
Implementation of a Real-time
Hand Tracking System in a
Heterogeneous Architecture

Francis Snelgar

A report submitted in part for the degree of
Bachelor of Engineering R&D (Honours)

The Australian National University

October 2015

Except where otherwise indicated, this report is my own original work.

Francis Snelgar
30 October 2015

Contributions

This work is a joint effort between:

• the author, who conducted the majority of the analysis and implementation;

• the author’s supervisors, Dr Jochen Trumpf and Dr Viorela Ila, who were of
great assistance in discussing the issues encountered;

• Dr David Austin, who designed the hardware and assisted in developing some
of the code and debugging;

• and Dr Desmond Chik, who developed the tracking algorithm.

iii

Abstract

This report discusses the hardware based, real time implementation of a 3D artic-
ulated hand tracking system in a stochastic approximation framework. A control
architecture is developed that is suitable for real time implementation. The architec-
ture uses image processing pipelines implemented on an FPGA for computational
efficiency, achieving maximum data rates of close to 10Gb/s. This results in a 150
fold speed increase over the previous system. Also presented is an analysis of tracker
accuracy and convergence requirements at different video frame rates.

iv

Contents

Contributions iii

Abstract iv

1 Introduction 1
1.1 Report Outline . 2

2 Prior Works 3
2.1 Approaches to Hand Tracking . 3

2.1.1 Glove Based Systems . 3
2.1.2 Templated Systems . 3
2.1.3 Model Based Systems . 4
2.1.4 Visual Cues . 5

2.1.4.1 Silhouette . 5
2.1.4.2 Edge Detection . 6
2.1.4.3 Optical Flow . 7
2.1.4.4 Stereo Vision . 7

2.2 FPGA Implementations . 8
2.2.1 Tracking Systems . 8
2.2.2 Optical Flow . 9
2.2.3 Distance Transforms . 9
2.2.4 Random Number Generation . 9

3 Tracking System 11
3.1 Stereo Cameras . 11
3.2 Hand Model . 12
3.3 Cost Function . 12

3.3.1 Photoconsistency Function . 12
3.3.2 Silhouette Function . 13
3.3.3 Filling Function . 13

3.4 Optimisation Algorithm . 13

4 Hardware 14
4.1 FPGA . 14
4.2 Microcontroller . 15
4.3 SDRAM . 15
4.4 CMOS Sensor . 15

v

vi Contents

5 System Architecture 16
5.1 Computation Timing . 16
5.2 Data Rate Limitations . 17

5.2.1 Image Processing Pipeline . 17
5.2.2 Data Storage . 17

5.2.2.1 Downsampling . 17
5.2.2.2 Multiple pixels in single word 18
5.2.2.3 Data Format . 18
5.2.2.4 Implementation Selection 18

5.2.3 Stereo Vision . 21
5.2.4 Sample Set transfers . 21

5.3 FPGA Modules . 22
5.3.1 Clock Domains . 22
5.3.2 SDRAM Controller . 25
5.3.3 FPGA-microcontroller Bus . 28
5.3.4 Softcore Processing Unit . 31
5.3.5 Psuedo-Random Number Generator 34
5.3.6 Image Processing Pipeline . 35

5.3.6.1 Silhouette Extraction . 35
5.3.6.2 Distance Map . 36
5.3.6.3 Image Gradients . 36
5.3.6.4 Unbiased and a Uniformly Bounded Variance 37

5.3.7 Design Summary . 38
5.4 CPU-based Modules . 38

6 Initial Results 39
6.1 Experimental Setup . 39

6.1.1 Image Sequences . 39
6.1.2 Tracker Implementations . 40
6.1.3 Pose Sequences . 40

6.2 Experiments . 41
6.2.1 Finger Flexion . 41
6.2.2 Grip and Twist . 43
6.2.3 Palm Rotation . 45

6.3 Tracking with an FPGA-implemented Image Pipeline 47
6.4 System Validation . 48

7 Frame Rate Experiments 49
7.1 Tracking Accuracy . 49
7.2 Experiments . 51

7.2.1 Optimisation Iterations . 51
7.2.2 Sample Set Size . 52
7.2.3 Initial Convergence . 53

7.3 Towards Real Time Implementation . 54

Contents vii

8 Conclusion 56

List of Figures

3.1 Physical arrangement of the tracking space, showing the stereo cam-
eras and their viewing frustums, as well as the users hand. 11

3.2 Left: articulated skeleton showing the carpometacarpal (CMC), metacar-
pophalangeal (MCP), proximal-interphalangeal (PIP) and distal-interphalangeal
(DIP) joints. Right: sample points taken from the mesh, showing the
palm (green), thumb (red), index(blue), middle (violet), ring (yellow),
and little (violet) fingers. 12

4.1 Block diagram of physical system design. Note that only one of the
camera units is shown . 14

5.1 Block diagram of the master FPGA . 23
5.2 Block diagram of the slave FPGA . 24
5.3 High level state machine for controlling read and write operations to

the SDRAM . 25
5.4 SDRAM timing showing interleaved read and write operations 25
5.5 Test image with the incorrect regions of approximately 30 pixels high-

lighted in red . 26
5.6 Master state machine for controlling packet transfers between the FPGA

and microcontroller on the GPIF data bus. 29
5.7 Block diagram of the softcore processing unit 32
5.8 Simulation showing softcore functions. Values are read from RAM,

and saved back into RAM after multiplication and addition operations. 33
5.9 Plot showing frequency histogram of an LFSR (left) and pixel coordi-

nates generated with a 10bit LFSR (right) 34
5.10 Results for the silhouette, distance transform, and image gradient mod-

ules from the image processing pipeline. 35

6.1 Sample synthetic images depicting various hand poses 39
6.2 Cost per frame for finger flexion sequence. Original tracker results are

in blue, FPGA simulation results in red. (best seen in colour) 41
6.3 A selection of frames from the finger flexion sequence using SMD opti-

misation. The top row contains frames from the original tracker, while
the bottom row contains the same frames for the FPGA simulation . . 42

6.4 Cost per frame for grip and twist sequence. Original tracker results
are in blue, FPGA simulation results in red. (best seen in colour) 43

viii

LIST OF FIGURES ix

6.5 A selection of frames from the grip and twist sequence using SMD
optimisation. All frames are from the original tracker 43

6.6 A selection of frames from the grip and twist sequence using SMD
optimisation. All frames are from the FPGA simulation tracker 44

6.7 Cost per frame for palm rotation sequence. Original tracker results are
in blue, FPGA simulation results in red. (best seen in colour) 45

6.8 A selection of frames from the palm rotation sequence using SMD
optimisation. All frames are from the original tracker 46

6.9 A selection of frames from the palm rotation sequence using SMD
optimisation. All frames are from the FPGA simulation tracker 46

6.10 Frames from FPGA tracker showing predicted pose at iterations 1, 2,
3, 4, 6 and 8 of the SMD optimisation algorithm 47

6.11 Frames from tracker showing predicted pose at iterations 8, 26 and 38
of the SMD optimisation algorithm . 48

7.1 A selection of frames from the twist (top) and finger flexion (bottom)
sequences using SMD optimisation. 50

7.2 A selection of frames from the palm rotation sequence 50
7.3 Cost as a function of optimisation algorithm iterations for the grip and

twist sequence at left: 30fps, and right: 240fps (best seen in colour) . . . 51
7.4 Selection of frames from the finger flexion sequence using 1 iteration

of SMD and 1024 samples. 52
7.5 Cost as a function of sample set size for the grip and twist sequence at

left: 30fps, and right: 240fps (best seen in colour) 52
7.6 Selection of frames from the finger flexion and twist sequences using

20 iterations of SMD and 100 samples . 53
7.7 Selection of frames showing initial convergence for 5 iterations (top)

and 20 iterations (bottom) . 53
7.8 A selection of frames from the finger flexion (top) and twist (bottom)

sequences using 5 SMD iterations and 100 samples. 54
7.9 Execution time per frame for the SMD optimisation algorithm for dif-

ferent numbers of iterations and sample set sizes. 55

1 Frame 296 of the finger flexion sequence, showing 20, 10, and 5 itera-
tions of SMD from left to right. 58

2 Frame 560 of the grip and twist sequence, showing 20, 10, and 5 itera-
tions of SMD from left to right. 58

3 Frame 296 of the finger flexion sequence, showing sample sets of 1024,
256, and 100 from left to right. 59

4 Frame 560 of the grip and twist sequence, showing sample sets of 1024,
256, and 100 from left to right. 59

List of Tables

4.1 Lattice ECP3-150 Resource Specifications 15

5.1 Summary of the different possible configurations of the image pipeline.
Plausible configurations are highlighted in green, with the chosen con-
figuration in red. 20

5.2 Summary of data transfer feasibility over GPIF interface 21
5.3 Summary of resource usage for a single SDRAM controller as a per-

centage of available system resources . 26
5.4 Control and Data signals of the GPIF data bus 28
5.5 Summary of resource usage for the GPIF controller as a percentage of

available system resources . 30
5.6 Reduced instruction set for softcore processing unit 31
5.7 Summary of resource usage for softcore processor as a percentage of

available resources . 33
5.8 Summary of resource usage for distance map using 640x480 resolution

images . 36
5.9 Summary of resource usage for Sobel filter using 640x480 resolution

images . 37
5.10 Summary of system specifications . 38
5.11 Summary of resource usage for the control architecture as a percentage

of available resources . 38

6.1 Weights for the cost components used in the original tracker 41
6.2 Weights for the cost components used in the simulation tracker 41

x

Chapter 1

Introduction

Marker-less hand tracking has experienced a renewal of interest in recent years due
to its application to human-computer interactions (HCI). Historically, systems have
struggled to track poses reliably due to computational expense, and in an attempt
circumnavigate this have resorted to focusing on a small subset of possible poses.
However as touchscreen technologies have become more widespread, gestures such
as pinch and zoom have become commonplace. Focus has hence moved to fully ar-
ticulated tracking which brings with it an increase in complexity and computational
requirements. As such there are very few systems capable of performing fully artic-
ulated real time tracking, with the only two implementation known to date demon-
strated by Microsoft [64] and Tompson [72], both of which use depth information.

Real-time and marker-less hand tracking is a complex task, and there are several
well known problems in the field:

• Complex Poses: As the fingers have multiple degrees of freedom that are es-
sentially independent from one another, self-occlusion occurs frequently. Self-
occlusion happens when a portion of the hand obscures another from view,
effectively hiding the pose. This can occur as a finger crossing in front of an-
other, the palm presented side on to the camera, or examples such as making
a fist, effectively hiding all fingers from view. Additionally finger flexion can
reach high rotational [52] velocities, resulting in large changes in pose between
frame n and frame n + 1, increasing the difficulty of tracking.

• Marker-less Tracking: Marker-less systems which use no physical identifiers
are particularly difficult to track as all information regarding the pose must be
extracted from the camera images. Feature extraction of this nature currently
cannot provide the level of detail or accuracy that markers can, such as the
exact location of joints in 3D space.

• Real time: Systems which track in real time must either perform all required
computations between frames, or operate at a delay of a frame or more. Either
way the time window available for performing tracking computations is small.
This leads to real time systems using a small subset of available hand poses, or
the use of dedicated hardware to perform the bulk of the computations.

1

2 Introduction

1.1 Report Outline

The aim of this report is to implement an existing real time hand tracking system on
a heterogeneous architecture using stereo cameras. The tracking system was orig-
inally developed by Chik [18] in his PhD thesis, and a feasibility study of such an
implementation was conducted by the author in [68]. The contributions made by the
author in the current work are:

1. Design of a control architecture for heterogeneous hardware suitable for hand
tracking applications with real time performance.

2. Implementation of the architecture on heterogeneous hardware.

3. Proof of concept unit test that allows the loading of an image stream into the
beginning of the image processing pipeline implemented on the FPGA, and
subsequent data transfers requested by the tracking algorithm implemented on
the host computer. The unit test shows successful articulated hand tracking
within the limitations of the design and as yet unsolved hardware bugs.

4. Analysis of the differences of the current implementation when compared to
Chik’s original tracker.

5. Analysis and discussion of the effect of frame rate on tracking accuracy and
computational load.

The report is structured as follows:

Chapter 2 contains a survey of prior works in the field, focusing on the different
approaches taken as well as a survey of the types of computer vision algorithms suc-
cessfully implemented on FPGAs.
Chapter 3 introduces the original tracking system and its components.
Chapter 4 and Chapter 5 introduce the hardware to be used for this implementation
and the constraints that it imposes.
Chapter 6 validates the results of the current implementation against those of the
original tracker as implemented in [18].
Chapter 7 explores the benefits of using a high frame rate camera, focusing on track-
ing accuracy and computational efficiency.

Chapter 2

Prior Works

2.1 Approaches to Hand Tracking

Hand tracking can be divided roughly into three types of systems, data glove systems
which use physical sensors and markers, templated systems which match the input
to a pose from a discrete set, and model based systems which estimates the pose
using a kinematic model.

2.1.1 Glove Based Systems

A large portion of glove based systems use an electromechanical glove to measure
the pose of the palm and knuckle angle directly such as in [61, 31, 9, 30]. There are
several different methods for collecting data in this way, though gyroscopes and ac-
celerometers are commonly used [31, 30] to measure pitch, roll and yaw at the joints.
Fels et al [31] supplement these with fibre optic transducers to measure knuckle an-
gles, then comparing the measurements to a database of 230 poses. The system
requires extensive training with thousands of sample poses and the offline training
process takes several hours.

A different approach was taken by Lamberti [48] where instead of inertial sen-
sors, the glove consisted of different coloured sections. By segmenting the image,
these regions can be identified, and the pose described by a vector of the angles and
distances between these regions. By comparing against a database using a classifier,
the pose can be recognized. While they produce an accurate estimation of the pose,
data gloves require exact calibration to function correctly, are expensive, and greatly
inhibit natural human motion making them undesirable for tracking applications
such as human computer interaction. These drawbacks resulted in the development
of contactless systems which use computer vision techniques to estimate the pose
remotely. Contactless tracking systems can be divided into two discrete types; tem-
plated systems and model based systems.

