoriz for each ellipsoid.

The Palm as a Patchwork of Quadrics

To extend the trajectory results to a real hand, we assume that parts of the

hand can be constructed by stitching patches of quadric surfaces together, as per

Assumption 10. Several parts of the palm can be well approximated by ellipsoids,

§with respect to the camera coordinate frames.
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in particular the sides of the palm and the parts just below the fingers (see Figure

4.10). On each ellipsoid will be a Lhoriz. In what follows, we will show how one

can choose a linear independent set {φ1, φ2, φ3} from one of these ellipsoids. We

then show how one can choose {φ4, φ5} from another ellipsoid on the palm. Then

obtaining the last point φ6 to complete the Ψ set becomes a trivial matter of

choosing yet another point on the remaining parts of the palm.

Choosing {ω1, ω2, ω3}

Recall that we wish to construct a linearly independent set Ψ to show the positiv-

ity of Ĥ. The first step is to find a set {ω1, ω2, ω3} such that their corresponding

φi’s are linearly independent and exhibit the following structure:

{φ1, φ2, φ3} = {



∗
0

∗
δ∗
∗
δ∗





∗
0

∗
δ∗
∗
δ∗





∗
0

∗
δ∗
∗
δ∗


}, (4.84)

where |δ| << 1.

We will ignore the 4th and 6th entries of {φ1...φ3} for now and show that the

linear independence of {φ1...φ3} can be determined solely by examining the 1st,

3rd and 5th entries of φi. In the following analysis, we denote φ̂i as φi without

the 2nd, 4th and 6th entries. The set of sample points that result in a linear

independent set {φ̂1...φ̂3} will be chosen along Lhoriz of one of the ellipsoids on

the palm. Recall that

φi = (4YiJΓi(x)) T (4.85)

= (4Yi

1 0 0 0 ωi,z −ωi,y
0 1 0 −ωi,z 0 ωi,x

0 0 1 ωi,y −ωi,x 0

) T. (4.86)

Hence φ̂i is simply

φ̂i = (4Yi

1 0 ωi,z

0 0 0

0 1 −ωi,x

) T. (4.87)



58 CHAPTER 4. STOCHASTIC APPROXIMATION

Recall from Equation (4.43) on page 49 that

4Yi = Yi,1 − Yi,2 (4.88)

= ∇I1(d1)F T
1 R1

0 −∇I2(d2)F T
2 R2

0 (4.89)

= g T
i R

1
0

T


σ1 0

0 ϕ1

0 0

F T
1 −R2

1
T

σ2 0

0 ϕ2

0 0

F T
2 R2

1

R1
0. (4.90)

Under the C̃ coordinate system, R1
0 becomes the identity. Expanding F1, F2 (see

Equation (4.33) on page 46) gives

4Yi = g T
i


σ1 0

0 ϕ1

0 0


 1
k1,z

0 −k1,x
k2
1,z

0 1
k1,z

−k1,y
k2
1,z

−R2
1

T

σ2 0

0 ϕ2

0 0


 1
k2,z

0 −k2,x
k2
2,z

0 1
k2,z

−k2,y
k2
2,z

R2
1


(4.91)

= g T
i



σ1

1
k1,z

0 −σ1
k1,x
k2
1,z

0 ϕ1
1
k1,z

−ϕ1
k1,y
k2
1,z

0 0 0

−R2
1

T


σ2

1
k2,z

0 −σ2
k2,x
k2
2,z

0 ϕ2
1
k2,z

−ϕ2
k2,y
k2
2,z

0 0 0

R2
1

 .

(4.92)

Once again, note that the quantities φj, σj, kj,x, kj,y, kj,z are all dependent on the

ith sample point.

Since the sample points ω1...ω3 are chosen on Lhoriz, ϕ1 = ϕ2 = 0. For these

sample points, equation (4.92) simplifies to

4Yi = g T
i


σ1

1
k1,z

0 −σ1
k1,x
k2
1,z

0 0 0

0 0 0

−R2
1

T

σ2
1
k2,z

0 −σ2
k2,x
k2
2,z

0 0 0

0 0 0

R2
1

 . (4.93)

For convenience let

σ̂j := σj
1

kj,z
, (4.94)

and thus

4Yi = g T
i

σ̂1

1 0 −k1,x
k1,z

0 0 0

0 0 0

− σ̂2R
2
1

T

1 0 −k2,x
k2,z

0 0 0

0 0 0

R2
1

 . (4.95)

σ̂1 and σ̂2 vary non-linearly along Lhoriz. Let ω1 be a point on Lhoriz where its

corresponding σ̂1 = 0 and σ̂2 6= 0. In addition, let ω3 be a point on Lhoriz where its
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corresponding σ̂1 << σ̂2. Finally, let ω2 be a sample point located somewhere else

along Lhoriz. We will show that a linear independent set of φ̂i’s can be achieved by

choosing these ω1, ω2, ω3. First we show that φ1 and φ3 are linearly independent.

For ω1, the corresponding 4Y1 is

4Y1 = −g T
1 R

2
1

T

σ̂2

1 0 −k2,x
k2,z

0 0 0

0 0 0

R2
1

 (4.96)

= g̃1,xσ̂2

[
1 0 −k2,x

k2,z

]
R2

1, (4.97)

where g̃1,x is the x-component of −g T
1 R

2
1

T
. Therefore the corresponding φ̂1 is

φ̂1 = g̃1,xσ̂2(
[
1 0 −k2,x

k2,z

]
R2

1

1 0 ω1,z

0 0 0

0 1 −ω1,x

) T. (4.98)

The magnitude of φ̂1 does not affect linear independence. Let ωji be ωi in the

jth camera coordinates. ωji is related to kj via the projection matrix Kj. Since

Kj is the identity via Assumption 9, ωji = kj
¶. Then let φ̄1 be a rescaled version

of φ̂1 i.e.

φ̄1 :=
k2,z

g̃1,xσ̂2

φ̄1 (4.99)

= (
[
k2,z 0 −k2,x

]
R2

1

1 0 ω1,z

0 0 0

0 1 −ω1,x

) T (4.100)

= (
[
ω2

1,z 0 −ω2
1,x

]
R2

1

1 0 ω1,z

0 0 0

0 1 −ω1,x

) T. (4.101)

In the same manner one can find the expression for φ̄3 of ω3, i.e.

φ̄3 = (
[
ω2

3,z 0 −ω2
3,x

]
R2

1

1 0 ω3,z

0 0 0

0 1 −ω3,x

) T + ε, (4.102)

¶Note that this generalises to a projection matrix with a non-unity focal length as the focal
length merely scales ωj

i .
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where ε ∈ R3 is an error term due to the fact that σ̂1 6= 0, σ̂1 << σ̂2 at ω3.

Note that ε is a continuous function of ω that can be made arbitrarily small since

ε→ 0 as ω3 → ωB, where ωB lies exactly on the boundary of the mutually visible

region.

Let a :=
[
ω2

1,z 0 −ω2
1,x

]
and b :=

[
ω2

3,z 0 −ω2
3,x

]
. It is clear that the vec-

tor connecting the sample point ω1 to camera 2’s origin (i.e. ω2
1) and the vector

connecting ω3 to camera 2’s origin (i.e. ω2
3) together span a plane, and therefore

are linearly independent. a and b are rotated projections of these respective vec-

tors on the horizontal plane, reflected on the YZ plane. They too are also linearly

independent‖. Consequently φ̄1 and φ̄3 can be shown to be linearly independent

based on their 1st and 2nd entries. To see why this is so, φ̄1 and φ̄3 can be

rewritten as

φ̄1 =

(aR2
1)x

(aR2
1)z

∗

 , (4.103)

and

φ̄3 =

(bR2
1)x

(bR2
1)z

∗

+ ε. (4.104)

Notice that the rotation matrix R2
1 does not change the linear independence

between a and b. In addition R2
1 is a rotation on the horizontal plane and so, like

a and b, aR2
1 and bR2

1 will remain on the horizontal plane. This implies that the

linear independence of φ̄1 and φ̄3 (and consequently φ̂1 and φ̂3) will be preserved

for a sufficiently small ε. An ω3 with a sufficiently small ε can always be chosen

since ε→ 0 in a continuous manner as ω3 → ωB.

Once an ω3 with a sufficiently small ε is chosen, we fix ω1 and ω3. We then

choose a ω2 somewhere along Lhoriz. Let ω be a candidate point for ω2 and φ̂ be

the associated vector. To show linear independence, let

Υ := φ̂ · (φ̂1 × φ̂3), (4.105)

where × denotes the cross-product operator, and observe that Υ 6= 0 implies the

linear independence of {φ̂1, φ̂, φ̂3}. Note that φ̂1, φ̂3 and (φ̂1 × φ̂3) are constant

vectors since ω1 and ω3 have been fixed. For readability let Z := φ̂1 × φ̂3. Then

Υ can be re-expressed as

‖This is always true because it is not possible for Lhoriz on an ellipsoid to vertically align with
the y-axis of the camera views. Lhoriz aligning with the y-axis would lead to linear dependence
of a and b.
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Υ = φ̂ · Z = Z1φ̂x + Z2φ̂y + Z3φ̂z, (4.106)

where Z1, Z2, Z3 are elements of Z and φ̂x, φ̂y, φ̂y are elements of φ̄. The main

idea is to show that the non-linear terms φ̂x, φ̂y, φ̂z do not cancel each other out

for the given constants Z1, Z2, Z3. Recall from Equation (4.87) that φ̂ on Lhoriz is

φ̂ =

 4Yx
4Yz

4Yxωz −4Yzωx

 , (4.107)

where k̂ is a scaling factor. Then Υ becomes

Υ = Z14Yx + Z24Yz (4.108)

+ Z3(4Yxωz −4Yzωx). (4.109)

One can show that (see Appendix D.2)

4Yx = (1 + E)(ωz + t01,z) + Et12,z (4.110)

and that

4Yz = −
(
(1 + E)(ω1

x + t01,x) + Et12,x
)
, (4.111)

where E is a rational trigonmetric polynomial (see Appendix D.2). Substituting

this into Υ gives

Υ = Z1

(
(1 + E)(ωz + t01,z) + Et12,z

)
(4.112)

−Z2

(
(1 + E)(ωx + t01,x) + Et12,x

)
(4.113)

+Z3

(
ωz((1 + E)(ωz + t01,z) + Et12,z

)
(4.114)

+Z3

(
ωx((1 + E)(ωx + t01,x) + Et12,x

)
. (4.115)

Denote

A(ωx, ωz) := {Z1(ωz + t01,z)− Z2(ωx + t01,x) (4.116)

+Z3(ωx(ωx + t01,x) + ωz(ωz + t01,z)}, (4.117)

and the constant B as

B := Z1t
1
2,z − Z2t

1
2,x + Z3(t12,x + t12,z). (4.118)

Then Υ in Equation (4.115) can be expressed as
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Υ = A(ωx, ωz) + E(A(ωx, ωz) +B). (4.119)

We further exploit the fact that ωx and ωz are dependent on each other in the

sense that ω lies on Lhoriz, which is an elliptic curve since it is a planar cross-

section of an ellipsoid. Therefore sample points ω (and thus their corresponding

φ’s) on Lhoriz can be re-parameterised as the polar coordinates of an elliptic curve

i.e.

ω = R0
e

q sinϑ

0

r cosϑ

+ t0e, (4.120)

where ϑ ∈ [0, 2π]. R0
e and t0e ∈ R3 are the rotation matrix and translation vector

respectively, that transform sample points from the local elliptic curve coordinates

to the C̃ coordinate system. Hence Υ can be expressed entirely in terms of ϑ as

Υ = Υ(ϑ) = A(ϑ) + E(ϑ)(A(ϑ) +B). (4.121)

We wish to show that Υ(ϑ) is a non-linear continuous function which implies that

there exists an ω2 (and via the continuity argument, ω’s in the neighbourhood

of ω2) where Υ 6= 0. To do so requires one to examine the properties of A(ϑ)

and E(ϑ). First we use a high level argument to show that A(ϑ) will always be a

non-linear trignometric polynomial. A(ϑ) is a linear combination of trigonmetric

polynomials pk(ϑ), k = {1, 2, 3} i.e.

A(ϑ) = Z1p1(ϑ)− Z2p2(ϑ) + Z3p3(ϑ). (4.122)

p1 and p2 are trigonometric polynomials of the 1st order whereas p3 is a trigon-

metric polynomial of the 2nd order. Therefore any linear combination of p1 and

p2 will not be able to cancel out the p3 term. The second order terms in p3 can

be shown to exist always as Z3 is guaranteed to be non-zero (see Appendix D.1).

Next, E(ϑ) can be shown to be a rational trigonometric function (see Ap-

pendix D.2). Suppose Υ(ϑ) = 0,∀ϑ. This would imply that

E(ϑ) =
A(ϑ)

A(ϑ) +B
(4.123)

for segments on Lhoriz where (A(ϑ)+B) 6= 0. Figure 4.11 shows the typical shape

of the functions E(ϑ) and A(ϑ)
A(ϑ)+B

for a particular pose of an ellipsoid. One can

appreciate that these two functions are not equal.
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Figure 4.11: Typical function values for E(ϑ) and A(ϑ)
A(ϑ)+B . The spike in the green

curve is attributed to the region where the denominator A(ϑ) +B → 0.

This means that ∃ϑ, s.t.Υ(ϑ) 6= 0. Let the corresponding sample point generated

by this ϑ be ω2. Hence the corresponding Ψ = {φ1, φ2, φ3} forms a linearly

independent set. Recall from (4.36) on page 47 that the 4th and 6th entries of

φ1, φ2 and φ3 are of the order δ∗. To see how sample points with such entries can

be chosen please refer to the discussion after Lemma 4.5.4 in the next subsection.

Choosing {ω4, ω5}

The next step is to find {ω4, ω5} such that their corresponding φi’s are linearly

independent based on the 4th and 6th entries alone and exhibit the following

structure:

{φ4, φ5} = {



∗
0

∗
∗
∗
∗





∗
0

∗
∗
∗
∗


}. (4.124)
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It is straightforward to show that such points can be picked on Lhoriz. Recall that

φi = (4YiJΓi(x)) T (4.125)

= (4Yi

1 0 0 0 ωi,z −ωi,y
0 1 0 −ωi,z 0 ωi,x

0 0 1 ωi,y −ωi,x 0

) T. (4.126)

Since 4Yi =
[
∗ 0 ∗

] T

for any ωi on Lhoriz, φi can alternatively be expressed

as

φi = (4Yi

1 0 0 0 ωi,z −ωi,y
0 0 0 0 0 0

0 0 1 ωi,y −ωi,x 0

) T. (4.127)

Suppose we choose 2 sample points ω4, ω5 on Lhoriz where the corresponding

φ1, φ2 are linearly independent based on the 1st and 3rd entry (the procedure for

doing this has been examined in the previous subsection). Then ω4 and ω5 can

be shown to be linearly independent based on the 4th and 6th entry, provided

ω4,y and ω5,y are non zero values. To see why this is so, consider the following

lemma

Lemma 4.5.4. Let φ̃1 =

[
a

b

]
and φ̃2 =

[
c

d

]
be linearly independent vectors. Let

e and f be non-zero real numbers. Then φ̂1 = e

[
a

−b

]
and φ̂2 = f

[
c

−d

]
are also

linearly independent.

Proof. The linear independence of φ̃1 and φ̃2 is equivalent to (φ̃1 × φ̃2) 6= 0. One

can re-express (φ̂1 × φ̂2) as

(φ̂1 × φ̂2) = −ef(φ̃1 × φ̃2). (4.128)

It is follows that (φ̂1× φ̂2) 6= 0 and therefore φ̂1 and φ̂2 are also linearly indepen-

dent.

The 4th entry of φi is in fact the 3rd entry of φi scaled by ωi,y. Similarly the

6th entry of φi is the 1st entry of φi scaled by −ωi,y. Hence by Lemma (4.5.4) φ4

and φ5 are linearly independent based on their 4th and 6th entries.,

To find a Ψ set {ω1, ω2, ω3, ω4, ω5} such that they are linearly independent, we

exploit the fact that the palm consists of several ellipsoidal surfaces (see Figure
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4.10 on page 56). First choose ω1, ω2, ω3 from an ellipsoid where ωi,y of the sample

points on Lhoriz are close to 0. Then choose ω4, ω5 from another ellipsoid where

ωi,y >> 0. For example, in Figure 4.10, one can choose ω1, ω2, ω3 from one of the

bottom two ellipsoids, and ω4, ω5 from one of the ellipsoids on the top row. To

show linear independence of this Ψ set, consider the following lemma [54].

Lemma 4.5.5. Suppose a square matrix M can be broken into sub-blocks

M =

[
A B

C D

]
, (4.129)

where A is square and full rank. Then the determinant of M can be expressed as

det(M) = det(A) det(D − CA−1B), (4.130)

where a non-zero det(M) implies linear independence of the columns of M.

