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Abstract

This thesis considers the problem of obtaining a high quality estimate of pose (position

and orientation) from a combination of inertial and vision measurements using low

cost sensors. The novelty of this work is in using non-linear observers designed on

the Lie group SE(3). This approach results in robust estimators with strong local and

almost-global stability results and straightforward gain tuning.

A range of sensor models and observer designs are investigated, including

• Creating a cascaded pose observer design using component observers for ori-

entation and position, combining pose measurements reconstructed from vision

with inertial measurements of angular velocity and linear acceleration.

• Combining inertial measurement of angular and linear velocity with pose mea-

surements reconstructed from vision, and designing an observer using a decom-

position of SE(3) into separate orientation and position components.

• Considering the case where the inertial measurements of angular and linear ve-

locity are corrupted by slowly time varying biases and developing an observer

for both pose and velocity measurement bias directly on SE(3)× se(3).

• Eliminating the need for a pose measurement reconstruction by designing an

observer operating directly on the measurements of landmark bearing from a

vision sensor. The bearing measurements are combined with unbiased measure-

ments of linear and angular velocity measurements to obtain an observer for

pose evolving on SE(3).

Throughout these works, particular attention is given to designing observers suit-

able for implementation with multiple independent measurement devices. Care is

given to avoid coupling of independent measurement noise processes in estimator

dynamics. Further, the final observers proposed are suitable for a multi-rate asyn-

chronous implementation, making timely use of measurements from sensors whose

measurement rates may differ by over an order of magnitude.
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Chapter 1

Introduction

Accurate, high-rate estimation of attitude and position is important to many areas of

robotics. For example, in the control of autonomous vehicles and the callibration of

sensing systems. Such system can usually be modelled as rigid body kinematics and

dynamics, where the pose lies naturally in the group of rigid body transformations, the

special Euclidean group SE(3) of dimension four. The problem of pose estimation,

and attitude estimation in general, is known to be a highly non-linear problem due to

the geometry of rotations in three dimensional space (e.g. Murray et al. 1993). For the

estimation of attitude alone, a wide range of techniques have been proposed including

Kalman filter variants, particle filters and non-linear observers (Crassidis et al. 2007),

each with different merits.

Localization, the process of estimating the position and attitude of an object rel-

ative to an operating environment, is thought to occur in humans through a fusion of

predictive information from proprioceptive senses, such as the vestibular system in

the inner ear, with corrective information from exteroceptive senses, such as sight and

hearing. Information from the vestibular system provides an estimate of how our po-

sition and attitude have changed, measuring quantities such as angular velocity and

acceleration, including gravity, experienced by the head. This information is sufficient

for short term state estimation, using an approximate integration of measurements, but,

as anyone who has attempted to walk through a room in the dark will notice, does not

provide a good long term estimate. Fusing the information from the vestibular with

estimates of our surroundings from vision and auditory sensors, and other senses such

as touch, provides correction of drift in vestibular estimates.

Similarly, one may estimate the position and attitude, or pose, of a robotic vehi-

cle by fusing the output of multiple sensors. The principal reason for doing this is

to combine measurements from disparate sensors with different desirable characteris-

tics, such as a high measurement rate or high accuracy, to obtain a resulting estimate
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2 Introduction

that combines the desirable properties of several separate sensors. Additionally, multi-

ple independent measurements provide a way of reducing the effects of measurement

noise, and fusion may be used to create a composite measurement from sensors each

only partially measuring an input or output to a system.

A wide range of sensors, with varying noise and disturbance characteristics, may

be used to measure the inputs and outputs of this system, either in full or part. For ex-

ample, an array of gyrometers measures angular velocity, a Global Positioning System

(GPS) device measures attitude and position, and a receiver for an ultrasonic beacon

may measure distance from the beacon; a component of position.

A particular sensor combination of recent scientific interest is the combination

of an inertial sensor package with a vision sensor, a combination referred to as an

inertial-vision sensor system. An inertial sensor package is functionally similar to the

human vestibular, providing measurements of angular velocity and linear acceleration,

commonly at a very high rate, exceeding 100 Hz, but with undesirable measurement

disturbances, especially in low-cost models. A vision sensor, such as a common we-

bcam or digital camera, observes a two dimensional projection of the environment of

the vehicle from which, under certain conditions, the pose of the sensor can be calcu-

lated. Typically a vision sensor measures at low rates of 30 Hz and below, but with

very small, and in particular unbiased, measurement disturbance.

Inertial-vision sensor packages are of scientific interest for several reasons, includ-

ing the low cost of the sensor combination, the possibility of multi-modal use of vision

sensors, and the relationship to human perception. Some techniques for estimation

from inertial-vision sensors also support use of other sensors in the place of vision,

such as GPS or ultrasonic triangulation.

This thesis considers the problem of obtaining high quality, high rate estimates of

attitude and position, or pose, from a combination of inertial and vision measurements

using low cost sensors. In particular, it will consider the fusion of high frequency iner-

tial measurements with low frequency vision measurements to obtain a robust, precise

and accurate pose estimation updated at the high measurement rate of the inertial sen-

sor.

The appraoch taken it to investigate the use of non-linear observers for pose estima-

tion, with particular emphasis given to designing observers on SE(3), a mathematical

construct encapsulating the natural geometry of the problem. Prior work applying

non-linear observers to attitude estimation has notable benefits in their asymptotic sta-
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bility proofs and show great promise for future applications (Crassidis et al. 2007).

Work presented in this thesis commences by extending work attitude estimation using

non-linear observers presented in Mahony et al. (2008).

The research documented considers a range of sensor modalities for both the iner-

tial and vision sensor, and will principally consider the case of onboard sensors. Work

includes consideration of both biased and unbiased inertial sensor measurements.

The research documented in this thesis focuses on the design of estimators that are

robust to measurement distrubances, have a wide basin of attraction and are simple to

implement and tune. These criteria are aimed at being competitve the robustness and

accuracy of techniques such as Kalman filtering, while adding additional properties

and simplifying their use.

Specifically, this research seeks to produce estimators that are:

• Robust to measurement disturbances, including insensitivity to Gaussian noise

and correction of measurement biases.

• Insensitive to initial condition error;

• Capable of being implemented to operate at the rate of the fastest measurement,

preferably without requiring regular measurement timing;

• Straightforward to tune, preferably with few scalar gains and demonstrated sta-

bility across a wide range of gain values;

• Backed by formal mathematical proof of stability for the continuous time case

with no measurement noise.

This thesis includes both simulation and experimental validation of proposed ob-

servers, including generation of indigenous experimental data sets.

1.1 Papers and Publications

This thesis includes work contained in the following academic papers

• Cheviron, T.; Hamel, T.; Mahony, R. and Baldwin, G. Robust Nonlinear Fu-
sion of Inertial and Visual Data for position, velocity and attitude estimation
of UAV. In Proceedings of the 2007 IEEE International Conference on Robotics

and Automation, Roma, Italy, April 2007. 2010–2016.
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• Baldwin, G.; Mahony, R.; Trumpf, J.; Hamel, T. and Cheviron, T. Complemen-
tary filter design on the Special Euclidean group SE(3), In Proceeding of the

European Control Conference 2007, Kos, Greece, July 2007.

• Baldwin, G.; Mahony, R.; Trumpf, J. and Hamel, T. Complementary Filtering
on the Special Euclidean Group. Submitted to IEEE Transactions on Robotics,

2008.

• Baldwin, G.; Mahony, R. and Trumpf, J. A Nonlinear Observer for 6 DOF
Pose Estimation from Inertial and Bearing Measurements. In Proceedings

of the 2009 IEEE International Conference on Robotics and Automation, Kobe,

Japan, May 2009. 2237–2242.

1.2 Roadmap And Contributions

This thesis comprises seven chapters including this introduction.

• Chapter 2 is a literature review that surveys the body of scientific work on pose

estimation, the use of inertial-vision sensors in pose estimation and develop-

ments in non-linear observers relevant to pose estimation.

• Chapter 3 describes the systems and protocols used for the collection of ex-

perimental data from an inertial-vision system for experimental validation of

observers presented in this thesis. Notably, this system, based on a large, 2 m

reach, robotic arm includes measurement of ground-truth reference data against

which estimates can be compared.

• Chapter 4 presents two approaches to designing a non-linear pose observer by

making use of a decompositions that permit independent design of the rotation

and position components. The first approach presented comprises independent

attitude and position observers, with the attitude estimate used as an input for

the position observer for which stability is proven in the presence of an expo-

nentially decaying input disturbance resulting from the cascade. The second and

third approaches design the rotation and position estimation components simul-

taneously but within a single observer by decomposing a Lyapunov function into

rotation and translation components.
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• Chapter 5 describes the design of an observer for both pose and velocity mea-

surement biases. An almost-global asymptotic and locally exponential Lya-

punov stability proof is given together with an extension to the case where ve-

locity measurements are measured in two orthogonal components in different

frames of reference with separate bias processes. Implementation issues are ad-

dressed including presentation of a sample discrete time algorithm.

• Chapter 6 presents a pose observer that uses projective vision measurements of

bearing from the camera to a landmark, instead of vision measurements of pose.

This corresponds to a simpler, more direct use of vision measurements without

requiring complicated post processing. Again, a Lyapunov stability argument

is given, proving local asymptotic stability. Based on work in Chapter 5, the

observer is extended to address velocity bias estimation.

• Chapter 7 conclude this thesis, summarising the results of this research.

Experimental data and MATLAB scripts implementing the observers described in

this thesis are contained in an attached DVD. Additionally, this thesis contains three

appendicies describing the contents of the attached DVD and providing further results

not included in the main text.

• Appendix A contains descriptions of the contents of the DVD atttachement to

this thesis, including raw and pre-processed data sets from experiment series

reported in this thesis.

• Appendix B provides the full proof of a linearisation argument using in Theorem

5.2.1 of Chapter 5.

• Appendix C presents a sample observer for linear velocity from measurements

of pose, angular velocity and linear acceleration in the presence of inertial mea-

surement biases. By use of such an observer, one can treat an appropriate iner-

tial sensor as providing measurements of the system velocity, angular and linear.

Appendix C also outlines sufficient conditions for ensuring the cascade of a lin-

ear velocity estimate into a pose observer is stable.
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Chapter 2

Literature Review

In this chapter I will critically review the background literature relevant to the problems

considered in this thesis. Section 2.1 reviews historical approaches to the problems of

estimating position, attitude and pose. Section 2.2 provides an overview of inertial vi-

sion sensor packages and a summary of prior work utilising them for attitude and pose

estimation. Finally, Section 2.3 surveys prior work in the use of non-linear observers

for the estimation of pose and attitude.

2.1 Pose Estimation

Accurate estimation of the attitude and position of a vehicle is vital to many areas of

scientific endeavour, including navigation, robotics and automation. In this section, I

present a review of common practices and techniques for the estimation of attitude and

position independently, and for their combined estimation as pose.

Position estimation in a static frame of reference is a linear problem which can

be tackled by well studied techniques such as Kalman filtering. Attitude estimation

is however a highly non-linear problem requiring different techniques. Estimation of

both position and attitude by a single estimation system may be simultaneous in a

single estimator, or through a cascade of the results from one estimator into another.

2.1.1 Position Estimation

The standard representation for the position of an object in three dimensional space

is as a three-vector, p ∈ R3. In a non-rotating, inertial, frame, p has the customary

kinematics

ṗ = v

v̇ = a
(2.1)

7
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where v is linear velocity and a the acceleration, both also three-vectors in R3. With

measurements of p, v or a, or full rank linear combinations thereof, estimating p is

then a linear problem.

Estimating position based measurements of p, v or a, or linear combinations thereof,

is a self-evidently important problem with applications including navigation, robotics

and automation.

2.1.1.1 Asymptotic Observers

One of the simplest methods for defining an estimator for a linear problem is the

asymptotic observer (see e.g. Kailath et al. 2000). For the general linear system with

state x, input signal u, output y and kinematics

ẋ = Ax+Bu

y = Cx
(2.2)

where A, B and C are known, full rank, matrices, one can define the estimate x̂ with

kinematics
˙̂x = Ax̂+Bu+K(y−Cx̂) (2.3)

from measurements of u and y. By selecting the matrix K 6= 0 such that (A−KC) is

Hurwitz, one can ensure the estimation error, x̃ = x̂−x will asymptotically converge to

zero based on the error kinematics ˙̃x = (A−KC)x̃. Further, the rate of convergence is

defined by the eigenvalues of (A−KC). A matrix K can always be selected to ensure

(A−KC) is stable provided the system in equation (2.2) is detectable. By application

of the pole placement theorem, observability of {A,C} is a sufficient condition for

detectability (e.g. Polderman and Willems 1998).

Consider a cost function on the state estimate error of the form

L = x̃>Px̃, (2.4)

where P is a symmetric, positive definite matrix. L is a quadratric cost function

measuring the deviation of x̃ from 0. Lyapunov stability theory (e.g. Khalil 2002,

Slotine and Lie 1991, Rouche et al. 1977) provides the result that stability of the

linear time invariant system x̃ is equivalent to the existence of symmetric positive

definite matrix P for any choice of symmetric positive definite matrix Q, such that

−Q = P(A−KC)+(A−KC)>P. Further, Lyapunov stability theory introduces the no-

tion of exponential stability, where the value of a cost function on the state is bounded

above by a decaying exponential in time.
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Note that as an observer, acting on ideal noise free measurements and unrestricted

by innovation energy constraints, it is often possible to make the eigenvalues of (A−
KC) arbitrarily large and hence convergence of the error to 0 arbitrarily fast.

Further, consider the case where the input u and measurements y are corrupted by

independent additive white Gaussian noise processes, and hence x̂ is random variable

whose covariance is related to the covariances of u and y. Correspondingly x̃ is also

a random variable with the same covariance, and the quadratic cost L is likewise a

random variable with a mean related to the covariance of x̃. Setting the design goal

of estimating x̂ such that x̃ is zero mean with minimum covariance, minimising the

mean of L , one has a Linear Quadratic Gaussian system for which we are attempting

to construct a Linear Quadratic Estimator.

2.1.1.2 Linear Kalman Filters

There exists a single optimal estimator for a Linear Quadratic Gaussian system, the

Kalman filter (Kalman 1960, Kalman and Bucy 1961). The Kalman filter has been the

subject considerable research and many publications over the past 50 years, including

analysis and formulations for both discrete and continuous systems. For a detailed

analysis see, e.g., Anderson and Moore (1979), Kailath et al. (2000).