2.1.2 Templated Systems

Appearance based systems map the visual input to a set of images using a variety of
classifying techniques. Systems such as [24] use Self Organising Maps (SOMs) to map

3

4 Prior Works

the visual input to a network of nodes (the map). Each node has associated with it a
weight vector, and a position described in the map space. At every iteration the visual
input is randomly sampled, and the node closest in the map space is chosen. The
weights and positions of this node and its neighbors are then updated to move them
towards the sampled data. This is repeated for thousands of iterations until the map
closely resembles the input data. Chang [14] maps the input to the database using a
nearest neighbor approach. From the extracted silhouette the curvature scale space
is computed using the closed curve of the silhouette (I.e. the outline of the silhouette,
which forms a closed loop). By repeatedly convolving the closed curve with a kernel,
combined with the gradually smoothed hand contour, peaks and concave features are
extracted.The 5 maximum peaks and 4 maximum concavities are then identified and
matched to the training set to identify the hand pose. Only 6 discrete poses were
used with a training set of 600 images from different perspectives and subjects, in
order to increase the system’s robustness.

Other approaches use statistical models such as hidden Markov or point distri-
bution models [15, 2], with one model per pose in the discreet set. Each model is
evaluated against the current data, and the pose with the best fit is chosen. These
appearance based systems provide robust real time implementation for a small, dis-
crete set of poses, but become vastly more computationally expensive for larger sets.
For example the computational expense of systems using a model per pose, would
scale at best one to one with the number of poses modeled.

2.1.3 Model Based Systems

Model based systems use visual cues to fit a 3D model to the observed pose. Because
of the high degree of freedom in a human hand, reduction of dimension methods
are often employed, as well as dynamic modeling to increase the system’s robust-
ness. Model based algorithms can be largely divided into two distinct techniques:
gradient based or particle filter based. Gradient based algorithms such as [18] use a
cost function to quantify goodness of fit, and an optimisation algorithm to converge
on the global maximum of the cost function. Particle filter based systems such as
[25, 34, 50] use a hidden Markov model approach, where observable states (visual
cues) are used to probabilistically determine hidden states (poses). Both of these
techniques require the use of sample sets, as evaluation of every point is infeasible
due to computational expense. There are a variety of different sampling schemes
used such as [34] where the sample size is determined by the curvature of the model,
or [18] where random samples are taken from each portion of the hand.

While some systems such as [18, 25] use a model with the full 26 degrees of free-
dom, reduced order models are common in an attempt to limit the complexity of
the model. Tompson [72] uses a linear blend skin model with 42 degrees of freedom
with a neural network for feature extraction based off depth images. The network is
trained offline by projecting the model onto a 2D depth image, and the pose itera-
tively adjusted until the error is below a threshold. However this is a computationally
expensive exercise and training the network took several days using a GPU and 24

§2.1 Approaches to Hand Tracking 5

core processor. For online tracking a reduced model of 23 degrees of freedom was
used for computationally efficiency. The author notes that the reduced model fails
to accurately model effects such as skin folding and muscle deformation. Systems
such as [34] use a 26 DOF model, but reduce the parameter space through statistical
techniques using Gaussian distributions, with restrictions placed on variables using
frame rates. The parameter space used is then reduced to 8 DOF, 3 for translation,
3 for rotation, and a further 2 for statistical variables. The models used in [63] have
6 DOF. This dimension reduction is achieved by considering only the DOF of the
palm, while the phalanges are considered fixed. Obviously using this model alone
would constrict the range of poses to a very small subset, hence three different mod-
els are used with different arrangements of the phalanges. These models, combined
with appearance based tracking methods, allow the hand to be tracked. A variety of
techniques are also used to try and increase the robustness of the system. [34] uses
behavioral modeling to estimate what action the user should be performing. For
example if the user is reaching for an object the next motion will likely be ’grasp-
ing’. [63] takes a different approach by combining both appearance and model based
techniques. Template matching is used to determine which of several restricted mod-
els to use, then visual cues and accelerometer data is used to refine the pose. Model
based systems offer the most exact pose recognition, and have the advantage of being
able to model any pose without having prior knowledge of it such as an appearance
based system. However this comes at a cost, with model based systems generally
requiring significantly more computational power than other approaches.

2.1.4 Visual Cues

Both appearance and model based systems rely heavily on visual cues to refine the
pose estimate. This section will discuss the various cues used, and the techniques
used to quantify them.

2.1.4.1 Silhouette

The silhouette of the hand is commonly used in both appearance based and model
based approaches [14, 25, 34, 50, 63, 33], both for use in optimisation algorithms and
template matching by constraining the area the model or pose can occupy. There are
several different techniques used to calculate the silhouette. A common method is
to use a learned histogram model which is trained offline [43]. This approach uses
the property that skin colour is relatively uniform, hence occupying a compact re-
gion of the colour space. Using training data, the colourspace is classified as skin
or nonskin, creating two probability distributions. Comparison of the distributions
is used to classify pixels online. While this approach is accurate in identifying skin
with the accuracy exceeding 90%, it has its drawbacks, mainly related to the require-
ments for offline training, as manually labeling pixels is time intensive and individual
histograms need to be constructed for each subject due to differences in skin tone.
Another technique used is adaptive background mixture models [69]. Each pixel is

6 Prior Works

modeled as a mixture of Gaussians. These Gaussian distributions are then evaluated
to determine which Gaussians are most likely the result of a background process.
Pixels that do not match background Gaussians are grouped as connected compo-
nents and tracked over time using a multiple hypothesis tracker. However variations
in lighting and introduction of new objects can cause objects to be falsely identified
as foreground, with the time taken to correctly classify them being significant.

Almaadeed et al [3] sought to overcome some of these issues by using the Gaus-
sian mixture model as an initial segmentation step only. All but one foreground
segments are then discarded based on size and shape. The RANSAC algorithm [21]
is then used to reject outliers and obtain the silhouettes. The background is then
updated. A different approach taken by Felzenswalb et al [32] is to consider only the
intensity of the image. The algorithm creates regions in such a way that the vari-
ation in intensity inside a region is less than the variation between regions. If the
variation between neighboring border pixels of two different regions is less than the
internal variation, the regions are merged in a bottom up approach. Drawbacks to
this approach are that whilst the image is divided up in to discrete regions, there is
no procedure for identifying the correct region.

2.1.4.2 Edge Detection

Edge detection is a very common cue both in appearance and model based systems
[24, 15, 25, 33, 27, 62] as it is a robust operation that helps with database match-
ing and cost function optimisation. The most famous edge detection algorithm, the
Canny operator [13] locates where the gradient magnitude is a local maximum along
the direction of the gradient, similar to an approach first suggested by Marr [55].
Thresholding with hysteresis is then applied to identify the edges. Initially a large
threshold is used to identify points which are clearly edges. The threshold is then
switched to a lower value which is traced along the already identified edges. This
enables the faint edges to be picked up, while minimising false edges. Wenshuo et al
[35] suggest an improvement on the Canny operator by additionally using a depth
map. The depth map would show a change in intensity between overlapping objects
as they are at different distances along the Z-axis (camera axis). However the Canny
operator is not particularly robust in terms of noise. A suggested improvement was
to use wavelet decomposition [17]. By decomposing the image into wavelets, an
appropriate threshold can be chosen to remove the noisy component from the spec-
trum. The inverse can then be computed and the Canny operator used on an image
with significantly reduced noise. A different approach taken by Hsaio et al [40] was
to use an iterative approach using empirical mode decomposition. By repeated sub-
traction from the signal until an appropriate threshold is reached, the intrinsic mode
functions can be found. These along with the residue function are used to identify
edges in a colour image.

§2.1 Approaches to Hand Tracking 7

2.1.4.3 Optical Flow

Optical flow is another commonly used cue [15, 28] and has also been used in sil-
houette algorithms as part of background subtraction [75], though as a scalar rather
than vector quantity. A popular approach is one suggested by Horn and Schunk in
the 1980s [39]. It uses the approximation that a pixel’s intensity does not change over
small temporal displacements (adjacent frames), and hence any change in intensity
is related to the relative velocity of the image. Taking partial derivatives results in
the optical flow constraint equation. As this is a underdetermined linear system, ad-
ditional constraints must be imposed to insure uniqueness. These are added in the
form of smoothness and intensity constraints. This reduces the problem to minimis-
ing the error in intensity over a neighborhood and extrapolating to find the optical
flow vectors. Chen et al [16] use these principles for motion compensation. However
techniques such as this find the projection of the optical flow along the gradient.
Chung et al [22] propose a back propagation approach which propagates the projec-
tion of the optical flow back along the gradient, and hence restoring the true value.

2.1.4.4 Stereo Vision

Stereo vision is used by many [27, 8, 12, 37, 51, 58, 59, 66, 77]to gain depth infor-
mation of the scene by identifying common regions in both camera views and cal-
culating depth using basic trigonometric relationships. Typically the depth map is
computed only for visual features that are identified in both views - i.e. corners or
edges that can be easily detected using Canny or Sobel filters. This depth information
can then be used to build a map of the background [58], from which regions of inter-
est (ROI) can be separated using background subtraction. Another technique which
is more commonly used in object tracking [12, 37], is to build a plan or plane view
map, where the physical plane is divided into bins. A physical stereo camera is used
to generate the depth map as normal. This map is then orthographically projected
to the viewpoint of an overhead camera, where each bin is assigned a single pixel
value. This helps with object separation as often when two object partially occlude
one another from the physical camera viewpoint, they will be clearly separated in
the virtual viewpoint. While this would result in a loss of data, (as this is effectively
a reduction in dimension) enough data is still present for tracking. Muñoz-Salinas et
al [59] extend the idea of depth maps further by using multiple stereo cameras at dif-
ferent view points to build a depth and volume map. Using multiple cameras allows
the depth of different faces of objects to be calculated and hence build a volume map
of the object in question. Using multiple cameras also helps to deal with some in-
herent drawbacks of stereo cameras, namely noise and false identification. By using
multiple cameras the author constructed a confidence map, which describes the level
of certainty at that point in the depth map. Geometric shapes such as checkerboards
stand out with high values in the confidence map, while regions of uniform colour
have low values. While most approaches use stereo vision to generate depth maps
for use in cost functions or template matching, other approaches integrate stereo vi-
sion more fully into the tracking systems. For example Ziodi et al [77] implement an

8 Prior Works

appearance based tracker where the left right camera images are used independently.
Disparity maps for candidate ROI are generated separately against the current ref-
erence at the top of the reference stack. The similarity between the left right pairs
is then computed and if its over the threshold, this pair is pushed on to the stack as
the next reference, and the oldest pair is popped. Dankers et al [27] take a different
approach and use disparity information to track motion, and hence the direction for
the tracker. One camera is used as a reference, and one column of the image in the
other camera is removed, and a column of padding introduced on the opposite side.
This process is repeated for pixels on the left and right of the image, and the direc-
tion which produces the largest disparity is the right direction for the tracker. This
is working on the assumption that object being tracked is a rigid body and that it is
moving along the horizontal axis of the camera.

2.2 FPGA Implementations

2.2.1 Tracking Systems

While most of the tracking systems mentioned are implemented on standard CPU
based architectures, others have taken advantage of the parallel computing power of
FPGAs. However because of the architecture, tracking algorithms tend to be sim-
pler then the CPU based systems. For example probabilistic histogram models are
popular choices [4, 20], where regions of interest are tracked using colour values.
[20] uses exhaustive search methods where the whole of the frame is searched for
the best match, achieving frame rates of up to 81 fps. [4] uses a slightly more ad-
vanced search algorithm, which uses a gradient based iterative approach, increasing
frame rates up to 290 fps for multiple targets. Hu [41] combines histogram thresh-
olding with adjacency testing for a blob tracking algorithm using a softcore proces-
sor. Other blob tracking algorithms include [60, 6] where edge detection is used for
locating geometric regions of interest. However algorithms using purely image pro-
cessing techniques such as histograms and linear filters are sufficient only for blob
tracking, lacking the complexity required for more advanced scenarios. Slighty more
advanced blob tracking algorithms such as Nilsson et al [47] use the segmentation
approach with frame rates of 30 fps, while [19] uses image subtraction and parti-
cle filters achieving frame rates of 79 fps. Several systems use multiple viewpoints
[44, 46] for 3D positioning. Kikuchi [44] uses distributed nodes with each containing
an FPGA for the computation of optical flow, while Kreizer [46] uses an FPGA for for
ray tracing in the modeling of turbulent flow in fluids. FPGAs are also commonly
used as embedded standalone systems in the automotive industry. Marzotto [57]
implements a lane departure system using an FPGA for feature extraction and curve
fitting using RANSAC, tracking the results over time with a Kalman filter. Ando
[5] tracks drivers eye position using foreground extraction and template matching to
extract the face region, then fitting circles to regions of interest to segment the eyes.

§2.2 FPGA Implementations 9

2.2.2 Optical Flow

Optical flow algorithms are another popular choice for implementation on FPGAs
[36, 29]. Saranli et al implemented the Horn and Schunck algorithm on an FPGA,
achieving frame rates of 257 fps. Martin [56] also successfully implemented the Horn
and Schunk algorithm using external memory banks. Other approaches include
[71] where the evaluation of cost in a window and pattern matching was used to
determine optical flow. Diaz also successfully implemented optical flow algorithms
using an FPGA along with external memory banks, with frame rates of 30 fps.

2.2.3 Distance Transforms

Distance transforms are a commonly used metric in computer vision algorithms and
are applied spatially or to properties such as in clustering algorithms. As most such
algorithms scale as O(n2), they are computationally expensive and for real time im-
plementations FPGAs are commonly used. The most commonly used distance trans-
form [38, 7] is the Borgefors transform [10] where a non linear filter is used to com-
pute integer approximations to the Euclidean distance in a neighbourhood. These
local distances are propagated to neighbouring pixels. Distances are propagated
globally using a sliding window approach and consecutive passes in the forward
and backward directions. Atay [7] implements a parallel architecture where each
image is broken into sub images and dealt with separately. Border artefacts are then
removed later. Sudha [70] also implements a parallel architecture where individual
processing units compute the Euclidean distance in local neighborhoods iteratively,
scaling at worse as O(n). Gonzalez [1] calculates the distance to an edge as a dispar-
ity measure, focusing on vertical edges to remove the complexity of square root or
divide operations. Distance transforms an also be applied to colourspaces such as in
[76] where it is used to segment an image using the K-means clustering algorithm.
Boudabous also applies it to a colourspace [11] where it is implemented as part of a
directional filter for noise removal.