Recall that our Ψ at this stage exhibits the following form

Ψ = {φ1, φ2, φ3, φ4, φ5} (4.131)

∼



φ1,1 φ2,1 φ3,1 φ4,1 φ5,1

0 0 0 0 0

φ1,3 φ2,3 φ3,3 φ4,3 φ5,3

−δ1φ1,3 −δ2φ2,3 −δ3φ3,3 −Nφ4,3 −(N + ε)φ5,3

∗ ∗ ∗ ∗ ∗
δ1φ1,1 δ2φ2,1 δ3φ3,1 Nφ4,1 (N + ε)φ5,1


, (4.132)

where |δi| << 1 and N + ε > N >> 0.

For convenience, we will swap row 4 with 5 and row 3 with 1. We then

normalise the matrix representation of Ψ based on the new row 1. We will also

omit the 2nd row for now since it does not play a role in showing the linear

independence of the current Ψ set. Note that linear independence is not lost by

any of these operations. The resulting matrix Ψ̄ ∗∗ takes on the following form

Ψ̄ =


1 1 1 1 1

k1 k2 k3 k4 k5

∗ ∗ ∗ ∗ ∗
−δ1 −δ2 −δ3 −N −(N + ε)

δ1k1 δ2k2 δ3k3 Nk4 (N + ε)k5

 , (4.133)

∗∗See Appendix E for properties of this matrix.
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where |δi| << 1 and 0 << N < N+ε. It should be clear that linear independence

of the columns of Ψ̄ implies linear independence of Ψ. Let A be the sub-block 1 1 1

k1 k2 k3

∗ ∗ ∗

 (4.134)

of Ψ̄. This uniquely defines the B, C and D sub-blocks of Ψ̄. Then the determinant

of Ψ̄ via Lemma 4.5.5 is

det(Ψ̄) = det(A) det(D − CA−1B). (4.135)

In the previous section we have already shown that the columns of the sub-

block A form a linear independent set. Therefore det (A) is non-zero. Suppose

we first consider the limit case where δ1 = δ2 = δ3 = 0. At this limit CA−1B = 0.

Hence the limit form of Ψ̄ is

det(Ψ̄lim) = det(A) det(D). (4.136)

We also know that the columns of the sub-block D are linearly independent (via

the linear independence argument based on the 4th and 6th entries of ω4 and ω5)

and so det(D) 6= 0. Therefore det(Ψ̄lim) 6= 0, implying that the columns of Ψ̄lim

are linearly independent. Since the set of full-rank matrices is open and dense in

the set of all square matrices, one can say that for sufficiently small δ1, ..., δ3 the

columns of Ψ̄ will be linearly independent, based on the continuity argument.

The allowable size of δ1, ..., δ3 for Ψ̄ to be full rank is dependent on several

factors, in particular the difference in magnitude between the δ’s and N . By

using a bounding argument on the element values in Ψ̄ one can show that a lower

bound on | det(D − CA−1B)| is

N2(k4 − k5)− (7δN + 49δ2)4k, (4.137)

where 4k is the upper bound on the difference in k values, i.e.

4k = max(|ki − kj|), (4.138)

where 1 ≤ i, j ≤ 5, i 6= j.††

From the above equation (4.137) one can see that for a N that is sufficiently

larger than δ, the N2(k4 − k5) term dominates and so | det(D − CA−1B)| > 0.

††See Appendix E for assumptions and extended details of the bounding argument.
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Typically N is at least an order of magnitude larger than δ on the surface of the

palm which is enough for | det(D − CA−1B)| > 0. Details of this result can be

found in Appendix E.

Choosing {ω6}

Choosing the last sample point ω6 to make Ψ a linearly independent set is easy.

With the exception of sample points on Llight, Llong and Lhoriz, almost all other

sample points on the rigid body will have a non-zero φi,2 entry. Adding the

corresponding φi of any of these points to the set Ψ will immediately increase the

rank of Ĥ from 5 to 6, thereby achieving full rank.

4.5.5 A Positive Definite Ĥ for the Articulated Hand

Previously it has been shown that one can choose a linearly independent set Ψ on

the palm. Then extending the positivity argument to a 26-DOF articulated body

is straightforward. Sample points chosen on the palm do not contribute to the

partial derivatives of the segments further down the kinematic tree of the hand,

i.e. the digits. Hence for the hand’s 26-DOF case, Ψ will have the following form

Ψ := {φ1, ..., φ6} = {



∗
0

∗
δ∗
∗
δ∗
0
...

0





∗
0

∗
δ∗
∗
δ∗
0
...

0





∗
0

∗
δ∗
∗
δ∗
0
...

0





∗
0

∗
∗
∗
∗
0
...

0





∗
0

∗
∗
∗
∗
0
...

0





∗
∗
∗
∗
∗
∗
0
...

0


}, (4.139)

where φi,7, ..., φi,26 = 0. Suppose we choose a couple of sample points ω7, ω8 on

the MCP segment of the index finger such that their corresponding φi’s can be

shown to be linearly independent of each other based on the 7th and 8th entries

only. Adding their corresponding φi’s to Ψ gives
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Ψ := {φ1, ..., φ8} = {



∗
0

∗
δ∗
∗
δ∗
0

0
...

0





∗
0

∗
δ∗
∗
δ∗
0

0
...

0





∗
0

∗
δ∗
∗
δ∗
0

0
...

0





∗
0

∗
∗
∗
∗
0

0
...

0





∗
0

∗
∗
∗
∗
0

0
...

0





∗
∗
∗
∗
∗
∗
0

0
...

0





∗
∗
∗
∗
∗
∗
∗
∗
...

0





∗
∗
∗
∗
∗
∗
∗
∗
...

0



}, (4.140)

and thus the rank of Ĥ increases to 8. Next we choose a sample point ω9 on the

PIP segment and another ω10 on the DIP segment of the index finger. Adding

their corresponding φi’s to Ψ gives

Ψ := {φ1, ..., φ10} = {



∗
0

∗
δ∗
∗
δ∗
0

0

0

0

0
...

0





∗
0

∗
δ∗
∗
δ∗
0

0

0

0

0
...

0





∗
0

∗
δ∗
∗
δ∗
0

0

0

0

0
...

0





∗
0

∗
∗
∗
∗
0

0

0

0

0
...

0





∗
0

∗
∗
∗
∗
0

0

0

0

0
...

0





∗
∗
∗
∗
∗
∗
0

0

0

0

0
...

0





∗
∗
∗
∗
∗
∗
∗
∗
0

0

0
...

0





∗
∗
∗
∗
∗
∗
∗
∗
0

0

0
...

0





∗
∗
∗
∗
∗
∗
∗
∗
∗
0

0
...

0





∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
0
...

0



},(4.141)

which consequently promotes the rank of Ĥ from 8 to 10. Note that the 11th-

26th entries of φ7, ..., φ10 are 0. This is because the sample points on the index

finger do not contribute to the partial derivatives of the other digits. In this

manner, one needs to choose 6 points on the palm, 2 points at the MCP segment

and 1 point each at the PIP and DIP segments for each digit to achieve a full

rank Ĥ (and consequently a full rank H) for the 26-DOF articulated hand. This

completes the proof of Proposition 4.5.2.
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4.6 Summary

It has been shown that the tracking system can be viewed as a stochastic ap-

proximation problem. Due to the effects of noise from the cameras and sparse

point sampling, the true gradient of the ideal cost function cannot be observed by

the tracker. Only gradient estimates are available for use by the tracker’s opti-

misation algorithm. Nevertheless the Robbins-Monro theorem states that under

several conditions on the stepsize selection, the noise and the gradient function

of the overall cost, it is possible for an optimiser (that uses gradient estimates)

to converge in mean square and with probability 1 to the true optimum. This

chapter has shown the extent to which these conditions are satisfied locally by

the tracker. We have examined a couple of optimisation routines that satisfy the

step-size condition, namely SGD and oBFGS. We have also argued that the noise

in the system is unbiased and that its variance is uniformly bounded.

In addition we have shown that the tracker’s overall cost function is rela-

tively well-behaved. With the exception of a thin set of degenerate hand poses, a

unique global minimum exists for the cost function. The proof for a unique global

minimum is based on the set of active points that has shifted under a given per-

turbation and showing that this set increases Cx∗. Two exception scenarios have

been highlighted where certain subsets of active points do not increase Cx∗. One

exception pertains to active points belonging to the case 2 subset in the instance

where the digit segment’s main axis lies on the epipolar plane spanned by one end

of the said segment. The other exception pertains to active points belonging to

the case 6 subset in the instance where x ∈ ε such that there exists a perturbation

δ where the lighting patterns at the projections of the perturbed neighbourhood

in the two camera view exactly match. Given the sizeable parameter space of x,

these exception cases are rare. Again, it needs to be reiterated that these excep-

tions pertain only to a subset of active points that shift under a perturbation.

Even in poses for which these exceptions occur, it is still possible (and highly

likely) that Cx∗ increases provided that active points belonging to other cases

cause Cx∗ to increase.

Finally, it is also proven that the Hessian, H, of the ideal cost function at the

optimal pose x∗ is positive definite. The proof for the Hessian’s positivity is based

on the fact that H is at the very least positive semi-definite and that the rank of

H can only increase with each sample point picked in the ideal cost evaluation.

We have demonstrated that choosing a finite set of sample points of a certain

constellation on the hand is enough to prove that H is positive definite at x∗.
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This involves choosing five sample points at different Lhoriz trajectories belonging

to different ellipsoidal regions of the palm, one sample point elsewhere on the

palm and for each digit of the hand, two sample points at the MCP segment, one

sample point at the PIP segment and one sample point at the DIP segment.

These properties are sufficient to satisfy locally (in the neighbourhood of the

unique global minimum) the cost function conditions of the Robbins-Monro the-

orem. Hence, under appropriate noise and step size conditions, and under the

assumption that the optimisation routine does not cause the tracker to leave the

basin of attraction, the property of local convergence follows.

This theoretical local convergence property reinforces the small angle-change

assumption often made in tracking. It suggests that the tracker will converge if

the changes in joint angles from frame t to frame t + 1 are small, such that the

initial value of the tracker for frame t+ 1, i.e. the final estimate for frame t, lies

in the region close enough to the minimum where the Hessian is positive definite.

On a macroscopic level, this chapter has illustrated one of possibly many ways

of proving local convergence for a hand tracking system. It is conceivable that

other hand/body tracking systems with similar characteristics (such as a cost

function that is a sum of squared matching loss functions, a stereo or multi-view

setup) can be shown to exhibit similar local convergence properties by applying

the same methodology used in this chapter.



Chapter 5

Initial Tracking Results

This chapter presents the implementation details of the hand tracking system and

the tracking results from various initial experiments. Section 5.1 describes the

practical implementation issues regarding the hand model, such as hand model

initialisation, handling self-occlusion and preventing finger collisions. In Section

5.2 issues related to the camera setup and the pre-processing of camera images

are discussed. The last section of the chapter presents the initial tracking results.

Experiments evaluating tracking accuracy on real image sequences containing

typical hand gestures have been performed. Also investigated is the effect of the

point sampling scheme on tracking performance.

5.1 Tracker Implementation

5.1.1 Hand Model Initialisation

The hand model used in the experiments is obtained from a 3D range scan of the

author’s hand [38]. Hence, the hand model is already a good fit to the tracked

hand in the testing video sequences. Nevertheless one would need to re-adapt this

hand model online in the initial frames should a different user with a different

hand enter the scene.

One could adopt an Expectation-Maximisation-like strategy to estimate the

shape of the tracked hand. Firstly one requires the user to initially keep the

hand at a rough predefined dress pose e.g. an open palm. Parameters that are

responsible for the rigid transformations of each hand segments are first optimised,

possibly regularised at the predefined dress pose to ensure robustness. This is

analogous to the E-step. Next these rigid transformation parameters are fixed,

71
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and the tracker’s cost function is then optimised over the parameters that deform

the shape of the hand model (which are typically fixed during tracking). This

is analogous to the M-step. These steps are repeated over several iterations.

Alternatively, one may simultaneously optimise over the rigid transformation and

deformation parameters as described in [49]. Yet another option would be to use

active appearance models in the fitting process [23].

5.1.2 Visibility and Occlusion Handling

Each sample point varies in its degree of visibility. Figure 5.1 shows how the

degree of visibility determines the types of cost evaluation that can be performed

on the sample point.

Is sample point facing 
camera 1

Is sample point facing 
camera 2

Is sample point self-
occluded 

Evaluate the silhouette-
based costs C_s and C_f 

for camera 1

Evaluate the silhouette-
based costs C_s and C_f 

for camera 2

Does sample point face 
both camera views

Evaluate the photo-
consistency cost C_p

Next sample point

no

no

no
yes

yes

yes

yes

no

Figure 5.1: Cost evaluation for a sample point based on its visibility in the two camera
views.

Every sample point is initially tested to see if it is facing each of the camera

views. Let nj and sj be the surface normal and 3D coordinates of a given sample

point expressed in the jth camera coordinate frame respectively. Then the sample

point is classed as being visible in the jth camera view if nj · sj < 0. Sample

points that are facing the camera views contribute to the silhouette-based costs.

A sample point that is visible in both camera views is further tested for

self-occlusion. A sample point that is not occluded by other parts of the hand

in both camera views can be used to evaluate the photo-consistency cost. For
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computational efficiency, a simple bounding volume model (see Figure 5.2) is used

for the self-occlusion test. The rectangular faces of the bounding volume model

are projected to the image plane and sorted into a list ordered by depth. Each

sample point belongs to a particular rectangular face. To determine a sample

point’s visibility, the rectangular face that the sample point belongs to is checked

to see if it is the nearest rectangular face to the camera view at the location of the

sample point projection. If so, the sample point is considered visible. Otherwise,

the sample point is self-occluded.

Figure 5.2: Left: Bounding volume model for the self-occlusion test. Right: Sample
points on the middle finger (in red) occluded by the index finger (in blue) are discarded.

5.1.3 Finger Collisions

Provision against finger collisions is handled by introducing a penalty cost when

adjacent fingers occupy the same volume in space. The Euclidean distances be-

tween each finger joint and its neighbouring joints are compared to check for

finger collisions. Let di,j be the Euclidean distance in 3D space between joint i

and its adjacent joint j. Also, let mi,j be the allowable threshold distance between

the joints i and j. Then the penalty cost due to the collision of joints i and j is

given as

p=

{
A(e

−b(
di,j
mi,j

)2

+ e−b), if di,j < mi,j

0, otherwise.
(5.1)
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A is a weighting factor and b is a scalar that controls the rate of decay. The

use of exponentials in the penalty cost allows for better control in the gradient

response that corrects for finger collisions. Figure 5.3 shows the typical shape of

the finger collision penalty function.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

�
�
��
�
���
�
�
��
�
��

�i,j��i,j

����������������������������������

Figure 5.3: The cost penalty rises as the distance between joints become shorter. In
this instance b = 2 and A = 1

1−e−b .

Note that the addition of the finger collision cost does not affect the unique

global minimum of the overall cost function. This is because the digits of the

hand do not share the same volume in space for all optimal hand poses. Hence

the cost penalty due to finger collisions at the optimal pose will be zero. In

addition, the Hessian of the the finger collision cost function at the unique global

mnimum is at least positive semi-definite and so it does not affect the positivity

of the Hessian of the overall cost function.

5.2 Camera Setup

A pair of firewire cameras are mounted on a stereo rig, pointed in a convergent

manner towards the moving hand (see Figure 3.1 in Chapter 3). A directional

light source above one of the cameras provides additional illumination to the

scene. The background in the scene resembles a typical office environment.

Custom software is written using the standard libdc1394 library to control

the video capture. It is important that the images captured by the two cameras
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are synchronised. Image pairs that are not in sync are most problematic for fast

hand movements. Any shift in hand pose during an out-of-sync image capture

results in observing a deformed hand at best, or at worst, a physically impossible

object. The libdc1394 library allows one to perform camera synchronisation via

a software or an external hardware trigger.

Our firewire cameras are synchronised using an external hardware trigger to

avoid potential software delays (e.g. CPU delays during high computation load

and network delays) when the software trigger mode is used. An external At-

mega128 microprocessor is used to generate a 30 Hz trigger pulse that synchro-

nises the camera pair (see Figure 5.4).

Figure 5.4: Left: The Atmega128 microprocessor that controls the synchronisation
of cameras. Right: The trigger pulse (in pink) used for synchronisation.

Both cameras are calibrated via checkerboard images prior to tracking. The

intrinsic and relative extrinsic parameters of the cameras are retrieved using the

Caltech Camera Calibration Matlab Toolbox [10].

5.2.1 Segmentation of the Hand

The hand is segmented from the background to generate the hand silhouette.

This is done via the simple but effective skin detection technique by Jones and

Rehg [36]. A histogram model of the skin color is built from a couple of training

skin images. To ensure robustness a histogram model of the background is also

generated. A pixel is classifiied as a skin pixel if

P (pixel|skin)

P (pixel|background)
≥ ε, (5.2)
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where a threshold of ε = 0.5 is empirically found to give a reasonably good

trade-off between correct pixel classification and false positives/negatives in the

segmented image.

The segmented image is typically noisy (see Figure 5.5). To produce a cleaner

segmentation, the segmented image is first eroded to eliminate islands of noise.

A dilation operator is then applied over the image to fill any holes in the hand

silhouette. The erosion procedure is then repeated to produce the final image of

the hand’s silhouette.