Resembling the asymptotic observer for the case of noiseless measurements, equa-

tion (2.3), the Kalman filter adds an algorithm for selecting an optimal gain matrix at a

given time, K(t), based on solving an algebraic Riccati equation that includes estimat-

ing the measurement covariance based on the time history of measurements received

so far. The optimal gain K(t) is chose such that the expected value of quadratic cost

function is minimised, subject to estimates measurement uncertainty. In the Kalman

filter, this is broken down into a predictor and a corrector step at each update. In the

predictor step, the covariance and state estimates are propagated based on the input

and state dynamics. In the corrector step, the optimal gain computed and innovation

terms applied to state and covariance estimates.

Linear Quadratic Gaussian systems form a fundamental and widely studied com-

ponent of control theory as they model many natural systems, such as position and ve-

locity estimation from noisy inertial measurements, and a simple class of systems that

other systems resemble locally. Any continuous non-linear system is approximately

linear in a sufficiently small area about its operating point. Further, additive white

Gaussian noise is an accurate model of sensor noise process arising from sources such
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as transmission of analogue waveforms (e.g. Couch 2001, Proakis and Salehi 2001).

2.1.2 Attitude Estimation

Attitude estimation is an inherently non-linear problem. Unlike the linear problem

of position estimation, which occurs on a vector space, attitude estimation occurs on

a curved, compact group. Specifically, attitude estimation for objects in three dimen-

sional space occurs on the special orthogonal group SO(3) of dimension four, a smooth

differentiable manifold. The group SO(3) contains every unique rotation that can be

applied to a vector in R3, including the identity, or rotation by 0 degrees, and the in-

verse for every rotation. Further, as the angle of rotation passes 180 degrees, the group

loops back on itself, giving it its compact property.

Attitude estimation is vitally important for trade, commerce and military appli-

cations. In ancient times, the attitude of a ship on the oceans surface was estimated

using a magnetic compass and measurements of the stars. Precise estimation of the

ships attitude was vital to reaching safe ports and avoiding nautical dangers, especially

when out of sight of coastal references. In more recent times, air and spacecraft have

extended the need to precise attitude estimation in three dimensions and at high fre-

quency. For aircraft in particular, attitude estimation is vital to their safe operation.

Without an accurate estimate of attitude, aircraft risk not only drifting off-course, but

loss of control, stalls and crashes.

A number of distinct techniques have been applied to the problem of attitude esti-

mation over the course of the last century, ranging from extensions of linear estimation

algorithms to novel non-linear techniques. These techniques have both been driven by

and driven the development of accurate and high-performance air and spacecraft, es-

pecially autonomous vehicles. Common sensor used in estimation include inertial,

magnetic field, vision and Global Positioning System (GPS) sensors.

Crassidis, Markley and Cheng present a comprehensive survey of attitude esti-

mation techniques with particular emphasis on the practicality of each technique in

real-world applications (Crassidis et al. 2007). This survey focuses heavily upon Ex-

tended Kalman Filter (EKF) based techniques, which have been long established as the

workhorse of non-linear estimation (e.g. Allerton and Jia 2005, Armesto et al. 2004,

2008, 2007, Marins et al. 2001, Lefferts et al. 1982, Barshan and Durrant-Whyte 1995,

Trawny et al. 2007, Mourikis et al. 2007, Mourikis and Roumeliotis 2007, Bonnabel

2007). The survey also considers newer techniques including unscented filters (e.g.
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Julier and Uhlmann 2002a,b, Wan and van der Merwe 2000), particle filters (e.g.

Cheng and Crassidis 2004, Gustafsson et al. 2002, van der Merwe et al. 2000), and

non-linear observers (e.g. Thienel and Sanner 2003, Thienel 2004, Hamel and Ma-

hony 2006, Mahony et al. 2008, 2005).

Other surveys on the topic of attitude estimation include Lefferts et al. (1982),

Allerton and Jia (2005) and Meng et al. (2008).

2.1.2.1 Extended Kalman Filters

The Extended Kalman Filter (EKF) refers to a family of estimators in which non-

linear systems are locally approximated by linear quadratic Gaussian systems and their

state estimated using the Kalman filter. For a given non-linear system there are many

ways of obtaining and maintaining a local linear approximation of the state and input

dynamics. Commonly, the local linear estimate will be taken about the current best

state estimate using a linearisation chosen for accuracy over an area proportionate to

the rate at which the linearisation is updated.

In the problem of attitude estimation, the linearised state is commonly represented

using Euler angles (e.g. Craig 1989), Rodrigues parameters (e.g. Murray et al. 1993)

or unit quaternions (again, e.g. Murray et al. 1993). Each approach has advantages

and disadvantages in terms of the state and input dynamics. In particular, any three

dimensional representation of attitude, such as Euler angles and Rodrigues parameters,

necessarily has at least one singular point near which state representations must be

shifted to avoid singularity.

2.1.2.2 Unscented Kalman Filters

A key performance limitation of an EKF is the region of validity for the linearisation

(Julier and Uhlmann 1997). For highly non-linear problems, such as attitude estima-

tion for aircraft, the region of validity of the linearisation of the state dynamics in

the update step may be significantly smaller than the movement of the state trajectory

over the update time step causing the evolution of the state dynamics to be incorrect

and ill-defined. This can be alleviated by raising the rate at which the linearisation is

recomputed, a solution that is however limited by available computational resources.

Further, Julier and Uhlmann observe that under the repeated linearisation of the

EKF, the state estimates can become statistically biased and inconsistent due to the

Taylor series truncation inherent in the linearisation (Julier and Uhlmann 1997). That
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is, the state estimate can be incorrect, or biased, and the covariance estimate underes-

timated, or inconsistent. This combination can cause the filter to diverge.

Julier and Uhlmann propose an alternative in the Unscented Kalman Filter (UKF)

(Julier and Uhlmann 1997, Julier et al. 1995). While the EKF handles nonlinear dy-

namics by linearising the problem about the operating point, the Unscented Kalman

Filter (UKF) uses a non-linear transformation of a set of carefully selected points from

a Gaussian distribution

The UKF replaces the EKF prediction step, where state and covariance estimates

are propagated via linearised system dynamics, with a novel estimation scheme based

on the true non-linear trajectory for a set of points characterising the state and covari-

ance distribution, a process called the unscented transformation. A set of point, called

sigma points are selected to represent the state and covariance estimate. These points

are usually initialised as being along basis directions of the covariance, at a distance of

the standard deviation from the mean. For each prediction step, the location of these

sigma points is predicted using the true non-linear state dynamics function, and from

these predicted sigma points the state and covariance after the time step estimated.

Using the true non-linear function of state dynamics rather than a linearisation allows

estimation of the state and covariance at up to second order for state and third order for

covariance, compared with the first order estimate obtained by the EKF. The corrector

step remains the same in the UKF.

Sigma-point based estimators offer several advantages over EKFs. The Unscented

transformation is statistically both unbiased and consistent, compared with the biased

and inconsistent result obtained using the linearisation to propagate the state and co-

variance estimates. Additionally, eliminating the need to compute analytic Jacobians

for the linearised system dynamics significantly reduces the computational cost of each

iteration.

2.1.2.3 Particle Filters

Particle filters have also successfully applied to the attitude estimation problem (e.g.

Cheng and Crassidis 2004, Oshman and Carmi 2004a,b). Particle filters form a large

class of suboptimal nonlinear estimators based on sequential Monte Carlo simulation

in which the state probability density function is approximated using point samples

distributed pseudo-randomly according to the prior distribution (Doucet et al. 2001,

MacKay 2003). At each iteration of the filter, the particle locations are updated using
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drift, diffusion and resampling processes. After estimation, the particles are let ‘drift’

down gradient directions towards local maxima in the state distribution. To prevent

a degenerate case, particles are also ‘diffused’ using a random walk, and a subset

of particles resampled; redistributed pseudo-randomly using the current distribution

estimate. Particle filters can differ substantially in the algorithms used for diffusion,

drift and resampling point selection, in addition to the number of particles and state

representation. Scaling the number of particles used can greatly vary the accuracy and

computational efficiency of the filter.

For strongly non-linear and non-Gaussian problems, particle filters can prove su-

perior to conventional nonlinear filters, such as from the Kalman filter family. In par-

ticular particle filters are able to estimate multi-modal distributions and, due to the

resampling and diffusion processes, are able to cope with local minima.

The two major drawbacks to the particle filter are its inherent suboptimality and

computational cost on high dimensional problems. The structure of a particle filter is

inherently suboptimal due to the diffusion and resampling processes. As the dimen-

sionality of the problem increases, the number of particles required to approximate the

distribution increases with the power of the dimension (Daum and Huang 2003, Oh

1991).

2.1.2.4 Other Solutions to Attitude Estimation

In addition to the application of generic non-linear estimation methods, there have

been attempts to develop methods of attitude estimation using the specific properties

of the non-linear attitude estimation problem. Of note is the Quaternion Estimator

(QueST) (Shuster and Oh 1981), a method based on Wahba’s problem (Wahba 1965),

which is to find the orthogonal matrix R that minimizes the mean squared error be-

tween observations of reference vectors, Zyi , and estimates of the vector measurements,

Rzi. QueST solves Wahba’s problem using a fading memory of previous estimates to

smooth process noise. The QueST algorithm includes elements from optimal estima-

tors, such as covariance estimation.

2.1.2.5 Non-Linear Observers

A comparatively recent approach has been the use of an asymptotic observer structure

constructed on a non-linear space, in this case SO(3), to provide estimates of attitude

(Thienel and Sanner 2001, 2003, Thienel 2004, Thienel and Sanner 2007, Hamel and
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Mahony 2006, Mahony et al. 2008, 2005, Bonnabel et al. 2006b, Vasconcelos et al.

2007).

Non-linear observers offer significant advantages in the simplicity of implemen-

tation and tuning, and robustness to measurement noise. As they are often accompa-

nied by global or almost-global stability proofs, many non-linear observers may be

initialised with almost any initial conditions and will reconverge after an almost ar-

bitrarily bad noise injection. In addition, many non-linear observers are also locally

exponentially convergent, dominating most unbiased measurement noise processes.

The almost-global nature of the stability proofs for non-linear attitude observers

is an unavoidable of SO(3). Due to the compact structure of SO(3) there necessarily

exists an antipodal set in which multiple directions are equi-distant from the goal atti-

tude, such that the vector sum of paths to the goal is zero. Often, this set corresponds

to the set of all orientations a rotation of π radians from the goal about any axis. This

set necessarily has measure zero.

Many non-linear observers commonly feature a small number of gains, with con-

vergence for a wide range of gains, if not all gains. Even with discrete implementation

the range of values for which the observer is convergent can cover several orders of

magnitude, significantly simplifying the tuning process.

It is noted by Crassidis et al. (2007) that these newer, non-EKF based approaches

have demonstrated several advantages over EKF approaches, particularly as non-linearity,

non-Gaussian statistics and poor a-priori state estimates become problematic. In par-

ticular, Crassidis et. al. note that although non-linear observers are still in their infancy,

these methods show great promise for future applications.

2.1.3 Combined Attitude and Position Estimation

For many applications, including navigation and automation, it is necessary to estimate

both the attitude and position of a vehicle. The two may be treated as separate esti-

mation problems, or combined into a single estimation problem, where one estimate

is cascaded as input to the other estimator, or where both are estimated simultaneously

by a single estimator.

With many practical sensor system, independent estimation is not possible as the

system model couples the attitude and position components, such as when measuring

linear velocity or acceleration in a body-fixed frame and needing rotate it into an in-

ertial frame. In such a case, an estimate of the rotation from the body-fixed to inertial
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frame may be produced by an attitude estimator and used as an input to a position es-

timator. This sort of two-stage estimation structure is referred to as a cascade system.

The stability of the estimate p̂ will depend upon the stability of its input, the estimate

R̂ and upon the ability to estimator p to handle non-Gaussian perturbation in this in-

put. One approach to proving stability in this case is to use theorems on input-to-state

stability (Sontag and Wang 1995, Sepulchre et al. 1997).

An alternative is to simultaneously estimate position and attitude using a single

estimator. In this case one defines a state vector containing both attitude and position,

and defines appropriate state and input dynamics. When used in an extended Kalman

filter structure, as in e.g. Kim et al. (2007) or Huster and Rock (2001), this offers

the advantage over a cascade solution of organically estimating covariances arising

from attitude-position interaction. However, it suffers the notable drawback of being a

higher dimensional state space that must be linearised.

Huster and Rock note that for particular sensor configurations, including the monoc-

ular camera plus inertial sensor considered in this thesis, an EKF approach exhibits a

number of deficiencies. They note substantial error accumulation in the state covari-

ance matrix due to repeated linearisation, leading to biased estimates. Specifically, the

EKF does not account for uncertainty in the construction of linearisations arising from

uncertainty in state estimates (Huster and Rock 2003).

Other approaches to simultaneous attitude and position estimation include tech-

niques based on the unscented transformation of the unscented Kalman filter (e.g.

Huster and Rock 2003), particle filters (e.g. Vernaza and Lee 2006), and other sta-

tistical estimators (e.g. Kong 2004).

An area of deficit in the literature until recently has been in the application of

non-linear observers to pose estimation, in particular where the observer is posed as a

system evolving on the special Euclidean group SE(3) of dimension four. SE(3) is a

differentiable manifold and Lie group naturally representing the motion of rigid bodies

as an attitude and position with corresponding kinematics (see e.g. Murray et al. 1993,

Bullo and Lewis 2005). Posing a non-linear observer evolving on SE(3) allows the

design to make use of the natural geometry of the estimation problem. Recent work

in this area includes Martin et al. (2004), Bonnabel and Rouchon (2006), Vasconcelos

et al. (2007), Martin and Salaün (2008a), Bonnabel et al. (2009a) and this thesis. This

area of literature will be examined in detail in Section 2.3.
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2.2 Inertial Vision Sensor Systems

Most estimators for attitude and pose, such as the observers and Kalman filter de-

scribed in Sections 2.1.1 and 2.1.2, feature estimate dynamics that include both mea-

surements of system input and outputs. Using the inputs, the system state is predicted

and from comparing the outputs of the true system to those of the estimate, the estimate

is corrected.

For a rigid body dynamical system, the inputs to motion are the velocities, forces

or accelerations applied and the outputs the attitude and position of the system. Each

of these may be measured directly or as some function of the input or output, such

as measuring the operating point of a thruster and using that to estimate the forces

applied.

A common and widely available sensor package for velocity and acceleration is an

IMU, providing measurements of angular velocity and linear acceleration. The cost,

availability, accuracy and uniform utility of inertial sensors generally dominates any

alternatives such as force estimation from thrust.

For attitude and position common sensors include vision and those based on tri-

angulation from received signals, such as GPS or sonar localisation. Triangulation

for received signals requires an operating environment where the signals can be re-

ceived in a clear and unadulterated manner for optimal accuracy; reflections, noise and

delayed transmission can cause considerable error in pose measurements. This means

that systems such as satellite based GPS are not always reliable in indoor, urban canyon

or other cluttered environments. Vision sensors do not suffer this limitation as their

measurements are reliant only on reflected visible light.