2.2.4 Random Number Generation

Random number generators (RNG) play a vital role in cryptographic applications
as well as random sampling schemes. RNGs can be split into two broad categories,
pseudo (PRNG) [54, 53, 67] where the output is produced through computation, and
true RNG [65, 74] cannot be computed as they are nondeterministic. In recent years
there has been a move to hardware based generators, as these offer an efficient and
low power method of producing large streams of random numbers, and can be con-
structed in such a way which cannot be replicated. FPGAs prove a popular platform
[65, 54, 53, 74, 67] for implementation. For true RNGs, a source of randomness is
required. Ransinghe [65] forces timing violations in an FPGA to cause gate metasta-
bility, which produces random events due to race conditions. In [74], the Look Up
Tables (LUTs) in the FPGA fabric are randomly connected at configuration, and on

10 Prior Works

power up, hot carrier injection is used to randomly seed these LUTs, where, by pro-
viding transistors with enough current over an extended period of time the oxide
barriers between gates can be broken.

The most basic PRNG is the linear feedback shift register [45], where the output
(least significant bit) is a combination of other bits using boolean operations. While
this is not suitable for cryptographic applications as it is easily broken, it is sufficient
for some modeling applications. More advanced methods such as in [54] use Euler
approximation to solve a system of third order ODEs exploiting instability around
stationary points. Other implementations focus on shaping the distribution of input
random numbers such as Sileshi [67] where CORDIC functions are used on an FPGA
to obtain a Gaussian distribution.

Chapter 3

Tracking System

The articulated tracker used in this work was originally designed by Chik [18]. A full
account of the system can be found in Chapter 3 of his PhD thesis. The following is
a brief overview of the system and its components.

The tracker uses an online optimisation algorithm to fit the estimated pose to the
observed pose. There are four major components: stereo images produced from a
camera pair, an articulated hand model, a cost function and an optimisation algo-
rithm. Using cues extracted from the pair of images, the observed pose is compared
to the projection of the hand model. The cost function is used to quantify this er-
ror which is back-propagated along with the image gradients to the optimisation
algorithm, which refines the pose iteratively.

3.1 Stereo Cameras

The images are obtained from a pair of calibrated stereo cameras, configured as in
Figure 3.1. Colour calibration is achieved through the use of a colour palette so that
intensity values are consistent between both cameras. Checkerboards are used for the
extraction of the intrinsic and extrinsic matrices which are required for the projection
of the hand model.

Figure 3.1: Physical arrangement of the tracking space, showing the stereo cameras
and their viewing frustums, as well as the users hand.

11

12 Tracking System

3.2 Hand Model

The tracker uses a fully articulated hand model with 26 degrees of freedom. The
underlying skeleton is expressed as a kinematic chain originating at the base of the
palm. A deformable mesh is attached to the skeleton to form the skin, using linear
blending to model skin deformation. The model is constrained through the use
of static constraints to set the allowable rotation range at the joints, and kinematic
constraints such as rotation at the MCP joint during finger flexion to avoid collisions.
As projecting the entire hand model is computationally expensive, a random sample
is projected instead, taken from the vertices of the skin mesh. Figure 3.2 shows the
skeleton and labeled joints as well as sample points taken from the mesh.

Figure 3.2: Left: articulated skeleton showing the carpometacarpal (CMC), metacar-
pophalangeal (MCP), proximal-interphalangeal (PIP) and distal-interphalangeal
(DIP) joints. Right: sample points taken from the mesh, showing the palm (green),

thumb (red), index(blue), middle (violet), ring (yellow), and little (violet) fingers.

3.3 Cost Function

The cost function is used to quantify the differences between the observed pose and
estimated pose by comparing the projection of model points and the corresponding
pixels in the camera images. The cost function consists of three components: the
photoconsistency function (Cp) which makes use of colour intensity, and the filling
(C f) and silhouette (Cs) functions, which use the silhouette extracted from the camera
images. The total cost at estimated pose X, is given as the weighted sum of all three,
shown in Equation 3.1, where α and β are the weights.

CX∗(X) = αCs(X) + βC f (X) + Cp(X) (3.1)

3.3.1 Photoconsistency Function

If the estimated pose is correct, then the projection from a point on the surface of
the hand to pixel coordinates in both camera images will have the same intensity. If
I(si, j) is a function mapping the ith sample point from the surface of the hand model

§3.4 Optimisation Algorithm 13

to pixel coordinates in the jth camera image, then the photoconsistency function is
given by Equation 3.2, where N is the size of the sample set.

Cp(X) =
1
N

N

∑
i=1

1
2
‖I(si, 1)− I(si, 2)‖2 (3.2)

3.3.2 Silhouette Function

The silhouette function increases the cost when projected points from the surface of
the hand model lie outside the real silhouette. If D(si,j) is the distance transform [10]
at the projection of the ith sample point in the jth camera view, then the silhouette
function is given by Equation 3.3, where N is the size of the sample set.

Cs(X) =
1
N

N

∑
i=1

2

∑
j=1

D(si,j)
2 (3.3)

3.3.3 Filling Function

The filling function increases the cost when the projection of the hand model does
not fill the real silhouette completely. If ŝi,j is the ith sample in the jth camera view
from a sample set of size M taken from inside the real silhouette, and hi,j(X) is the
point on the model surface whose projection is nearest, then the filling function is
given by Equation 3.4.

C f (X) =
1
M

M

∑
i=1

2

∑
j=1

1
2

∥∥ŝi,j − hi,j(X)
∥∥2 (3.4)

3.4 Optimisation Algorithm

The tracker estimates the pose using the cost functions and their gradients. The
optimal pose X∗ is given by

X∗ = arg min CX∗(X) (3.5)

such that X ∈ φ where φ is the allowable set of hand poses. As an exhaustive
computation is not possible due to expense, the pose is estimated by

X∗Φ = arg min EΦ[CX∗(X, Φ)] (3.6)

where CX∗(X, Φ) is the observed cost under the effects of noise due to point sampling.
The optimal pose then becomes X∗Φ. Chik [18] proved that under certain conditions
stochastic approximation theory states that X∗Φ → X∗, and that it is possible for the
estimate of the cost function to converge to the optimal pose. Stochastic meta descent
(SMD) is used, which offers faster convergence than traditional gradient descent.
While there is no proof for convergence [68], it has been shown to work empirically.

Chapter 4

Hardware

The physical system consists of two self contained camera units, and a host computer.
Each unit contains an FPGA, microcontroller, three SDRAM blocks, and a CMOS
image sensor. The physical configuration of a unit is shown below in Figure 4.1.
Note that only one of the three SDRAM blocks is shown for clarity.

Figure 4.1: Block diagram of physical system design. Note that only one of the
camera units is shown

The FPGA and microcontroller are connected by a UART interface, as well as a
customizable 32bit interface. There is also a high speed inter-camera bus with 2bits
in each direction at speeds up to 3Gbits/s.

4.1 FPGA

The FPGA used is the Lattice ECP3-150 [49], a high-speed, low power FPGA, the
specifications of which can be found in Table 4.1. An external chip provides both
a master clock for the CMOS sensor, and a 128MHz reference clock to the FPGA.

14

§4.2 Microcontroller 15

Resource Quantity

LUTs 149,000
sysMem 6696 Kbits
Embedded Memory 6850 Kbits
Distributed RAM 303 Kbits
18×18 Mulitpliers 320
SERDES 4
PLLs/DLLs 10/2

Table 4.1: Lattice ECP3-150 Resource Specifications

Derived clocks can then be generated from the reference clock using phase locked
loops (PLLs) [42]. Additional capabilities include serialiser/deserialiser (SERDES),
which are used to provide an interface between the serial output from the CMOS
sensor and the FPGA, allowing far higher data rates than are typically possible on
a standard FPGA architecture. The ECP3 also includes a digital signal processing
(DSP) architecture, with 320 slices configurable for 18×18 operations (multiplication,
addition, multiply and carry etc).

4.2 Microcontroller

The microcontroller used is the Cypress FX3 USB3.0 controller [26], using an ARM926EJ
core, a 32bit CPU running at 200MHz, and supports a fully IEEE 754 compliant soft
floating point unit. There is support for connection to peripherals via a number of
different buses, including UART and a general purpose interface (GPIF), a customis-
able 32bit bus running at speeds up to 100MHz.

4.3 SDRAM

There are three SDRAM blocks connected to each FPGA. The SDRAM used belongs
to the Winbond 989 family [73], a low power SDRAM with 512Mbits of memory
configured in 32bit words. Read and write speeds are up to 166MHz.

4.4 CMOS Sensor

The CMOS sensor used is the CMV2000 by CMOSIS [23]. It is a high speed image
sensor, capable of 340fps with a frame resolution of 2048×1088 pixels, and signifi-
cantly higher frame rates at lower resolutions. These high speeds are achieved by
using a 16 channel parallel read-out, with the image divided into vertical strips.

Chapter 5

System Architecture

Chik’s original implementation was not capable of running the tracking algorithm
in real time (30fps) due to the computational load required, mainly in the computa-
tion of the cost function. Because of this a heterogeneous architecture is used, with
different parts of the tracking algorithm implemented on the hardware best suited
to those specific computations. FPGAs are well suited to performing large numbers
of basic computations (fixed point), as parallel processing is readily implementable.
However floating point operations, and more complex algorithms are non trivial to
implement, and require large amounts of resources. To this end the optimisation
algorithm and hand model are implemented on the host computer in C. The image
processing and computation of the cost function are implemented on the FPGA. The
random sample sets from the surface of the hand model will be constructed on the
host, and sent to the FPGA via the GPIF. The requested values required for the cost
function will then be returned. A more comprehensive discussion of the flow of data
can be found in the authors previous work [68].

5.1 Computation Timing

However there are constraints imposed by real time implementation. As the opti-
misation algorithm iteratively computes the cost of a set of sample points, and this
process can not start until the entire frame has been read out, real time processing
would require that the tracking algorithm computations be constrained to the time
between frames (23µs at 340fps) or to store the image in memory and operate at a
delay of one frame. As the optimisation algorithm requires iterative computation of
sample sets, this also requires the image to be buffered long enough for this process
to be completed. Further discussion can be found in [68].

There are also limitations imposed by the physical hardware layout. The tracking
algorithm requires numerous data transfers between the optimisation algorithm and
cost function per frame. As mentioned these components are implemented on sep-
arate hardware architectures (CPU and FPGA respectively) and hence this requires
numerous data transfers between these. The GPIF is the only high bandwidth data
bus between the two and hence must be used for these transfers. Similarly the inter-
camera bus is the only bus available for accessing data from the second camera unit.

16

§5.2 Data Rate Limitations 17

5.2 Data Rate Limitations

Due to the extremely high data rates involved (up to 20Gbit/s), care needs to be
taken when designing the system to avoid data overflow or potential computational
bottlenecks. The following section identifies several areas where this could occur and
discusses potential solutions.

5.2.1 Image Processing Pipeline

The accepted standard for computations on large data streams on FPGAs is the
stream processing paradigm. Data is pushed through a pipeline where kernel func-
tions operate on it at each step. By removing the read-write aspect of data manipula-
tion much higher throughputs can be achieved. Each pipeline processes the raw data
from the CMOS sensor and writes the results into SDRAM. The raw data is read out
in 16 channels, at clock rates up to 48MHz [23]. At high clock rates, this results in the
underlying pixel rates exceeding the maximum clock speeds possible on the FPGA
(nominally 375MHz for -6 grade FPGA [49]). This leads to two possible solutions,
downsampling or parallel channels, where vertical strips of the image are processed
independently. By downsampling before the image pipeline by a factor of 2 in both
directions, the underlying pixel rate is reduced by a factor of 4. This would decrease
the maximum clock rate to 188MHz. Equivalently, the pipeline could be split into
multiple channels, each of which processes a section of the image in a vertical strip.
This has the advantage of keeping the high resolution of the image.

5.2.2 Data Storage

The data from the image pipeline is to be stored in SDRAM, accessed later for the
computation of the cost function. However the maximum frequency of the SDRAM
blocks is 166MHz, which is significantly less than the underlying pixel rates at higher
frame rates. Additionally the volume of data and the format it is stored in also have
to be considered. There are four different data streams that are required for the cost
function: the intensity of the image, the distance map for the hand silhouette, and
gradients of both of these functions. To store data at higher frame rates it is necessary
to either reduce the data rate through downsampling, pack multiple pixels into a
single SDRAM word, or use multiple SDRAM blocks for writing a single stream.

5.2.2.1 Downsampling

At full resolution and frame rate, the underlying pixel rate is 753MHz. In order to
reduce the data rate past 166MHz so that it can be written as a single stream, the
amount of data has to be reduced by at least a factor of six, reducing the frame
resolution to VGA (640×480). Practically the data rate would have to be reduced
further to allow for read operations and overheads such as refresh cycles, changes to
the address pointer and the opening and closing of SDRAM banks and rows.

18 System Architecture

5.2.2.2 Multiple pixels in single word

By treating the left and right sides of the image separately, as well as downsampling
by a factor of two in both dimensions, there are two possible implementations. Firstly
when writing to SDRAM the two halves of the image could be overlaid, so that
there are two pixels in every word. Equivalently the two halves could be written
to different SDRAM banks, with each word containing values from multiple data
streams. The difference between this and the former method is that in the former,
two values from the same stream are packed into the same word, while in the latter,
values from two different streams are packed into the same word. The advantage
of the latter method is that the gradient can be stored in the same location as the
intensity or distance map. As the gradient and value are required for each sample
pixel, storing these values in the same word would reduce SDRAM read operations.

5.2.2.3 Data Format

There are three SDRAM blocks accessible from each FPGA, each with a 32bit width.
If each half of the frame is processed independently, this means that only 48bits are
available for all independent data streams in each image pipeline. However if using a
standard 3 channel colourspace, and 8bits for each of the other streams, the pipeline
produces 96bits of processed data. However all processed data is derived from other
streams which are typically much more compact (i.e. Bayer or silhouette). Hence
data can be stored in this format and processed when needed. The downside of
this is that to compute each value, several neighbouring values are needed resulting
in an increase in latency. The distance map is a non linear function, and as such
it is not possible to predetermine which of the surrounding pixels are required for
the computation, and hence a large bounded neighborhood would have to be read.
The Sobel filter used for gradients and the colour space conversion both use smaller
masks, making them preferable as fewer values need to be read. By writing the
distance map and gradient in the processed format, and the colour space as Bayer,
it is possible to store all relevant information while minimising the number of read
operations needed. Note that this utilises all SDRAM blocks so a parallel read/write
architecture is not viable and operations must be interleaved.