The distance map required by the silhouette cost function is produced by

running the Chamfer distance estimation algorithm [9] over the silhouette image.

The OpenCV [1] library’s implementation of the Chamfer distance estimation

algorithm is used.

Figure 5.5: Left: Original image. Middle: Skin detection via a trained histogram
model. Right: Noise removal and gap filling via dilation and erosion methods.

5.2.2 Colour Calibration of Images

Colour calibration of the images is required as differences in the cameras’ RGB

responses will manifest as noise bias in the photo-consistency cost function. The

cameras’ RGB profiles are calibrated using a Macbeth colour palette (see Figure

5.6).

Firstly, a pair of images of the same colour palette is taken by the two cameras

in their video capturing positions. A random set of pixels are chosen at each

colour square and the pixels’ RGB values in this set are averaged to give the

expected RGB value for the colour square. This procedure is repeated for the

same colour square in the corresponding image. A typical relationship between

the pairs of RGB values over all the colour squares is shown in the scatterplot

in Figure 5.7. Note that to get a reasonably well-distributed set of colour points

at varying intensities in the scatterplot, multiple images of the colour palette in

different orientations have been taken. A non-linear model is used to characterise
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Figure 5.6: A Macbeth colour palette is used for the colour calibration of the cameras.
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Figure 5.7: A scatterplot showing differences in the intensity responses (in the R-
channel) of the cameras.

the relationship between the cameras’ response for each of the R,G,B channels.

Although the response observed in Figure 5.7 is fairly linear, this is not always

guaranteed. Hence a broader non-linear model class (see Equation 5.3) is used to

approximate the camera response relationship. Let rj be the intensity of the R

channel in the jth camera and let A, b, c be fitting parameters. Then the model

equation for the R-channel is
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r1 = A(r2)b + c. (5.3)

Note that each of the RGB channels are fitted separately. The set of fitted

models is used to rectify the RGB response of one of the cameras so that it

matches the RGB response of the other camera.

5.2.3 Image Gradient Approximation

Image gradients from the colour calibrated images and the silhouette-based dis-

tance maps are empirically evaluated by passing a derivative filter over these data

images. The image gradients provide the partial derivatives needed to propagate

the error gradients from the images to the parameter space. The filter used is a

separable 5×5 filter, formed by the convolution of a 1D Sobel and a 1D Gaussian

filter (see Figure 5.8). The filter version shown in Figure 5.8 calculates the deriva-

tive in the vertical direction of the image. The transpose of this filter is used to

calculate the derivative in the horizontal direction of the image. Experiments

indicate little difference between using a 5 × 5 and up to a 9 × 9 filter. Filters

with a kernel size larger than 9× 9 however give less accurate tracking results.

Figure 5.8: Derivative filters for finding the image gradients.

5.3 Experiments

The tracking performance is evaluated on real image sequences of the moving

hand. The hand movements examined in the testing sequence are based on typical

hand gestures in a HCI context. Section 5.3.1 explores the types of gestures

chosen.
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5.3.1 Gestures

The hand gestures examined in the video sequences are geared towards user-

interface control in a desktop environment, for example a free-form modelling soft-

ware. There have been several studies in the Human Computer Interaction (HCI)

community that look at the gesture types used in CPU control [89, 31, 60, 58,

61, 39]. Adopting Quek’s classification scheme [60, 61], one can broadly classify

hand gestures in the HCI context into two classes, Manipulative or Semaphoric.

Gestures from each of these categories are explored in the video sequences.

Manipulative (or acting) gestures [58, 39, 61] are those for manipulating (vir-

tual) objects and would be an important class of gestures for freeform modelling.

Examples of manipulative gestures include rotating/moving/deforming a virtual

object. Of the two gesture classes, manipulative gestures require greater tracking

accuracy as the tracked movement directly translates to the amount of manipu-

lative force acting on the virtual object. Experimental sequences containing ma-

nipulative elements include the pinch, pick-and-drop, and dial-turning sequences

(see Section 5.3.2).

Semaphoric (or iconic) gestures [58, 39, 61] can be regarded as gestures that

translate to computer interface commands. They are arbitrary in that the choice

of a particular static pose or gesture to symbolise a command is up to the dis-

cretion of the designer. For example, an open palm with aligned digits may

represent a ‘stop’ command. Sign language is largely based on semaphoric ges-

tures. Sequences containing semaphoric gestures include the pick-and-drop and

the rotating palm sequences (see Section 5.3.2).

Often the intentions of the user are executed through a combination of manip-

ulative and semaphoric gestures. As an example, take the pick-and-drop sequence

(see Section 5.3.2) where a user wishes to move a selected object to another po-

sition. The picking motion where the fingers converge together is a symbolic

gesture to command the computer to select a particular object. This is followed

by a manipulative gesture to move the selected object to a new position in space.

The extent of the object’s movement is dependent on the length of the moving

hand’s trajectory in space. To signify task completion, a semaphoric ‘release’

motion is used to fix the object in the new location.

Choosing an appropriate gesture vocabulary is a compromise of various factors

including ease of recognition by the tracking system and ergonomics of a gesture-

based user interface [56, 78, 79]. In general, the elements of a gesture vocabulary

should be distinct to avoid ambiguity [58], straightforward to perform by most
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[79] but remain reasonably easy to track. An interesting biomechanical aspect

in gesture vocabulary design that is often overlooked is user fatigue [31]. One

common oversight is the use of large arm movements in the gesture vocabulary.

Studies have shown that the user’s arms quickly tire [56, 15] and so gestures

involving such movements should be avoided. The gestures in the video sequences

have been chosen in light of these factors.

5.3.2 Real Image Sequence Testing

The performance of the tracking system is evaluated over a selection of video se-

quences showing a real hand. These sequences contain aspects of both semaphoric

and manipulative gestures, both of which can conceivably be applicable to a ges-

ture interface for freeform modelling. Via these video sequences we investigate the

tracker performance whilst varying the sampling schemes, the number of samples

used, and the optimisiation algorithm of choice.

A rough starting pose is used to initialise the tracker at the start of each video

sequence. The weighting factors used in the cost function are as follows.

Table 5.1: Weighting values for the cost components of Cx∗

Cost Component Weight

Silhouette cost 1.5

Filling cost 1

Photoconsistency cost 100

The optimisation algorithms tested in the hand tracking system are SG, SMD,

oBFGS (see Section 3.5 for these three), the Gauss-Newton method (GN) and

the Levenberg Marquardt method (LM). Optimisation via LM and GN has been

included as a point of reference. Each optimisation algorithm has the same ter-

mination conditions; either when the cost reaches below a certain threshold or

when a maximum number of iterations are reached, whichever comes first. A cost

threshold of 10 has been empirically found to be a good stopping condition. The

maximum number of iterations allowed is set to 20. This fairly low number is

chosen to account for the fact that a real-time system would be limited in time

for pose tracking.
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In terms of computational time, an average of 0.7s are required for the image

pre-processing routines per frame (i.e. the generation of silhouette distance maps

and the convolution operations required for the image gradients). Additionally

Table 5.2 and Figure 5.9 show the average time required for the optimisation rou-

tine to complete each frame under the stopping conditions mentioned previously.

All timing values are based on computations running on an Intel Core 2 Duo 2.4

GHz processor. The computational time is slightly slower on an Intel P4 3.4 GHz

processor by ∼ 10%.

Table 5.2: Average time required (s) per frame for the optimisation routine.

No. of Sample Points

Optimisation Algorithm 128 256 512 1024

SG 0.16 0.26 0.40 0.68

OBFGS 0.30 0.47 0.75 1.3

SMD 0.16 0.26 0.42 0.73

LM 0.61 1.2 2.3 4.1

GN 0.61 1.2 2.3 4.0

The main bottleneck for each of the optimisation schemes is the evaluation of

the cost function (and subsequently the corresponding error gradient and Hessian

vector product in the backward-propagation mode). Processing time grows in an

approximately linear fashion as more sample points are used (see Table 5.2 and

Figure 5.9). The Levenberg-Marquardt and the Gauss-Newton schemes are a lot

slower than the other schemes due to the explicit evaluation of the approximate

inverse Hessian. To apply LM (or GN), the overall cost function needs to be

expressed as

Cx∗(x) =
1

2
f(x) Tf(x). (5.4)

The Hessian approximation used in LM and GN is (J T
f Jf + µI) and J T

f Jf , re-

spectively, where Jf (x) is the Jacobian of f(x). f(x) takes values in R9 due to

the 3 channels in the photo-consistency cost function, 2 channels in the silhou-

ette cost function and 4 channels in the filling cost function. Hence the explicit

evaluation of the Jacobian requires an extra 9 backward-propagation passes per

iteration thereby substantially increasing computational load.
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Figure 5.9: Average time (s) required per frame for the optimisation routines under
different sample sizes.

As for oBFGS, it is about twice as slow as SMD or SG due to the fact that the

update of the inverse Hessian requires 2 sets of forward and backward-propagation

passes. Surprisingly, computational time for SMD and SG is very similar. This

again highlights the fact that the cost evaluation is much more computationally

expensive than the update routines of the optimisation algorithms.

Note that the current hand tracking system has not been optimised for speed.

It is highly conceivable that the processing time can be drastically reduced by

exploiting the parallelisable nature of the tracking pipeline. The evaluation of

the cost function is parallelisable since the cost contributed by each sample point

does not depend on neighbouring sample points on the hand surface. Therefore a

sample point set can be subdivided and processed independently on separate CPU

cores. The tracking system currently does not take advantage of this parallelis-

abilty. In fact only one of the two processor cores are used. By implementating

a straightforward threading scheme, it is plausible that the processing times in

Table 5.2 can be reduced by up to 50%.

In addition, image pre-processing procedures can be readily off-loaded onto

the graphics card to be computed in parallel to the optimisation routine. One

likely scenario would be to commence image pre-processing tasks for frame t on
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the graphics card in parallel while the optimisation routine optimises over the

previous frame t− 1.

The following subsections explore the tracking performance on real video se-

quences in detail. Note that videos of tracking results for each of these sequences

can be found on the accompanying CD-ROM.

Sequence 1 - Finger Flexion

This sequence involves the flexion of the individual digits followed by the simul-

taneous flexion of all fingers. Figure 5.10 shows the cost per frame for SG, SMD,

and oBFGS. 1024 samples are used in the actual tracking.
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Figure 5.10: Cost per frame for finger flexion. A maximum of 20 iterations were
allowed.

Both SG and oBFGS exhibit drifting errors as evidenced by the increasing

trend in cost towards the end of the sequence. This error drift is the result of the

allowable number of iterations per frame being too low. A 20 iteration threshold

is not adequate for SG and oBFGS to converge close enough to the optimal

position. One can compensate by setting a larger initial step size or a lower rate

of step size decay for both SG and oBFGS. However additional testings indicate

that doing so makes the tracking more ‘shaky’ and unstable as the noise in the

system is not being dampened quickly enough.
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Figure 5.11: Cost per frame for SG for different maximal iteration counts. The
tracking result obtained using SMD is shown in grey as a reference.
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tracking result obtained using SMD is shown in grey as a reference.
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To show that this increasing trend in cost is indeed due to insufficient iter-

ations, the experiments have been repeated for SG and oBFGS with a larger

number of allowable iterations per frame (see Figures 5.11 and 5.12). Here one

can see that the increasing trend in cost disappears upon an increased number of

allowable iterations. For the remaining video sequences only the results of SG and

oBFGS under a maximum of 400 iterations will be shown. The tracking results

of SG and oBFGS under a maximum of 20 iterations are simply not comparable

to that of SMD.

The frames that exhibit a poor pose estimate include frames 86 and 139 for

oBFGS (see Figure 5.13), frame 86 for SMD (see Figure 5.14) and frames 86, 139,

236 and 242 for SG (see Figure 5.15). Tracking using SMD appears to perform

the best.

Figure 5.13: A selection of frames from Sequence 1 - Finger Flexion using oBFGS.

Figure 5.14: A selection of frames from Sequence 1 - Finger Flexion using SMD.
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Figure 5.15: A selection of frames from Sequence 1 - Finger Flexion using SG.
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Figure 5.16: Cost per frame for finger flexion for the Levenberg-Marquardt and
Gauss-Newton methods. A maximum of 200 iterations were allowed.

The Gauss-Newton method (GN) has given the worst result out of all the

optimisation algorithms tested (see Figures 5.16 and 5.17). Despite spending 200

iterations at each frame, the tracking accuracy fluctuates wildly from frame to

frame. This is expected because the Gauss-Newton method is designed for fast

convergence for a deterministic rather than a stochastic cost function. There

is no provision for handling noise in GN; the Hessian approximation J T
f Jf and
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the gradient estimates are used by the Gauss-Newton method as if they are true

deterministic values. This leads to pose estimates that oscillate around but never

converge to the optimal pose.

Figure 5.17: A selection of frames from Sequence 1 - Finger Flexion using GN.

Figure 5.18: A selection of frames from Sequence 1 - Finger Flexion using LM.

The results obtained using the Levenberg-Marquardt method (LM) are much

better than the GN method (see Figures 5.16 and 5.18), although not as good

as the stochastic optimisation methods i.e SMD, oBFGS and arguably SG. The

generally low error highlights the effect of the trust region at work in LM. The

stochasticity of the cost function has the effect of making the J T
f Jf estimate

appear inaccurate from one iteration to the next, thereby causing the trust factor

µ in LM to dampen the step size. Nevertheless LM is prone to bursts of poor

tracking at intermittent frames. This is because fundamentally the trust region

implemented in LM is not designed to actively dampen noise but rather to take
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the largest possible step direction in the current step given its level of trust

for the accuracy of the Hessian approximation J T
f Jf . Should the noise abate

temporarily at certain iterations, LM can be misled to believe that its Hessian

approximation is accurate thereby increasing the trust region. A larger trust

region leads to LM taking a larger, often reckless, update step. Having said

that, there exists a provision for overshooting in LM where an update step is

only taken when the resulting cost becomes smaller. For a deterministic setup

this would prevent LM from taking an update step that is too large. However,

for a stochastic cost function, what may appear to be a valid step leading to

a lower cost for one particular realisation of the stochastic cost function may

not be a valid step for another realisation of the stochastic cost function. This

compromises the effectiveness of the guard for overshooting, thereby leading to

the bursts of tracking inaccuracy in the sequence.
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Sequence 2 - Dial Turning

In this sequence the hand forms a grip over an imaginary dial and completes a

turning motion. The error peak at frame 100 (see Figure 5.19) corresponds to a

poor fit of the palm in the sequence (see Figures 5.21, 5.22, 5.23).
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Figure 5.19: Cost per frame for dial turn-
ing motion (oBFGS, SMD, SG).
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Figure 5.20: Cost per frame for dial turn-
ing motion (LM, GN).

In frame 112 the index and the middle finger become crossed over for both

SMD and SG. This part of the sequence is particularly tricky since the fingers

are close together and overlapping. However both SMD and SG do recover and

the final open palm pose is reached. The high cost for oBFGS at the end of the

sequence is due to the crossing over of the little and ring fingers.

Similar to what is observed in the flexion sequence, GN exhibits poor tracking

results. The cost values in the first 50 frames (see Figure 5.20) under GN and, to a

lesser extent, LM are high and tend to fluctuate wildly from frame to frame. The

poor tracking accuracy even for this relatively stationary portion of the video

sequence illustrates the lack of proper noise damping in both algorithms (see

Figures 5.24 and 5.25).
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Figure 5.21: A selection of frames from Sequence 2 - Dial Turning using oBFGS.

Figure 5.22: A selection of frames from Sequence 2 - Dial Turning using SMD.

Figure 5.23: A selection of frames from Sequence 2 - Dial Turning using SG.
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Figure 5.24: A selection of frames from Sequence 2 - Dial Turning using GN.

Figure 5.25: A selection of frames from Sequence 2 - Dial Turning using LM.
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Sequence 3 - Pinching

In this sequence the hand forms a pinching gesture. The rough pinching motion

is captured but there is a misalignment of the fingers. The misalignment starts at

frame 31 (see Figures 5.28, 5.29, 5.30) where the middle finger occludes the index

finger causing difficulty for the tracker to distinguish between the two fingers.

Instead of the pinching motion occurring between the thumb and the index finger,

the pinching motion in the subsequent frames occurs between the middle finger

and the thumb. One would think that adding a motion predictor to the tracker

may resolve this issue. This will be discussed in Chapter 6. Similar to the dial

turning sequence, both SG and SMD do recover to the open palm pose towards

the end. The high cost observed at the end for oBFGS (see Figure 5.26) is due

to the crossing over of the index and middle fingers.
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Figure 5.26: Cost per frame for the pinch-
ing motion. (oBFGS, SMD, SG).

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

�
�
�
�

������������

������������������������������

GN - 200 iterat ions
LM - 200 iterat ions
SMD - 20 iterat ions

Figure 5.27: Cost per frame for the pinch-
ing motion (LM, GN).

Interestingly, the tracking results for the pinching motion using LM is correct

(see Figure 5.27) in that the middle and index fingers are not mixed up at all.

Similar to SMD, SG and oBFGS the curling of the other fingers remains inac-

curate. Unfortunately under LM, the tracker does not recover well back to the

open palm pose at the end of the sequence.