Typical vision sensors, such as the standard pinhole camera model, observe a two

dimensional projection of the scence in front of the camera. If certain details of the

scene are known, such as the position of several objects, the pose of the camera may

be calculated using the position of the features corresponding to those objects in the

camera image. Using this standard result from computer vision, a camera can be used

a sensor for both attitude and position. Additionally, the location of individual features

in the projected image, or calculations of visual flow between images may also be used

as measurements of the system output in an estimation.

In this thesis, I concentrate on the estimation of pose using the combination of an

inertial sensor and a vision sensor. This combination, often referred to as an inertial-

vision sensor package, provides measurements of both the inputs and outputs of a
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rigid body motion system. An inertial-vision sensor package has several desirable

characteristics, including complementary noise spectra between component sensors,

the option of pursuing high-rate estimate, the possibility of multi-modal use of the

vision sensor and low weight and cost requirements.

The use of inertial-vision sensor packages has been of recent interest to the sci-

entific community, with two workshop (Vincze et al. 2003, Corke et al. 2005) and

a tutorial (Dias and Lobo 2008) at recent major international conferences, and with

associated journal special issues.

2.2.1 Pose and Attitude Estimation from Inertial Sensors

Inertial sensor packages contain a series of discrete sensors providing measurements of

angular velocity, linear acceleration, magnetic field and inclination. A typical inertial

sensor package, such as the 3DM-GX1 (Mic 2006b) may contain up to 9, and in some

cases more, discrete sensors; 3 each of gyroscopes, accelerometers and magnetomers,

one of each aligned to a different cardinal direction, plus other auxilliary sensors.

Using a high quality Inertial Measurement Unit (IMU) pose may be estimated from

inertial sensors alone, by direct integration of measurements. This process, known as

dead reckoning, has been used for navigation in cases where exteroceptive sensors are

unavailable, such as submarines and strategic missiles. This process is used in the

original Inertial Navigation Systems (INSs), a technology brought to maturity during

the development of nuclear submarines and theatre ballistic missiles in the 1960’s.

Accurate dead reckoning relies on the use of highly precise, well calibrated and, by

necessity, expensive inertial sensors, as integration of noise and bias errors can rapidly

accumulate, causing the state estimate to diverge.

In many modern guided munitions and delivery systems, inertial navigation is used

as a component of the guidance systems. Modern sensors used in such systems in-

clude ring laser gyroscopes and quartz resonance accelerometers. Such sensors are

commonly expensive and in some cases their use or export is restricted by legislation.

For example, the Joint Direct Attack Munition (JDAM), designed as a cheap guidance

system for existing inventories of unguided gravity bombs, and which has an accuracy

of 30 m over a course of up to 15 miles on inertial navigation alone, has been priced

at US$18,000 per unit, (GlobalSecurity.org 2006, Federation of American Scientists

2008), of which the inertial nagivation system comprises US$6,500 (Sloyan 1999).

For application to small scale Unmanned Aerial Vehicles (UAVs), these cost of
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such guidance systems and sensors can easily match or exceed the cost of the aircraft

by over an order of magnitude. For example, the functional prototype of the X-4 flyer

constructed at The Australian National University (Pounds 2008) carries an estimated

price of AU$8,000 sans INS (Pounds 2009), from which mass production would bring

considerable cost savings. Further, for a craft under propulsion (other than gravity),

the weight and power requirements of such highly accurate sensors can significantly

decrease available payload capacity. For these applications, low-cost and light-weight

components are required in order to maintain the performance characteristics of the

aircraft.

The advent of Micro Electrical Mechanical System (MEMS) has provided cheap

and light-weight components for the development of low-coast, light-weight IMU sys-

tems for commercial applications. These sensors typically provide high frequency

measurements corrupted by Gaussian noise processes and slowly time-varying biases.

For comparison, the bias drift rates of the 3DM-GX1 are quoted as a angular ran-

dom walk of 3.5◦/
√

hour and in-run acceleration stability of 10 mg (Mic 2006b), com-

pared with 0.125◦/
√

hour and 1 mg for the Honeywell HG1700 (Honeywell 2006)

used in some JDAM kits (Business Wire 1995). The off-the-shelf price for a single

3DM-GX1 was US$1,195 in 2004 (Mic 2004) and similar MEMS devices retailing

for around US$350 in 1000 piece lots in 2009. All of these are capable of measure-

ment rates of at least 100 Hz.

In devices such as the 3DM-GX1, the sensor quality is insufficient to provide more

than a few seconds of reliable dead reckoning due to the accumulation of errors from

both noise and bias. To provide a long term stable pose estimate, it is necessary to

augment the inertial sensor with an additional exteroceptive sensor.

2.2.2 Pose and Attitude Estimation from Inertial Sensors Augmented
with an Additional Exteroceptive Sensor

Augmenting an inertial sensor with an exteroceptive sensor, such as GPS or vision

provides a second sensor that can be used in estimation to balance the noise and bias

characteristics of the inertial sensor. As previously discussed, a measurement of the

system output may be used to form a correction term in an estimator, correcting ini-

tial state errors and prediction errors accumulated from integration of system input

measurements.

Generally, due to the physics and construction of their measurement devices exte-
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roceptive sensors provide low frequency measurements which are corrupted by high

frequency noise processes, but stable at low frequencies. In particular, they are free of

measurement biases. Typical measurement rates range include up to 30 Hz for most

commercial vision sensors, including webcams and video cameras, and up to 20 Hz

for GPS sensors (Saripalli et al. 2003, Novatel 2009).

Augmenting an inertial sensor system with such an exteroceptive sensor permits

exploitation of the complementary properties of these sensors. That is, one can com-

bine the high frequency inertial measurement, corrupted by low frequency noise, with

a low frequency exteroceptive measurement corrupted by high frequency noise, to pro-

duce a high frequency estimate with low noise over the entire spectrum.

Applied to linear time invariant systems, this approach is termed complementary

filtering (e.g. Brown 1972, Brown and Hwang 1992) and can be represented as the

sum of two or more filters, each applied to different signals, where the filters are cho-

sen so that at all frequencies their transfer functions sum to 1 For example, choosing

F1(s) = k
s+k , a low pass filter, and F2(s) = s

s+k , a high pass filter, one can form the

complimentary filter X̂(s) = F1(s)Y1(s)+ F2(s)Y2(s). If Y1(s) and Y2(s) are noise free

measurements of the same signal then X̂(s) is a faithful representation of the signal.

Moreover, Y1(s) is low pass filtered while Y2(s) is high pass filtered. Figure 2.1 illus-

trates the frequency responses of F1(s) and F2(s).
The idea of complementary filtering has been applied to non-linear systems in

pose and attitude estimation by a number of authors over the past 40 years, e.g. Brown

(1972), Bachmann et al. (1999), Pascoal et al. (2000), Mahony et al. (2008)

As mentioned earlier, in this thesis I concentrate discussion on and provide exper-

imental results for estimation using the combination of an inertial and a vision sensor.

However, many of the techniques presented generalise to other sensors, such as GPS,

particularly where the vision sensor is solely for pose.

2.2.3 Linear Velocity from Inertial and Exteroceptive Measure-
ments

For many applications, such as those considered in this thesis, it is desirable to measure

both angular and linear velocity. In the case of pose estimation based on Lie group

techniques, these form a complete element of a vector field over SE(3), admitting

design of a simpler estimator with a greater affinity for the underlying differential

geometry.
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Measuring angular velocity is straightforward, using widely available intrinsic sen-

sors; gyrometers. For linear velocity there does not exist a widely available intrinsic

sensor, leaving one with more complicated and expensive exteroceptive options such

as laser or ultrasonic doppler sensors, or magnetic or visual field derivative sensors.

However, instead one may estimate linear velocity using a measurement of position

and measurements of linear acceleration obtained from accelerometers commonly co-

packaged with gyrometers in inertial measurement units.

Appendix C presents a sample observer for linear velocity from measurements of

pose, angular velocity and linear acceleration in the presence of inertial measurement

biases. Moreover, it contains an outline of the sufficient conditions for using such an

estimate of linear velocity as an input to a pose observer of the types described in this

thesis, and ensuring the compositie system arriving from this cascade is stable.

Throughout this thesis, I will commonly assume that linear velocity is available

from a inertial-vision sensor package by way of an estimator such as that of Appendix

C.

2.2.3.1 Inertial Vision Pose Estimation using Pose Measurements from Vision

As mentioned previously, the pose of single vision sensor can be estimated from each

frame using correspondences between observed image coordinates of landmarks and

a-priori knowledge of the landmark location.This is a standard result from computer

vision, known as the perspective-n-point problem (e.g. Horaud et al. 1989, DeMenthon

et al. 2001, DeMenthon and Davis 1992).

In recent literature there have been several investigations of pose estimation using

inertial sensors and vision sensors in this modality.

Armesteo et. al. consider pose estimation on SE(3) for a mobile robotics platform

operating a in a cluttered environment (Armesto et al. 2004, 2007, 2008). Using an

experimental platform consisting of an inertial and vision sensor package attached to

the end of a robotic arm, they estimate pose relative to a specially designed visual

target. They compare the performance of extended and unscented Kalman filters and

particle filters.

Many authors have considered the problems of attitude (e.g. Mahony et al. 2008)

and pose estimation (e.g. Niculescu 2002) from a combination of inertial measure-

ments and direct measurements of attitude or pose, using simulated measurements

rather than measurements obtained using a physical sensor such as a vision or GPS
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system.

In the field of visual servoing, many authors have considered the problems of con-

trol and combined estimation and control for a system with a single camera observing

a set of landmarks whose location is known in the inertial frame. When the image

features are used to estimate the pose of the camera, this is known as position-based

visual servoing and is a well studied problem (e.g. Corke 1994, Wiess 1984).

When the locations of landmarks are not known a-priori, stereo cameras may

be used to provide a pose estimate. When the displacement between the cameras

is known, pose can be estimated from landmarks observed in both image, using the

epipolar geometry of the cameras (e.g. Hartley and Zisserman 2004).

Stereo cameras in combination with inertial sensors have been used in several

robotic helicopter projects. Early work from Amidi (Amidi 1996, Amidi et al. 1999)

investigates the combination of stereo cameras, GPS and inertial sensors. A team from

CSIRO investigated a helicopter platform using stereo vision as the sole exteroceptive

sensor (Roberts et al. 2002, Buskey et al. 2003, Corke 2004). In Saripalli et al. (2003),

the CSIRO helicopter is compared with other robotic helicopter projects. Saripalli

et. al. note that while other helicopters use high performance, high cost avionic grade

sensors that can cost more than order of magnitude more than the aircraft, the CSIRO

project using considerably cheaper sensors compares favourably, being able to provide

good low-bandwidth control.

2.2.3.2 Inertial Vision Pose Estimation using Image Features Directly

Rather than use pose reconstructed from image features in pose estimation, some au-

thors have considered using the image features directly in the estimation process. This

approach eliminates a source of approximation error and a significant portion of per-

frame computation.

Huster and Rock (Huster and Rock 2001, Huster et al. 2002, Huster and Rock

2003) estimate the position of a moving Autonomous Underwater Vehicle (AUV) rel-

ative to a stationary object using inertial measurements of angular velocity and lin-

ear acceleration, and the bearing of the stationary object, determined using a single

image feature from a monocular camera. Using a modified EKF they estimate posi-

tion, attitude, inertial measurement biases, linear velocity and external, uncontrolled

forces such as ocean currents. They successfully use their estimator in closed-loop ex-

periments performing docking operations using a robotic manipulator from unknown
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initial conditions and under simulated output disturbances.

Rehbinder and Ghosh (2003) consider estimation of attitude, position and linear

velocity using inertial measurements of angular velocity and linear acceleration, and

vision measurements as observations of line features. They propose a nonlinear ob-

server for attitude on SO(3), proving local convergence, and cascade the resulting

estimate into an observer for position and linear velocity.

Vasconcelos et al. (2007) estimate pose on SE(3) using inertial measurements of

angular and linear velocities and vision measurement of the range and bearing of a

constellation of landmarks, such as obtained by a laser range finder. They propose a

non-linear observer evolving directly on SE(3) to estimate pose together with linear

velocity measurement bias and prove almost-global exponential stability. Recent work

from Vasconcelos et. al. consider attitude estimation on SO(3) in a similar setting,

with the addition of bias and noise to angular velocity measurements (Vasconcelos

et al. 2008, 2009).

Vik and Fossen (2001) consider full pose estimation from inertial and GPS mea-

surements for a submersible craft. Instead of using measurements of position, attitude

from their GPS, they use a tightly coupled architecture utilizing direct measurements

of satellite psuedorange and deltarange.

As discussed in Section 2.1.2, the QueST algorithm is a stochastic estimator for

attitude estimation from vector measurements.

In contrast to position-based visual servoing mentioned earlier, some authors in-

vestigate image-based visual servoing, where control laws are designed to control the

motion of observed image features directly, rather than the motion of the camera rela-

tive to the landmarks the features correspond to (e.g. Corke 1994, Wiess 1984, Cunha

et al. 2007, Guenard et al. 2008, Le Bras et al. 2006).

Considerable research has gone into estimating motion from a sequence vision

measurements alone, without inertial measurements. Soatto has considered the ap-

plication of non-linear estimation techniques to the problem of structure from motion

(Soatto et al. 1996), and recently including inertial-aided structure from motion (Jones

et al. 2007)

Mourikis and Roumeliotis consider pose estimation for ground vehicle using a

camera and IMU in an on-road environment Mourikis and Roumeliotis (2007). They

use an EKF technique which estimates not only current position, but also prior camera

poses using inter-frame constraints on observed landmarks.
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In the related area of Simultaneous Localisation and Mapping (SLAM), practition-

ers aim to estimate both the pose of a vehicle and the position or pose of landmarks

dynamically encountered along a trajectory. Commonly this is achieved by use of

a Kalman filter based technique running atop an feature visual extraction and corre-

spondence detection algorithm, using inertial and visual sensors. An excellent review

of SLAM techniques is given in Durrant-Whyte and Bailey (2006) and Bailey and

Durrant-Whyte (2006). Bekris et al. (2006) presents a good review of the case where

SLAM estimation is made from measurements of the bearing to features only.

The use of bearing only measurements in aid of inertial measurements for guidance

has been considered in Pachter and Porter (2004).

2.2.4 Multi-rate Sensor Fusion

It is a common practice to design an estimator, especially a deterministic observer, as

a continuous time system and yet implement the estimator as a discrete time system

on a microprocessor. Generally, strong local convergence properties of the continuous

time system, together with a sufficiently small time step, will serve to dominate any

additional perturbations from the discrete approximation.