5.2.2.4 Implementation Selection

Table 5.1 provides a summary of possible implementations, however not all imple-
mentations are viable due to the physical constraints imposed by the hardware. Im-
plementations 1-8, 12, and 16 all result in SDRAM data rates exceeding the maximum
specified of 166MHz. Implementations 1, 2, 4, 5, 9, 10, 13, 14, 18, 19, 21 and 22 require
more SDRAM bandwidth then is physically available. Of the remaining implementa-
tions 11 and 15 are not capable of the full frame rate. This leaves implementations 17,
20, 23 and 24 as being physically viable. Of these, implementations 17 and 20 reduce
the data rate by storing the raw Bayer pixel values, while 23 and 24 use more aggres-
sive downsampling. While all implementations are viable, the later method is used

§5.2 Data Rate Limitations 19

as allows full frame rate while minimising the number of SDRAM read operations.
The selected implementation (implementation 24 in red) processes the left and

right sides of the image separately at a resolution of 640x480 pixels. All processed
data streams are then written to SDRAM by packing multiple streams into a single
word, using the full 96bit bandwidth. The resulting SDRAM write rate is 104MHz at
340fps, well under the maximum of 166MHz. As all values are stored in their pro-
cessed form and in the same word as the gradients, this implementation represents
the minimum number of SDRAM read operations possible for a given sample size.

20
System

A
rchitecture

Image
Height

Image
Width

Frame
Rate

Underlying
Pixel Rate

Pixels/
word

SDRAM
Data Rate

Intensity
Format

Gradient
Format

Distance
Format

Bits/
pixel

Total
Bits

1. 2048 1088 169 377 2 188 10bit Bayer 16bit 8bit 82 164
2. 2048 1088 338 753 2 377 10bit Bayer 16bit 8bit 82 164
3. 2048 1088 169 377 1 377 10bit Bayer 16bit 8bit 82 82
4. 2048 1088 169 377 2 188 24bit YUV 16bit 8bit 96 192
5. 2048 1088 338 753 2 377 24bit YUV 16bit 8bit 96 192
6. 2048 1088 169 377 1 377 24bit YUV 16bit 8bit 96 96
7. 2048 1088 338 753 1 753 24bit YUV 16bit 8bit 96 96
8. 2048 1088 338 753 2 377 10bit Bayer - 8bit 34 68
9. 1024 544 169 94 2 47 10bit Bayer 16bit 8bit 82 164
10. 1024 544 338 188 2 94 10bit Bayer 16bit 8bit 82 164
11. 1024 544 169 94 1 94 10bit Bayer 16bit 8bit 82 82
12. 1024 544 338 188 1 188 10bit Bayer 16bit 8bit 82 82
13. 1024 544 169 94 2 47 24bit YUV 16bit 8bit 96 192
14. 1024 544 338 188 2 94 24bit YUV 16bit 8bit 96 192
15. 1024 544 169 94 1 94 24bit YUV 16bit 8bit 96 96
16. 1024 544 338 188 1 188 24bit YUV 16bit 8bit 96 96
17. 1024 544 338 188 2 94 10bit Bayer - 8bit 34 68
18. 640 480 169 52 2 26 10bit Bayer 16bit 8bit 82 164
19. 640 480 338 104 2 52 10bit Bayer 16bit 8bit 82 164
20. 640 480 338 104 1 104 10bit Bayer 16bit 8bit 82 82
21. 640 480 169 52 2 26 24bit YUV 16bit 8bit 96 192
22. 640 480 338 104 2 52 24bit YUV 16bit 8bit 96 192
23. 640 480 169 52 1 52 24bit YUV 16bit 8bit 96 96
24. 640 480 338 104 1 104 24bit YUV 16bit 8bit 96 96

Table 5.1: Summary of the different possible configurations of the image pipeline. Plausible configurations are highlighted in green,
with the chosen configuration in red.

§5.2 Data Rate Limitations 21

5.2.3 Stereo Vision

The architecture must allow for access of the processed image streams from each
camera. There are three possible approaches to this, 1) sending the raw image data
from the CMOS sensor from the slave FPGA to the master and processing and storing
on the master FPGA, 2) processing on separate FPGAs and sending processed data
which is stored on the master FPGA, or 3) processing and storing data independently
on each FPGA, and only accessing the data needed for the cost function. For all of
these options the inter-camera data bus is used. In raw Bayer form (10bpp), the im-
age data from each frame amounts to 7.56Gbit/s. To transmit the frame in this form,
the image would first need to be downsampled by a factor of 2 in both dimensions,
resulting in a underlying data rate of 1.89Gbit/s. As the volume of data is signifi-
cantly greater after processing, clearly it is not possible to transmit it in a processed
form. The chosen option is to read only the data required by the cost function from
the slave FPGA across the inter camera bus. At 340 fps, a maximum throughput of
approximately 275,000 32bit words is achievable, several orders of magnitude greater
than the required rate of 1024 samples per iteration.

5.2.4 Sample Set transfers

As mentioned, the GPIF is the only high bandwidth bus connecting the microcon-
troller and FPGA, and hence must be used for the transfer of sample sets to the
FPGA, as well as the back-propagation of the cost and gradients. Each element of
the cost function requires a set of sample coordinates, and both the image gradient,
and gradient of the distance map must be returned for these sets. Bus utilisation
for different parameters are shown in Table 5.2, with the maximum achievable frame
rate shown. Clearly the transfer of the sample sets doesn’t represent a bottleneck in
the system, as the possible frame rates far exceed 340fps.

Set Size Iterations Maximum Frame
Rate

256 20 9766
512 20 4883
1024 20 2441
256 30 6510
512 30 3255
1024 30 1628
256 40 4883
512 40 2441
1024 40 1221

Table 5.2: Summary of data transfer feasibility over GPIF interface

22 System Architecture

5.3 FPGA Modules

The final architecture configures the FPGAs as master and slave. The master FPGA
controls all data transfers between itself, the slave FPGA, and the host. Each FPGA
contains an image pipeline for data processing. The master also includes a softcore
processing unit for reading the values from SDRAM, as requested by the host via the
GPIF. The master also contains a test harness for experimentation with offline data.
It allows an image frame to be fed into the image pipeline using the host computer as
a source rather than the CMOS sensor. The slave FPGA is used for video streaming
to the host computer via the GPIF. The UART interface is used on both FPGAs to
implement a debug interface using the Wishbone bus protocol. Block diagrams for
both master and slave FPGAs can be found in Figure 5.1 and Figure 5.2, respectively.

5.3.1 Clock Domains

Because there are several different peripheral devices connected to the FPGA, each
with different clock requirements, it is necessary to have different areas of the FPGA
synchronised to different clocks. These clocks are generated using phase locked
loops, which use phase matching in a closed loop feedback control system [42]. The
major clock domains are the SDRAM (128MHz), CMOS sensor (48MHz), and GPIF
(100MHz). The clock speed for the softcore processor and image pipeline aren’t fixed,
however 128MHz is typically used as this corresponds to SDRAM speeds.

§5.3 FPGA Modules 23

Figure 5.1: Block diagram of the master FPGA

24 System Architecture

Figure 5.2: Block diagram of the slave FPGA

§5.3 FPGA Modules 25

5.3.2 SDRAM Controller

The SDRAM needs to implement sequential write capabilities, much like a FIFO
buffer, while also allowing random access read events. As each SDRAM block is
written to for every frame, read and write operations must also be interleaved. The
high level state machine controller is shown in Figure 5.3.

IDLE

READ

read
 request

WRITE

have packet &&
 !read requestdone read done packet

write

Figure 5.3: High level state machine for controlling read and write operations to the
SDRAM

Incoming data is fed into a FIFO where it is buffered until a complete packet is
received. The data is then read from the FIFO and written to SDRAM at sequential
addresses. By burst writing to sequential addresses, SDRAM latencies are decreased
as the delays created by opening and closing different banks are minimised. As
the incoming data is already buffered and hence protected from data overflow, read
operations are prioritised. Note that read operations are not performed in bursts.
As sample sets have a normal distribution, members of the set are not sequential
in SDRAM, and burst reading offers no performance increase and incurs latency
penalties due to buffering.

Figure 5.4 shows burst writing interrupted by a read operation. Data is written
into the input FIFO as a continuous stream. At 1022.9µs a read request is registered
and latched into memory along with the address. Once the current packet is written,
(1023.1µs), the controller processes the request and presents the data at 1023.4µs.

1022900 ns 1023 us 1023100 ns 1023200 ns 1023300 ns 1023400 ns 1023500 ns 1023600 ns 1023700 ns

0 3
0 + 17 + + 0 1 2 3 0 4 5 6 7 8 9 + + 0 + 13 + 15

xxxxxxxx 00000003

Time
ram_clk_i
rd_req_i
addr_rd_i[23:0]
ram_data0[31:0]
ram_wr
ram_rd
data_o[31:0]
data_stb_o

Figure 5.4: SDRAM timing showing interleaved read and write operations

26 System Architecture

Table 5.3 shows a summary of resources used for a single SDRAM controller. It can
be seen resource usage is low, with approximately 3% of the FPGA being used for all
three controllers. Note that as all three SDRAM blocks share a common clock only
one PLL is needed. The block RAM is used for buffering and for the input FIFO.

Resource Usage Percentage

Registers 516 0.45%
Slices 614 0.82%
LUT 631 0.42%
PLL 1 10%
Block RAM 4 1.08%

Table 5.3: Summary of resource usage for a single SDRAM controller as a percentage
of available system resources

Unit Test

Test images were written into SDRAM and the stored data compared to the original
images. This revealed data was not always being correctly transferred as shown
below in Figure 5.5. The majority of values are correct, with approximately 200
incorrect pixels per 640x480 test image. The incorrect values are not the result of
missed SDRAM operations, as the correct number of words are read into SDRAM.
There appears to be no pattern to the incorrect data, with no relationship between it
and the preceding and following data. The error appears to be random bit inversion
on the data bus, though not always the same bit.

Figure 5.5: Test image with the incorrect regions of approximately 30 pixels high-
lighted in red

Note that the incorrect regions are vertically aligned, indicating that the issue is
neither in the SDRAM or GPIF controllers as these operations take place in bursts of
256 pixels, and instead pointing to a line by line operation. However this is slightly

§5.3 FPGA Modules 27

inexplicable as data transfers during this unit test occurred directly from the GPIF
driver to the SDRAM, involving no line operations.

Attempted Solutions

• Several latency cycles were added before and after each write operation in an
attempt to increase stability. This reduced errors from several thousand to
approximately 200 per frame.

• SDRAM logic was implemented on a separate clock domain so that other logic
constraints did not force SDRAM timing violations.

The fact that increasing latencies improved results suggests that problem is a tim-
ing issue with the physical SDRAM block, possibly due to set up and hold violations
on the data and command buses. This is supported by the fact that read operations
take approximately 5 times as many cycles as expected, suggesting that command
flags are not being read correctly. Set up and hold times are largely down to the
synthesiser, and while required timing constraints can be suggested, it is not always
guaranteed that they will be met. At this time it is thought that the error is caused by
the synthesiser relaxing these constraints, perhaps to avoid violating requirements in
other parts of the design.

28 System Architecture

5.3.3 FPGA-microcontroller Bus

The FX3 microcontroller was designed with connection of non-standard peripherals
in mind, and the architecture includes a 100MHz external bus (GPIF), with a 32bit
data bus and additional pins for control. The GPIF is directly connected to the
DMA fabric, and controllable through a configurable state machine. This is used
to provide a high throughput data bus between the FPGA and the microcontroller,
for the request and transfer of data stored in SDRAM. Therefore the bus must be
configured to maximise data transfer in both directions. As the bus will also be
used for transferring training data and varying sample set sizes and optimisation
algorithm iterations, the bus should be flexible enough to allow general purpose
packet transfers. A summary of data and control signals are shown in Table 5.4.

Signal Bits Description

usb_rd 1 Read strobe exerted by the FPGA master.
Must be high for data to be read from the
DMA fabric and driven onto the GPIF

usb_wr 1 Write strobe exerted by the FPGA master.
Must be high for data to be written to DMA
fabric.

usb_a 2 Address bus driven by FPGA master. Ad-
dress 0 points to DMA Thread 0, address 3
points to DMA Thread 3.

usb_dma_flag 1 Flag driven by microcontroller, indicat-
ing availability of DMA thread currently
pointed to by address bus.

usb_dat_io 32 Bi-directional data bus driven by either
FPGA or micro controller depending on
read and write strobe values.

Table 5.4: Control and Data signals of the GPIF data bus

§5.3 FPGA Modules 29

The bus is configured as a bi-directional FIFO, controlled via a master state ma-
chine on the FPGA, shown in Figure 5.6. Data on the microcontroller is directly

IDLE

READ_ADDR

dma_flag

WRITE_ADDR

have_pkt

READ

count==10

WRITE

count==10

READ_DELAY

count==pkt_size

count==4

WRITE_DELAY

count==pkt_size

count==4

Figure 5.6: Master state machine for controlling packet transfers between the FPGA
and microcontroller on the GPIF data bus.

transferred to or from DMA threads, with Thread 3 used for microcontroller to FPGA
transfers, and Thread 0 used for FPGA to microcontroller transfers. The thread is se-
lected via a 2bit address bus driven by the master state machine. Control signals
include read and write enables are driven by the driven by the master state machine,
while the microcontroller drives a flag indicating the availability of a DMA buffer.
The master state machine constantly polls Thread 3, and initiates a packet transfer as
soon as the microcontroller indicates a buffer is present, which is subsequently writ-
ten to a FIFO on the FPGA. For FPGA to microcontroller transfers, data is written
from the FPGA into an input FIFO to await transfer. As soon as a complete packets
worth is present, the state machine switches the address bus to point to Thread 0,
and if the DMA flag indicates a buffer is free, initiates the transfer. Read and write
operations occur when the state machine is in READ or WRITE state respectively.
The states immediately preceding and following these are used for delay to insure
that the address bus is stable immediately before and after a transfer. Additionally
these states insure that the DMA flag has been updated to the current status of the
current thread, a process which is nondeterministic but cannot be neglected. All sig-

30 System Architecture

nals are updated on the negative edge of the clock, and are subsequently sampled at
the positive edge. This insures that set up and hold times are not violated.