The tracking results for GN are again rather poor (see Figure 5.32).
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Figure 5.28: A selection of frames from Sequence 3 - Pinch using oBFGS.

Figure 5.29: A selection of frames from Sequence 3 - Pinch using SMD.

Figure 5.30: A selection of frames from Sequence 3 - Pinch using SG.
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Figure 5.31: A selection of frames from Sequence 3 - Pinch using LM.

Figure 5.32: A selection of frames from Sequence 3 - Pinch using GN.
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Sequence 4 - Pick and Drop

In this sequence the hand grabs an imaginary object and drops it at another

location. The main problem in this sequence appears to be that the joints of the

fingers are not bending quickly enough, causing the estimated pose to lose form.

Frames 35 and 48 (see Figures 5.35, 5.36, 5.37, 5.38) exhibit this phenomenon;

despite the pose lying within and filling the hand silhouette completely, the align-

ment of the fingers is incorrect. The high error peaks for oBFGS, SG and LM at

frame 66 (see Figure 5.33) are due to the misalignment of digits. Nevertheless,

the tracker under oBFGS, SMD, LM and SG recovers back to the open palm pose

towards the end. This is not the case for GN.
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Figure 5.33: Cost per frame for the pick
and drop motion.
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Figure 5.34: Cost per frame for the pick
and drop motion.

Figure 5.35: A selection of frames from Sequence 4 - Pick and Drop using oBFGS.
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Figure 5.36: A selection of frames from Sequence 4 - Pick and Drop using SMD.

Figure 5.37: A selection of frames from Sequence 4 - Pick and Drop using SG.

Figure 5.38: A selection of frames from Sequence 4 - Pick and Drop using LM.
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Figure 5.39: A selection of frames from Sequence 4 - Pick and Drop using GN.
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Sequence 5 - Rotating Palm

In this sequence the palm flips in front of the camera, revealing the back of the

hand before returning back to the original open palm pose. This is especially

challenging as the hand motion undergoes severe self-occlusion, in particular at

frames 27 and 65 where self-occlusion is the most severe due to the turning motion.

The cost graph (see Figure 5.40) reflects this. An additional difficulty for these

two frames is the motion ambiguity - without a prior on the past motion history,

it is conceivable that the palm can flip either way. This is observed at frame 27 in

Figures 5.42, 5.43, 5.44, 5.45, 5.46 in that oBFGS, SMD (20 iterations), SG, LM

and GN all fail to follow through with the flipping motion. Temporal information

in the form of motion prediction is required in such instances to help decide the

switching direction. This will be discussed in Chapter 6.

However, it is interesting to note that SMD (at a maximum of 400 iterations)

is able to transition through the first flipping motion at frame 27 and faithfully

track the palm (see Figure 5.47). Unfortunately the algorithm is still unable to

track the returning transition at frame 65. This further demonstrates the need

for a motion predictor.

0

50

100

150

200

10 20 30 40 50 60 70 80

�
�
�
�

������������

�����������������������������������

OBFGS - 400 iterat ions
SMD - 20 iterat ions
SG - 400 iterat ions

SMD - 400 iterat ions

Figure 5.40: Cost per frame for the palm
rotate motion (oBFGS, SMD, SG).
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Figure 5.41: Cost per frame for the palm
rotate motion (LM, GN).



5.3. EXPERIMENTS 99

Figure 5.42: A selection of frames from Sequence 5 - Rotating Palm using oBFGS.

Figure 5.43: A selection of frames from Sequence 5 - Rotating Palm using SMD.

Figure 5.44: A selection of frames from Sequence 5 - Rotating Palm using SG.
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Figure 5.45: A selection of frames from Sequence 5 - Rotating Palm using LM.

Figure 5.46: A selection of frames from Sequence 5 - Rotating Palm using GN.

Figure 5.47: A selection of frames from Sequence 5 - Rotating Palm using SMD (max
400 iterations).
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5.3.3 Sampling

As alluded to in Section 4.3, there remains the question of what makes a good

sampling scheme for the purposes of tracking. It is possible to change the sam-

pling scheme without affecting the position or the existence of the unique global

minimum in the overall cost function. To do so requires the following restriction

on the formulation of the sampling scheme: for every visible region of an arbitrary

size on the hand surface, the probability of picking a sample point in that region

is greater than 0. In other words, one is free to alter the sampling distribution on

the visible region of the hand surface as long as there do not exist visible parts

of the hand where the sampling scheme can never sample from. For example, a

sampling scheme that does not sample from the PIP segment of the index finger

would be invalid. Similarly a sampling scheme that only samples at the projected

contours of the hand surface in the two camera views is also invalid.

Changing the sampling scheme can broaden or reduce the basin of attraction

in which the tracker can converge locally. This interesting aspect of shaping the

cost function is not addressed in the analysis in the previous chapter. There are

endless ways of choosing a sampling scheme on the hand surface. The following

are several sampling schemes that have been investigated.

1. Uniform Random: Randomly sample the hand surface, based on the distri-

bution of vertices on the hand model surface.

2. Random-75-Palm: 75% of sample points are randomly chosen from the

palm. The other 25% of sample points are chosen randomly from the re-

maining parts of the hand.

3. Random-50-Palm: 50% of sample points are randomly chosen from the

palm. The other 50% of sample points are chosen randomly from the re-

maining parts of the hand.

4. Random-25-Palm: 25% of sample points are randomly chosen from the

palm. The other 75% of sample points are chosen randomly from the re-

maining parts of the hand

5. Stratified-75-Palm: 75% of sample points are randomly chosen from the

palm. Of the other 25%, an equal number of sample points are randomly

chosen from each remaining hand segment.
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6. Stratified-50-Palm: 50% of sample points are randomly chosen from the

palm. Of the other 50%, an equal number of sample points are randomly

chosen from each remaining hand segment.

7. Stratified-25-Palm: 25% of sample points are randomly chosen from the

palm. Of the other 75%, an equal number of sample points are randomly

chosen from each remaining hand segment.

8. Edge-weighted: Sample points near the projected edges/contours are more

likely to be chosen than from the centre of the projected hand segment. This

effect is achieved by first randomly sampling the hand surface, followed by

a discarding pass where a sample point ω has a chance of being discarded

based on the surface normal n at ω i.e.

P(ω is discarded) = |n · v|, (5.5)

where v is the unit direction vector that points to ω from the camera origin.

These sampling schemes have been devised to test several hypotheses. One of

the hypotheses is that it is important to get the orientation of the palm correct

since it is the base of the hand’s articulated structure. Errors in the palm orienta-

tion will propagate (and potentially magnify) to other segments in the kinematic

chain. Hence the schemes with varying percentage of points sampled from the

palm have been devised to test whether sampling more points on the palm makes

for a more accurate palm orientation and subsequently a more accurate hand

pose. The Random and Stratified schemes are also designed to test whether it

is necessary to sample from each segment of the hand at each iteration. From a

theoretical perspective it should not matter as long as each segment eventually

gets sampled in at least once after any finite number of optimisation iterations,

i.e. infinitely often in total. In practice however, it is not clear if this will affect

performance since the number of iterations allowed is finite. Finally, the Edge-

weighted sampling scheme is devised to test whether sample points taken close to

the contours of the hand’s 2D camera view projection are more important than

sample points located at the centre of the hand. Intuitively one would believe

that sample points close to the edge are more important since the silhouette and

filling cost function predominantly affects these points.

The sampling schemes are tested on the finger-flexion sequence, with the

tracker running SMD using 256 sample points. A lower number of sample points
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Figure 5.48: Cost variation under different random sampling schemes. Shown in
black is the uniform random sampling scheme (based on the default point distribution
on the hand model mesh).
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Figure 5.49: Cost variation under different stratified sampling schemes.
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has been chosen since prior experiments have shown that the effects of the sam-

pling scheme are not as apparent for a large sample size. As shown in Figures

5.48 and 5.49, the results indicate that sampling more points on the palm makes

the tracking worse. The Uniform Random, Stratified-25-palm and Random-25-

palm schemes perform the best. Incidentally the percentage of sample points

chosen on the palm under the Uniform Random sampling scheme is on average

35%. There is little difference between the Random and the Stratified sampling

scheme, suggesting that the system can tolerate one or two iterations where a

segment has not been sampled.

Perhaps the most surprising result is that there is very little difference in track-

ing performance between uniform random sampling and edge-weighted sampling

(see Figure 5.50). One likely explanation is that there are already enough edge

points in uniform random sampling such that having more edge points does not

substantially improve the pose estimate. Note that a uniform random sampling

scheme on a 3D hand surface will naturally tend to have more points at the edges

in the 2D image space due to the foreshortening effect in the 3D to 2D projection

of sample points.
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Figure 5.50: Cost variation for the edge sampling scheme.

Another interesting aspect in sampling is the number of samples required to

get reasonable tracking performance. Sample sizes of 1024, 512, 256 and 128
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Figure 5.51: Cost variation under different sample sizes under Stratified 50 Palm
sampling scheme.

(under the stratified-50-palm sampling scheme) are tested on the same finger-

flexion sequence. The results can been seen in Figure 5.51. They indicate that

under the same finite number of iterations, using more sample points gives a more

accurate result. One would say that a sample size of 256 or 512 represents a good

compromise between accuracy and computational load.
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5.4 Summary

There is large variation in the achieved tracking performance. Tracking estimates

are substantially more accurate in situations where the pose structure is strongly

encapsulated by the silhouette. The open palm pose is an example of such a

pose. Difficulty arises when the digits are close to one another, as well as when

self-occlusion occurs between adjacent digits and also between the palm and the

digit. Theoretically the photo-consistency cost function should resolve much of

these difficult poses where the silhouette cue is less informative. This does not

appear to be case in practice. The results empirically indicate that the photo-

consistency cost function has a very small basin of attraction. Coupled with

the presence of numerous local minima in the photo-consistency cost function,

one would conclude that the photo-consistency cost function is only effective for

localised fine-tuning of the pose. This is not enough to faithfully track a hand

where fast and large finger movements are a common occurrence.

So far the temporal information of hand motion has not been exploited by

the tracker. The articulated movement of the hand follows Newtonian mechanics.

One can devise a motion predictor to initialise the tracker to a more favorable

starting point based on the past motion history. Hopefully this new starting

point puts the tracking system within the basin of attraction of the unique global

minimum. This is explored in Chapter 6.

The importance of choosing the right sampling scheme has also been explored

in this chapter. The results indicate that the effects of changing the sampling

scheme for a sufficiently large sample size (more than 500 sample points) are

minor. For smaller sample sizes, it appears that uniform random sampling is one

of the better schemes.

This chapter has also explored the performance of the tracking system under

various optimisation algorithms. It is clear that SMD is the algorithm of choice

for hand tracking in this stochastic setting. Its computational time per iteration

is low compared to GN, LM, oBFGS and comparable to the fastest optimisa-

tion algorithm, SG. More importantly however, SMD requires less iterations to

converge to an acceptable solution than the other algorithms. GN and LM in

particular appear ill-suited for this optimisation problem. This is understandable

since both GN and LM are designed for optimisation over a deterministic cost

function. Both algorithms do not have provisions for handling stochasticity in

the cost function. Based on these results, we will only focus on the tracking

performance using SMD in the subsequent chapters.



Chapter 6

Motion Prediction

Motion prediction is an important aspect in tracking and often improves tracking

performance. For particle filter based trackers, motion prediction plays a signifi-

cant role in a smart redistribution of particles for the next frame, given the past

motion history [33]. Analogously, motion prediction can be used to find a good

starting point for the optimisation routine in the next frame for gradient based

trackers. As shown in Chapter 4 the tracker’s convergence property only holds

locally at the unique global minimum. Therefore it is desirable for the starting

point at each frame to lie within the basin of attraction.

A variety of motion models have been proposed, ranging from anatomically

correct dynamic models [85] to learned motion models derived from offline train-

ing on motion capture data [93, 73, 33, 3, 40, 77]. Learned motion models are pop-

ular and are generally described in a lower dimensional space [33, 93, 3, 73, 40, 77].

The rationale is that typical human motion lies in a subspace or submanifold of

the high dimensional angle-parameter space. In [3], PCA is used to reduce di-

mensionality, and an auto-regressive motion model is trained on this reduced

subspace. For applications where the set of motions being tracked is restricted,

such a framework has been shown to be robust. However, a motion model learned

this way does not generalise well to motions not observed in the training data.

This is even more so if dimensionality reduction is used, since it is entirely possi-

ble that the new motion does not lie in the subspace the motion model is trained

for. For a motion model learned offline to generalise well, one needs to ensure

that the motion data used for training is not biased. This often means training

over a large dataset that is rich enough, which can be impractical at times.

In this chapter we introduce an online adaptive vector-autoregressive (VAR)

model for motion prediction. This is an attractive alternative in the sense that it

107
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is efficient to evaluate and does not require offline training. The VAR prediction

model is highly adaptive via trust factors and, as an online algorithm, potentially

generalises better to different hand movements. The predicted pose estimate

generated by the VAR prediction model is used as an improved starting point for

the optimisation algorithm in our hand tracking system. Note that the proposed

VAR prediction model is independent of the tracking system used and can for

example be applied to a particle filter based system.

Ideally one ought to reformulate the prediction problem in an adaptive filtering

framework where pose estimates made by the tracker’s optimisation routine are

taken as the filter input measurements. However implementing such a filter in a

proper manner would require one to know about the non-linear dynamics of the

hand which in itself is a difficult open problem [83, 85, 88]. Instead we opt for

the easier alternative of a data-driven approach to motion prediction via VAR

models.

The formulation of the VAR model is described in Section 6.1. Section 6.2

details the quantitative tracking results for a synthetic sequence when the VAR

prediction model is applied. The results are compared against the no-motion and

the decelerating motion prediction model. In Section 6.3, we introduce a robust

adaptive version of the VAR motion prediction model. Section 6.4 explores the

experimental results for the real video sequences. A comparison of the robust

RVAR prediction model will also be made with a trained motion predictor in

Section 6.5. Note that parts of this chapter have been published [22].

6.1 Motion Prediction Using a VAR Model

Both theoretical and experimental results from the previous chapters have sug-

gested that tracking performance depends heavily on the initial value used at each

frame for the optimisation routine. Ideally, the starting set of model parameters

x̂k for the kth video frame should be initialised as close as possible to the optimal

value x∗k, such that the tracker starts within the basin of attraction∗.

In a data-driven approach, we treat the evolution of x∗k, (x∗1, ...,x
∗
K), over K

video frames as a 26-dimensional multiple time series. Given this multiple time

series (x∗1, ...,x
∗
K) at time K, a VAR (Vector Autoregressive) model can be used

to predict a suitable initial value x̂K+1 for the next frame K + 1.

∗The subscript k in xk denoting x at the kth frame is used to avoid confusion with xt which
denotes x after the tth iteration in the optimisation routine.
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6.1.1 VAR Model Formulation

Consider a multivariate weakly stationary process Yk and its realisation, a 26-

dimensional multiple time series (y1, ..., yK), up to time K. The weakly station-

ary property of Yk requires the expectation E(Yk) and autocovariance E[(Yk −
µY )(Yk − µY )] to be time invariant. Let Uk be a 26-dimensional vector of white

noise. The VAR(p) model [50] of this process is given as

Yk = A1Yk−1 + ...+ ApYk−p + Uk, (6.1)

where p denotes the order of the VAR model and A1, ..., Ap are R26×26 parameter

matrices.

Let X∗k be the process that generates (x∗1, ...,x
∗
K). X∗k is not weakly stationary.

If it were, it would imply that the hand pose in the video sequence is more or less

stationary for all times k which is false. Hence one cannot directly apply a VAR

model of X∗k for motion prediction. Instead, differencing [14] is used to generate

a weakly stationary process, Y ∗k , from X∗k . Let Y ∗k be the process that generates

model parameter ‘accelerations’ derived from X∗k , i.e.,

Y ∗k = X∗k − 2X∗k−1 +X∗k−2. (6.2)

We assume Y ∗k to be a weakly stationary process. This is a reasonable assumption

since a statistical analysis of Y ∗k for the video sequences reveals that the model

parameter accelerations consistently fluctuate around zero, with E(Y ∗k ) being

time invariant. The autocovariance of Y ∗k is also at least locally constant.

Thus, we model Y ∗k as a VAR process and use the VAR model to make a one-

step ahead prediction ŷK+1 for frame K+1 of the model parameter accelerations.

This is done using the realisation-equivalent form of Equation (6.1), i.e.

ŷK+1 = A1y
∗
K + ...+ Apy

∗
K−p + uK . (6.3)

In practice, uK is taken to be the expectation E(Uk) = 0, since it is usually

unknown. ŷK+1 is then mapped back to x̂K+1 via

x̂K+1 = ŷK+1 + 2x∗K − x∗K−1. (6.4)

In general the tracking system does not know (x∗1, ...,x
∗
K) as they are the ground

truth values of the hand model parameters. The best that one can do is to use

the corresponding tracker estimates (x1, ...,xK) in place of (x∗1, ...,x
∗
K) for motion
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prediction. Hence a more accurate model would be

Y ∗k = A1Y
∗
k−1 + ...+ ApY

∗
k−p + Uk (6.5)

Yk = Y ∗k + CVk, (6.6)

which can be rewritten as

Y ∗k = A1Yk−1 + ...+ ApYk−p + (6.7)

(Uk − (A1CVk−1 + ...+ ApCVk−p)), (6.8)

where Vk is assumed to be a noise vector and C a noise-mixing matrix. However

this ARMA-type model is difficult to solve as the statistics of Vk are unknown.