A concern in converting a continuous time system with multiple sensor inputs to

discrete implementation is in handling different measurement rates from different sen-

sors. Previously, it was mentioned that common inertial measurement units are capa-

ble of measurement rates of 100 Hz and up, and that measurement rates for common

exteroceptive sensors were 30 Hz and below.

The simplest approach is to subsample faster measurement rates down to the rate

of the slowest measurement and run the estimator at that rate. However, this discards

available information that could be used to maintain a higher bandwidth estimate.

Armesto, Tornero and Vincze study multi-rate sensor fusion with relevance to the

pose estimation problem, analysing the common techniques of zero, first and higher

order holds applied to low rate measurements, assuming synchronicity and periodicity

of measurements, in applications including unscented and extended Kalman filters and

particle filters Armesto et al. (2004, 2007, 2008).

Alternatively, one may design an estimator such that in the continuous time es-

timation kinematics there is no multiplicative coupling between measurements from

different sensors, and then integrate along the corresponding component as each mea-

surement arrives based on the quasi-linear assumption that locally the kinematics com-
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ponents are additive. An example and implementation strategy for this approach will

be given in Section 5.3. This approach also offers advantages reducing multiplicative

coupling of measurement noise processes, and allows the relaxation of assumptions of

measurement synchronicity or periodicity.

In this thesis, this approach will be pursued and termed an asynchronous multi-rate

implementation

2.2.4.1 Zero Order Hold versus Impulsive Integration

In an asynchronous multi-rate implementation, kinematics associated with the slowest

measurement can be integrated using an impulsive integration, or ‘all at once.’ For

a non-linear system this is the most correct approach as the kinematics are applied

when the system is closest to the state in which the measurement was made. Alter-

natives, such as a zero-order hold, delay some or all of the kinematics causing them

to be applied when the system has moved on and they may no longer be in ‘the right

direction’.

Consider a general non-linear system evolving on a Lie group Ġ = GA, where G is

the current state, such as attitude, and A is an element of vector field, such as angular

velocity. Let an estimator from two measurements be given by ˙̂G = Ĝ(Ay +α), where

Ay is a measurement of velocity and α is an innovation based on a measurement of

G. Further, consider the right invariant error term G̃ = ĜG−1 with kinematics ˙̃G =
G̃AdG α.

Consider the discrete zero-order hold implementation

Ĝk+1 = Ĝk exp(τAyk + ταk−κ) (2.5)

where κ = 0 when a measurement of G arrives and is incremented on any other it-

eration. With simple forwards Euler integration, the error dynamics over a period s,

between consecutive measurement of G, is given by

G̃k+s = G̃kΠ
k+s
l=k AdGl exp(ταk). (2.6)

Conversely, using impulsive integration defined as

Ĝk+1 = Ĝk exp(τAyk +δkmodssταk) (2.7)

where s remains the period between measurement of G, and δkmods signifies the α term

is only included in the dynamics when available. In this case, the error dynamics over
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the period s are given by

G̃k+s = G̃k AdGk exp(δkmodssταk). (2.8)

The latter performs a single impulsive correction, using the innovation αk in the state

closest to that in which it is measured, while the former performs a slow correction,

transforming the innovation with the evolving state. This slower integration may intro-

duce additional errors due to the non-linear and non-commutative nature of the state

dynamics.

2.3 Non-Linear Pose Observers

Problems such as attitude and pose estimation are examples of non-linear optimisation

problems that exhibit strong structure properties that can be represented using differ-

ential geometry. Smooth, continuously differentiable surfaces combined with prop-

erties such as invariance of cost functions and symmetry provide sufficient structure

to support novel optimisation techniques arising as natural extensions of established

linear techniques (Absil et al. 2008, e.g.), with a recent workshop (Absil et al. 2007)

bringing authors from areas including robotics, computer vision, bioinformatics, data

mining and signal processing.

Specific to the problems of attitude and pose estimation, and the estimation of

related quantities such as velocity, there have been a number of works proposed over

the past twenty years. Early work from Salcudean (1991) proposed an observer for

angular velocity using a quaternion representation, with global convergence properties.

Vik and Fossen (Vik and Fossen 2001) designed an observer for attitude and positions,

using a quaternion representation of attitude and simultaneous attitude and position

estimation dynamics.

Rehbinder and Ghosh (2003) propose an observer for pose from a combination of

inertial and vision sensors, where the vision measurements are of lines in the camera

image corresponding to line features whose position and direction are known a-priori.

They identify the line measurements as the implicit outputs of a perspective system

and prove local convergence. The problem is re-addressed in a quaternion formulation

by Wu et al. (2006).

Recent work from Thienel and Sanner (Thienel and Sanner 2001, 2003, Thienel

2004) proposed a series of observer and control designs for spacecraft attitude from
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measurements of attitude and biased measurements of angular velocity, again utilizing

the quaternion representation.

Mahony, Hamel and Pflimlin (Mahony et al. 2005, Hamel and Mahony 2006, Ma-

hony et al. 2008) propose observers using the rotation matrix and quaternion represen-

tations of attitude, identifying similarities to linear complementary filters. While early

work considers measurements of attitude and biased measurements of angular velocity,

in later the work the attitude measurement is replaced with a projective measurement

in the gravity vector.

Martin and Salaün (Martin and Salaün 2008a,b,d,c, 2007) apply invariant and

symmetry-preserving observers, developed by Bonnabel, Martin and Rouchon (Bonnabel

et al. 2009a, 2008), to the problem of attitude estimation from inertial measurements.

Vasconcelos, Cunha, Silvestre and Oliveira (Vasconcelos et al. 2007, 2008, 2009)

consider the design of observers for pose and attitude from measurements of angular

and linear velocity and vector measurements of the bearing and distance to landmarks

whose position is known a-priori. Related work in Cunha et al. (2007) and Cunha et al.

(2008) considers the visual-servo control problem using purely visual measurements

is considered.

In related work, Batista et al. (2007) consider the design of a non-linear observer

for a class of systems inlcuding position and velocity estimation in a moving frame of

reference.

2.3.1 Perspective Systems

As mentioned previously, Rehbinder and Ghosh (2003) propose an observer for pose

from inertial measurements and vision measurements of the perspective image of

known line features. They identify the line measurements as the implicit outputs of

a perspective system. An implicit output being an output given by an implicit func-

tion, in this case d>i R>yi = 0, where di is the true line and yi is a normal to the observed

line.

The term perspective system is introduce in (Ghosh et al. 1992) and a general

perspective system defined in (Ghosh et al. 1994). These papers address the problem

of correspondences between line measurements for a camera undergoing unknown

rotation and translation.

Several non-linear observers have been proposed based on the perspective system

formulation. In early work, Jankovic and Ghosh (1995) develop an observer for range
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estimation from vision measurements. In Matveev et al. (2000), a Luenberger-type

observer is given for a general system with implicit outputs. Aguiar and Hespanha

(2005) proposes a robust observer using a H∞ approach for the pose of a vehicle using a

combination of velocity measurements, pose measurements and implicit output vision

measurements. Other pose and attitude observers include Chen and Kano (2002),

Hespanha (2002), Abdursul et al. (2004), Aguiar and Hespanha (2006).

2.3.2 Observers from Vector and Bearing Measurements

Another useful modality of vision sensors is where the location of image features are

treated as bearing on the sphere S2 from the camera to a landmark whose position

is known. A similar case is where a laser rangefinder is used to obtain vector mea-

surements on R3 of both the distance and bearing to landmarks. These problems are

examples where measurements taken on a homogenous space acted upon by a Lie

group (Boothby 2002).

When designing observers for systems based on vector or bearing measurements

a number of additional difficulties are presented. Firstly, multiple measurements are

required to ensure (almost) global stability as opposed to stability to a subspace, gen-

erally three or more such that they collectivelly span R3. Errors and innovations from

each of these measurements then need to be combined in the dynamics of the estimate,

complicating stability proofs. Additionally, in the case of bearing measurements the

measurement is a linear operation of the system state, causing additional difficulties in

obtaining stability proofs.

As describe in Section 2.1.2, Wahba’s problem (Wahba 1965) and the QueST al-

gorithm (Shuster and Oh 1981) address the problem of estimating attitude from vector

measurements. Recent work on the problem includes Sanyal et al. (2008).

As mentioned earlier, Vasconcelos, Cunha, Silvestre and Oliveira (Vasconcelos

et al. 2007, 2008, 2009) consider the design of observers for pose and attitude from

inertial and vectorial measurements.

Mahony et al. (2008) consider the problem of attitude and angular velocity mea-

surement bias estimation from inertial and vector measurements in their explicit com-

plementary filter.

Another case where measurements are made on a homogeneous space is when the,

scalar, range from a known object to a vehicle is measured. When three or more range

measurements are made, well understood techniques for trilateration may be applied
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to determine the position of the vehicle, though the attitude can not be instantaneously

determined. Alocer et al. (2006a,b) consider the estimation of both attitude and posi-

tion from range measurements using geometric descent. The work of Vik and Fossen

(2001) using pseudo-range measurements from GPS sensors is related to this problem.

2.3.3 Invariant and Symmetry Preserving Observers

A substantial body of work from Rouchon, Martin, Bonnabel, Aghannan and Rudolph

concerns systems with smooth state dynamics that are invariant under the action of a

local transformation group and the design of observers that make use of this symme-

try. This work is especially relevant to the design of observers for quantities evolving

on Lie groups, such as pose on SE(3), where the system dynamics can be naturally

expressed as the action of a left (or right) invariant vector field.

Formally, consider the general non-linear system with continuous state dynamics

ẋ = fx where x ∈ X ⊂ Rn; for example let T ∈ SE(3) be the pose of a vehicle, then

Ṫ = T Ξ, where Ξ is an element of a left-invariant vector field over SE(3) constructed

from the angular and linear velocities of the vehicle.

Let G be a local transformation group acting on X , giving X = {ϕg(x)|∀g ∈ G}.
Then dynamics ẋ = f(x) are said to be G−invariant if for every g ∈ G, the dynamics

are unchanged; i.e. Ẋ = f(X) (Olver 1995). In the case of T ∈ SE(3), let G = SE(3)
and ϕg(T ) = T g such that g corresponds to an arbitrary change of initial condition.

Without loss of generality, if T (0) = I then one has that the dynamics Ṫ = T Ξ evolve

symmetrically from any initial condition ϕg(T (0)) = g.

An output y = h(x), y ∈ Y ⊂ Rp is defined to be G−equivariant (Bonnabel et al.

2008) (or G−compatible (Martin et al. 2004)) if there exists a transformation group

ρg on Y such that h(ϕg(x)) = ρg(h(x)). Note this is trivially satisfied when h(x) is the

identity map or when h(x) is G−invariant, when h(ϕg(x)) = h(x).

An observer x̂ = f̂ (x̂,y), where y = h(x) is an output of the system x, is then said

to be G−invariant (Aghannan and Rouchon 2002) if and only if for all g ∈ G, and all

states x̂ and x,

f̂ (ϕg(x̂),ρg(y)) = Dϕg(x̂) · f̂ (x̂,y). (2.9)

Additionally, define a pre-observer as an observer such that f̂ (x,h(x)) = f (x) for all

x, that is an observer for which any trajectory of the true system is a trajectory of the

observer.
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Further, an invariant output error E(x̂,y) satisfies the condition E(ϕg(x̂),ρg(y)) =
E(x̂,y) for all x̂, y and g, and for each x̂, E(x̂,y) is a diffeomorphism with E(x̂,h(x̂)) =
0. For example, consider the error function on T̂ ∈ SE(3) given by E(T̂ ,T ) = I−
T̂ T−1, which is invariant under the right group action ϕg(T ) = T g.

Using the invariance of the system kinematics, observer kinematics, and error

terms general results applicable to systems on Lie Groups are obtained in Bonnabel

et al. (2009a) and Bonnabel et al. (2008), providing a constructive approach to observer

design by specification of a form for all G−invariant pre-observers, and addressing lo-

cal convergence around trajectories. Extended definitions for systems with inputs are

given analogously.

Application of work on invariant and symmetry preserving observers are varied

and include inertial navigation systems (Bonnabel and Rouchon 2005, Bonnabel et al.

2006a, Bonnabel and Rouchon 2006, Martin and Salaün 2007, 2008a,b,d,c), control

of mechanical systems Martin et al. (2004), chemical plants (Aghannan and Rouchon

2002, 2003, Bonnabel and Rouchon 2005), mechanical systems (Aghannan and Rou-

chon 2003), oceanography (Auroux and Bonnabel 2008), quantum systems (Bonnabel

et al. 2009b), and coordinated motion (Sarlette et al. 2008a,b).

From the work of Martin and Salaün (Martin and Salaün 2007, 2008a,b,d,c), the

efficacy and utility of these methods are demonstrated experimentally on the inertial

navigation problem, using inertial, gps, magnetic and barometric sensors.
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Experimental Apparatus and
Methodology

In this chapter I present a system and protocols for collection of experimental data

from an inertial vision system, augmented with ground-truth reference measurements.

The experimental system describe was used to obtain data for inertial-vision based

algorithms that are described later in this thesis.

The system presented in this chapter consists of a strap down Inertial Measurement

Unit (IMU) and firewire camera rigidly attached to the end of a large robotic manipula-

tor. Inertial vision data from the IMU and camera are recorded on a notebook computer

for subsequent analysis. The manipulator, with a radial workspace of over 2 m, is used

to simulate the motion of a moving airborne vehicle. Ground-truth measurements of

the manipulator trajectory are recorded from the manipulator’s controller directly.

For these experiments, data was collected from the sensors and robotic manipula-

tor during motion, in real time. The collected data was then calibrated offline to align

measurement frames and time sequences. The calibrated data was pre-processed to

extract image features, discard outlier measurements and perform data format conver-

sion.

As discussed in Chapter 2, other investigations of inertial vision systems have

included experimental measurements. Several examples are given, including sensor

packages attached to small scale helicopters (Corke 2004), ground vehicles (Mourikis

and Roumeliotis 2007) and robotic manipulators (Huster and Rock 2003, Armesto

et al. 2008). The distinction between this experiment series and others is the inclusion

of ground-truth measurements against which estimates may be validated.

The primary contribution of this chapter is the production of a series of data sets of

inertial and vision measurement together with ground-truth pose measurements for

31
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a series of trajectories mimicking the behaviour of small-scale unmanned aircraft.

Specifically, these data sets contain inertial measurements of angular velocity, linear

acceleration and magnetic bearing, visual observations of static image features who

location in the world frame is known, and ground-truth measurements of the position

and orientation of the sensor package.