Resource utilisation can be found in Table 5.5. Registers and LUT are used for
logic implementation such as next state and output logic of the state machine, while
block RAM is used for packet FIFOs.

Resource Usage Percentage

Registers 422 0.37%
Slices 429 0.58%
LUT 324 0.22%
PLL 1 10%
Block RAM 2 0.54%

Table 5.5: Summary of resource usage for the GPIF controller as a percentage of avail-
able system resources

§5.3 FPGA Modules 31

5.3.4 Softcore Processing Unit

A softcore processing unit is used for cost function computations as it provides a
flexible platform for testing and parameter tuning. A reduced instruction set is used,
which can be found in Table 5.6.
The softcore is modeled on conventional designs, consisting of a finite state machine

Instruction Description

ADD Adds the value stored in the memory location pointed to by
opcode to the current value in the accumulator.

MULT Multiples the value stored in the memory location pointed to
by opcode to the current value in the accumulator.

DIFF Absolute difference of the accumulator and value in memory
location pointed to by opcode.

RESET Resets the program counter to zero.
STOP Suspends the softcore by not entering next fetch state. Can

only be exited through external reset.
JUMP Changes the program counter to the value stored in opcode.
JUMPIF Changes the program counter to the value stored in opcode

if the accumulator is less than or equal to zero.
LOAD Loads value into the accumulator from memory location

pointed to by opcode.
SAVE Saves current value of accumulator into memory location

pointed to by opcode.
READ Loads value into accumulator from SDRAM addressed by op-

code.
GPIFREAD Loads value into accumulator from SDRAM addressed by

GPIF.

Table 5.6: Reduced instruction set for softcore processing unit

where state transitions are determined by instructions stored in program memory.
Control logic and the arithmetic logic unit (ALU) are implemented in combinatorial
logic, the information register (IR), memory address register (MAR), and program
counter (PC) are implemented in sequential logic, while program code and data
are stored in embedded block RAM. Program code and data are stored in separate
memory blocks, as per a Harvard architecture. A block diagram of the architecture
can be found in Figure 5.7.

A three stage architecture is used, with each operation going through fetch, de-
code, and execute cycles, which typically are executed as follows.

Fetch

The program counter is loaded into the memory address register which is driven
onto the address bus. The next instruction to be executed is read from the program
memory and loaded into the information register. The program counter is then

32 System Architecture

Figure 5.7: Block diagram of the softcore processing unit

incremented by one. Note the memory address register is necessary as it latches the
current address which allows the program counter to be updated in the same cycle.

Decode

The instruction present in the information register is decoded and the appropriate
control signals set. For read operations the address in the instruction set is driven
onto the address bus as for the program counter previously. The data terms are then
presented to the inputs of the arithmetic logic unit.

Execute

As the arithmetic logic unit is combinatorial, the result is already present at the out-
put of the ALU and is simply latched into sequential logic.

§5.3 FPGA Modules 33

Figure 5.8 shows an example of soft core operations. Values are read from RAM
(PC: 0x06 and 0x09), summed and multiplied (PC: 0x07 and 0x0A), and the result
saved back into RAM (PC: 0x08 and 0x0B). Note that each operation has a duration
of at least 3 clock cycles to account for the fetch, decode and execute cycles.

347500 ns 347600 ns 347700 ns 347800 ns

07 08 09 0A 0B 0C 0D
2 3 5 + 5 2 3 6 + 6 5 XXX
0 5 0 2 0 6 0 5 0
2 5 2 6 5

Time
clk=0
pc[7:0]=0D
ram[31:0]=XXX
alu[31:0]=0
acc[31:0]=5

Figure 5.8: Simulation showing softcore functions. Values are read from RAM, and
saved back into RAM after multiplication and addition operations.

Resource utilisation can be found in Table 5.7. Registers are used for temporarily
latching data such as the IR, ACC, and PC, while LUTs implement the control signals.
Distributed (embedded) RAM is used for the program and system memories. The
ALU is formed using DSP slices to create separate pipes for each operation. Selection
of these is controlled by the current opcode in the IR.

Resource Usage Percentage

Registers 354 0.31%
Slices 452 0.61%
LUT 619 0.42%
Dist RAM 24 0.02%
DSP Multipliers 6 0.94%

Table 5.7: Summary of resource usage for softcore processor as a percentage of available
resources

34 System Architecture

5.3.5 Psuedo-Random Number Generator

The filling cost function requires a random sample of pixel coordinates taken from
inside the real silhouette. Pseudo number generators can be readily implemented in
the form of a Linear Feedback Shift Register (LFSR). While LFSRs are deterministic,
they can give the appearance of randomness with cycle lengths of 2n− 1 for maximal
length LFSRs of length n [45]. A LFSR is maximal length if:

• If f (x) is a polynomial with coefficients in the Galois field of order 2
and f (0) = 1, i.e.

f (x) =
n

∑
i=o

cixi, f (0) = 1, ci ∈ GF(2) (5.1)

then the period of f (x) is the smallest T for which xT + 1 is divisible by f (x).

• An irreducible polynomial of degree n has a period which divides 2n + 1

• f (x) is a primitive polynomial if it is irreducible of degree n and has a period
of 2n − 1.

By using a 10bit LFSR with the characteristic polynomial

f (x) = x10 + x7 + 1 (5.2)

it can be seen that it will be maximal length, as x1023 + 1 is the smallest such number
with f (x) as a factor. Similarly f (x) is irreducible with period 210 − 1.

However to avoid cyclic sampling, the LFSR must be provided with a random
seed at an interval less than the maximal length period. This is accomplished by
using spare bandwidth on the GPIF interface for host to FPGA transfers, and occurs
for every transfer. Figure 5.9 below shows a frequency histogram for a 10bit LFSR
with an even distribution, and the resulting pixel coordinate sampling.

Figure 5.9: Plot showing frequency histogram of an LFSR (left) and pixel coordinates
generated with a 10bit LFSR (right)

§5.3 FPGA Modules 35

5.3.6 Image Processing Pipeline

The image processing pipelines receive the output from the CMOS sensors, perform
the operations required for the cost function, and store the output data into SDRAM.
Each pipeline has three major components: a silhouette extraction module, a dis-
tance transform module, both required for the filling and silhouette cost functions,
and a Sobel filter module for the back propagation of gradients to the optimisation
algorithm. The three components can be seen below in Figure 5.10.

Figure 5.10: Results for the silhouette, distance transform, and image gradient mod-
ules from the image processing pipeline.

5.3.6.1 Silhouette Extraction

For real images, the silhouette is extracted via thresholding after a colour space trans-
formation as developed in [68]. By using principal component analysis a rotation ma-
trix can be constructed which will orientate the region of the colourspace containing
skin tone with the axes. The required online computations then become

Ii = Ri,1H + Ri,2S + Ri,3V (5.3)

where R is the rotation matrix. For the synthetic images used in the subsequent
experiments, simply thresholding the YUV colourspace is sufficient, shown below in
Equation 5.4, with Ii denoting the intensity of the ith channel.

S =

0 Ii ≤ Li

1 Li ≥ Ii ≤ Hi

0 Ii ≥ Hi

(5.4)

As the extraction is simply a threshold, the operation requires no buffering and very
few resources with the threshold expressible as a LUT. In reality the synthesizer
incorporates the logic into other modules in the pipeline.

36 System Architecture

5.3.6.2 Distance Map

The distance map computes the minimum distance from the pixel in question to
the silhouette. The transform originally used by Chik [18] was an Euclidean ap-
proximation algorithm developed by Borgefors [10], intended for high speed CPU
implementations. However the parallel nature of the FPGA lends itself to computing
the true Euclidean distance within a mask as below in Equation 5.5.

D =
5

∑
v=−5

5

∑
u=−5

min
I(u,v)=1

(u2 + v2) (5.5)

As the distance at each location inside the mask can be precomputed and stored in
LUTs, the problem reduces to a series of comparators. However there is a resource
penalty in that each line inside the mask must be buffered in memory. Resource uses
for the distance transform can be found below in Table 5.8.

Resource Usage Percentage

Registers 248 0.21%
Slices 195 0.26%
LUT 230 0.15%
Block RAM 1 0.26%

Table 5.8: Summary of resource usage for distance map using 640x480 resolution images

5.3.6.3 Image Gradients

As the intensity function and distance transform function are not differentiable, the
gradients for these must be determined empirically. The gradients are obtained by
convolving the images with a Sobel filter kernel, as below in Equation 5.6. Note that
there is a Gaussian component for noise removal.

k =

137 618 1708 618 137
308 1384 2280 1384 308

0 0 0 0 0
−308 −1384 −2280 −1384 −308
−137 −618 −1708 −618 −137

 (5.6)

As the gradients are to be stored as 8bit signed integers with range [−127, 127],
the result of the convolution is divided by 214 to normalise to this range, accom-
plished via bitshifting for a resource efficient implementation. A complete resource
list can be found in Table 5.9.

§5.3 FPGA Modules 37

Resource Usage Percentage

Registers 2614 2.23%
Slices 2056 2.75%
LUT 3517 2.35%
Block RAM 16 4.3%
DSP Multipliers 28 8.8%

Table 5.9: Summary of resource usage for Sobel filter using 640x480 resolution images

5.3.6.4 Unbiased and a Uniformly Bounded Variance

In order for the tracker to converge to the unique global minimum under a stochastic
sampling scheme, the gradient estimate must be unbiased and the variance uniformly
bounded, such that:

Eφ[∇Cx∗(xt, Φ)] = ∇Cx∗(xt) (5.7)

sup{Var(∇Cx∗(xt, Φ)) : xt ∈ <k} < ∞ (5.8)

where Cx∗(xt, Φ) is the approximate cost under random sampling conditions Φ. As
the Sobel kernel is symmetric, Equation 5.7 holds for all parts of the cost func-
tion. The YUV intensity channels required by the photoconsistency cost function
are uniformly bounded in the range [0, 255] and the distance transform is uniformly
bounded by the mask size. Therefore Equation 5.8 also holds.

38 System Architecture

5.3.7 Design Summary

The final design is capable of processing the images at full frame rate after downsam-
pling to 640x480 pixels. This results in a data throughput of nearly 10Gbit/s through
the image processing pipeline. Further specifications of the architecture can be found
in Table 5.10. A summary of total resource usage can be found in Table 5.11.

Specification Value

Image Size 640x480 pixels
Frame Rate 338 fps
Pixel Rate 103.83 Mp/s
Pipeline Data Rate 9.97 Gbit/s
SDRAM bandwidth 96bits
Pipeline clock 128MHz
SDRAM clock 128 MHz
CPU clock 128 MHz
GPIF clock 80 MHz

Table 5.10: Summary of system specifications

Resource SDRAM GPIF CPU Distance
Transform

Sobel
Filter

Total
Usage

Registers 1548 422 354 248 10456 11.42 %
Slices 1842 429 452 195 8224 14.95 %
LUT 1893 324 619 230 14068 11.50 %
Dist RAM 12 2 24 1 64 27.69 %
DSP Mult 0 6 0 112 36.88 %
PLL 1 1 0 0 0 20.00 %

Table 5.11: Summary of resource usage for the control architecture as a percentage of
available resources

5.4 CPU-based Modules

It was originally intended for the optimisation algorithm and hand model to be im-
plemented on the microcontroller, taking advantage of the ARM floating point li-
brary. However as this is not the focus of the report, the decision was made to
implement these modules on the host computer. All modules were implemented in
C. Modules widely used double precision floating point values, including for exam-
ple the linear blending coefficients in the hand model and the parameters used in the
optimisation algorithm.

Chapter 6

Initial Results

The following sections present the validation of the FPGA tracker against Chik’s
implementation. The experimental setup is discussed in Section 6.1. Section 6.2
compares the original tracker with the FPGA simulation, and discusses the error of
each and its causes. The accuracy of these trackers are judged relatively, as well as
absolutely using the magnitude of the cost at each frame and visual inspection of key
frames. Section 6.3 discusses tracking results using the physical FPGA pipeline.

6.1 Experimental Setup

The initial experiments were conducted using three different tracker implementations
on the same image sequence. The images used are synthetic, created in OpenGl.

6.1.1 Image Sequences

The synthetic sequences were generated using the hand model in OpenGl. The same
skeleton is used as in the tracker, however the mesh used is a simplified one with
8,464 vertices as opposed to the trackers 45,181. The projections between the image
plane, camera coordinates, and world coordinates remain the same. The two cameras
are orientated approximately 30◦ apart, with the left-hand camera situated at the ori-
gin of the world coordinates. A single light source is situated above and to the left of
the first camera to provide gradient across the hand. The background is nonuniform
to provide texture. Examples of the synthetic images can be found in Figure 6.1.

Figure 6.1: Sample synthetic images depicting various hand poses

39

40 Initial Results

6.1.2 Tracker Implementations

Three different implementations were used in initial experiments: the original tracker
as in [18], a tracker with a simulation of the FPGA image processing pipeline imple-
mented on the host computer, and a tracker using the physical FPGA based image
processing pipeline.

6.1.3 Pose Sequences

Three image sequences are used in the following experiments, each of which repre-
sent a different pose. All start and finish at a neutral position, with an open palm
facing the first camera. The poses are chosen as they are ones common in HCI, or
are poses which are predicted to be difficult for the tracker to resolve.

Finger Flexion

This sequence simulates the sequential flexion of each finger (and thumb) through
its natural range of motion. Finger flexion is an important motion to track as the
majority of gestures used to control touch devices use variants of these motions,
such as tap, swipe and pinch.

Grip and Twist

The grip and twist sequence simulates gripping a virtual dial and turning it, for
example adjusting values in photo editing software such as Photoshop. Alternatively
the gesture can be viewed as picking up an object and moving it, as would be the
case in a virtual reality setting.

Palm Rotation

The third sequence consists of an open palm pose, which starts facing the first cam-
era, then rotating through 180◦, so that the back of the hand is presented, and back.
This is a difficult pose for the tracker as at 90◦ only the edge of the hand is visible,
with the majority occluded behind it.