We opt instead to use the VAR(p) model described in (6.1) for motion prediction.

This is equivalent to treating the Uk − (A1CVk−1 + ... + ApCVk−p) term in (6.8)

as white noise.

Doing this will obviously produce a less accurate prediction ŷK+1 and the

corresponding prediction x̂K+1 for the next frame K + 1. But it is important to

reiterate again that we are not trying to find x∗K+1 using a VAR motion predic-

tion model. Our prediction x̂K+1 merely provides a better initial value for the

stochastic optimisation routine, which is set to find x∗K+1. It is sufficient for our

prediction x̂K+1 to be close enough to x∗K+1 such that starting the optimisation

routine at x̂K+1 for frame K + 1 is better than starting at xK , i.e. without mo-

tion prediction. In fact, as we will see later in the experimental results, using this

simplified model is already enough to improve tracking performance.

6.1.2 Estimation of VAR Parameters

Given the past observations (y1, ..., yK) up to time K, the VAR parameters

A1, ..., Ap are estimated via least squares estimation [50]. Note that the least

squares estimator has the additional interpretation of being a maximum likeli-

hood estimator if one assumes Uk to be gaussian. Let

Y := (y1, ..., yK) (6.9)

B := (A1, ..., Ap) (6.10)

Wk :=

 yk
...

yk−p+1

 (6.11)

W := (W0, ...,WK−1) (6.12)
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Then the least squares estimate, B̂, of B is given as

B̂ = YW′(WW′)−1. (6.13)

In our case, we solve for B̂ online. That is, B̂ is re-evaluated with each new yk

obtained as the tracking system completes another frame in the video sequence.

Therefore our prediction ŷK+1 of the accelerations of the hand model parameters

for the next frame K + 1 is

ŷK+1 = B̂KWK . (6.14)

An issue that is problematic in practice is that the computational cost for B̂K

increases as new yk’s are obtained. To address this, we adopt a limited mem-

ory version of the least squares estimator by setting Y := (yK−N , ..., yK) for a

reasonably sized N . In other words, we drop the oldest sample yK−N upon re-

ceiving a new sample yK+1. Testing on video sequences shows that having a

limited memory actually improves prediction results. This is because a limited

memory implementation caters better for instances of volatility clustering where

the autocovariance is locally constant, but can be observed to vary over longer

time periods. Using a limited memory least squares estimator essentially means

we are only using a local portion of the time series, which is more likely to have

a constant autocovariance, thereby more likely to satisfy the weak stationarity

assumption for a VAR model.

6.1.3 Performance Evaluation

A measure R̃2 is introduced to quantify the improvement in tracking peformance

when a VAR motion prediction model has been added to the tracking system.

R̃2 is loosely based on the R2 measure used in regression analysis [6].

Let y∗k(i) be the ground truth time series for the ith hand model parameter

in the acceleration domain. Also, let y0
k(i) be the times series produced by the

tracking system without motion prediction, i.e. where the motion prediction for

the next time step k + 1 is

x̂0
k+1(i) = x0

k(i), (6.15)

and thus the corresponding ŷ0
k+1 is

ŷ0
k+1(i) = −x0

k + x0
k−1. (6.16)
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Similarly, let yVAR
k (i) be the corresponding time series estimated by the tracking

system with motion prediction via a VAR model. Given a video sequence of

length τ in total, the R̃2
y(τ, i) measure for the ith hand model parameter in the

acceleration domain is defined as

R̃2
y(τ, i) := 1−

∑τ
k=1(y∗k(i)− yVAR

k (i))2∑τ
k=1(y∗k(i)− y0

k(i))
2
, (6.17)

evaluated over the entire sequence, from k = 1, ..., τ . R̃2
y(τ, i) rates the improve-

ment in tracking accuracy by comparing the squared sum of residuals between

yVAR
k (i) and the ground truth against the residuals between the no-prediction

time series y0
k(i) and the ground truth.

Measuring these residual errors in the acceleration domain of the hand model

parameters is less indicative of tracking performance than measuring residual

errors of the hand’s joint and fingertip positions in 3D space. Hence, let G be

the function that maps the hand model parameters xk to the hand joint/fingertip

positions of the hand zk. Specifically,

G : R26 → R3×21 (6.18)

zk = G(xk). (6.19)

The columns of zk are the joint/fingertip positions in 3D space (there are 16 joints

and 5 fingertips in total). Let zk(j) be the 3D position of the jth joint/fingertip

at frame k. Then R̃2(τ, j) is defined as

R̃2(τ, j) := 1−
∑τ

k=1 ||z∗k(j)− zVAR
k (j)||2∑τ

k=1 ||z∗k(j)− z0
k(j)||2

. (6.20)

As a guideline, R̃2(τ, j) > 0 indicates that the tracking estimate with the help

of motion prediction is more accurate than that without motion prediction, for

the jth joint/fingertip. The converse is true if R̃2(τ, j) < 0.

6.2 Experiments on a Synthetic Sequence

The varying types of VAR models (to be discussed in the following sections) are

initially tested on a synthetic sequence generated from real hand movements.

The synthetic sequence provides ground truth values for a quantitative analysis

of tracking performance. It contains elements of typical hand movements such as

palm rotations and finger articulation.
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Each experiment is repeated over 50 trials. As mentioned previously, the

VAR parameters B̂k are evaluated online for each frame k; no offline training is

involved. The tracker is manually initialised to a good starting position for the

first frame of the video sequence. About 600 sample points are used to track

the moving hand. SMD (stochastic meta-descent) [68, 13] is the optimisation

algorithm of choice, given its superior performance in the previous experiments

in Chapter 5.

Additional computation time for an online VAR-based motion prediction eval-

uation is comparatively negligible, on average taking 14 milliseconds per frame.

The results of two control experiments are used as benchmarks. The first

control experiment is tracking without motion prediction. We denote the multiple

time series of the resulting joint/fingertip positions from this experiment as z0
k.

The other control experiment uses the popular decelerating motion prediction

model [7, 42]; let zD
k = G(xD

k ) be the corresponding multiple time series. The

predictor x̂D
k+1 is defined as

x̂D
k+1 = xD

k + ρ(xD
k − xD

k−1), (6.21)

where ρ ∈ [0, 1]. Thus the corresponding ŷD
k+1 is

ŷD
k+1 = (ρ− 1)(xD

k − xD
k−1). (6.22)

Note that ρ = 1 gives the constant velocity model. However, tracking with the

constant velocity model is found to be unstable. Testing on a range of ρ values

show that setting ρ = 0.4 produces the best tracking performance. This will be

used in our comparison with the VAR-based prediction models.

Figure 6.5 on page 120 shows the overall mean error, taken to be the average

of all joint/fingertip errors over all 50 trials for both the standalone tracker and

the tracker with the deceleration predictor. The overall mean error is formulated

as follows: Let pi,g and ai be the predicted and actual 3D positions of the ith

joint/fingertip for the gth trial. Then the overall mean error is defined as

Emean :=
1

GI

G∑
g

I∑
i

||ai − pi,g||, (6.23)

where I is the total number of joints/fingertips in the hand model and G is the

total number of trials.

There are three noticeable error peaks in the video sequence. The first peak

(frame 73) represents the tracking inaccuracy due to a misfit of the little finger
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Figure 6.1: R̃2(τ) of zD
k for each hand joint/fingertip over the 50 trials. Outliers that

lie between 1-3 times the interquartile range are marked as ‘+’ while those that lie over
3 times the interquartile range are marked as ‘o’.

(see Figure 6.2). The second peak (frame 100) corresponds to the part where

the hand undergoes a global rotation. The third peak (frame 150) occurs as the

thumb moves across the palm, partially occluding the fingers and the palm.

One can already see the improvement with the deceleration prediction model,

especially between frames 100 to 130. This improvement is reflected in the R̃2

value of the entire sequence for zD
k in Figure 6.1. Excluding several outliers for the

thumb, there is a noted improvement over tracking without motion prediction.

The following subsections describe our results for the different variations of

the VAR (vector autoregressive) model tested, namely the traditional full-VAR

model and a structured-VAR model where the kinematic relations of the hand

are accounted for.

6.2.1 VAR Model Order Selection

VAR model order selection based on the AIC or BIC measure is a standard

procedure [50]. This is meaningful when the training time series xk is fixed while

the various VAR models are fitted during the criterion evaluation process. A

complication in our situation is that the time series is dependent on the VAR
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Figure 6.2: Selected frames where the overall mean error peaks. The top row shows
tracking results with no motion prediction, the middle row corresponds to tracking
with the deceleration predictor, and the last row corresponds to tracking with RVAR
motion prediction.

model used. Different VAR models produce different predictions of the initial

value for the finite-length optimisation routine, which leads to different evolutions

of xk.

At best, the AIC and BIC criteria can only give a rough initial value for order

selection. Initial AIC and BIC tests evaluated on the static ground truth sequence

tend to favour VAR models of higher orders (> 5). However, the tracking perfor-

mance of the tracker with these motion predictors of higher order is substantially

worse. Only the results of the first order variants of the VAR model are shown;

the results of the higher order models are omitted as they are consistently worse

for each case.

6.2.2 Full-VAR model

Recall that the VAR(1) predictor ŷK+1 for the hand model parameters in the

acceleration domain is given as

ŷK+1 = Â1yK , (6.24)
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Figure 6.3: R̃2(τ) of zFV
k for each hand joint/fingertip over the 50 trials.

where Â1 is obtained directly by solving (6.13). We denote the multiple time

series generated by the tracking system using this motion predictor in the hand

joint/fingertip domain as zFV
k . Initial tests reveal that all the VAR-based predic-

tion models tend to give large error deviations when the change in acceleration is

abrupt, leading to gross tracking inaccuracies. To mitigate this, a hard threshold

has been set such that the difference between x̂K+1 and xK cannot be more than

10 degrees.

The tracking result zFV
k is in general worse than z0

k, as shown by the cor-

responding R̃2 values in Figure 6.3. To understand why this is so, one should

note that Â1 quantifies the correlations not the causations (i.e. tendon forces

controlling the hand) in the joint movements. The limited-memory sample set

( the memory size N = 150) used to refine Â1 online is simply not rich enough

and represents a biased sample of all possible hand movements. This leads to

inaccurate predictions. Additional prior information, in the form of constraints,

is needed for solving Â1 sensibly.

6.2.3 Structured-VAR model

In this situation, Â1 is solved under the constraints induced by the hand’s kine-

matic structure. We observe that the movements of joints along the kinematic



6.2. EXPERIMENTS ON A SYNTHETIC SEQUENCE 117

chain of each digit are correlated, and that their dependency on each other al-

lows for the flexion of each digit. We then assume that the movement of each

digit is independent of other digits. In addition we assume that the rotation and

translation movements of the palm are independent of each other and are also

independent of the movement of each digit.† Applying these priors constrains Â1

to a block diagonal form

Â1 =



G6×6 0 0 · · · 0

0 RY
5×5 0 · · · 0

0 0 R1
3×3 0

...
... 0 0

. . . 0

0 0 0 0 R5
3×3


, (6.25)

where G6×6 is a diagonal matrix that relates to the translation and rotation

parameters of the palm. RY
5×5 is a diagonal matrix that relates to the rota-

tion parameter of each digit that models the abduction/adduction of each digit.

Lastly, Rn
3x3 relates to the rotation parameters of the nth digit responsible for

the flexion of the digit.

The multiple time series in the hand joint/fingertip domain generated by the

tracking system using this motion predictor shall be denoted as zSV
k . A limited

memory size of N = 30 has been used for the structured-VAR model.

Enforcing kinematic constraints on Âi results in better tracking performance

than when the full-VAR model is used. The first two error peaks that have

been observed in both control experiments are dampened when the structured-

VAR motion predictor is applied (see Figure 6.5 on page 120). The dampened

errors are reflected in the R̃2 values for zSV
k (see Figure 6.4), where the tracking

accuracy of the palm joint (joint/finger no. 1) and the joints on the little finger

(joint/fingertip no. 18-21) has drastically improved. Errors for the middle finger

have worsened, in particular the fingertip (no. 13), resulting in the enlarged third

peak in Figure 6.5.

Compared to the deceleration predictor, adding the structured-VAR predictor

to the tracker increases the variance of the tracking performance. This is generally

undesirable. Then again, having a larger variance does mean the tracker has a

better chance of escaping from local minima. The extended upper tails of the R̂2

†These assumptions are rough at best, e.g., it is well known that the flexions of the little
finger and the ring finger are not completely independent. [85] would be a more realistic (and
sophisticated) model. For our application however, we find that our simple model already works
well.
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Figure 6.4: R̃2(τ) of zSV
k shows a large improvement for the base joint and the little

finger.

distributions for the thumb’s PIP joint (no. 4) and the thumb tip (no. 5) attest

to this (see Figure 6.4).

6.3 Robust VAR

An ideal motion predictor should have the high performance of the structured-

VAR model observed for certain joints, augmented with the general consistency

and low variance of the deceleration predictor.

To achieve this, we combine the structured-VAR predictor and the decelera-

tion predictor (with ρ = 1), tempered with adaptive trust factors. We shall refer

to this adaptive scheme as the RVAR (Robust Vector Autoregressive) prediction

model.

The RVAR model interpolates online a weighted combination of x̂SV
K+1, x̂D

K+1

and x̂0
K+1 predictions. The interpolation is based on the reliability of the past pre-

dictions for each predictor when compared against the past history xK−N ...xK of

tracking results. The RVAR predictor for the ith hand model parameter x̂K+1(i)

is defined as

x̂RVAR
K+1 (i) = (1− γ)x̂0

K+1(i) + γ(αix̂
SV
K+1(i) + βix̂

D
K+1(i)), (6.26)
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where γ ∈ [0, 1], αi + βi ≤ 1, and αi, βi ≥ 0.‡ Using motion prediction to find a

good initial value for the optimisation routine can be tricky in that there is always

an inherent danger of overshooting. Hence we introduce γ, an upper bound on

how much one should trust the motion predictions. γ is fixed throughout the

tracking sequence. αi and βi are adaptive weights that minimise the following

sum for the respective value of i.

EK,i(α, β) =
K∑

k=K−c

hk[xk(i)− (αx̂SVk (i) + βx̂D
k (i))]2, (6.27)

where c is a cut-off constant and hk is a decaying factor defined as

hk =
1

2K−k
. (6.28)

Minimising EK,i gives the optimal αi and βi for xk(i) at frames k ∈ [K − c,K].

These weights are then used in (6.26) when the prediction x̂RVAR
K+1 (i) for the next

unknown frame K+1 is made. EK,i is minimised separately for each hand model

parameter i to obtain separate sets of αi and βi weights.

The absolute interpolation of the predicted model parameters in (6.26) and

(6.27) is just one of many interpolation approaches. For example, one can instead

choose to interpolate the changes in predicted model parameters relative to the

position in the last frame i.e. x̂SV
k (i)− xk−1(i). Note that the minimising objec-

tive function (6.27) and the update equation (6.26) in the relative interpolation

approach will become

x̂RVAR
K+1 (i) = xK(i) + γ[αi(x̂

SV
K+1(i)− xK(i)) + βi(x̂

D
K+1(i)− xK(i))] (6.29)

= (1− γ(αi + βi))x̂
0
K+1(i) + γ(αix̂

SV
K+1(i) + βix̂

D
K+1(i)) (6.30)

and

EK,i(α, β) =
T∑

k=K−C

hk[xk(i)− xk−1(i) (6.31)

− (α(x̂SVk (i)− xk−1(i)) + β(x̂D
k (i)− xk−1(i)))]2 (6.32)

respectively.

Results for both RVAR predictors (with γ = 0.8, c = 8) show a marked

improvement over both the deceleration and the structured-VAR predictor (see

‡Note again that the no-motion predictor x̂0
K+1(i) = xK(i).
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Figure 6.5: Overall mean error for the absolute and relative RVAR models (red and
grey respectively) with γ = 0.8, and cut-off constant c = 8. Tracking performance
without motion prediction (green), with the deceleration predictor (blue) and with a
structured-VAR model (yellow) is shown for comparison.

Figure 6.5). From Figure 6.8 on page 122, one can appreciate that the RVAR

predictor has inherited the desired low variance property of the deceleration pre-

dictor while retaining the high performance of the structured-VAR model. Figure

6.6 shows the typical α and β values used by the adaptive RVAR model in the

video sequence.