This chapter is arranged as follows. Sections 3.1, 3.2 and 3.3 describe the physical

experimental system sensors and actuators, considering the Microstrain IMU, Sony

Camera and ABB Robotic manipulator respectively. Section 3.4 describes the phys-

ical experimental environment, including lighting and image features used. Section

3.5 provides a description of the data logging systems developed for this series of

experiments. Calibration of measurement frames and time sequences across differ-

ence sensors and recording systems is considered in Section 3.6. Lastly, Section 3.7

describes data pre-processing, including image feature extraction.

3.1 3DM-GX1 Inertial Measurement Unit

The MicroStrain 3DM-GX1TM, pictured in Figure 3.1, is an IMU combining a three

angular rate gyros, three orthogonal accelerometers and three orthogonal magnetome-

ters. Retailing for US$1,500 in 2005, it is a commercial off-the-shelf unit with proper-

ties typical of Micro Electrical Mechanical System (MEMS) IMUs. By 2009, advances

in technology and mass-production have reduced the price of similar sensor units to

under US$600 (Douxchamps 2009, SparkFun Electronics 2009).

The 3DM-GX1 communicates with other devices via a serial communications

channel. A single 3DM-GX1 can communicate with a host computer over RS-232

or multiple 3DM-GX1s may communicate with a single host computer using a shared

RS-485 channel. In addition to the three sets of orthogonal sensors, the 3DM-GX1

contains an embedded microcontroller that can perform orientation calculations and

temperature compensation on all sensors, together with hard and soft iron calibration.

The 3DM-GX1 can provide compensated, calibrated vector measurements from all

three sets of sensors at rates of up to 125 Hz. Alternately, the 3DM-GX1 can provide

estimates of orientation using a quaternion, orientation matrix or Euler angle represen-

tation at rates of up to 100 Hz (Mic 2006c).

At operating temperature, the 3DM-GX1 provides performance typical of a MEMS

IMU, with measurements corrupted by low magnitude noise and slowly time-varying
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Figure 3.1: Microstrain 3DM-GX1

biases. An extract of the detailed specifications for the 3DM-GX1 is given in Table

3.1.

Angular Rate Range (◦/sec) +/- 300

Bias In-Run stability (◦/sec) 0.1

Angular random walk (◦/
√

hour) 3.5

Resolution (◦/sec) 0.01

Acceleration Range (g) +/- 5

Bias Short term stability (mg) 0.2

Noise (mg/
√

Hz rms) 0.4

Scale Factor Error (%) 0.5

Resolution (mg) 0.2

A/D converter Resolution (bits) 16

Table 3.1: Extract of 3DM-GX1 Detailed Specifications (Mic 2006b).

For this experiment series, the 3DM-GX1 communicated with a notebook PC run-

ning Ubuntu Linux via a Dolphin FASTUSB09103 USB to serial adapter (Dolphin

Peripherals 2002). Additional USB to serial adapter were tested but found to fail at the

high data rates this IMU operates at.

3.2 Sony XCD X710-CR FireWire Camera

The Sony XCD-X710CR (Son 2003), pictured in Figure 3.2, is a high-resolution

industrial-use digital video camera module. It contains a 1/3-inch progressive scan
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Figure 3.2: Sony XCD 710-CR FireWire Camera

CCD, providing high-quality raw colour images at 30 frames per second with a max-

imum resolution of 1024 × 768 pixels. Retailing for US$1,266 in 2009, the XCD-

710CR is a self contained, commercial off the shelf firewire camera.

The camera communicates with a host computer over FireWire 400, IEEE 1394-

1995 (IEEE p1394 Working Group 1995), bus. The camera both communicates and

powers itself using the 6 circuit alpha connector. For this experiment, the camera was

connected to a notebook PC via an Aten FH-600 powered FireWire hub to convert the

4 circuit alpha connector to the 6 circuit alpha connected used by the camera.

The camera also features an external trigger circuit that may be used to synchronise

shutter timing across multiple cameras or other devices. This connection was not used

in this experiment.

3.3 ABB IRB 6600 175/2.55 Robotic Manipulator

The ABB IRB 6600 175/2.55 is a large 6 degree of freedom industrial robotic ma-

nipulator (ABB 2004a), pictured in Figure 3.3. With a reach of 2.55 m, a workspace

depicted in Figure 3.4 and handling capacity of 175 Kg, this manipulator is used for

a wide range of industrial tasks, including spot welding, materials handling and pre-

machining. Its large reach and 6 axis design makes it ideal for precise imitation of

flying vehicle trajectories.

The ABB IRB 6600 is controlled by an ABB IRC5 Controller (ABB 2004b) run-

ning Robotware 5.10 (ABB 2008). The IRC5 provides the facility to command the

robot in real time using a Flex Pendant interface, or to pre-program robot behaviour in
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Figure 3.3: ABB IRB 6600 175/2.55 robotic manipulator

RAPID. Additionally, the IRC5 is capable of running multiple simultaneous user tasks,

allowing data collection to occur during real-time or pre-programmed robot motion.

A custom mount was constructed from aluminium to rigidly affix the IMU and

camera to the tooltip of the IRB 6600. The mount consisted of two plates of aluminium

welded together at 90◦, onto which were mounted the camera and IMU. The entire

assembly then bolted onto the tooltip of the IRB 6600. The dimensions were calculated

so that the z-axes of the IMU and camera were colinear with each other and the centre

of the robot tooltip, and that there was a 12 cm offset between the IMU center and

camera focal point. The mount assembly is depicted in Figure 3.5.

3.4 Experimental Environment and Setup

This section describes the environment and physical setup used in these experiments.

The environment was controlled to ensure accuracy and repeatability of measurements,

including ground truth data.

These experiments were performed in the manufacturing laboratory of the Depart-

ment of Engineering at The Australian National University. A visual target, containing

distinct image features with know locations was constructed. Lighting was adjusted to

provide optimum target visibility and avoid shadows and reflections.

The visual target used was pattern of circular dots at the vertices of a square, printed
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Figure 3.4: ABB IRB 6600 175/2.55 robotic manipulator workspace (ABB 2004a)

on a A0 paper and affixed to the ground. The target consisted of two square patterns of

dots, one at the vertices of a square with side length 50 cm, the other at the vertices of

a square with side length 10 cm. The dots on the outer square were 7.5 cm in diameter

and those on the inner square were 5 cm in diameter. The dots on each square were

numbered one to four, with the first dot marked by a ring surrounding it and numbering

continuing clockwise. The visual target is depicted in Figure 3.6

The use of printed black circles on white paper provided high contrast features

for which the boundaries may be computed using black-white segmentation and the

centres computed using the center of mass of the image segments. Further, circular

features retain their centre of mass after symmetric erosion and dilation effects that

may occur due to camera motion and in image processing. Printing the target ensured

high precision in both the placement and size of the image features.

The use of two set of four features provided two options of feature comparison,

depending on the camera trajectory used. Identifying the outer four features provided

a feature set more suited to robust estimation due to the greater angular separation

between features. Contrariwise, the inner set of four features allowed for a greater

range of camera motion whilst keeping the image feature in view.

Lighting was provided by ceiling mounted florescent tubes providing general il-
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Figure 3.5: IMU and camera mount for ABB IRB 6600

lumination and two 500 W Halogen work lights directed at the visual target. This

combination of lighting was found to provide good illumination of the visual target

with low specularity and no shadows from equipment, including from the robotic ma-

nipulator.

The complete experiment setup, including lighting, visual target and surrounding

environment is depicted in Figure 3.7.

3.5 Data Logging Software

For these experiments, data was collected from the sensors and robotic manipulator

during motion, in real time. The collected data was then calibrated offline to align

measurement frames and time sequences. This section describes the equipment and

software used to record data during experiments.

These experiments used two discrete data collection systems to record IMU mea-

surements, video frames and the true pose of the robot. Data from the IMU and cam-

era was recorded on a notebook PC running Ubuntu Linux while robot pose data was
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Figure 3.6: Visual feature target observed by camera. The target consists of two sets

of four features, placed on the vertices of squares with side lengths 50 cm and 10 cm

respectively. The first image feature in each square is marked by a double circle and

numbering continues clockwise.

recorded directly on the IRC5 robot controller. Software libraries used in the data

logging systems are listed in Table 3.2.

3.5.1 PC Data Logging System

The IMU and Camera data was recorded simultaneously by a single program running

on notebook PC running Ubuntu Linux. The program used three concurrent threads,

a control thread and one thread each for recording data from the IMU and camera.

Received measurements are then recorded to disk together with a timestamp.

The data logging program makes use of several libraries to communicate with the

IMU and camera. The IMU component uses the serial port control functions of the

GNU C Library (glibc) to open the serial port and control the 3DM-GX1 IMU. The

camera component uses libdc1394 and libraw1394 to open the FireWire communi-

cations channel and control the XCD-710CR camera. The camera component also

makes use of libSDL to record camera frames as bitmap images and provide a real
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Figure 3.7: Experiment setup, including IRB 6600 with affixed camera and IMU,

visual target, lighting, data capture system.
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Subsystem Library Version
IMU glibc 2.7

nptl

Camera libdc1394 2.0.2

libraw1394 2.0.0

libSDL 1.2

glibc 2.7

nptl

Robot ABB Robotstudio 5.10

ABB Robotware (with op-

tions ‘Multitasking’ and

‘File and Serial Channel

Handling’)

5.10

Table 3.2: List of software libraries used by data logging system

time display of the video stream. Posix threads were used to allow capture from both

sources to occur simultaneously.

3.5.2 Robot Data Logging System

A data logging system recording the true pose of the tooltip of the IRB 6600 robotic

manipulator was implemented on the IRC5 controller, making use of the Robotware

options of Multitasking and File and Serial Channel Handling. A second user task

was created to run simultaneously with the pre-programmed motion task. The data

logging task ran a RAPID program consisting of a polling loop operating at 40 Hz that

retrieved the position and attitude of the end of the robot manipulator and recorded

each measurement to a text file stored on the controller together with a time stamp.

3.6 Data Calibration

Recorded data was calibrated to align measurement frames and time sequences from

different data logging systems. The measurement axes of the IMU, camera and robot,

and the frame origins of the camera and robot were calibrated with respect to one
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another for the experimental setup. Additionally, for each experiment, the time axes

of the robot and IMU and camera data logging systems were calibrated with respect to

one another.

This section describes the protocols used to calibrate measurements between sen-

sors.

3.6.1 Measurement Axes and Frame Origins Calibration Proto-
cols

The measurement axes of the IMU, camera and robot, together with the origins of the

image feature and robot frames were calibrated with respect to one another to verify

the experimental setup. The origin of the image feature frame was calibrated with

respect to robot frame of reference using physical calibration marks on the image fea-

ture sheet. Intrinsic and extrinsic camera properties were calibrated with respect to the

robot and image feature frames using the MATLAB camera calibration toolbox. The

measurement axes of the accelerometers and gyroscopes of the IMU were calibrated

with respect to the robot axes using a series of single axis excitation tests. Lastly, the

IMU measurements were calibrated to take into account the physical offset between

the IMU center and camera focal point.

The origin of the image feature frame was calibrated with respect to the robot

frame of reference using calibration marks printed on the A0 sheet together with the

image features. There were two calibration marks consisting of a schematic image

of the robot tooltip, printed in very light grey so that they were visible to the human

eye but indistinct to the vision sensor. The sheet was affixed to the ground and the

robot tooltip manually moved into place against the printed calibration marks. The

tooltip position at each calibration mark was recorded to an accuracy of 1 cm, due

to coarseness in the robot manual control. Using the position of the two calibration

marks, the transformation from an image feature frame origin, located in the center of

image feature squares, to the robot frame, located at the base of the manipulator, was

calculated.

Intrinsic and extrinsic camera properties were calibrated with respect to the robot

and image feature frames using the MATLAB camera calibration toolbox (Bouguet

2008). The image feature sheet was replaced by another A0 print containing a checker-

board pattern, as prescribed in the documentation for the camera calibration toolbox.

The location of checkerboard was calibrated with respect to the robot frame of refer-
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ence using the same procedure as previously described for the image features. The

camera was affixed to the robot and moved through a known path, observing the

checkerboard from a variety of angles. Using the camera calibration toolbox, intrinsic

camera properties, such as focal length and lens distortion, were estimated together

with extrinsic camera properties, such as the camera position and attitude with respect

to the checkerboard.

Internal alignment of the measurement axes of the IMU gyroscopes and accelerom-

eters was tested by affixing the IMU to the robot and moving the robot through a series

of single axis exciting paths. The IMU was affixed to the robot such that the natural

orthogonal axes of the IMU housing coincided with the axes of robot tooltip. The

robot then actuated along each of the x, y, z, roll, pitch and yaw axes in a sine wave

of period 0.25 Hz and wavelength 40 cm or 0.4 radians. A sine wave was selected for

its continuous, well defined first and second derivatives. Each axes calibration pattern

was of 60 seconds, or 15 cycles, duration.

A regression line was computed from the data set corresponding to each axis, and

the regression line compared with the axis of excitation. Analysis of the IMU axes

calibration data indicated that the internal alignment of each sensor was within 1% of

the expected axis direction. Consequently, no correction was made to the IMU data as

a result of this calibration.

In the analysis of data from these experiments, I make the idealised assumption

that the camera focal point and IMU center are co-located. As mentioned in Section

3.3, the mounting arrangements placed the IMU center 12 cm from the camera focal

point, along a common z-axis. The effect of this displacement was to induce additional

centripetal forces into the acceleration measurements of the IMU relative to the camera

frame.

Aimu = Acam +Ω× (Ω×Pimu)− Ω̇×Pimu (3.1)

where Pimu is the offset of the IMU from the center of rotation at the camera focal

point.

These centripetal acceleration terms could be corrected for, using angular velocity

and angular acceleration to obtain the acceleration at the camera focal point, repre-

sented in the body-fixed frame, however in practice it was found that they were in-

significant in the trajectories used. Order of magnitude estimate for this experiment

series established that the expected correction terms were several orders of magnitude

smaller than the measured acceleration. Additionally, correction terms calculated us-
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ing the measured angular velocity displayed high magnitude noise due to the Ω×Ω

and Ω̇, calculated using a numerical derivative, terms in the correction. It was decided

not to use correction for centripetal acceleration, instead using the raw acceleration

measurements as if they taken at the camera focal point.

3.6.2 Time Calibration Protocol

A consequence of recording data from different sensors onto different systems was

that the zero time was different for different recording systems due to unsynchronised

clocks. That is, for data recorded on the notebook PC and robot controller, while each

sequence has the same relative time between measurements, the time lines need to be

aligned to a common starting point before they can be used.

Between recording systems, the absolute value of the clock may differ by as much

as several seconds. In a networked environment, a common approach would be to syn-

chronize the clocks of each computer system using a mechanism such as the Network

Time Protocol (Burbank et al. 2008). In this case, the robot controller was not con-

nected to other computers via a network, so a time calibration protocol was developed

to inject identifiable signals into each measurement sequence via a known trajectory,

against which their relative timing may be calibrated. This calibration protocol was

performed at the commencement of data recording for each experiment.