§6.2 Experiments 41

6.2 Experiments

All experiments are conducted on the same image set with the same starting pose.
The weighting of the cost components differ slightly between implementations with
the values used in each shown in Table 6.1 and Table 6.2. All experiments used the
SMD optimisation algorithm at 20 iterations per frame and 1024 samples distributed
randomly across the model surface. A basic deceleration motion predictor is used
throughout. As a measure of accuracy the absolute value of the cost is used, as
introduced in Section 3.3. Note that the value is dependent on the weighting of the
individual components, and therefore the trend is of more interest.

Cost Component Weight

Photoconsistency 25
Filling 0.9
Silhouette 1.49

Table 6.1: Weights for the cost compo-
nents used in the original tracker

Cost Component Weight

Photoconsistency 20
Filling 0.93
Silhouette 0.49

Table 6.2: Weights for the cost compo-
nents used in the simulation tracker

6.2.1 Finger Flexion

Both implementations produced similar results, as seen in Figure 6.2 with the mag-
nitude and behavior of the cost being similar for both implementations across all
frames. The FPGA simulation exhibits behavior with slightly greater instability, seen
by the greater fluctuations in cost. The reasons for this are discussed below.

frame
0 20 40 60 80 100 120

co
st

 p
er

 fr
am

e

80

100

120

140

160

180

200

220 Original tracker
FPGA simulation tracker

Figure 6.2: Cost per frame for finger flexion sequence. Original tracker results are in
blue, FPGA simulation results in red. (best seen in colour)

42 Initial Results

The original tracker performs well in the sequence as exhibited in the top row
of Figure 6.3. The tracker does struggle however with fast finger movement, as the
motion predictor is not aggressive enough to force the model into the region of the
real finger movement, as exhibited in frame 120 (top).

37

37

60

60

120

120

Figure 6.3: A selection of frames from the finger flexion sequence using SMD optimi-
sation. The top row contains frames from the original tracker, while the bottom row

contains the same frames for the FPGA simulation

Additionally, movement beyond the PIP and DIP joints prove difficult to track as
seen in frames 37 and 60 (top). The FPGA simulation has similar problems, however
to a much greater extent. As the silhouette function saturates at 5 pixels, the range
of movement between frames that will be registered is small, and most finger move-
ments will be too great. This leads to the silhouette function not forcing the model
to bend in the correct direction. Because of this the projected points no longer lie on
the model surface, effectively meaning that the photoconsistency function will not
track in the correct direction. This is compounded by the motion predictor hindering
tracking, as the prediction for the current frame will be based on the movement of
the last frame, which is incorrect. This results in the type of behavior seen in frames
37 and 60 (bottom), where there is very little finger flexion. Once this has occurred
it is very hard for the tracker to recover (in a local sense) as the rest of the hand re-
mains stationary, and is effectively independent of finger flexion. A side effect of this
behavior is that a slight change of orientation can bring neighboring fingers closer,
resulting in the incorrect tracking onto this neighbor. This can be seen in frame 120
(bottom), where the ring finger has tracked to the middle finger.

§6.2 Experiments 43

6.2.2 Grip and Twist

Again both implementations produce similar results, with the original tracker show-
ing spikes in cost as seen in Figure 6.4. A selection of frames for the original tracker
and the FPGA simulation can be found in Figures 6.5 and 6.6 respectively.

frame
0 20 40 60 80 100 120 140 160 180

co
st

 p
er

 fr
am

e

60

80

100

120

140

160

180

200

220

240 Original tracker
FPGA simulation tracker

Figure 6.4: Cost per frame for grip and twist sequence. Original tracker results are
in blue, FPGA simulation results in red. (best seen in colour)

The original tracker tracks the grip pose reasonably well, but again struggles
with finger flexion at the DIP and PIP joints, resulting in the estimated pose to be
positioned lower than the true pose as seen in frames 66, 70, 72 and 73 of Figure
6.5. The first portion of the twist motion is tracked well, with the estimated pose
matching the true pose closely up until frame 66. However at this point the motion
changes direction, causing large accelerations.

33

72

66

73

70

74

Figure 6.5: A selection of frames from the grip and twist sequence using SMD opti-
misation. All frames are from the original tracker

44 Initial Results

As the motion predictor is that of constant deceleration, the predictor lags behind
the true pose, resulting in fingers tracking to the adjacent finger in the opposite
direction of travel, as seen in frames 72, 73 and 74 of Figure 6.5.

The FPGA simulation tracks the grip pose poorly in a similar fashion to the finger
flexion sequence, and again is caused by fast finger movement and the saturation of
the silhouette function. While the first portion of the twist sequence is again tracked

33

74

66

121

70

139

Figure 6.6: A selection of frames from the grip and twist sequence using SMD opti-
misation. All frames are from the FPGA simulation tracker

approximately, the return motion causes the same consequences as before. However
they are exacerbated by the saturation of the silhouette function, as motion which
causes the true pose to lie interlaced with the estimated pose, as in frame 74 of Figure
6.6, receive no penalty, and as the sample points lie off the surface of the hand, there
are no gradients to force the estimated pose towards the true pose. This results in
poor tracking, as in frames 74, 121 and 139 of Figure 6.6, where the estimated pose
remains in approximately the same pose, while the true pose moves underneath it.
Note also frames 66 and 121 of Figure 6.6, where the saturation of the silhouette
function allows the thumb to remain off the surface of the hand.

§6.2 Experiments 45

6.2.3 Palm Rotation

As predicted, the palm rotation sequence proved difficult for both implementations
to track. The cost per frame for each is shown in Figure 6.7. Up to approximately
frame 20 both implementations produce similar levels of cost, however beyond this
they diverge, with the original tracker first exhibiting a large peak in cost at frame
30, and then a constantly higher cost from frame 60. Select frames for the sequence
are in Figure 6.8 for the original tracker, and Figure 6.9 for the FPGA simulation.

frame
0 10 20 30 40 50 60 70 80

co
st

 p
er

 fr
am

e

100

150

200

250

300

350

400

Original tracker
FPGA simulation tracker

Figure 6.7: Cost per frame for palm rotation sequence. Original tracker results are in
blue, FPGA simulation results in red. (best seen in colour)

From Figure 6.8 it can be seen that up until frame 22, the estimated pose matches
the true pose approximately. However as the hand continues to rotate, the side of
the palm is presented, and the thumb becomes occluded as in frame 24 of Figure
6.8, creating the large spike in error. Once this has occurred, the tracker is no longer
able to follow the rotation, resulting in the mirror image seen in frame 49 of Figure
6.8, with the thumb tracking to the little finger and vice versa. This is due to the
hand being approximately symmetrical around the axis of the middle finger. Once
the hand starts to rotate back, this cause the model thumb to continue to be assigned
to the little finger, as seen in frame 59 of Figure 6.8. A consequence of this is that
once the palm is presented again, the model thumb is not in a position to track the
real thumb as seen in frame 65 of Figure 6.8. This is due to it lying inside the model
silhouette, so does not occur a penalty for the silhouette function, and as it is now
positioned in the palm, the image gradients are not sufficient. However given enough
iterations, it does recover back to the neutral pose.

46 Initial Results

10

49

22

59

24

65

Figure 6.8: A selection of frames from the palm rotation sequence using SMD opti-
misation. All frames are from the original tracker

The FPGA simulation exhibits similar behavior up until frame 22, as seen in Fig-
ure 6.9. However once the frame is occluded in frame 24 of Figure 6.9, the saturation
of the silhouette function means that the estimated pose is not forced into a mirror
image of the true pose as effectively, seen in frames 24 and 49 of Figure 6.9. Because
of this once the return rotation occurs, the model thumb is not assigned to the little
finger as in frame 59 of Figure 6.9.

10

49

22

59

24

65

Figure 6.9: A selection of frames from the palm rotation sequence using SMD opti-
misation. All frames are from the FPGA simulation tracker

§6.3 Tracking with an FPGA-implemented Image Pipeline 47

This has the consequence of the model being in a better position to recover once
the palm is presented again, resulting in a faster convergence to the true pose as seen
in frame 65 of Figure 6.9. Therefore while the FPGA implementation appears to have
greater difficulty tracking, it also offers faster recovery, however only in scenarios
where the true pose returns to the point at which tracking was lost.

6.3 Tracking with an FPGA-implemented Image Pipeline

This section demonstrates the control architecture implemented on the FPGA suc-
cessfully supplying the optimisation algorithm with the requested values. How-
ever due to the SDRAM issues mentioned previously the tracker was not evaluated
against the pose sequences. Instead it was evaluated visually on a frame by frame
basis. A typical pose optimisation can be seen in Figure 6.10.

1

4

2

6

3

8

Figure 6.10: Frames from FPGA tracker showing predicted pose at iterations 1, 2, 3,
4, 6 and 8 of the SMD optimisation algorithm

It can be seen that while the estimated pose appears to be centered around the
true pose, it typically overshoots as in frames 1 to 2 and 6 to 8 of Figure 6.10. It also
appears to lack the fine scale adjustment required to achieve a stable convergence.
This can be explained by the resolution of the gradient estimate from the Sobel filter.
Typically gradients used by the photoconsistency cost function are in the range [-5
5], with fine scale pose adjustments using even smaller gradients, in the range [-1
1]. However the Sobel filter is limited to signed 8bits, giving the range of [-127 127]
with a resolution of 1. Therefore the small gradients required for accurate tracking
are not processed by the Sobel. As the gradients are typically well inside the range
used by the Sobel, the assumption could be made that the more significant bits are
not used, and the lower bits used instead. While this potentially could result in data
overflow resulting in incorrect gradients, it is probably a safe assumption providing

48 Initial Results

edge sampling is not used. This would effectively increase the resolution, allowing
for fine scale pose adjustment.

Additionally this limitation when combined with the silhouette limitations can
cause unstable effects as in Figure 6.11. Occasionally when the tracker overshoots the
true pose, the gradients at the next iteration no longer point in the correct direction.
This can be seen clearly in frames 26 and 38 of Figure 6.11. The photoconsistency
function is forcing the estimated pose to contort itself onto regions of similar intensity
on the palm, aided by the silhouette function on the right of the palm, forcing the
ring finger to the left. The silhouette function on the index finger, thumb, and base of
palm is saturated, and does not provide the necessary gradients required to recover.
A larger silhouette mask should improve the stability by limiting the saturation.

8 26 38

Figure 6.11: Frames from tracker showing predicted pose at iterations 8, 26 and 38 of
the SMD optimisation algorithm

6.4 System Validation

The experiments presented in Section 6.2 show that the simulated tracker is capable
of tracking hand poses albeit lacking fine scale accuracy due to some of the limi-
tations imposed by the saturation of the distance transform. The following chapter
will attempt to address this by assessing the tracker response at higher frame rates,
which is hypothesized to decrease the number of sample points experiencing sat-
uration. Section 6.3 shows that poor resolution of the image gradients (limited by
SDRAM bandwidth) leads to a lack of fine scale pose adjustment and instability. Us-
ing the assumption that gradients are small will result in an increase in resolution.

Chapter 7

Frame Rate Experiments

The primary reason for using a high speed camera unit was the hypothesis that
increasing frame rate could lead to greater accuracy and the ability to use simpler
optimisation algorithms, leading to faster implementations. The remainder of the
chapter discusses the effect frame rate has on tracker accuracy, as well as the impli-
cations it has on choice of optimisation algorithm and the resulting speed of such a
tracker. The poses used are the same as those used in the previous chapter, with the
frame rate increased to 240fps by interpolating between the original poses.

7.1 Tracking Accuracy

Initial results showed improvement over those in Chapter 6, however finger flex-
ion tracking was still unsatisfactory. This is due to the saturation of the silhouette
function combined with the relative weightings of the cost function components. Be-
cause the photoconsistency function has a much greater weight than the silhouette
function, it dominates the optimisation algorithm. The exception to this is when the
estimated pose is sufficiently different from the true pose that the distance transform
is large enough to begin to influence the cost, resulting in the accuracy seen in the
original tracker. However as the FPGA distance transform saturates, the distance
is firstly not great enough to influence cost, and secondly if the values were great
enough, the saturation would result in zero gradient. To remedy this the relative
weights are adjusted so that the silhouette function plays a greater role in the overall
cost. The combination of the frame rate and adjusted weighting means results in sig-
nificantly greater tracking accuracy as seen in Figure 7.1, with frames 264, 296, 480
and 960 showing visual accuracy on par or greater than the original tracker. The side
effect of the adjusted weighting can be seen in frame 560, where instead of flexion
at the DIP joint the estimated pose has translated downwards. Additionally partial
occlusion is still problematic as seen in frame 1112.

49

50 Frame Rate Experiments

264

296

560

480

1112

960

Figure 7.1: A selection of frames from the twist (top) and finger flexion (bottom)
sequences using SMD optimisation.

However increasing frame rate appears to have little effect for palm rotations as
seen in Figure 7.2. The tracker still struggles to recognise that the pose has reversed,
tracking successfully until the palm is parallel to the camera axis, but unable to track
past parallel. This is to be expected as when the palm is parallel, there is a large
amount of occlusion, an artifact which is not effected by frame rate. To successfully
track past parallel a more aggressive motion prediction scheme is needed.

176 192 208

Figure 7.2: A selection of frames from the palm rotation sequence

§7.2 Experiments 51

7.2 Experiments

When conducting experiments at 30fps, Chik [18] found that increasing both the size
of the sample set and the number of allowable iterations resulted in a decrease in
cost. There are two possible explanations for this, the first being that the difference
between the true pose and estimated pose is too great, forcing the number of steps
needed (as the step size is bounded) to exceed the number of iterations. The second
is that the sample set does not contain sufficient information for convergence to the
true pose (i.e. the sample set is not sufficiently dense). By increasing frame rate
it is hoped that these effects are mitigated. Supplementary frames for the results
presented can be found in Appendix A.

7.2.1 Optimisation Iterations

Figure 7.3 shows the cost for the grip and twist sequence for different number of
iterations of the SMD algorithm. At 30fps there are two regions (frames 20-40 and
frames 80-120) where the cost for the different number of iterations diverges, with
fewer iterations resulting in higher cost. However at 240fps this effect is far less
dramatic, with only a slight increase in cost from frames 500-1000 and all lines having
very similar profiles.

frame
0 20 40 60 80 100 120 140 160 180

co
st

 p
er

 fr
am

e

140

150

160

170

180

190

200
20 iterations
10 iterations
5 iterations

frame
0 500 1000 1500

co
st

 p
er

 fr
am

e

130

140

150

160

170

180

190

20 iterations
10 iterations
5 iterations

Figure 7.3: Cost as a function of optimisation algorithm iterations for the grip and
twist sequence at left: 30fps, and right: 240fps (best seen in colour)

As the change of pose between frames is so small at the higher frame rate, fewer
iterations are needed for convergence presuming that convergence had been reached
at the previous frame. This results in the similar behavior across all iteration counts.
This also explains the slight increase in cost observed at 240fps. The portion with
increased cost involves global translation and rotation of the hand, with violent ac-
celerations and decelerations. This results in greater differences between frames, and
the need for a higher iterations count.