The R̃2 values for most joints/fingertips reside around 0.5. With the excep-

tion of the middle finger’s PIP joint (no. 12) and possibly the thumb joints/tip

(no. 3-5), the absolute RVAR model gives better performance over the decel-

eration model (see Figure 6.7). Although the variance of the thumb joints is

comparatively larger, the median of R̃2 for the absolute RVAR model is actually

slightly higher. Tuning γ = 0.7 results in a variance (for the thumb joints) that is

similar to the variance of the deceleration case, without noticeable change to the

statistics of the other joints/fingertips. We prefer keeping the higher variance for

the thumb (i.e. with γ = 0.8) since it gives the tracker a better chance to escape

from local minima. Frame 150 in Figure 6.2 on page 115 illustrates where using

a RVAR model sometimes allows the tracker to escape from a local minimum
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Figure 6.6: Distribution of α and β for the PIP joint of the index finger. The
distribution of α and β for all other hand model parameters appear similar to this.
The circle radius indicates the frequency of the values. The larger the circle, the higher
the frequency.

Figure 6.7: R̃2(τ) for the RVAR (absolute) model
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Figure 6.8: R̃2(τ) for the RVAR (relative) model

whereas this is impossible with the deceleration model.

Similarly the relative RVAR model has shown to perform well for this synthetic

sequence (see Figure 6.8). One could argue that the relative RVAR model is better

than the absolute RVAR model given that the average R̃2 values over all joints

for both RVAR models are similar and that the R̃2 values for the relative RVAR

model have a much smaller variance than those of the absolute RVAR model.

A smaller variance implies more consistent tracking results. We will see in the

next section that the same relative behaviour of the absolute and relative RVAR

models is observed for the real hand sequences.
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6.4 Experiments on Real Sequences

The tracking performance of the tracking system using different motion predic-

tion models is evaluated on the same real hand sequences used in Chapter 5.

For the deceleration predictor, ρ = 0.4 as before, and γ = 0.8, c = 8 for both

the absolute and relative motion RVAR motion predictors. Overall there is an

improvement in tracking performance when motion prediction is used, with the

relative RVAR motion predictor performing the best out of the deceleration and

the RVAR motion predictors. The experimental results also demonstrate the

flexibility of the online RVAR model in handling different hand motions. The

following subsections examine each of the video sequences in detail.

6.4.1 Sequence 1 - Finger Flexion
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Figure 6.9: Cost per frame for finger flexion. For most frames, motion prediction
with RVAR model (absolute and relative) gives better tracking results than no motion
prediction or motion prediction with the deceleration predictor.

The improvement after applying motion prediction is not as apparent here

since the tracker has already been tracking well previously without motion pre-

diction for this particular sequence. Figure 6.9 shows that tracking with the de-

celeration predictor is slightly better than no-motion prediction. Tracking with
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Figure 6.10: An example of the ability of the RVAR model to capture fast finger
flexion. The rapid flexion of the middle finger fails to be captured by the tracker using
the no-motion and the deceleration predictor (1st and 2nd image respectively). This is
not the case when the absolute or relative RVAR model (3rd and 4th image respectively)
is used.

the RVAR motion predictors is generally better than with either the deceleration

or the no-motion predictors.

Although not immediately obvious from the cost graph in Figure 6.9, tracking

with the RVAR predictors better captures fast finger flexions that are otherwise

missed by the no-motion and the deceleration predictors. For example frame 90

in the sequence depicts a fast downward flexion of the middle finger (see Figure

6.10). Without the use of either of the RVAR predictors, the tracker loses track

of the middle fingertip. This is not the case when using the RVAR predictors.

6.4.2 Sequence 2 - Dial Turning

There is an overall improvement in tracking over the no-motion predictor as shown

in the cost graph in Figure 6.11. For example, one can compare the improved

pose estimate for frame 56 in Figure 6.12 where the absolute RVAR predictor is

used against that in Figure 5.22 on page 90 where there is no motion prediction.

Notice also that the crossing of the index and middle fingers observed at frame

112 under the no-motion prediction scheme (see Figure 5.22, Chapter 5) is absent

after applying the absolute RVAR prediction model. This crossing over is also

absent when the relative RVAR motion predictor is used.
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Figure 6.11: Cost per frame for the dial turning motion.

Figure 6.12: Selected frames showing the tracking results with the RVAR (absolute)
prediction model applied.



126 CHAPTER 6. MOTION PREDICTION

6.4.3 Sequence 3 - Pinch

The addition of motion prediction substantially improves the tracking perfor-

mance for this sequence. The issue of the index and middle fingers getting mixed

up during the pinching motion in the inital experiments (refer back to Figure 5.14

on page 85, Chapter 5 for comparison) is absent when the deceleration or both of

the RVAR predictors are used. Figure 6.14 shows the results for the tracker using

the relative RVAR predictor. One can observe from frame 74 that the index finger

is aligned properly and that the middle, ring and little fingers are now bending

correctly compared to without motion prediction.
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Figure 6.13: Cost per frame for the pinching motion.

The high cost spikes between frames 120-130 for the RVAR predictors and the

deceleration motion predictor can be attributed to overshooting in the motion

prediction. This leads to the tracker being stuck in a local minimum. Figure 6.15

is an example of the tracker getting stuck at a very bad local minimum. Note that

this does not occur very often and can be mitigated by allowing more iterations

to run (see Section 6.6).

6.4.4 Sequence 4 - Drag and Drop

Tracking results for the predictor are cleaner with motion prediction. Both the

deceleration motion predictor and the relative motion predictor perform equally
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Figure 6.14: Selected frames for the pinching sequence for tracking with the RVAR
(relative) prediction model.

Figure 6.15: Poor pose estimate observed for certain trials for the deceleration motion
predictor. This is sometimes observed for the RVAR predictors as well, hence the sharp
peak at frame 129.

well (see Figures 6.16 and 6.17). Tracking with the absolute RVAR predictor

however seems unstable starting near frame 60 (see Figure 6.18), although the

tracking system does recover back to normal as the video sequence progresses.

The poor pose estimate at frame 60 introduces noise in the motion prediction

scheme for the absolute RVAR motion predictor. This noise results in a poor

initial starting point for the next frame thereby causing the tracker to get tem-

porarily stuck in a local minimum in the subsequent frames (e.g. frame 63).
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Figure 6.16: Cost per frame for the drag and drop motion.

Figure 6.17: Selected frames for the drag and drop sequence for tracking with the
RVAR (relative) prediction model.

6.4.5 Sequence 5 - Palm Rotation

The improvement in tracking under the use of the relative RVAR predictor (and

to a lesser extent, the absolute RVAR predictor) is best characterised by this

sequence. When the relative RVAR motion predictor is used, the tracker can

consistently follow through the transitional flipping motion starting from frame

27 to 50 (see Figure 6.20). This is not observed for tracking with the deceleration

motion predictor and is only observed in tracking without motion prediction
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Figure 6.18: Inaccuracy at frames 60 to 63 made by the tracking system using the
RVAR (absolute) predictor.
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Figure 6.19: Cost per frame for the rotating palm sequence for tracking with the
RVAR (relative) prediction model.

under a maximum of 400 allowable iterations (see Figure 5.47 on page 100).

This demonstrates the advantage of the RVAR motion predictor, in that the

tracking system can now match the accuracy of the 400-iteration sequence under

a maximum of just 20 allowable iterations. The tracker with the absolute RVAR

predictor is sometimes able to transition through the flipping motion, although

without the level of consistency that the tracker with the relative RVAR predictor

exhibits.

Despite this, even with the relative RVAR motion predictor, the tracker is
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still unable to transition back from the flipping motion starting around frame

61. But by increasing the maximum allowable number of iterations to 400, the

tracker with the RVAR (relative) motion predictor is able to transition through

both flipping motions (see Figure 6.21).

Figure 6.20: Selected frames for the palm rotate sequence for tracking with the RVAR
(relative) prediction model.

Figure 6.21: Selected frames for the palm rotate sequence for tracking with the RVAR
(relative) prediction. When given a maximum allowable threshold of 400 iterations,
the tracker is able to occasionally transition through both flipping motions in the video
sequence.
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6.5 Comparison with a Trained AR Predictor
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Figure 6.23: Cross-validation error (34-
fold) for the trained AR models with differ-
ent partitions.

The trained mixture of AR (auto-regressive) motion models described by

Agarwal et al [2] has been implemented as a comparison against the RVAR (rel-

ative) motion predictor. For convenience we shall refer to the former as the

Agarwal predictor. A brief overview of the Agarwal predictor is as follows: the

space of a training set of motion capture data is partitioned into regions with

similar dynamical characteristics. For each of these regions, dimensionality re-

duction via PCA is applied and an AR model is trained on this reduced space for

the region. The prediction result made by the Agarwal predictor is the result of

a Gaussian mixture model of these trained linear dynamical models.

We use motion capture data obtained from a data glove to train the Agarwal

predictor. The motion capture data contains the same type of hand motions

observed in the hand video sequences. For the best performance, one should

train the motion model using motion data (most likely hand-labelled) obtained

from a separate set of video sequences of the same type of hand motions from the

same camera setup. Ultimately however, performance comparisons ought to be

made in light of the practical limitations of deploying such a tracking system on

a commercial production scale. It is our belief that training with video sequences

obtained from hand-labelled data from the same set of cameras would be infeasible

if the tracking system were a commercial product. Requiring the user to hand-

label their own hand motion data for their unique camera setup prior to use is
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unrealistic. From a practical standpoint, the better alternative would be for the

manufacturer to use a large generic set of motion capture data from a data glove

for training.

Figure 6.22 shows the training results of the Agarwal predictor. The cumu-

lative prediction error depicted is obtained by running the Agarwal predictor of

varying partition numbers on the training data set and comparing the param-

eter predictions against the actual parameter values. Prediction results on the

training set are better than for the RVAR predictors, with the Agarwal predictor

becoming more accurate as the number of partitions is increased. The optimal

number of parameter space partitions (4 partitions) appears to be in agreement

with the number of distinct hand motions in the training data. Agarwal predic-

tors of a higher partition number are not shown as these results are worse than for

the RVAR predictors. Figure 6.23 shows the 34-fold cross-validation error. One

can observe that Agarwal predictors with a higher number of partitions do not

generalise as well to unseen data as the Agarwal predictors with fewer partitions.

Initial experiments have indicated that the tracking performance with the

Agarwal predictor is highly unstable due to the frequent overshooting effect in the

predictions. Therefore, in the same spirit as the deceleration motion predictor, a

trust factor ρ = 0.5 has been applied to dampen predictions made by the Agarwal

predictor. Additionally a hard constraint has also been added to clip high angle

changes in the predictions.

The following are the results of the tracker using Agarwal predictors of a

varying number of partitions.
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6.5.1 Sequence 1 - Finger Flexion

Based on the cost graph in Figure 6.24, the performance of the 5-partition Agar-

wal predictor is the best out of the Agarwal predictors. The performance is on-par

with the RVAR (relative) predictor and at times more accurate (see cost at frame

255 in Figure 6.24). Having said that, an inspection in the screenshot reveals

that there is still some difficulty in capturing large finger movements, e.g. frame

86 in Figure 6.25.
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Figure 6.24: Cost per frame for flexion motion.

Figure 6.25: Selected frames for the flexion sequence for tracking with the trained
AR model (Partition number = 5)
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6.5.2 Sequence 2 - Dial Turning

All the Agarwal predictors have performed poorly for this particular sequence

(see Figures 6.26 and 6.27). The tracking performance of the best Agarwal pre-

dictor (2-partitions) unfortunately is about the same as tracking without motion

prediction.
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Figure 6.26: Cost per frame for dial turning motion.

Figure 6.27: Selected frames for the dial turning sequence for tracking with the
trained AR model (Partition number = 2)
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6.5.3 Sequence 3 - Pinch

The cost graph in Figure 6.28 suggests that the 1-partition and 4-partition Agar-

wal predictors perform the best and in fact better than the RVAR (relative)

predictor in the last portion of the video sequence. However, a closer inspection

of the screenshots reveals that the middle and index fingers have been mixed up

during the pinching motion (see Figure 6.29).
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Figure 6.28: Cost per frame for pinch motion.

Figure 6.29: Selected frames for the pinch sequence for tracking with the trained AR
model (Partition number = 4).
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6.5.4 Sequence 4 - Pick and Drop

The 4-partition Agarwal predictor performs the best out of the Agarwal predictors

see Figure 6.30. However it is comparatively worse than the RVAR (relative)

predictor.

20

40

60

80

100

120

0 20 40 60 80 100 120 140

�
�
�
�

������������

�����������������������������������

No Mot ion Predict ion
RVAR (relat ive)

Agarwal AR model : 5 part it ions
Agarwal AR model : 4 part it ions
Agarwal AR model : 3 part it ions
Agarwal AR model : 2 part it ions
Agarwal AR model : 1 part it ion

Figure 6.30: Cost per frame for pick and drop motion.

Figure 6.31: Selected frames for the pick and drop sequence for tracking with the
trained AR model (Partition number = 4).
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6.5.5 Sequence 5 - Palm Rotation

All the Agarwal predictors have performed badly in this difficult sequence (see

Figures 6.32 and 6.33). Adding motion prediction helps very little in terms of

tracking performance. None of the Agarwal predictors has helped the tracking

system to transition through the first palm flipping motion.
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Figure 6.32: Cost per frame for palm rotation motion.

Figure 6.33: Selected frames for the palm rotation sequence for tracking with the
trained AR model (Partition number = 4).
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6.6 Tracking performance under 10000 iterations

Up to this point, the emphasis in this thesis has been focused towards a com-

promise between computation speed and tracking accuracy. Nevertheless it is

interesting to examine the tracking performance near the limit, i.e. for the situa-

tion where computation time is not an issue and the tracker is allowed to iterate

through a large number of iterations.

In what follows, we repeat the tracking experiments with the RVAR (rela-

tive) motion predictor except that the number of iterations for each frame has

been increased to 10000. In general the tracking accuracy has visibly improved

as shown in the cost graphs in Figures 6.34, 6.35, 6.36, 6.37, 6.38 and their re-

spective screenshots in Figures 6.40, 6.41, 6.42, 6.43, 6.44. A decrease in tracking

performance only occurs for a couple of frames in the flexion sequence near frame

260 and in the pinching sequence near frame 85 where the tip of the middle finger

and the knuckle of the little finger are misaligned. However the tracker is able

resolve this and return accurately back to the open palm pose at the end of the

sequence.
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Figure 6.34: Cost per frame for the flex-
ion motion. The blue curve indicates the
tracker running with a maximum of 10000
allowable iterations.

0

20

40

60

80

100

0 50 100 150 200

�
�
�
�

������������

����������������������������������

No Mot ion Predict ion
RVAR (relat ive) SMD 20 iterat ins

RVAR (relat ive) SMD 10000 iterat ions

Figure 6.35: Cost per frame for the
dial motion. The blue curve indicates the
tracker running with a maximum of 10000
allowable iterations.
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Figure 6.36: Cost per frame for the pick
and drop motion.
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Figure 6.37: Cost per frame for the palm
rotation motion.
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Figure 6.38: Cost per frame for the pinch
motion.
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Figure 6.39: Cost per frame for all se-
quences collated together.

As a final experiment, the tracker is further tested on a longer video sequence

(820 frames) to see if the tracker suffers from drifting effects at the limit. This

sequence is in fact the five test sequences collated together. One can appreciate

from the cost graph in Figure 6.39 that there is minimal if any drifting effects in

tracking accuracy, with an average cost of around 22. Selected frames from the

sequence in Figure 6.45 show that the tracking system is able to track consistently

well throughout the sequence.

In a sense, these results present a stronger empirical confirmation of the main

result of the theoretical analysis in Chapter 4, namely that the tracking system

has the ability to locally converge to the optimal pose for most cases in spite of

noise in the gradient estimates.
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Figure 6.40: Selected frames from the flexion sequence for tracking with the RVAR
(relative) prediction model. 10000 iterations are used for each frame.

Figure 6.41: Selected frames from the dial turning sequence for tracking with the
RVAR (relative) prediction model. 10000 iterations are used for each frame.

Figure 6.42: Selected frames from the pick and drop sequence for tracking with the
RVAR (relative) prediction model. 10000 iterations are used for each frame.
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Figure 6.43: Selected frames from the palm rotation sequence for tracking with the
RVAR (relative) prediction model. 10000 iterations are used for each frame.

Figure 6.44: Selected frames from the pinch sequence for tracking with the RVAR
(relative) prediction model. 10000 iterations are used for each frame.
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Figure 6.45: Selected frames from the collated sequence for tracking with the RVAR
(relative) prediction model. 10000 iterations are used for each frame.
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6.7 Summary

It has been demonstrated that motion prediction substantially improves tracking

performance. Using a simple deceleration model already improves tracking per-

formance. However, there still remain shortcomings in the deceleration model,

as the synthetic and real experimental results have shown. Fast flexion of the

digits (e.g bending of the middle digit in sequence 1) and motions with heavy

self-occlusion such as the palm rotation still prove difficult for a tracker with the

deceleration model.

In this chapter an online adaptive VAR prediction model has been presented.

The VAR (vector auto-regressive) based predictor is better than the deceleration

model in that it has the capacity to model the accelerations of the individual joint

movements in an online manner. However the results for the synthetic sequence

in Section 6.2 clearly indicate that using an online VAR motion predictor näıvely

to find a good initial starting point for the optimisation routine of the tracking

system will degrade tracking performance. Applying kinematic-based constraints

when solving for the VAR parameters is required for more sensible predictions.