The trajectory used for time calibration consisted of a sine wave in the x axis of

the robot frame of reference, followed by two seconds of no motion, immediately

prior to the experimental trajectory. Hence the calibration trajectory formed a prefix,

appended to the start of the experimental trajectory. The sine used had a frequency of

0.25 Hz and a wavelength of 40 cm. The sine wave was selected for its well defined,

continuous position, velocity and acceleration profiles. The two second pause ensures

the calibration trajectory is distinct from the experiment trajectory.

From the calibration trajectory, the absolute timing of the measurement sequences

was inferred. On the robot controller, the data logging task and the movement task

were started simultaneously. Consequently, the first robot pose measurement was la-

belled as the absolute zero time point. As they were recorded by the same notebook

PC system, camera and IMU measurements were mutually aligned. The were aligned

to the robot time sequence by inferring the timing of the start and end of then sine

wave in the calibration trajectory from the acceleration measurements.

The time point of the begining of the sine wave calibration sequence was detected
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in the IMU data by smoothing the acceleration signal in the actuated direction and then

searching for acceleration levels beyond a threshold. A zero-phase filter was used for

the smoothing.

3.7 Data Pre-Processing

For these experiments, data was collected from the sensors and robotic manipulator

during motion, in real time. The collected data was then calibrated offline to align

measurement frames and time sequences. The calibrated data was pre-processed to

extract image features, discard outlier measurements and perform data format conver-

sion.

This section describes additional pre-processing of measurements, converting data

from raw sensor values into quantities used by the observers described later in this

thesis. Data was read from log files into MATLAB data structures. Robot pose mea-

surements were converted from quaternion orientation and vector positions measure-

ments into homogeneous transforms. Image features were labelled and extracted from

camera measurements, and from feature sets the camera pose was estimated. IMU

measurements were pre-filtered to discard extreme values indicative of erroneous data

packets.

3.7.1 Robot Data Pre-Processing

Pose data logged from the robot controller was stored as a quaternion giving the tooltip

orientation, and a three-vector giving the tooltip position. The raw data for each mea-

surement was read into MATLAB and converted into a homogeneous transform 4×4

matrix.

3.7.2 IMU Data Pre-Processing

IMU data was pre-processed by reading it into a MATLAB data structure and filtering

it to remove erroneous measurements and correct for scale and time-constant bias er-

rors in the gyrometer measurements. Raw data from the IMU was contained in packets

consisting of an accelerometer, a gyroscope and a magnetometer measurement, each a

three-vector.
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3.7.2.1 Erroneous Measurement Removal

Erroneous measurement were detected by calculating the norm of the vectorial mea-

surement on each signal and rejecting those above a threshold. Causes of erroneous

packets can include electrical faults and interference in the serial channel and vibration

in the IMU mounting.

The three inertial data signals, the accelerometer, gyrometer and magnetomers

were tested and based on a fault in any signal, the entire packet containing that mea-

surement was discarded. Figures 3.8, 3.9 and 3.10 depict the raw acceleration mea-

surements, a histogram of the acceleration measurement norms and final measurment

sequence after discarded erroneous packets. Similar patterns are observered in the

gyrometer and magnetomer measurement channels.

3.7.2.2 Gyrometer Scale and Constant-Bias Correction

Initial comparision of the Gyrometer measurements to theoretically predicted mea-

surements indicated the presence of large scale error in the measurements, together

with noticable constant biases. It was decided to correct the scale error in pre-processing

and, as the process of scale correction required bias estimation, correct for large time-

constant biases.

A windowed portion of the the actual and expected gyrometer measurements were

low pass filtered and estimates of the scale factor and constant bias calculated using

a least squares estiamte. Modeling the actual measurement process as yk = axk + b,

where yk is the actual measurement, xk is the expected measurement, a is a constant

scale factor and b is constant bias, define ŷk = âxk + b̂ were the hatted symbols are

estimates of their unadored kin. These equations may be represented vectorially as

Y = XA where A =

(
a

b

)
, X =


x1 1
...

...

xn 1

 , Y =


y1
...

yn

 (3.2)

and analogously Ŷ = XÂ. Define the cost function φ = ∑
n
1(ŷk− yk)2 = (Ŷ −Y )>(Ŷ −

Y ). Setting dφ

dÂ
= 0, one has Â = (X>X)−1X>Y .

Using this estimate, of the scale factor and bias, the gyrometer measurements were

corrected as part of the offline pre-processing. Output of this process is depicted in

Figure 3.11. Note that this corrects for a time-constant estimate of the bias in the
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Figure 3.8: Raw acceleration measurements as received from IMU. Note the apparent

superposition of high magnitude noise on the underlying signal with low magnitude

gaussian noise. Similar patterns are observered in gyrometer and magnetometer signal

channels.

gyrometer signal, but leaves a residual time-varying bias component which must be

estimated online.

3.7.3 Camera Data Pre-Processing

Camera image data was pre-processed to identify, label and extract image features and

calculate a pose estimate for the camera at each frame.

Image features were labelled, their coordinates extracted and correspondences be-

tween images specified using an assisted manual image feature identification program

in the MATLAB environment. For the fist image in a sequence, the user was prompted

to click on four image features, at the vertices of the squares described in Section 3.4,
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Figure 3.9: Histogram of norm of acceleration measurement vectors in raw IMU mea-

surements.
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Figure 3.10: Acceleration measurements after discarding erroneous measurements

in order from 1 to 4. The image was thresholded to obtain a black and white im-
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Figure 3.11: Uncorrected and Corrected low-pass filtered gyrometer measurements.

age and image feature edges smoothed using dilation and erosion, then the image was

segmented. From the coordinates of the mouse clicks, black/white segment numbers

for each image feature were identified. Final image coordinates for each image fea-

ture were determined by calculating the center of mass of their segment. Following a

successfully labelled image, an attempt was made to process the next image automati-

cally, taking the image coordinates of the image features in the last frame as the mouse

click locations. If tracking was lost, indicated by multiple features having the same

black/white segment or the wrong colour segment, processing was reinitialised using

the frame on which tracking was lost as the first frame in the sequence, prompting the

user to manually identify image features again.

This simple identification and tracking scheme proved robust at tracking the im-

age features and excellent at detecting lost tracking for the experiments trajectories

used; in particular for moderate camera movement between frames. It seldom pro-

duced false tracking positives, for example where image features tracks switched to
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non-corresponding black/white segments. This is partially due to the design of the vi-

sual target, in Figure 3.6, where each feature is spatially distinct from its neighbours,

and lighting conditions to avoid shadows. In the rare case of false tracking positives,

tracking was manually reinitialised.

The image feature coordinates extracted from this process were two dimension

coordinates in the image plane. From these, image feature coordinates on the unit

sphere were calculated using the intrinsic camera parameters estimated in Section

3.6.1. Camera pose was estimated for each frame from its set of image features us-

ing the compute extrinsic function of the MATLAB camera calibration toolbox

(Bouguet 2008).

3.8 Chapter Summary

In this chapter a system and protocols for collection of experimental data from an

inertial vision system, augmented with ground-truth reference measurements was pre-

sented.

For these experiments, data was collected from the sensors and robotic manipula-

tor during motion, in real time. The collected data was then calibrated offline to align

measurement frames and time sequences. The calibrated data was pre-processed to

extract image features, discard erroneous measurements and perform data format con-

version. The observers described later in this thesis were run offline on the data and

compared to the measured ground truth data.

The contribution of this chapter has been the production of a series of data sets for

inertial and visual sensor data together with ground-truth pose measurements.

The raw and pre-processed data sets from this experiment series are included on a

DVD attachement to this thesis. Descriptions of the contents of the DVD, including

data formats and experimentals paths are contained in Appendix A.
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Chapter 4

Pose Observer Design on SE(3) by
decomposition into Rotation and
Translation

This chapter describes two approaches to designing a non-linear pose observer on the

the special Euclidean group SE(3) of dimension four by exploiting the underlying

SO(3)×R3 semi-direct product structure of the special Euclidean group SE(3) of

dimension four to form observers for the attitude and position components separately.

Two approaches are considered, each offering different insights into the problem.

The first approach considered is to pose separate cost functions on the attitude

and position components of the state space and design two observers connected via

a cascade of the attitude estimate into the position observer. The composite observer

estimates pose and linear velocity together with gyrometer and accelerometer biases

from vision measurements and inertial measurements of angular velocity and linear

acceleration. In both the constituent attitude and position observer, the error is almost-

globally asymptotically and locally exponentially convergent. The combined system

is locally exponentially stable, exhibits a large basin of attraction and it is a straight-

forward process to tune the gains.

The second approach proposes a cost function directly on SE(3) and designs a

single observer for simultaneous attitude and position estimation. A decomposition of

the cost function in attitude and position components is identified and used to design

observers for the rotational and translational components independently, yet maintains

a structure admitting a Lyapunov stability argument on SE(3).

A series of observer are proposed using this second approach, with two principle

observers arising from the same method applied to different error terms. Firstly, the

51
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classical error arising the coordinate frame transformation between frame is investi-

gated. Subsequent investigation involves an error term identified as invariant in the

inertial frame. Crucially, the observers designed using the second error term offer sig-

nificantly reduced coupling between measurements, including an elimination of vision

measurements from feed-forward update terms, admitting a true multi-rate implemen-

tation of the observer.

The observers proposed using the second approach are posed on SE(3) from vision

measurements and inertial measurements of angular and linear velocity. The observer

proposed using this method maintain almost-global asymptotic and locally exponen-

tially convergence, large basins of attraction and the straightforward tuning process.

Simulation and experimental results are given for both observers. Experimental

results have been obtained using a 3DMG Inertial Measurement Unit (IMU) and a

Philips webcam mounted on a small scale Vario Benzin-Acrobatic 23cc Helicopter.

The contributions of this chapter are

• An observer for pose, linear velocity and gyrometer and accelerometer biases

from vision and inertial measurements.

• An observer for pose from vision and velocity measurement with Lyapunov sta-

bility argument based on a cost function on SE(3).

• Identification of an expression of the pose error in the inertial frame that elimi-

nates coupling of error to motion of the body-fixed frame.

• An observer for pose from vision and velocity measurement with Lyapunov sta-

bility argument based on a cost function on SE(3) using this invariant error term,

resulting in reduced measurement noise coupling.

• A practical adjustment to the previous observer to further reduce measurement

noise coupling yet maintain exponential convergence properties.

Some material presented in Section 4.2 was originally presented in Cheviron et al.

(2007). Some material from Sections 4.3, 4.4 and 4.5 was originally presented in

Baldwin et al. (2007).
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4.1 Problem Formulation and Measurement Model

4.1.1 Problem Formulation

Let A denote an inertial frame attached to the earth such that e3 points vertically down.

Let B denote a body-fixed frame attached to a vehicle of interest at the centre of mass.

The origin of B expressed in A is given by the vector p, and that attitude of B ex-

pressed in A is given by the rotation matrix R.

I will use the convention that positions and vectors expressed in the inertial frame

are denoted by lower case letters while quantities expressed in other frames are denoted

by upper case letters. Thus, the position of the vehicle in the inertial frame is denote

p ∈ A and P ∈ B is the position of the origin of the inertial frame in the body fixed

frame.

The kinematics of B are given by

Ṙ = RΩ×, (4.1a)

ṗ = v, (4.1b)

where Ω is the angular velocity of B expressed in B and v is the linear velocity of B
expressed in A .(·)× is an operator taking a vector Ω ∈R3 to a skew-symmetric matrix

Ω× =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (4.2)

The inverse of (·)× is given by the vex(·) operator, taking a skew-symmetric matrix to

a vector ∈ R3.

The kinematics of linear velocity are given by

v̇ = a+ge3, (4.3)

where a is the net linear acceleration from sources other than gravity.

The pose of the body-fixed frame, (R, p), comprises both the attitude and position

of B relative to A . The pose can be interpreted as an element of SE(3), with the matrix

representation

T =

(
R p

0 1

)
∈ R4×4. (4.4)
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This format, commonly known as homogeneous coordinates identifies SE(3) as a sub-

group of the general linear group GL(4) of dimension four with the group operation

of concatenation of transforms identified with matrix multiplication.

The coordinates T of B relative to A may be interpreted as a coordinate transfor-

mation , T : B → A (
x

1

)
7→ T

(
x

1

)
=

(
Rx+ p

1

)
(4.5)

The kinematics of T ∈ SE(3) are

Ṫ = T Ξ (4.6)

where

Ξ =

(
Ω× V

0 0

)
∈ se(3). (4.7)

and V is the linear velocity of the origin of B expressed in B . That is,

V = R>v. (4.8)

It is easily verified that equation (6.4) is a matrix representation of the kinematics

equation (5.2).

The velocity Ξ is an element of the Lie Algebra se(3) over SE(3) where se(3) is

identified with the subset of 4× 4 matrices with an upper left skew-symmetric 3× 3

block and bottom row zero. The correspondence of body-fixed frame velocities (Ω,V )
to an element Ξ ∈ se(3) is denoted by a wedge superscript

Ξ = (Ω,V )∧ (4.9)

Consider (Ω,V ) as a single six-dimensional vector giving the system velocity of B . We

can then view (·, ·)∧ as an operator mapping between the R6 and se(3) interpretations

of the velocity of B . Note that velocity vectors in se(3) are associated with a frame of

reference in which they are expressed. Thus, Ξ in equation (4.9) gives the velocity of

the body-fixed frame B expressed in B , as both Ω and V are expressed in B .

As T gives the pose of B expressed in A , T−1 gives the pose of A expressed in B ,

T−1 =

(
R> −R>p

0 1

)
=

(
R> P

0 1

)
. (4.10)

where P = −R>p is the position of the origin of A represented in B . Note that P is

a complementary quantity to p, equal in magnitude but being a vector in the opposite
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direction, as opposed to being the same quantity represented in another frame, as is

the case with v and V . The kinematics of T−1 are given by

Ṫ−1 =−ΞT−1 =−T−1 AdT Ξ, (4.11)

where AdT : se(3)→ se(3) is the Adjoint operator,

AdT Ξ = T ΞT−1. (4.12)

The adjoint by T , AdT , applied to Ξ maps the velocity of B relative to A expressed

in B to the negative of the velocity of A relative to B expressed in A . The rotational

and linear velocities of A relative to B are then given by

Ṙ> =−R>(RΩ)×, (4.13a)

Ṗ =−V −Ω×P. (4.13b)

and the rate of change of velocity is given by

V̇ = A+gR>e3−Ω×V, (4.14)

where A = R>a. Note that the body-fixed fame expressions of linear velocity and

acceleration are coupled to angular velocity.