52 Frame Rate Experiments

However there is a limit to how far the number of iterations can be decreased.
Figure 7.4 shows tracking results for the finger flexion sequence using only a single
iteration of SMD. Frame 4 shows the successful initial convergence to the neutral
pose. Once the CMC joint of the thumb starts to rotate, the movement is too great for
a single iteration, and the estimated pose progressively lags further behind the true
pose as seen in frames 45 and 68.

4 45 68

Figure 7.4: Selection of frames from the finger flexion sequence using 1 iteration of
SMD and 1024 samples.

7.2.2 Sample Set Size

Figure 7.5 shows the cost for the grip and twist sequence at 30fps and 240fps. Sample
sets sizes range from 1024 to 100. At 30fps there appears to be a trend of increasing
cost with decreasing sample set size, particularly from frames 100-150. This trend
is not present at 240fps, with all lines showing similar levels of cost. As the frame
rate strongly implies that the estimated pose is correct at the previous frame, it ap-
pears that a sparse sample set is sufficient for accurate tracking, resulting in similar
behavior for all sample sets at 240fps.

frame
0 20 40 60 80 100 120 140 160 180

co
st

 p
er

 fr
am

e

130

140

150

160

170

180 1024 samples
512 samples
256 samples
100 samples

frame
0 200 400 600 800 1000 1200 1400

co
st

 p
er

 fr
am

e

130

140

150

160

170

180 1024 samples
512 samples
256 samples
100 samples

Figure 7.5: Cost as a function of sample set size for the grip and twist sequence at
left: 30fps, and right: 240fps (best seen in colour)

§7.2 Experiments 53

Figure 7.6 shows a selection of frames using 100 samples. It can be observed
in frames 170, 245 and 269 that the estimated pose is correct with the joint angles
closely matching those of the true pose. However further decreasing the size of the
sample set to 10 samples can result in some digits not being represented at all. This
results in these regions remaining untracked due to the absence of cues, and can
result unstable behavior as samples taken from these regions are entirely outside the
silhouette of the observed pose.

178 245 269

Figure 7.6: Selection of frames from the finger flexion and twist sequences using 20
iterations of SMD and 100 samples

7.2.3 Initial Convergence

The previous results assumed that the estimated pose at the previous frame is cor-
rect. While this assumption holds for these sequences, it does not take into account
the initial convergence when the tracker is initialised. Figure 7.7 shows the initial
convergence to a neutral pose for 5 and 20 iterations of the optimisation algorithm.

0

0

1

1

2

2

Figure 7.7: Selection of frames showing initial convergence for 5 iterations (top) and
20 iterations (bottom)

54 Frame Rate Experiments

Note that while error is visually small, the initial estimate must be on the surface
of the hand due to the saturation of the silhouette function. It can be seen that
when using 20 iterations, the estimated pose converges to the true pose at the next
frame, while when using 5 iterations, it is still converging several frames later. In
practice this would require a predetermined pose to initialise the tracker (to nullify
the saturation) as well as an increased iteration count for fast initial convergence.

7.3 Towards Real Time Implementation

Due to the limits mentioned previously, 5 iterations and 100 samples was found to
be a good compromise between the number of computations and tracker accuracy. A
selection of frames for these parameters are shown in Figure 7.8. It is apparent that
there are enough iterations for convergence and sufficient information of the pose for
accurate representation, with finger flexion accurately tracked.

153

216

178

245

269

482

Figure 7.8: A selection of frames from the finger flexion (top) and twist (bottom)
sequences using 5 SMD iterations and 100 samples.

The computation time required by the optimisation algorithm per frame is used
as a measure of tracker performance as it is constant between implementations. Re-
ducing the optimisation iterations and set size both decrease the number of compu-
tations required per frame, hence increasing the speed of the tracker.

§7.3 Towards Real Time Implementation 55

Figure 7.9 shows the relationship between these and computation time to be
linear, as expected as each scale the number of computations per frame linearly.
Reducing to 5 iterations and 100 samples from 20 and 1024 decreases computation

number of samples per iterations
100 200 300 400 500 600 700 800 900 1000 1100

tim
e

pe
r

fr
am

e
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

20 iterations
10 iterations
5 iterations

Figure 7.9: Execution time per frame for the SMD optimisation algorithm for different
numbers of iterations and sample set sizes.

time per frame from 3.65s to 25ms, a 150 fold increase in speed. While this is still
not a real time implementation it represents a considerable increase in speed over
the original implementation, and there are several more areas for improvement. The
current implementation of the optimisation algorithm uses several memory refer-
ences per pixel (individual references for each portion of the cost function as well as
the optimisation algorithm). By rearranging the way computations are conducted,
the sample values could be passed to the optimisation algorithm directly from the
FPGA, removing the need for several memory references per sample. However it
should be noted that unlike the original tracker, this process can not be threaded due
to the fact there is only a single data bus (GPIF) between the FPGA and CPU.

Chapter 8

Conclusion

This work progresses a real time hand tracking system further towards it goal of real
time operation, through the use of a heterogeneous architecture. The tracking system
has shown to be able to track a range of hand gestures, as well as cope with issues
such as self-occlusion and fast finger movements.

A significant contribution made is the design and implementation of a control
architecture suitable for real time hand tracking. Image processing pipelines are
implemented on the FPGAs for processing raw data from CMOS sensors and storing
in external SDRAM banks. Synchronous bus controllers are used for transferring
data between the FPGA and microcontroller. A unit test demonstrating proof of
concept is also presented, showing successful tracking within the limitations of the
system. The major contribution of this work is to show the effect that high frame rate
has on tracking accuracy and speed. By increasing the frame rate to 240fps it was
shown that tracking accuracy was greater, with none of the non-convergence issues
due to high velocities seen at 30fps. Additionally the higher frame rate allowed far
fewer iterations and very sparse samples sets to be used whilst maintaining tracker
accuracy. This resulted in a 150 fold increase in speed of the optimisation algorithm
when compared to the original tracker.

Future Works

Currently only the image processing is done on the FPGA with the total cost being
summed on the host computer. Because of this the majority of the optimisation
time per frames is dealing with memory handling and the computation of the total
cost. By moving the entire cost function routine to the FPGA, the amount of memory
handling on the host computer will be dramatically decreased, theoretically allowing
much greater computational efficiency.

While using a heterogeneous architecture has been shown to result in greater
speed, it is not clear that the architecture used is the correct one. The main draw-
backs of the current architecture are the bottleneck in bandwidth between the micro
controller and FPGA, and the lack of floating point computation on the FPGA. A sys-
tem on a chip architecture such as the Nvidia Jetson TK1 which includes a GPU core,
image processing (IP) pipelines and a quad core CPU would allow grater flexibility

56

57

and might be more suited to the task, particularly as the GPU handles floating point
operations and there is extensive support for development of algorithms provided
by Nvidia. Nvidia also has available a release of OpenCV optimized for implemen-
tation on their CUDA GPU cores. It is proposed that the tracker be implemented
on this hardware using the IP pipelines for image processing, the GPU for simple
operations such as the computation of the cost function and kinematic chains for the
hand model. The core tracking and optimisation algorithms will be implemented on
the CPU using a threaded architecture.

One of the key drawbacks of the system for large scale adoption is the use of
the hand model. As an individuals hand is unique, a model must be created sepa-
rately for each one, a time intensive process. A highly desirable alternative would be
something equivalent to the ’eigenface’, or if this is not possible, at least an efficient
and automated method for constructing the model initially. Using a 3D scanner a
static model of the individuals hand could be produced, which could be used as the
ground truth for adjusting the linear blending parameters of the skin mesh to best
model the skin deformation characteristics of the individual. While this is a large
problem it can be computed offline, making computational speed less of an issue.

Appendix A

296 296 296

Figure 1: Frame 296 of the finger flexion sequence, showing 20, 10, and 5 iterations
of SMD from left to right.

560 560 560

Figure 2: Frame 560 of the grip and twist sequence, showing 20, 10, and 5 iterations
of SMD from left to right.

58

59

296 296 296

Figure 3: Frame 296 of the finger flexion sequence, showing sample sets of 1024, 256,
and 100 from left to right.

560 560 560

Figure 4: Frame 560 of the grip and twist sequence, showing sample sets of 1024,
256, and 100 from left to right.

Bibliography

1. Aguilar-Gonzalez, A.; Perez-Patricio, M.; Arias-Estrada, M.; Camas-
Anzueto, J.-L.; Hernandez-de Leon, H.-R.; and Sanchez-Alegria, A., 2015.
An FPGA correlation-edge distance approach for disparity map. In 2015 Interna-
tional Conference on Electronics, Communications and Computers, 21–28. IEEE. (cited
on page 9)

2. Ahmad, T.; Taylor, C. J.; Lanitis, A.; and Cootes, T. F., 1997. Tracking and
recognising hand gestures, using statistical shape models. Image and Vision Com-
puting, 15, 5 (1997), 345–352. (cited on page 4)

3. Al-Maadeed, S.; Almotaeryi, R.; Jiang, R.; and Bouridane, A., 2014. Robust
human silhouette extraction with Laplacian fitting. Pattern Recognition Letters, 49
(2014), 69–76. (cited on page 6)

4. Ali, U. and Malik, M. B., 2010. Hardware/software co-design of a real-time
kernel based tracking system. Journal of Systems Architecture, 56, 8 (2010), 317–
326. (cited on page 8)

5. Ando, T.; Moshnyaga, V. G.; and Hashimoto, K., 2012. A low-power FPGA
implementation of eye tracking. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 1573–1576. IEEE. (cited on page 8)

6. Arias-Estrada, M. and Rodríguez-Palacios, E., 2002. An FPGA co-processor
for real-time visual tracking. In Proceedings of the Reconfigurable Computing Is Go-
ing Mainstream, 12th International Conference on Field-Programmable Logic and Ap-
plications, FPL ’02, 710–719. Springer-Verlag, London, UK, UK. (cited on page
8)

7. Atay, M. and Yalcin, M. E., 2013. A parallelized distance transformation archi-
tecture for FPGAs. In 2013 European Conference on Circuit Theory and Design, 1–4.
TU Dresden. (cited on page 9)

8. Bae, K.-H.; Koo, J.-S.; and Kim, E.-S., 2003. A new stereo object tracking system
using disparity motion vector. Optics Communications, 221, 1 (2003), 23–35. (cited
on page 7)

9. Baudel, T. and Beaudouin-Lafon, M., 1993. Charade: remote control of objects
using free-hand gestures. Communications of the ACM, 36, 7 (1993), 28–35. (cited
on page 3)

60

BIBLIOGRAPHY 61

10. Borgefors, G., 1986. Distance transformations in digital images. Computer Vision
Graphical Image Processing, (3 1986), 344–371. (cited on pages 9, 13, and 36)

11. Boudabous, A.; Atitallah, A. B.; Khriji, L.; Kadionik, P.; and Masmoudi,
N., 2011. FPGA implementation of vector directional distance filter based on
HW/SW environment validation. AEU - International Journal of Electronics and
Communications, 65, 3 (2011), 250 – 257. (cited on page 9)

12. Cai, L.; He, L.; Xu, Y.; Zhao, Y.; and Yang, X., 2010. Multi-object detection and
tracking by stereo vision. Pattern Recognition, 43, 12 (2010), 4028–4041. (cited on
page 7)

13. Canny, J., 1986. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8, 6 (1986), 679–698. (cited on
page 6)

14. Chang, C.-C., 2006. Adaptive multiple sets of CSS features for hand posture
recognition. Neurocomputing, 69, 16 (2006), 2017–2025. (cited on pages 4 and 5)

15. Chen, F.-S.; Fu, C.-M.; and Huang, C.-L., 2003. Hand gesture recognition us-
ing a real-time tracking method and hidden Markov models. Image and Vision
Computing, 21, 8 (2003), 745–758. (cited on pages 4, 6, and 7)

16. Chen, W. and Mied, R. P., 2013. Optical flow estimation for motion-compensated
compression. Image and Vision Computing, 31, 3 (2013), 275 – 289. (cited on page
7)

17. Chen, W.; Yue, H.; Wang, J.; and Wu, X., 2014. An improved edge detection
algorithm for depth map inpainting. Optics and Lasers in Engineering, 55 (2014),
69–77. (cited on page 6)

18. Chik, D., 2009. 3D Hand Tracking in a Stochastic Approximation Framework. Phd,
Australian National University. (cited on pages 2, 4, 11, 13, 36, 40, and 51)

19. Cho, J. U.; Jin, S. H.; Pham, X. D.; Jeon, J. W.; Byun, J. E.; and Kang, H., 2006.
A real-time object tracking system using a particle filter. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, 2822–2827. (cited on page 8)

20. Cho, J. U.; Jin, S. H.; Pham, X. D.; Kim, D.; and Jeon, J. W., 2007. FPGA-based
real-time visual tracking system using adaptive color histograms. In Robotics and
Biomimetics, 2007. ROBIO 2007. IEEE International Conference on, 172–177. (cited
on page 8)

21. Choi, S.; Kim, T.; and Yu, W., 2009. Performance evaluation of RANSAC family.
In 2009 British Machine Vision Conference (BMVC). Cited By 1. (cited on page 6)

22. Chung, P. .; Huang, C. .; and Chen, E. ., 2007. A region-based selective optical
flow back-projection for genuine motion vector estimation. Pattern Recognition,
40, 3 (2007), 1066–1077. (cited on page 7)

62 BIBLIOGRAPHY

23. CMOSIS, 2013. Megapixel machine vision CMOS image sensor. COMSIS Image
Sensors. (cited on pages 15 and 17)

24. Coleca, F.; State, A.; Klement, S.; Barth, E.; and Martinetz, T., 2014. Self-
organizing maps for hand and full body tracking. Neurocomputing, 147 (2014),
174. (cited on pages 3 and 6)