The addition of a trust factor and adaptive weights based on the past prediction

accuracy has drastically improved results. Experimental results on real sequences

support these findings and demonstrate the flexibility of the RVAR model in

handling different hand motions. Fast finger flexions are handled well by both

the absolute and relative RVAR predictors and the palm rotations are better

captured by the RVAR predictors.

Out of the two variants of the RVAR predictors, the relative RVAR predic-

tor performs better overall with a higher consistency in tracking performance.

For almost all instances in both the synthetic and real hand sequences, the rel-

ative RVAR predictor is arguably superior to the deceleration motion predictor

especially for the more challenging hand motions. The experimental results also

indicate that the RVAR predictor is more effective at predicting a good starting

point for the tracker optimisation routine than the trained AR models. One likely

reason why the trained AR models have not performed as well is that the non-

linear dynamics of the hand are not adequately captured by a Gaussian mixture

of linear dynamic models.

From a practical implementation perspective, the RVAR motion predictor

has several advantages over the trained AR models. It is straightforward and

substantially quicker to implement than a trained AR model. Unlike the training

scheme as described in Section 6.5, one does not have to address the issue of
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order selection i.e. deciding the number of partitions for the case of the Agarwal

predictor. Finally, the RVAR motion predictor is an adaptive prediction scheme

that can readily adapt to new primarily unseen hand motions.



Chapter 7

Conclusion

Presented in this thesis is a fast hand tracking system that exhibits promising

potential for use as a gestural interface for freeform-modelling applications. The

advantages of the tracking system are that it is fast and already flexible enough

to handle different hand gestures with minimal offline training. In fact, training

is only used to aid in the segmentation of the hand.

The tracking system adopts a gradient-based approach to tracking using hand

silhouette and colour intensity information obtained from a pair of cameras. An

articulated hand model approximated as a sample point cloud is used to compare

the pose estimate to the actual pose seen in the camera images. Mismatch errors

from this cost evaluation generate gradients (in the hand parameter space) that

are used by a stochastic optimisation algorithm for the refinement of the pose

estimate. The use of sparse point sampling allows for a faster evaluation of the

pose estimate albeit introducing sampling noise. Noise is also introduced into the

tracking system via the camera images. As such, it is appropriate to view the

tracking system in a stochastic approximation framework.

This thesis’s major contribution is a stochastic convergence analysis of the

proposed hand tracking system. The hand tracking system is shown to exhibit

properties that allow for local stochastic convergence; namely that the tracker’s

ideal cost function has a unique global minimum for almost all hand poses and

that the Hessian at the unique global minimum is positive definite.

Experimental results however suggest that this unique global minimum has a

rather small basin of attraction. For the more challenging sequences, the tracker

(without the aid of motion prediction) makes poor pose estimates when the fingers

are bending rapidly or exhibiting self-occlusion. As expected, using more sample

points for cost evaluation does produce more accurate pose estimates. Since
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the tracker’s computational time increases linearly with more sample points, one

would need to find a compromise between accuracy and speed should one decide

to implement an online tracking system. For tracking with a low sample point

number, care should be taken to devise a good sampling scheme as the results

suggest that the tracking accuracy is sensitive to the sampling scheme under very

sparse sampling (i.e. ∼ 256 sample points).

The experiments have also shown that SMD (Stochastic Meta-Descent) is the

optimisation algorithm of choice for a time-constrained tracking system. SMD

is able to reach to a good pose estimate in less iterations than other stochastic

optimisation algorithms such as stochastic gradient descent and online-BFGS by

an order of magnitude. In addition the computational time per iteration for SMD

is very low and in fact, just as fast as SG. This is because the cost evaluation

procedure is significantly more time consuming to compute than the rest of the

update routines in the optimisation algorithm. SMD and SG require the same

number of cost evaluations per iteration, and so their computation times are

similar.

For the purpose of positioning the tracker within the basin of attraction at

the start of each video frame, an online adaptive auto-regressive based motion

model has been devised. The online data-driven approach to motion prediction

is arguably advantageous when compared to a trained auto-regressive model as

it does not involve offline training, is straightforward to implement and, as the

experiments have indicated, generalises better to motions that the tracking system

has not seen before. The adaptive scheme in the RVAR motion model has been

shown to be vital for maintaining reliability in prediction. By actively comparing

the recent past predictions against the actual pose estimates at each frame for

accuracy, the RVAR motion model obtains a measure of its prediction reliability

and is thus able to temper its future predictions accordingly. Finally, by running

the tracker at 10,000 allowable iterations per frame with the RVAR (relative)

predictor, we have found strong empirical evidence to support the tracker’s local

convergence property obtained from the theoretical analysis.

7.1 Limitations

The current tracking system is not without its limitations. One such limitation is

speed. Despite being able to track with reasonable accuracy at close to 1Hz on a

single CPU using a low number of sample points, this is still not fast enough as an
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online hand tracking implementation. However, as suggested in Chapter 5, one

can readily increase the tracking rate to ∼10Hz by making simple improvements

to the tracker implementation such as off-loading image pre-processing tasks onto

the GPU and the parallelisation of the cost evaluation routine via threading.

With the recent developments in CPU architecture design focusing towards better

parallelisation (e.g. multi-core processors), it is highly conceivable that computers

in the next couple of years will be able to run such a tracking system online at

interactive frame rates.

Tracking accuracy also has room for improvement. Even with the aid of a

motion predictor there are still instances where the tracking accuracy falters. An

example would be the second half of the palm rotating sequence for a low iteration

routine e.g. the tracker running at a maximum of 20 allowable iterations per

frame. Although finger articulations are generally well captured in most cases,

one can always add additional visual cues to improve finger alignment (see Future

Directions in Section 7.2).

7.2 Future Directions

There are various avenues that one can pursue from this work. On the theoretical

side, it has been established that the cost function of this tracking system is well

behaved at the unique global minimum. The next logical question to answer

is whether the size of the basin of attraction for the unique global minimum

can be quantified. This would be interesting to know even if this question can

only be answered for a small subset of hand poses. One can imagine that such

knowledge will prove extremely helpful in designing a robust gesture alphabet

for a gesture interface system. Another challenging theoretical aspect to explore

is a stochastic convergence proof for SMD. Empirical results from this thesis

and previous work from others [11, 42] suggest that SMD can achieve stochastic

convergence. Showing this theoretically, however, has thus far proven to be an

elusive problem.

On the practical side, there needs to be more future research on the user-

feasibility of articulated 3D hand tracking systems. Previous studies [56, 15]

have mainly focused on performing simple tasks on either 2D tabletop interactive

systems, or coarse 3D gestures. The potential level of accuracy attainable with

an articulated 3D hand tracking system readily lends itself to more complex tasks

that require a greater level of control. One such task would be surface modeling
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for a 3D software such as Maya. It would be interesting to investigate whether it

is indeed more effective for artists to mould surfaces with natural hand gestures

as opposed to the traditional keyboard and mouse interface.

Finally, one can explore ways to further improve tracking accuracy of the cur-

rent tracking system. So far the cost function only exploits the local structure

of the hand. Global constraints that make use of the interrelationships between

sample points have yet to be exploited. One promising idea (that has not been

properly implemented due to lack of time) is the surface normal constraint. Sam-

ple points that have the same surface normal on the hand should share the same

colour intensity under the uniform texture and the Lambertian surface assump-

tion. With a proper reflectance model, one can formulate this global constraint

as another term in the overall cost function. Another tracking aspect well worth

exploring is the automatic detection and handling of poor pose estimates. One

can envisage that a robust online implementation would be able to automatically

detect problematic frames and activate extra subroutine procedures to resolve

these frames, e.g. increasing the number of iterations and/or sample points.



Appendix A

A.1 Proof for Exception in Case 2

Given that the cylinder lies on the epipolar plane spanned by one end of the

cylinder, we want to establish the conditions under which the rotation of a cylin-

der on the epipolar plane does not cause the cost function Cx∗ to increase. This

means that for each point on the perturbed cylinder, the projection in both cam-

era views share the same YUV value. Without loss of generality, we assume for

convenience that both cameras lie on the same X-Z plane and that the epipolar

plane spanned by the cylinder is the same X-Z plane.

!"

!

!

!"#$%"&' !"#$%"&(

"
#

)*

)+

)(

)'

$

Figure A.1: Rotation of a cylinder on the plane spanned by the x and z axis of the
camera. The cylinder’s main axis lies on this plane.
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Let s be any point on the top edge of the cylinder (see Figure A.1) with its

coordinates given as,

s :=


−l
−r
0

1

 .
We wish to find an expression for the projection of s in camara 1 in terms of l

and r. Let J be the transformation matrix that transforms a point from the local

coordinates of the cylinder to the camera coordinates of camera 1. Let θ be the

original angle of rotation, sθ := sin(θ), and cθ := cos(θ). Note that θ depends on

x∗.

J :=


cθ 0 sθ kx

0 1 0 ky

−sθ 0 cθ kz

0 0 0 1

 .
Let K be the calibration matrix, defined as

K :=

 ax 0 ox 0

0 ay oy 0

0 0 1 0

 .
Then, with p := KJs,

p =

 −(ax cθ − ox , sθ)) l + ax kx + ox kz

oy sθ l − ay r + ay ky + oy kz

sθ l + kz

 .
Normalising the depth of p gives the projection pnorm of the point s,

pnorm =


−(ax cθ − ox sθ) l + ax kx + ox kz

sθ l + kz

oy sθ l − ay r + ay ky + oy kz

sθ l + kz

 . (A.1)

By applying Equation (A.1), the normalised projections of the boundary points

w1, w2, w3, w4 in Figure A.1 can be expressed as

w1 =


ax kx + ox kz

kz

ay ky + oy kz

kz

 ,
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w2 =


ax kx + ox kz

kz

−ay r + ay ky + oy kz

kz

 ,

w3 =


−(ax cθ − ox sθ) l + ax kx + ox kz

sθ l + kz

oy sθ l + ay ky + oy kz

sθ l + kz

 ,
and

w4 =


−(ax cθ − ox sθ) l + ax kx + ox kz

sθ l + kz

oy sθ l − ay r + ay ky + oy kz

sθ l + kz

 .

Figure A.2: The projection of the cylinder on the camera image plane.

Figure A.2 shows the projections of these points in the camera image. One

should note that the colour distribution on the line connecting w4 to w3 is just a

scaled version of the colour distribution of the line connecting w2 to w1. Hence

one can express the colour of a point as the ratio q := y
y′

(e.g. in Figure A.2 the

ratio for w′4 is y2
y′

). Suppose that after a perturbation of4θ, the resulting rotation
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angle is β = θ +4θ. Then w4 will move to a new position w′4. q is evaluated at

w′4 to determine the colour. y′ is given as

y′ = y0 − (y0 − y1)
x2

x1

, (A.2)

where

y0 =
ay r

kz

,

y1 =
ay r

cθ l + kz

,

x1 = − l ax (kz cθ + kx sθ)

(sθ l + kz ) kz

,

and

x2 = − l ax (kz cβ + kx sβ)

(sβ l + kz ) kz

.

y′ for w′4 is thus

− ay r (−sβ l cθ − kz cθ − kx sθ + sθ l cβ)

sβ l kz cθ + sβ l kx sθ + kz
2 cθ + kz kx sθ

,

and y2 is

y2 :=
ay r

sβ l + kz

.

Therefore, the ratio q = y2
y′

is

q =
kz cθ + kx sθ

−sβ l cθ − kz cθ − kx sθ + sθ l cβ
,

which simplifies to

q =
kz cθ + kx sθ

kz cθ + kx sθ + ls4θ
. (A.3)

For convenience, define T as

T := kzi cθ + kxi sθ,

Hence expression (A.3) becomes

q =
T

T + ls4θ
. (A.4)
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In the same manner the q ratio for camera 2 can be evaluated. For clarity,

from now on, we will denote q1 as the q ratio for camera 1 and q2 as the q ratio for

camera 2. For the colour of both projections of any given point on the cylinder

to be the same in both cameras, the following equality must hold,

q1 = q2, (A.5)

or in the expanded form

T1

T1 + ls4θ
=

T2

T2 + ls4θ
. (A.6)

There are two scenarios where Equation A.6 holds. One is that there is no

perturbation i.e. 4θ = 0. The other scenario is when T1 = T2. The latter

scenario is the exception set.

T2 can be broken down and expressed in terms of the original parameters

that describe T1. Let J1 be the transformation matrix that transforms a point

from the local coordinates of the cylinder to the camera coordinates of camera

1. Let Jr be the transformation that takes a point in the coordinates of camera

1 to the camera coordinates of camera 2. Therefore, the transformation J2 that

transforms the point s from the local coordinates to the coordinates of camera 2

can be expressed as J2 = JrJ1, i.e.

J2 =


cθr 0 sθr Dx

0 1 0 Dy

−sθr 0 cθr Dz

0 0 0 1




cθ 0 sθ kx1

0 1 0 ky1

−sθ 0 cθ kz1

0 0 0 1



=


cθr+θ 0 sθr+θ cθrkx1 + sθrkz1 +Dx

0 1 0 ky1 +Dy

−sθr+θ 0 cθr+θ −sθrkx1 + cθrkz1 +Dz

0 0 0 1

 .

It is clear that

kx2 = cθrkx1 + sθrkz1 +Dx, (A.7)

kz2 = −sθrkx1 + cθrkz1 +Dz. (A.8)
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Therefore T2 can be rewritten as

T2 = (cθrkx1 + sθrkz1 +Dx)sθ+θr + ...

(−sθrkx1 + cθrkz1 +Dz)cθ+θr

= kx1(cθrsθ+θr − sθrcθ+θr) + ...

kz1(sθrsθ+θr + cθrcθ+θr) + ...

Dxsθ+θr +Dzcθ+θr

= kx1sθ+θr−θr + kz1cθ+θr−θr + ...

Dxsθ+θr +Dzcθ+θr

= kx1sθ + kz1cθ +Dxsθ+θr +Dzcθ+θr .

Substituting into the equality T1 = T2 yields

Dxsθ+θr +Dzcθ+θr = 0. (A.9)

Hence, for the projection of s in both cameras to have the same colour after a

perturbation, the original θ has to be

θ = tan−1(−Dz

Dx

)− θr. (A.10)

�
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B.1 Choosing the Rotation Coordinate System

in Section 4.5.4

Choosing an appropriate coordinate system for parameterising the rotation of

the rigid body simplifies the analysis for showing the positivity of Ĥ. As an

illustration, suppose we used the same rotation parameterisation (Euler angles

θx, θy, θz) as that in the tracker’s 3D-2D projection pipeline, i.e.

Γi(ωi,x) = RxRyRzωi + t0rigid, (B.1)

where the rotation matrices Rx, Ry, Rz are parameterised by the Euler angles

θx, θy, θz, respectively (recall that θx, θy, θz, t
0
rigid are elements of x). The corre-

sponding Jacobian would be

JΓi(x) = [

1 0 0

0 1 0

0 0 1

 , ∂Γi
∂θx

,
∂Γi
∂θy

,
∂Γi
∂θz

], (B.2)

where

∂Γi
∂θx

=
∂Rx

∂θx
RyRzωi, (B.3)

∂Γi
∂θy

= Rx
∂Ry

∂θy
Rzωi, (B.4)

∂Γi
∂θz

= RxRy
∂Rz

∂θz
ωi. (B.5)

If the pose x is at θx = 0, θy = 0, θz = 0, then Rx, Ry and Rz would be the identity.

One can think of this situation as the rigid body’s coordinate system being aligned
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to the world coordinate system∗. This coordinate system is fixed with respect to

the rigid body. Therefore, as the orientation of the rigid body changes, Rx, Ry, Rz

changes accordingly. This complicates the evaluation of ∂Γi
∂θx
, ∂Γi
∂θy
, ∂Γi
∂θz

.

Instead one can choose to parameterise the rotation of the rigid body such

that the coordinate system is fixed with respect to the world/camera 1 instead

of the rigid body. One can think of this as merely relabelling the sample points

on the rigid body with respect to the camera view 1.

Let f(ωi,x) := RxRyRzωi and ω̃i := f(ωi,x). Also let Rx̃, Rỹ, Rz̃ be rotation

matrices parameterised by the Euler angles θ̃x = 0, θ̃y = 0, θ̃z = 0. Then Γi(ωi,x)

can be equivalently expressed (in a coordinate system that is aligned with camera

1) as:

Γi(x) = Rx̃RỹRz̃f(ωi,x) + t0rigid. (B.6)

The resulting Jacobian that is easier to evaluate for analysis would be

JΓi = [

1 0 0

0 1 0

0 0 1

 , ∂Γi

∂θ̃x
,
∂Γi

∂θ̃y
,
∂Γi

∂θ̃z
], (B.7)

where

∂Γi

∂θ̃x
=

∂Rx̃

∂θ̃x
RỹRz̃ω̃i, (B.8)

∂Γi

∂θ̃y
= Rx̃

∂Rỹ

∂θ̃y
Rz̃ω̃i, (B.9)

∂Γi

∂θ̃z
= Rx̃Rỹ

∂Rz̃

∂θ̃z
ω̃i. (B.10)

Rx̃, Rỹ, Rz̃ = I at all times since θ̃x, θ̃y, θ̃z is fixed at zero at all times. After finding

the partial derivatives with respect to θ̃x, θ̃y, θ̃z and some algebraic manipulation,

one can show that

JΓi =

1 0 0 0 ω̃i,z −ω̃i,y
0 1 0 −ω̃i,z 0 ω̃i,x

0 0 1 ω̃i,y −ω̃i,x 0

 . (B.11)

This is the Jacobian of the Γi function whose rotation is parameterised by a

coordinate system that is fixed with respect to camera 1.