Finally, I present some definitions that will be required in the sequel. Define an

inner product and associated norm on the set of Rn×n matrices.

〈M,N〉 :=
1
2

tr(M>N) (4.15)

and

‖M‖2
F := 〈M,M〉= 1

2
tr(M>M) (4.16)

where ‖(·)‖F is the Frobenius norm.

Let Pa and Ps be projection operators decomposing a matrix M ∈ Rn×n into an

skew-symmetric component Pa(M) and a symmetric component Ps(M), given by

Pa(M) =
1
2
(M−M>), (4.17a)

Ps(M) =
1
2
(M +M>). (4.17b)

Further,

M = Pa(M)+Ps(M). (4.18)
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For any rotation matrix, one may obtain the angle-axis coordinates (θ,x) (e.g. Mur-

ray et al. 1993)

R = exp(θγ×) = I + sin(θ)γ×+(1− cos(θ))γ2
× (4.19a)

cos(θ) =
1
2
(tr(R)−1) (4.19b)

γ× =
1

sin(θ)
Pa(R) (4.19c)

where exp is the matrix exponential. Note that this gives and explicit form for the

matrix exponential on the set of skew-symmetric matrices.

4.1.2 Measurement Model

We consider the vehicle of interest equipped with an inertial-vision sensor package;

an IMU and a monocular camera, each affixed to the craft and taking measurements in

the body-fixed frame.

The IMU operates at a high sampling frequency, taking measurements corrupted

by low frequency noise in the form of measurement biases. Conversely, the camera

takes measurements at a low sampling frequency, up to two orders of magnitude lower

than the IMU, but the camera measurements are free of bias and hence stable at low

frequencies. That is, the IMU provides high frequency measurements corrupted by

low frequency noise and the camera provides low frequency measurements corrupted

by high frequency noise. These complementary measurement characteristics suggest

an approach similar to the linear system technique of complementary filtering, as dis-

cussed in Section 2.2.2.

The IMU provides measurements of angular velocity, Ω, and linear acceleration,

A, in the body fixed frame, B . In the observer considered in Section 4.2 it is a straight-

forward exercise to incorporate estimates of the slowly time varying IMU biases, bΩ

and bA. Due to the coupling present in the observers in Section 4.3 this is no longer

straightforward and in this Section I will consider bias free IMU measurements. In all

cases, the IMU measurements are considered to be corrupted by zero-mean Gaussian

noise processes nΩ and nA respectively.

Linear velocity, though not measured directly, can be estimated from linear accel-

eration and pose measurements as discussed in Section 2.2.3. For the observers pre-

sented in the latter part of this chapter, we will consider linear velocity as an inertial

measurement corrupted by the zero-mean Gaussian noise process nV and no bias.
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Using the camera, we observe a constellation of landmarks whose position in the

inertial frame is known. From each frame, the camera pose can be reconstructed from

on the image coordinates of the observed landmarks. This is a well established result

from Computer Vision known as the perspective-n-point problem. Section 3.7.3 de-

scribes the process used for calculating the pose for each frame in a video sequence.

Using this process, we consider the camera as providing measurements of the camera

pose, T−1, expressed in the body-fixed frame. Equivalently, the measurement can be

treated as being of T by matrix inverse. In this chapter, we make use of the compo-

nents of T−1 as measurements of R, P. As discussed in Section 2.2.2, alternate sensors,

such as Global Positioning System (GPS), may be substituted for a vision sensor under

appropriate conditions.

The measurement model used is

Ry = exp(nR(t)×)R (4.20a)

Py = P+nP(t) (4.20b)

Ωy = Ω+nΩ(t)+bΩ (4.20c)

Vy = V +nV (t) (4.20d)

Ay = A+nA(t)+bA−gRe3 (4.20e)

where n(·)(t) denotes a zero mean Gaussian noise process, b(·) denotes a constant

bias term, g is the magnitude of the gravity vector and e3 is the basis vector pointing

vertically down.

To provide context for the following theoretical developments, it is worth noting

that commercial grade IMUs, such as the 3DM-GX1, supply inertial measurements at

rates of up to 300 Hz. Further, with low frame rates and the additional overhead of

calculating pose estimates, vision sensors provide measurements at rates of around 5

to 10 Hz.

4.2 Cascaded Pose Observer

In this section two non-linear observers are proposed which together form a pose ob-

server via a cascade design. The first observer estimates the attitude and angular veloc-

ity measurement biases. The second observer estimates position, linear velocity and

linear acceleration biases. Combined convergence is proven using adaptive control and

back stepping analysis.
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Define the error terms

R̄ = R>R̂, (4.21a)

P∆ = P̂−P, (4.21b)

V ∆ = V̂ −V, (4.21c)

b̃Ω = b̂Ω−bΩ, (4.21d)

b̃A = b̂A−bA. (4.21e)

One has that R̄ gives the orientation of the estimate relative to the body fixed frame

and P∆ gives the difference between the estimated and true locations of the origin of

the inertial frame relative the vehicle. V ∆ give the difference between the estimated

and true linear velocity relative to the estimated and true attitude, respectively. b̃Ω and

b̃A give the differences between the estimated and true biases on the gyroscopes and

accelerometers, respectively.

4.2.1 Cascaded Pose Attitude Observer

In this section, a non-linear attitude observer is proposed for estimation of attitude and

gyroscope bias using visual and gyroscope measurements.

Theorem 4.2.1 (Attitude and Gyroscope Bias Observer). Consider the system equa-

tion (6.2a) and ḃΩ = 0 together with a bounded continuous driving term Ω. Let

Ωy = Ω+bΩ be a noise-free, biased measurement of Ω and R>y = R> be a noise-free,

unbiased measurement of R>.

Define the observer

˙̂R = R̂(Ωy− b̂Ω + kPΩ
ξΩ)×, (4.22a)

˙̂bΩ =−kIΩ
βΩ, (4.22b)

ξΩ =−vex(Pa(R̄)), (4.22c)

βΩ =−vex(Pa(R̄)), (4.22d)

and recall the errors R̄ and b̃Ω from equation (4.21a) and equation (4.21d) respectively.

Then, for initial conditions

(R̄(0), b̃Ω(0)) /∈ {(R̄, b̃Ω)| tr(R̄) >−1 and b̃Ω = 0} (4.23)

and choice of gains kIΩ
> 0 and kPΩ

> 0, the error coordinates (R̄, b̃Ω) are almost-

globally asymptotically and locally exponentially stable about (I,0)



§4.2 Cascaded Pose Observer 59

Proof of Theorem 4.2.1. Recall the definition of R̄ and b̃Ω from equation (4.21a) and

equation (4.21d). Setting Ωy = Ω+bΩ, the error kinematics are

˙̄R = [R̄,Ω×]+ R̄(−b̃Ω + kPΩ
ξΩ)×, (4.24a)

˙̃bΩ =−kIΩ
βΩ. (4.24b)

Define the candidate Lyapunov function V

V =
1
2
‖I− R̄‖2 +

1
kIΩ

‖b̃Ω‖2. (4.25)

Taking the time derivative of V , one has

V̇ =−
〈
I− R̄, [R̄,Ω×]+ R̄(−b̃Ω + kPΩ

ξΩ)×
〉
−2b̃>ΩβΩ

=−
〈

R̄>− I,(−b̃Ω + kPΩ
ξΩ)×

〉
−
〈
b̃Ω×,βΩ×

〉 (4.26)

using the fact that the trace of the matrix commutator is zero and the identity 2x>y =
tr(x>×y×)= 〈x×,y×〉. Further, note that the matrix inner product with a skew-symmetric

matrix in one entry acts only on the skew-symmetric portion of the matrix in the other

entry. That is 〈a×,M〉= 〈a×,Pa(M)〉. Hence

V̇ =−
〈

Pa(R̄)>,−b̃Ω×+ kPΩ
ξΩ×

〉
−
〈
b̃Ω×,βΩ×

〉
,

= kPΩ

〈
Pa(R̄),ξΩ×

〉
−
〈
b̃Ω×,Pa(R̄)+βΩ×

〉
.

(4.27)

Substituting equation (4.22c) and equation (4.22d). Then equation (4.27) becomes

V̇ = kPΩ
〈Pa(R̄),−Pa(R̄)〉−

〈
b̃Ω×,Pa(R̄)−Pa(R̄)

〉
,

=−kPΩ
‖Pa(R̄)‖2 (4.28)

Applying Theorem 8.4 of (Khalil 2002), an application of Barbalat’s Lemma, V is

asymptotically convergent to an invariant set.

From the error dynamics, equation (4.24), the invariant sets of the error system

are characterised by (Pa(R̄) = 0, b̃Ω = 0). This yields two unconnected invariant sets:

S1 = {(R̄, b̃Ω)|R = I, b̃Ω = 0} and S2 = {(R̄, b̃Ω)| tr(R) =−1, b̃Ω = 0}.
The set S2 is an unstable set, as any open ball centred on (R̄S, b̃ΩS) ∈ S2 contains

points (R̄, b̃Ω) such that V (R̄, b̃Ω) < V (R̄S, b̃ΩS). By monotonicity of V , these points

diverge from S2 and must converge to S1.

Hence, for almost all initial condition (R̄, b̃Ω) 6∈ S2, the error is asymptotically

convergent to (I,0).
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To prove local exponential convergence, consider a linearisation of the system

about (I,0). Let

R̄ = I + x× (4.29a)

b̃Ω =−y (4.29b)

where x,y ∈ R3. The kinematics of the linearisation are given by

ẋ = [x×,Ω×]+ y×− kPΩ
x×, (4.30a)

=−(kPΩ
I +Ω×)x×+ y×,

ẏ =−kIΩ
x×. (4.30b)

Let |Ωmax| denote the magnitude bound on Ω and choose

α2 > 0

α1 >
α2(|Ωmax|2+kIΩ)

kPΩ
α1+kPΩ

α2
kIΩ

< α3 <
α1+kPΩ

α2
kIΩ

+ |Ωmax|α2
kIΩ

(4.31)

Set M,N to be

M =

(
α1I −α2I

−α2I α3

)
, (4.32a)

N =

(
α1kPΩ

−α2kIΩ
−α2|Ωmax|

−α2|Ωmax| α2

)
. (4.32b)

It is straightforward to verify that M and N are positive definite matrices. Further,

consider the cost function W = 1
2X>MX , where X = (x,y)>. It is straightforward to

verify

d
dt

(X>MX)≤−2
(
|x| |y|

)
N

(
|x|
|y|

)
(4.33)

Hence the linearisation (x,y) is exponentially stable about (0,0). Hence (R̄, b̃Ω) is

locally exponentially stable about (I,0).

Remark 4.2.2. This theorem and its proof are derivatives of Theorem 4.2 in Mahony

et al. (2008). This theorem is given as Proposition 4.2.3
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Proposition 4.2.3 (Passive complementary filter with bias correction). Consider the

rotation kinematics Ṙ = RΩ× for a time-varying R(t)∈ SO(3) and with measurements

given by Ry ≈ R, Ωy ≈Ω+b. Let (R̂(t), b̂(t)) denote the solution of

˙̂R = R̂(Ωy− b̂+ kPω)×, R̂(0) = R̂0, (4.34a)
˙̂b =−kIω, b̂(0) = b̂0 (4.34b)

ω = vex(Pa(R̄)), R̄ = R̂>Ry. (4.34c)

Define error variables R̄ = R̂>R and b̃ = b− b̂. Assume that Ω(t) is a bounded, ab-

solutely continuous signal and that the pair of signals (Ω(t), R̄) are asymptotically

independent. Define U0 ∈ SO(3)×R3 by

U0 =
{
(R̄, b̃)| tr(R̄) =−1, b̃ = 0

}
(4.35)

Then:

i The set U0 is forward invariant and unstable with respect to the dynamic system

equation (4.34).

ii The error (R̄(t), b̃(t)) is locally exponentially stable to (I,0).

iii For almost all initial conditions (R̄0, b̃0) /∈ U0 the trajectory (R̂(t), b̂(t)) con-

verges to the trajectory (R(t),b)

Remark 4.2.4. Note that for a system evolving on the special orthogonal group SO(3)
of dimension four, global asymptotic stability is impossible due to topological con-

straints. The anti-podal equilibrium set {R̄| tr(R̄) =−1} are a consequence of the fact

that the domain of attraction of a asymptotically stable equilibrium is homeomorphic

to a Euclidean vector space (Bhatia and Szeg o 1970), while SO(3) is only locally

diffeomorphic to R3. Consequently no system on SO(3) has an equilibrium that is

globally asymptotically stable (Bhat and Bernstein 2000).

4.2.2 Cascaded Pose Position and Velocity Filter

In this section, I propose an observer for the linear time varying system of position,

linear velocity and accelerometer biases in the body-fixed frame, using measurement

of position, rotation and inertial measurements. I then prove that the cascade of the

attitude observer presented in the previous section into the position observer to be

proposed in stable.
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The following results for input to state stability and linear parameter varying sys-

tems will be used in the stability proof of the position observer

Lemma 4.2.5. Let ẋ = (A0 +φ(t))x where A0 ∈ Rn×n is Hurwitz. If

max
t
‖φ(t)‖2 ≤

σmin(A0)√
n

(4.36)

where σmin(A0) is the smallest singular value of A0. Then x is globally exponentially

stable with equilibrium x = 0.

Proof of Lemma 4.2.5. As A0 is Hurwitz, then for any positive definite matrix Q0 ∈
Rn×n there exists a positive definite matrix P0 ∈ Rn×n such that −Q0 = P0A0 +A>0 P0.

Taking the vec (Horn and Johnson 1994) of this relationship yields−vec(Q0) = (A>0 ⊗
I + I⊗A>0 )vec(P0) where ⊗ is the Kronecker product. The spectrum of (A>0 ⊗ I + I⊗
A>0 ) is the set {λi(A0)+λ j(A0)} for all i, j (Helmke and Moore 1993).

Note ‖Z‖F = ‖vec(Z)‖2, and ‖Z‖2 ≤ ‖Z‖F ≤
√
rank(Z)‖Z‖, where ‖ · ‖F is the

Frobenius norm (Horn and Johnson 1985). Define σmin(·), σmax(·) > 0 as the minimum

and maximum singular values of a matrix. One has
√

n‖Q0‖2 ≥ 2σmin(A0)‖P0‖2 (4.37)

and hence

σmax(P0) = ‖P0‖2 ≤
√

nσmax(Q0)
2σmin(A0)

. (4.38)

Define the energy function L = x>P0x. Then

L̇ =−x>Q0x+ x>[P0,φ(t)]x

≤−‖x‖2
σmin(Q0)+2‖x‖2

σmin(P0)‖φ(t)‖2.
(4.39)

Substituting equations 4.36 and 4.38, one sees that

L̇ < 0 (4.40)

Consequently L is a Lyapunov function and x is globally exponentially stable with

equilibrium x = 0.