25. Cui, J. and Sun, Z., 2004. Model-based visual hand posture tracking for guiding
a dexterous robotic hand. Optics Communications, 235, 4 (2004), 311–318. (cited
on pages 4, 5, and 6)

26. Cypress, 2013. EZ-USB FX3: SuperSpeed USB Controller. Cypress. (cited on page
15)

27. Dankers, A.; Barnes, N.; and Zelinsky, A., 2007. MAP ZDF segmentation and
tracking using active stereo vision: Hand tracking case study. Computer Vision
and Image Understanding, 108, 1 (2007), 74–86. (cited on pages 6, 7, and 8)

28. Dente, E.; Bharath, A. A.; Ng, J.; Vrij, A.; Mann, S.; and Bull, A., 2006.
Tracking hand and finger movements for behaviour analysis. Pattern Recognition
Letters, 27, 15 (2006), 1797–1808. (cited on page 7)

29. Diaz, J.; Ros, E.; Pelayo, F.; Ortigosa, E. M.; and Mota, S., 2006. FPGA-based
real-time optical-flow system. IEEE Transactions on Circuits and Systems for Video
Technology, 16, 2 (2006), 274–279. (cited on page 9)

30. Dinu, D.; Bidiugan, R.; Natta, F.; and Houel, N., 2012. Preliminary study of
accuracy and reliability of high-speed human-motion tracking using miniature
inertial sensors. In 2012 Engineering of Sport Conference, vol. 34, 790–794. Cited By
0. (cited on page 3)

31. Fels, S. S. and Hinton, G. E., 1993. Glove-talk: a neural network interface
between a data-glove and a speech synthesizer. IEEE Transactions on Neural Net-
works, 4, 1 (1993), 2–8. (cited on page 3)

32. Felzenszwalb, P. F. and Huttenlocher, D. P., 1998. Image segmentation using
local variation. In 1998 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 98–104. (cited on page 6)

33. Feng, Z.; Yang, B.; Chen, Y.; Zheng, Y.; Xu, T.; Xu, T.; Li, Y.; and Zhu, D., 2011.
Features extraction from hand images based on new detection operators. Pattern
Recognition, 44, 5 (2011), 1089–1105. (cited on pages 5 and 6)

34. Feng, Z.; Yang, B.; Tang, H.; Lv, N.; Meng, Q.; Yin, J.; and Feng, S., 2014.
Behavioral-model-based freehand tracking in a Selection-Move-Release system.
Computers & Electrical Engineering, 40, 6 (2014), 1827. (cited on pages 4 and 5)

BIBLIOGRAPHY 63

35. Gao, W.; Zhang, X.; Yang, L.; and Liu, H., 2010. An improved Sobel edge detec-
tion. In 2010 3rd IEEE International Conference on Computer Science and Information
Technology (ICCSIT), vol. 5, 67–71. (cited on page 6)

36. Gultekin, G. K. and Saranli, A., 2013. An FPGA based high performance
optical flow hardware design for computer vision applications. Microprocessors
and Microsystems, 37, 3 (2013), 270–286. (cited on page 9)

37. Harville, M., 2004. Stereo person tracking with adaptive plan-view templates of
height and occupancy statistics. Image and Vision Computing, 22, 2 (2004), 127–142.
(cited on page 7)

38. Hezel, S.; Kugel, A.; Manner, R.; and Gavrila, D. M., 2002. FPGA-based
template matching using distance transforms. In 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 89–97. IEEE. (cited on page 9)

39. Horn, B. K. P. and Schunck, B. G., 1981. Determining optical flow. Artificial
Intelligence, 17, 1 (1981), 185–203. (cited on page 7)

40. Hsiao, Y.-Z. and Pei, S.-C., 2014. Edge detection, color quantization, segmen-
tation, texture removal, and noise reduction of color image using quaternion
iterative filtering. Journal of Electronic Imaging, 23, 4 (2014). (cited on page 6)

41. Hu, X.; Li, Q.; and Li, X., 2010. A real-time multipoint tracking system based on
FPGA for multi-touch and motion tracking. In Optical Metrology and Inspection for
Industrial Applications, vol. 7855. (cited on page 8)

42. Instruments, T., 1995. AN-1006 Phase-Locked Loop Based Clock Generators. Texas
Instruments. (cited on pages 15 and 22)

43. Jones, M. J. and Rehg, J. M., 2002. Statistical color models with application to
skin detection. International Journal of Computer Vision, 46, 1 (2002), 81–96. (cited
on page 5)

44. Kikuchi, H. and Morioka, K., 2012. Development of wireless image sensor
nodes based on FPGA for human tracking in intelligent space. In 38th Annual
Conference on IEEE Industrial Electronics Society, 5529–5534. IEEE. (cited on page
8)

45. Klein, A., 2013. Linear feedback shift registers. In Stream Ciphers, 17–58. Springer
London. ISBN 978-1-4471-5078-7. (cited on pages 10 and 34)

46. Kreizer, M. and Liberzon, A., 2011. Three-dimensional particle tracking
method using FPGA-based real-time image processing and four-view image
splitter. Experiments in Fluids, 50, 3 (2011), 613–620. (cited on page 8)

47. Kristensen, F.; Hedberg, H.; Jiang, H.; Nilsson, P.; and Öwall, V., 2008. An
embedded real-time surveillance system: Implementation and evaluation. Journal
of Signal Processing Systems, 52, 1 (2008), 75–94. (cited on page 8)

64 BIBLIOGRAPHY

48. Lamberti, L. and Camastra, F., 2012. Handy: A real-time three color glove-
based gesture recognizer with learning vector quantization. Expert Systems With
Applications, 39, 12 (2012), 10489. (cited on page 3)

49. Lattice, 2013. Lattice ECP3 Family Datasheet. Lattice Semiconductors. (cited on
pages 14 and 17)

50. Lee, C.-S.; Chun, S.; and Park, S. W., 2013. Tracking hand rotation and various
grasping gestures from an IR camera using extended cylindrical manifold em-
bedding. Computer Vision and Image Understanding, 117, 12 (2013), 1711. (cited on
pages 4 and 5)

51. Lee, J.-S.; Ko, J.-H.; and Kim, E.-S., 2001. Real-time stereo object tracking sys-
tem by using block matching algorithm and optical binary phase extraction joint
transform correlator. Optics Communications, 191, 3 (2001), 191–202. (cited on
page 7)

52. Lee, S.-W. and Zhang, X., 2007. Biodynamic modeling, system identification,
and variability of multi-finger movements. Journal of Biomechanics, 40, 14 (2007),
3215–3222. (cited on page 1)

53. Li, Y.; Chow, P.; Jiang, J.; Zhang, M.; and Wei, S., 2014. Software/hardware
parallel long-period random number generation framework based on the WELL
method. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 22, 5
(May 2014), 1054–1059. (cited on page 9)

54. Mansingka, A.; Radwan, A. G.; and Salama, K., 2012. Fully digital 1-D, 2-D
and 3-D multiscroll chaos as hardware pseudo random number generators. In
Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium
on, 1180–1183. (cited on pages 9 and 10)

55. Marr, D. and Hildreth, E., 1980. Theory of edge detection. Proceedings of
the Royal Society of London. Series B. Biological Sciences, 207, 1167 (1980), 187–217.
(cited on page 6)

56. Martin, J. L.; Zuloaga, A.; Cuadrado, C.; Lãzaro, J.; and Bidarte, U., 2005.
Hardware implementation of optical flow constraint equation using FPGAs. Com-
puter Vision and Image Understanding, 98, 3 (2005), 462–490. (cited on page 9)

57. Marzotto, R.; Zoratti, P.; Bagni, D.; Colombari, A.; and Murino, V., 2010. A
real-time versatile roadway path extraction and tracking on an FPGA platform.
Computer Vision and Image Understanding, 114, 11 (2010), 1164–1179. (cited on
page 8)

58. Muñoz Salinas, R.; Aguirre, E.; and Garcia-Silvente, M., 2007. People detec-
tion and tracking using stereo vision and color. Image and Vision Computing, 25, 6
(2007), 995–1007. (cited on page 7)

BIBLIOGRAPHY 65

59. Muñoz Salinas, R.; Medina-Carnicer, R.; Madrid-Cuevas, F. J.; and

Carmona-Poyato, A., 2009. People detection and tracking with multiple stereo
cameras using particle filters. Journal of Visual Communication and Image Represen-
tation, 20, 5 (2009), 339–350. (cited on page 7)

60. Nayak, S. and Pujari, S. S., 2015. Moving object tracking application: FPGA
and model based implementation using image processing algorithms. In 2015
International Conference on Computing Communication Control and Automation, 932–
936. IEEE. (cited on page 8)

61. Placidi, G.; Avola, D.; Iacoviello, D.; and Cinque, L., 2013. Overall design
and implementation of the virtual glove. Computers in biology and medicine, 43, 11
(2013), 1927–1940. (cited on page 3)

62. Premaratne, P.; Ajaz, S.; and Premaratne, M., 2013. Hand gesture tracking
and recognition system using Lucas-Kanade algorithms for control of consumer
electronics. Neurocomputing, 116 (2013), 242. (cited on page 6)

63. Prisacariu, V. A. and Reid, I., 2012. 3d hand tracking for human computer
interaction. Image and Vision Computing, 30, 3 (2012), 236 – 250. Best of Automatic
Face and Gesture Recognition 2011. (cited on page 5)

64. Qian, C., 2014. Realtime and robust hand tracking from depth. In IEEE Conference
on Computer Vision and Pattern Recognition. (cited on page 1)

65. Ranasinghe, D. C.; Lim, D.; Devadas, S.; Jamali, B.; Zhu, Z.; and Cole, P. H.,
2005. An integrable low-cost hardware random number generator. In Proc. SPIE,
vol. 5649, 627–639. (cited on page 9)

66. Ruiz-Alzola, J.; Alberola-Lúpez, C.; and Corredera, J.-R. C., 2000. Model-
based stereo-visual tracking: Covariance analysis and tracking schemes. Signal
Processing, 80, 1 (2000), 23–43. (cited on page 7)

67. Sileshi, B.; Ferrer, C.; and Oliver, J., 2014. Accelerating hardware Gaussian
random number generation using ziggurat and cordic algorithms. In SENSORS,
2014 IEEE, 2122–2125. (cited on pages 9 and 10)

68. Snelgar, F., 2014. Aspects of a Real Time Hand Tracking System in a Stochastic
Approximation Framework. Undergraduate report, Australian National University.
(cited on pages 2, 13, 16, and 35)

69. Stauffer, C. and Grimson, W. E. L., 1999. Adaptive background mixture models
for real-time tracking. In IEEE Computer Society on Computer Vision and Pattern
Recognition, vol. 2, 246–252 Vol. 2. (cited on page 5)

70. Sudha, N., 2005. A pipelined array architecture for Euclidean distance trans-
formation and its FPGA implementation. Microprocessors and Microsystems, 29, 8
(2005), 405–410. (cited on page 9)

66 BIBLIOGRAPHY

71. Tanabe, Y. and Maruyama, T., 2014. Fast and accurate optical flow estimation
using FPGA. ACM SIGARCH Computer Architecture News, 42, 4 (2014), 27–32.
(cited on page 9)

72. Tompson, J.; Stein, M.; LeCun, Y.; and Perlin, K., 2014. Real-time continuous
pose recovery of human hands using convolutional networks. In ACM Trans.
Graph. (cited on pages 1 and 4)

73. Winbond, 2014. Winbond 512Mb Mobile LPSDR. Winbond. (cited on page 15)

74. Xu, T. and Potkonjak, M., 2013. Lightweight digital hardware random number
generators. In SENSORS, 2013 IEEE, 1–4. (cited on page 9)

75. Zafar, I.; Zakir, U.; Romanenko, I.; Jiang, R. M.; and Edirisinghe, E., 2010.
Human silhouette extraction on FPGAs for infrared night vision military surveil-
lance. In 2010 Second Pacific-Asia Conference on Circuits, vol. 1, 63–66. (cited on
page 7)

76. Zhao, J.; Thornberg, B.; Shi, Y.; Hashemi, A.; för informationsteknologi och

medier, I.; Fakulteten för naturvetenskap, t. o. m.; and Mittuniversitetet,
2012. Color segmentation on FPGA using minimum distance classifier for auto-
matic road sign detection. In 2012 IEEE International Conference on Imaging Systems
and Techniques (IST), 516–521. IEEE. (cited on page 9)

77. Zoidi, O.; Nikolaidis, N.; Tefas, A.; and Pitas, I., 2014. Stereo object tracking
with fusion of texture, color and disparity information. Signal Processing: Image
Communication, 29, 5 (2014), 573–589. (cited on page 7)

	Contributions
	Abstract
	Contents
	Introduction
	Report Outline

	Prior Works
	Approaches to Hand Tracking
	Glove Based Systems
	Templated Systems
	Model Based Systems
	Visual Cues
	Silhouette
	Edge Detection
	Optical Flow
	Stereo Vision

	FPGA Implementations
	Tracking Systems
	Optical Flow
	Distance Transforms
	Random Number Generation

	Tracking System
	Stereo Cameras
	Hand Model
	Cost Function
	Photoconsistency Function
	Silhouette Function
	Filling Function

	Optimisation Algorithm

	Hardware
	FPGA
	Microcontroller
	SDRAM
	CMOS Sensor

	System Architecture
	Computation Timing
	Data Rate Limitations
	Image Processing Pipeline
	Data Storage
	Downsampling
	Multiple pixels in single word
	Data Format
	Implementation Selection

	Stereo Vision
	Sample Set transfers

	FPGA Modules
	Clock Domains
	SDRAM Controller
	FPGA-microcontroller Bus
	Softcore Processing Unit
	Psuedo-Random Number Generator
	Image Processing Pipeline
	Silhouette Extraction
	Distance Map
	Image Gradients
	Unbiased and a Uniformly Bounded Variance

	Design Summary

	CPU-based Modules

	Initial Results
	Experimental Setup
	Image Sequences
	Tracker Implementations
	Pose Sequences

	Experiments
	Finger Flexion
	Grip and Twist
	Palm Rotation

	Tracking with an FPGA-implemented Image Pipeline
	System Validation

	Frame Rate Experiments
	Tracking Accuracy
	Experiments
	Optimisation Iterations
	Sample Set Size
	Initial Convergence

	Towards Real Time Implementation

	Conclusion