∗In our case, aligned to the coordinate system of camera 1 since we take the world coordinate
system to be the coordinate system of camera 1.



Appendix C

C.1 The existence of Llong

Figure C.1: Trajectories on the spherical surface where φi,2 = 0 are indicated in red
and blue. The red trajectory, Lhoriz, lies on the equator the sphere. The dark green
region on the sphere represents the portion of the sphere visible in both camera views.
One can show that the blue trajectory, Llong, always exists within the mutually visible
region of the sphere.

Recall from Equation (4.83) on page 55 that

φi,2 = −(s1 − t1) TQ1e2

[
1

ςi,1
− 1

ςi,2

]
gi,y, (C.1)

where

ςi,j := (sj − tj) TQjdj. (C.2)

Geometrically speaking, ςi,j is the scaled projection of the surface normal at

the sample point ωi (in the jth camera coordinate frame) on the casting ray dj

(from the jth camera) that intersects ωi.

Let A and B be points that lie on the edge of the visible sphere portions for

cameras 1 and 2 respectively. A and B may also lie on an arbitrary latitude L
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of the sphere (see Figure C.1). Suppose we can pick ωi along L. As ωi → A, ςi,1

goes towards some finite value while ςi,2 → 0. The latter is due to the fact that

the surface normal at A will be orthogonal to d2. Hence[
1

ςi,1
− 1

ςi,2

]
→ −∞. (C.3)

Similarly as ωi → B, ςi,1 → 0 while ςi,2 goes towards some finite value. Hence[
1

ςi,1
− 1

ςi,2

]
→∞. (C.4)

Therefore, using a continuity argument, there will be a point on L between A

and B where [
1

ςi,1
− 1

ςi,2

]
= 0. (C.5)

Repeating this argument for all latitudes on the sphere gives a longitudinal tra-

jectory where φi,2 = 0 for its sample points.

C.2 The slant of Lhoriz

Figure C.2: Left: Lhoriz for a spherical object always lies on the horizontal plane that
is orthogonal to e2, the y-axis of both cameras. Right: Lhoriz for other ellipsoids does
not lie on the horizontal plane in general. The skewing is dependent on both the Q
matrix and the orientation of the ellipsoid with respect to the cameras.

Recall from Equation (4.83) on page 55 that

φi,2 = −(s1 − t1) TQ1e2

[
1

ςi,1
− 1

ςi,2

]
gi,y, (C.6)
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where

ςi,j := (sj − tj) TQjdj. (C.7)

Lhoriz describes the path of sample points where (s1 − t1) TQ1e2 = 0 and thus

φi,2 = 0 as a consequence. Expanding (s1 − t1) TQ1e2 gives

(s1 − t1) TR0
1

T
QR0

1e2. (C.8)

Q = I for the case of a sphere, which simplifies equation (C.8) to

(s1 − t1) Te2. (C.9)

Therefore Lhoriz will lie on the horizontal plane (see Figure C.2, left) that contains

the sphere’s origin and is orthogonal to the y-axes, i.e. e2 of both camera views.

For other ellipsoids, Q is a positive definite diagonal matrix where the diagonal

entries are not the same. This has the effect of shearing Lhoriz along the principal

directions of the ellipsoid, giving Lhoriz a slant (see Figure C.2, right). Thus

Lhoriz lies out of the horizontal plane. The severity of the shear depends on the

ratio of the ellipsoid’s principal axes. The more anisotropic the ellipsoid, the

higher the shear. Note that the shear effect is also dependent on the orientation

of the ellipsoid with respect to the camera views. If e2 aligns exactly to one of

the ellipsoid’s principal axes, the shearing effect disappears and Lhoriz lies on the

horizontal plane as in the spherical case.
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Appendix D

D.1 A non-zero Z3

Lemma D.1.1. Let φ1, φ3 ∈ R3 be vectors that can be shown to be linearly inde-

pendent based on their first two entries. In addition let

Z := (φ1 × φ3), (D.1)

where × denotes the cross-product operator. Then Z3 is a non-zero entry.

Proof. Z3 can be expressed as

Z3 = φ1,1φ3,2 − φ1,2φ3,1 = det(

[
φ1,1 φ3,1

φ1,2 φ3,2

]
). (D.2)

The fact that φ1 and φ3 are linearly independent based on their first two entries

imply that det(

[
φ1,1 φ3,1

φ1,2 φ3,2

]
) 6= 0. Therefore Z3 6= 0.

D.2 Structure of 4Yi,x,4Yi,z and Ei

Recall from Equation (4.95) that 4Yi

4Yi = g T
i

σ̂1

1 0 −k1,x
k1,z

0 0 0

0 0 0

− σ̂2R
2
1

T

1 0 −k2,x
k2,z

0 0 0

0 0 0

R2
1

 . (D.3)

Let g̃ = g(R2
1) T. Then

4Yi = σ̂1gi,x

[
1 0 −k1,x

k1,z

]
− σ̂2g̃i,x

[
1 0 −k2,x

k2,z

]
R2

1. (D.4)
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Factoring out
σ̂1gi,x
k1,z

gives

4Yi =
σ̂1gi,x
k1,z

([
k1,z 0 −k1,x

]
− σ̂2g̃i,xk1,z

σ̂1gi,x

[
1 0 −k2,x

k2,z

]
R2

1

)
(D.5)

=
σ̂1gi,x
k1,z

([
k1,z 0 −k1,x

]
− σ̂2g̃i,xk1,z

σ̂1gi,xk2,z

[
k2,z 0 −k2,x

]
R2

1

)
. (D.6)

Since Kj is the identity via Assumption 9, ωji = kj, and so

4Yi =
σ̂1gi,x
ω1
i,z

([
ω1
i,z 0 −ω1

i,x

]
−
σ̂2g̃i,xω

1
i,z

σ̂1gi,xω2
i,z

[
ω2
i,z 0 −ω2

i,x

]
R2

1

)
, (D.7)

where ω1
i and ω2

i are ωi expressed in the coordinate system of camera 1 and 2

respectively. We define Ei as

Ei := −
σ̂2g̃i,xω

1
i,z

σ̂1gi,xω2
i,z

. (D.8)

Note that Ei is a non-linear function of ωi. Now we wish to express
[
ω2
i,z 0 −ω2

i,x

]
in terms of

[
ω1
i,z 0 −ω1

i,x

]
.
[
ω2
i,z 0 −ω2

i,x

] T

is ω2
i that is rotated by −π

2
on the

y-axis and then projected onto the horizontal XZ plane, i.e.

[
ω2
i,z 0 −ω2

i,x

] T

=

1 0 0

0 0 0

0 0 1


 0 0 1

0 1 0

−1 0 0

ω2
i . (D.9)

Therefore

(
[
ω2
i,z 0 −ω2

i,x

]
R2

1) T = (R2
1) T

1 0 0

0 0 0

0 0 1


 0 0 1

0 1 0

−1 0 0

ω2
i . (D.10)

Substituting ω2
i = (R2

1) T(ω1
i + t12) gives

(
[
ω2
i,z 0 −ω2

i,x

]
R2

1) T = (R2
1) T

1 0 0

0 0 0

0 0 1


 0 0 1

0 1 0

−1 0 0

 (R2
1) T

(
ω1
i + t12

)
,

(D.11)

which simplifies to

(
[
ω2
i,z 0 −ω2

i,x

]
R2

1) T = (R2
1) T

 0 0 1

0 0 0

−1 0 0

 (R2
1) T

(
ω1
i + t12

)
. (D.12)
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Since R2
1 is a rotation on the y-axis (and therefore does not rotate points out of

the horizontal plane), one can easily show that

(R2
1) T

 0 0 1

0 0 0

−1 0 0

 (R2
1) =

 0 0 1

0 0 0

−1 0 0

 . (D.13)

Thus Equation (D.12) becomes

(
[
ω2
i,z 0 −ω2

i,x

]
R2

1) T =

 0 0 1

0 0 0

−1 0 0

(ω1
i + t12

)
(D.14)

=
([
ω1
i,z 0 −ω1

i,x

]
+
[
t12,z 0 −t1i,x

]) T

.(D.15)

Substituting this into Equation (D.7) gives

4Yi =
σ̂1gi,x
ω1
i,z

(
(1 + Ei)

[
ω1
i,z 0 −ω1

i,x

]
+ Ei

[
t12,z 0 −t12,x

])
. (D.16)

Therefore in summary,

Ei = −
σ̂2g̃i,xω

1
i,z

σ̂1gi,xω2
i,z

, (D.17)

4Yi,x = (1 + Ei)ω
1
i,z + Eit

1
2,z, (D.18)

4Yi,z = −(1 + Ei)ω
1
i,x − Eit12,x. (D.19)
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Appendix E

E.1 Properties of Ψ and Ψ̄

Recall that

φi = (4Yi

1 0 0 0 ωi,z −ωi,y
0 1 0 −ωi,z 0 ωi,x

0 0 1 ωi,y −ωi,x 0

) T, (E.1)

and by applying Equation (D.17), 4Yi for points on Lhoriz has the following

structure

4Yi =

 (1 + Ei)ω
1
i,z + Eit

1
2,z

0

−(1 + Ei)ω
1
i,x − Eit12,x

 . (E.2)

Ψ for the 5DOF case exhibits the following structure (see Equation (4.131) on

page 65).

Ψ = {φ1, φ2, φ3, φ4, φ5}, (E.3)

∼



φ1,1 φ2,1 φ3,1 φ4,1 φ5,1

0 0 0 0 0

φ1,3 φ2,3 φ3,3 φ4,3 φ5,3

−δ1φ1,3 −δ2φ2,3 −δ3φ3,3 −Nφ4,3 −(N + ε)φ5,3

∗ ∗ ∗ ∗ ∗
δ1φ1,1 δ2φ2,1 δ3φ3,1 Nφ4,1 (N + ε)φ5,1


, (E.4)

where |δi| << 1 and N + ε > N >> 0. From (E.1) it is clear that φi,1 = 4Yi,z
and φi,3 = 4Yi,x. In our camera setup the hand is located fairly far away from

the camera meaning that |4Yi,x| >> |4Yi,z|. Therefore φi,1 will be much larger

in magnitude than φi,3. In addition φ1,1, ...φ5,1 will be similar in magnitude. The

same applies to φ3,1, ..., φ3,5.
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For convenience we will remove row 2 since it does not play a role in showing

linear independence for the 5DOF case. We then rearrange the remaining rows

of the matrix representation of Ψ to give

Ψ̄ =


φ1,3 φ2,3 φ3,3 φ4,3 φ5,3

φ1,1 φ2,1 φ3,1 φ4,1 φ5,1

∗ ∗ ∗ ∗ ∗
−δ1φ1,3 −δ2φ2,3 −δ3φ3,3 −Nφ4,3 −(N + ε)φ5,3

δ1φ1,1 δ2φ2,1 δ3φ3,1 Nφ4,1 (N + ε)φ5,1

 . (E.5)

Since the magnitude of each column vector does not affect the linear indepen-

dence of φ̄ we normalise each column based on its respective φi,3 entry. Thus Ψ̄

becomes 
1 1 1 1 1

k1 k2 k3 k4 k5

∗ ∗ ∗ ∗ ∗
−δ1 −δ2 −δ3 −N −(N + ε)

δ1k1 δ2k2 δ3k3 Nk4 (N + ε)k5

 , (E.6)

where k1, ..., k5 >> 1, |δi| << 1 and N + ε > N >> 0.
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E.2 A Lower Bound on | det(D − CA−1B)|

Ψ̄ exhibits the following structure

Ψ̄ =

[
A B

C D

]
, (E.7)

where

A =

 1 1 1

k1 k2 k3

∗1 ∗2 ∗3

 , B =

 1 1

k4 k5

∗4 ∗5

 , (E.8)

and

C =

[
δ1 δ2 δ3

δ1k1 δ2k2 δ3k3

]
, D =

[
N (N + ε)

Nk4 (N + ε)k5

]
. (E.9)

Note that |δi| << 1 and N + ε > N >> 0.

To facilitate analysis, we assume that k1 < k2 < k3. This is always achievable

by re-ordering the three columns if necessary. In a similar manner, we assume

that k5 > k4. Note that this implies that det (D) > 0. We also assume that the

ki’s are similar in value, as are the ∗i’s. This is valid, as previously justified in

Appendix E.1.

To obtain a lower bound on | det(D − CA−1B)| one needs to determine an

upper bound on the elements of the matrix CA−1B. A−1 is given as

A−1 =
1

det(A)

k2 ∗3 −k3∗2 −(k1 ∗3 −k3∗1) k1 ∗2 −k2∗1

−(∗3 − ∗2) ∗3 − ∗1 −(∗2−1)

k3 − k2 −(k3 − k1) k2 − k1

 , (E.10)

where det(A) = ∗1(k3 − k2) − ∗2(k3 − k1) + ∗3(k2 − k1). Since wish to find an

upper bound on the elements of (CA−1B), the objective is to first make | det(A)|
as small as possible. It is straightforward to see that the smallest value of | det(A)|
would be of the order ∗4k.

One can expand A−1B to give

1
detA

 (k2 ∗3 −k3∗2)− k4(∗3 − ∗2) + ∗4(k3 − k2) (k2 ∗3 −k3∗2)− k5(∗3 − ∗2) + ∗5(k3 − k2)
−(k1 ∗3 −k3∗1) + k4(∗3 − ∗1)− ∗4(k3 − k1) −(k1 ∗3 −k3∗1) + k5(∗3 − ∗1)− ∗5(k3 − k1)
(k1 ∗2 −k2∗1)− k4(∗2 − ∗1) + ∗4(k2 − k1) (k1 ∗2 −k2∗1)− k5(∗2 − ∗1) + ∗5(k2 − k1)

 .
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Using this, one can expand the first element of CA−1B as

(CA−1B)1,1 =
1

det(A)

 δ1(∗3(k3 − k4) + ∗2(k4 − k3) + ∗4(k3 − k2))...
+δ2(∗3(k4 − k1) + ∗1(k3 − k4)− ∗4(k3 − k1))...
+δ3(∗1(k4 − k2) + ∗2(k1 − k4) + ∗4(k2 − k1))

 . (E.11)

Let δ be the upper bound on the set {δ1, ..., δ5}. Then

(CA−1B)1,1 ≈
δ

∗4k

 (∗3(k3 − k4) + ∗2(k4 − k3) + ∗4(k3 − k2))...
+(∗3(k4 − k1) + ∗1(k3 − k4)− ∗4(k3 − k1))...
+(∗1(k4 − k2) + ∗2(k1 − k4) + ∗4(k2 − k1))

 . (E.12)

Suppose that k4 > k3 > k2 > k1, then one can evaluate from above that the

largest possible size of |(CA−1B)1,1| would be in the order of

|(CA−1B)1,1| ≈
δ

∗4k
(5 ∗ 4k) ≈ 5δ. (E.13)

The table E.1 shows the size of |(CA−1B)1,1| depending on the relative size of k4.

Table E.1: Relative size of |(CA−1B)1,1|

Relative size of k4 |(CA−1B)1,1|

k4 > k3 > k2 > k1 5δ

k3 > k4 > k2 > k1 7δ

k3 > k2 > k4 > k1 7δ

k3 > k2 > k1 > k4 4δ

Hence the largest value of |(CA−1B)1,1| would be in the order of 7δ. By

applying the same method to the other elements of CA−1B, one can determine

the largest value of CA−1B to be in the order of

CA−1B ≈ 7δ

[
1 1

k k

]
. (E.14)
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Substituting this into det(D − CA−1B) gives

det(D − CA−1)B) ≈

[
N (N + ε)

Nk4 (N + ε)k5

]
− 7δ

[
1 1

k k

]
(E.15)

≈ N

[
1 1

k4 k5

]
− 7δ

[
1 1

k k

]
(E.16)

≈ (N − 7δ)(Nk5 − 7δk)− (N − 7δ)(Nk4 − 7δk) (E.17)

≈ N2(k5 − k4)− (7δN(k5 − k4) + 49δ24k) (E.18)

≈ N2(k5 − k4)− (7δN + 49δ2))4k. (E.19)

From above, it can be seen that as long as N2 >> (7δN + 49δ2), then the

N2(k5 − k4) term will dominate and hence | det(D − CA−1B)| > 0.

Based on rough measurements on the palm, N can be made to be ∼ −40mm

(by choosing the ω4, ω5 from the ellipsoid on the side of the palm) and δ can be

made to be at most ∼ 2.5mm (by choosing the remaining ω’s at the top of the

palm). Hence

N2 > (7δN + 49δ2) (E.20)

1600 > 1006.25, (E.21)

at worst and so one can safely say that | det(D − CA−1B)| > 0 in practice.
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