Khalil (2002) Lemma 4.6 gives the following statement and its proof.

Proposition 4.2.6. Suppose f(t,x,u) is continuously differentiable and globally Lip-

schitz in (x,u), uniformly in t. If the unforced system ẋ = f(t,x,0) has a globally

exponentially stable equilibrium point at the origin x = 0, then the system ẋ = f(t,x,0)
is input-to-state-stable
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Using these results, one can prove the following theorem.

Theorem 4.2.7 (ISS Position Observer). Consider the system

Ṙ = RΩ× (4.41a)

Ṗ =−V −Ω×P (4.41b)

V̇ = A−Ω×V (4.41c)

ḃA = 0 (4.41d)

with continuous driving term A(t) and bounded continuous driving term Ω(t) such that

for all t, ‖Ω(t)‖2 ≤ β.

Let Ry, Py, Ωy and Ay be the noise free measurements

Ry = exp(e−c1tdR(t))R (4.42a)

Py = P (4.42b)

Ωy = Ω+ e−c2tdΩ(t) (4.42c)

Ay = A+bA +gR>e3. (4.42d)

where c1,c2 > 0 and d(·)(t) are continuous disturbance terms.

Consider the observer

˙̂P =−V̂ −Ωy×P̂− k1(P̂−Py), (4.43a)
˙̂V = Ay− b̂A−gR>y e3−Ωy×V̂ + k2(P̂−Py), (4.43b)

˙̂bA =−k3(P̂−Py). (4.43c)

and the errors defined in equation (4.21).

Then, there exists a choice of gains k1,k2,k3, such that the error system (P∆,V ∆, b̃A)
is exponentially stable with equilibrium x′ = 0 and hence (P̂,V̂ , b̂A) are exponentially

convergent to the true values (P,V,bA).

Proof of Theorem 4.2.7. Recall the definition of the (P∆,V ∆, b̃A) from equation (4.21).

Set Ry ≡ exp(e−c1tdR(t))R, Py ≡ P, Ωy ≡ Ω + e−c2tdΩ(t) and Ay ≡ A + bA + gR>e3.

From equation (4.41) and equation (4.43) one has the error system kinematics

ẋ = (L+φ(t))x+∆(t) (4.44)



64Pose Observer Design on SE(3) by decomposition into Rotation and Translation

where x = (P∆,−V ∆, b̃A)> and

L =

−k1I I 0

−k2I 0 I

−k3I 0 0

 , φ(t) =

−Ω×(t) 0 0

0 −Ω×(t) 0

0 0 0

 ,

∆(t) =

 −e−c2tdΩ(t)×P̂

e−c2tdΩ(t)×V̂ −g(I− exp(e−c1tdR(t)>))R>e3

0

 ,

(4.45)

The gains k1,k2,k3 care chosen such that L is Hurwitz and additionally such that

Ω(t) is bounded for all t such that

‖φ(t)‖2 = ‖Ω(t)‖2 ≤
σmin(L)

3
. (4.46)

It is straightforward to see that this is possible using pole placement arguments. By

application of Lemma 4.2.5, one has that ẋ = (A + φ(t))x is globally exponentially

stable. Then by Proposition 4.2.6, ẋ = (A + φ(t))x + u(t) is ISS for any Lipschitz

continuous u(t). Set ∆(t) ≡ u(t) and, as ∆(t) is exponentially decreasing to 0, x is

globally exponentially stable.

Combining the observers and stability results for the attitude and position observers

from Theorems 4.2.1 and 4.2.7 respectively and choosing appropriate gains, one has

that for initial conditions such that (R̄(0), b̃Ω(0)) /∈ {(R̄, b̃Ω)| tr(R̄) > −1 and b̃Ω = 0}
the estimate (R̂, P̂) is almost-globally asymptotically stable. Further, for initial attitude

conditions within the bowl of locally exponential stability of the attitude observer, the

estimate of (R̂, P̂) is exponentially stable.

4.2.3 Experimental Results

The attitude and position observers presented in equation (4.22) and equation (4.43)

have been implemented in MATLAB and applied to experimental data obtained by

Thibault Cheviron (Cheviron et al. 2007). The experimental platform consisted of a

Microstrain 3DMG IMU and a Philips webcam mounted on a Vario Benzin-Acrobatic

23cc small scale helicopter, illustrated in Figure 4.1. Data capture rates were 50 Hz

for the IMU and 10 Hz for the vision sensor.

The experiment consisted of a manual quasi-stationary (i.e. hover) flight over a

visual target whose feature locations in the inertial frame are known. The experiment

has been performed such that the target always lay in the field of view of the camera.
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Figure 4.1: Experimental platform consisting of a Vario Benzin-Acrobatic 23cc heli-

copter, low-cost Philips webcam and Microstrain IMU

Camera calibration has been completed under static conditions prior to flight. From

the calibration data, in addition to the intrinsic camera parameters, the extrinsic param-

eters of the orientation of the camera relative to the IMU have been estimated using a

recursive least mean square algorithm. Using the extrinsic alignment matrix, data from

the flight experiment has been pre-processed to align the camera and IMU frames of

reference before the observer is run.

The gains kPΩ
and kIΩ

have been chosen to ensure satisfactory asymptotic stability

of the linearised dynamics of the non-linear observer equation (4.22). The character-

istic polynomial of this observer is Π1(s) = s2 + kPΩ
s + kIΩ

and observer gains listed

in Table 4.1 are chosen to correspond with a crossover frequency of 0.6 Hz and a

damping factor of 0.8.

Analogously, the gain k1, k2 and k3 have been chosen such that k1 = µ + 2ν, k2 =
2µν + ν2 and k3 = µν2, with µ = 0.01 and ν = 10 for the non-linear position and

velocity observer such that the characteristic polynomial of the transient matrix L is
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Gain Value
kPΩ

15

kIΩ

2
225

k1 20.01

k2 10.2

k3 1

Table 4.1: Observer gains used in flight experiment with SO(3)×R3 observer.

Π2(s) = (s+µ)(s+ν)2.

The estimated helicopter orientation, depicted in blue, is contrasted with the in-

dustrial filter of the 3DMG IMU and vision measurements, depicted in green and red

respectively, in Figure 4.2. Gyroscope bias estimates are shown in Figure 4.3.

The estimated helicopter position, depicted in blue, is contrasted with vision mea-

surements, depicted in red, in Figure 4.4. Velocity and accelerometer bias are shown

in Figures 4.5 and 4.6.

Excellent behaviour of both observer is seen, despite large errors in initial condi-

tions, inertial sensor drive and occasional missing vision measurements. These figures

demonstrate that accurate vision measurements allow successful estimates of unknown

inertial biases.

4.3 Simultaneous Attitude and Position Filter Design

In this section, four non-linear observers are proposed using a cost function on SE(3)
that decomposes into SO(3) and R3 components. This decomposition permits inde-

pendent design of the rotation and translation components while admitting a whole-

system Lyapunov stability argument on glsSE3.

The first observer estimates pose based on a cost function using the coordinate

frame transformation between the true and estimated system as the error. The second

observer identifies a simplification of the first observer based on identification of a

passive dynamic. The third observer estimates pose based on a cost function using

the rigid body transformation between the true and estimated systems represented in

the body fixed frame as the error, further exploiting passive dynamics to simplify the

observer and render it suitable for a multi-rate implementation. The final observer is a
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Figure 4.2: Estimate of helicopter attitude in the inertial frame produced by Cascaded

Pose Observer using observer gains given in Table 4.1.
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Figure 4.3: Estimate of gyroscope biases in the body-fixed frame produced by Cas-

caded Pose Observer using observer gains given in Table 4.1.
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Figure 4.4: Estimate of helicopter position in the body-fixed frame produced by Cas-

caded Pose Observer using observer gains given in Table 4.1.
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Figure 4.5: Estimate of helicopter velocity in the body-fixed frame produced by Cas-

caded Pose Observer using observer gains given in Table 4.1.
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Figure 4.6: Estimate of accelerometer biases in the body-fixed frame produced by

Cascaded Pose Observer using observer gains given in Table 4.1.
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modification of the third observer, making use of exponential convergence properties

to reduce coupling independent between measurement noise processes.

4.3.1 Coordinate Frame Transformation Error Observer

Define the error term

T̄ = T−1T̂ . (4.47)

T̄ gives the coordinate frame transformation from E to B . Note that T̄ is the element of

SE(3) corresponding to the independent rotation and position errorsR̄ = R>R̂, defined

in equation (4.21a), and p̄ = R>(p̂− p). One has

T̄ =

(
R̄ p̄

0 1

)
(4.48)

and

T̄−1 =

(
R̄> P̄

0 1

)
. (4.49)

where

R̄ = R>R̂, (4.50a)

p̄ = R>(p̂− p), (4.50b)

P̄ =−R̄> p̄ = P̂− R̄>P. (4.50c)

(4.50d)

Further, if T̄ → I, then T̂ → T , leading to the choice of positive definite cost func-

tion

V =
1
2
‖I− T̄‖2

F (4.51)

Theorem 4.3.1 (Coordinate Frame Transformation Error Observer on SE(3)). Con-

sider the system defined in equation (6.4). Let R>y = R>, Py = P, Ωy = Ω and Vy = V

be measurements free of noise and bias.
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Define the observer

˙̂T = T̂ Ξ̂, (4.52a)

Ξ̂ =
(
Ω̂,V̂

)∧
, (4.52b)

Ω̂ = AdR̂>Ry
Ωy + kPΩ

ξΩ, (4.52c)

V̂ = R̂>RyVy + kPpξV , (4.52d)

ξΩ = vex(Pa(R̂>Ry)), (4.52e)

ξV = P̂− R̂>RyPy. (4.52f)

and recall the error T̄ = T−1T̂ from equation (4.47).

Then for all positive choice of gains kPΩ
and kPp , and any initial condition

T̄0 ∈ {T̄ |T̄ ∈ SE(3), tr(T̄ ) 6= 0} (4.53)

the error T̄ is almost-globally asymptotically convergent to I with locally exponential

convergence. Hence T̂ → T , R̂→ R and p̂→ p asymptotically and locally exponen-

tially.

Proof of Theorem 4.3.1. This proof is set out as follows:

• Firstly, we define a cost function for the error in SE(3)

• Secondly, we derive an identity that permits definition of independent cost func-

tions on the rotational and translational error in terms of the overall cost function.

• Convergence of rotation and translation errors are then proven independently.

• Lastly, the initial conditions of the two error components are considered and the

stable set on SE(3) derived.

Recall the cost function V from equation (4.51), expanding one has

V =
1
2
‖I− T̄‖2

F

=
1
2

tr
(
(I− T̄ )>(I− T̄ )

)
=

1
2

tr
(

I− T̄>− T̄ + T̄>T̄
)

=
1
2

tr

((
I 0

0 1

)
−

(
R̄> 0

p̄> 1

)
−

(
R̄ p̄

0 1

)
+

(
I R̄> p̄

p̄>R̄ 1+ p̄> p̄

))
= tr(I− R̄)+

1
2
‖p̄‖2

2

= V R +V P

(4.54)
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where V R = tr(I− R̄) and V P = 1
2‖p̄‖2

2.

Recall the rotation error R̄ from equation (4.50a). Setting Ry ≡ R and Ωy ≡Ω, one

has

˙̄R = R̄(Ω̂−AdR̄>Ω)×

= R̄(AdR̂>R Ω+ kPΩ
ξΩ−AdR̄>Ω)×

= kPΩ
R̄Pa(R̄)>

(4.55)

Taking the time derivative of V R and using the orthogonality of symmetric and

skew-symmetric matrices, one has

V̇ R =− tr( ˙̄R),

=−kPΩ
tr(R̄Pa(R̄)>),

=−kPΩ
tr(Ps(R̄)Pa(R̄)>+Pa(R̄)Pa(R̄)>),

=−kPΩ
tr(Pa(R̄)>Pa(R̄)),

=−kPΩ
‖Pa(R̄)‖2

F .

(4.56)

Let, (θ̄, γ̄) denote the angle-axis coordinates of R̄. From equation (4.19) one has

R̄ = exp(θ̄, γ̄×), (4.57a)

cos(θ̄) =
1
2
(tr(R̄)−1), (4.57b)

γ̄× =
1

sin(θ̄)
Pa(R̄) (4.57c)

The cost function V R may be written as

V R = tr(I− R̄),

= 2(1− cos(θ̄)),

= 4sin
(

θ̄

2

)2

,

(4.58)

using the identity cos(2θ) = 1−2sin(θ)2.
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Substituting sin(θ̄)γ̄× = Pa(R̄) from equation (4.57c) into equation (4.56), one has

V̇ R =−kPΩ
‖Pa(R̄)‖2

F

=−kPΩ
sin(θ̄)2‖γ̄×‖2

F

=−kPΩ
sin(θ̄)2

=−4kPΩ
sin
(

θ̄

2

)2

cos
(

θ̄

2

)2

=−kPΩ
cos
(

θ̄

2

)2

V R

(4.59)

using the identity sin(2θ) = 2sin(θ)cos(θ).
Hence, for θ̄ 6= ±π one has that V R is decreasing to 0 and R̄→ I. Moveover, in

the neighbourhood of R = I, cos( θ̄

2) is bounded away from zero and one has locally

exponential stability.

Recall the translation error P̄ from equation (4.50c). Setting Ry ≡ R, Ωy ≡ Ω,

Py ≡ P and Vy ≡V , one has

˙̄P =
d
dt

(R̂>(p− p̂))

=−Ω̂×P̄+ R̄>V −V̂

=−Ω̂×P̄− kPpP̄

(4.60)

Noting V P = 1
2‖p̄‖2

2 = 1
2‖P̄‖

2
2 and taking the time derivative of V P, one has

V̇ P = P̄> ˙̄P

= P̄>(−Ω̂×P̄− kPpP̄)
(4.61)

Given that xT Ω×x = 0, one has

V P =−kPpP̄>P̄

=−kPp‖P̄‖2
2

=−2kPp V P

(4.62)

Hence V P is exponentially decreasing to 0 and P̄→ 0 exponentially. Moreover, as

both V R and V P are decreasing to 0, V is almost-globally asymptotically stable and

locally exponentially stable.

The set of initial conditions for convergence of V is given by the intersection of

the set of convergent initial conditions for V R and V P. Noting that θ̄ = ±π implies
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cos(θ̄) = −1 and hence tr(R̄) = −1, it is possible to express the convergent initial

conditions in matrix form. As V P is globally convergent given convergence of V R,

and that tr(T ) = tr(R)+ 1 due to the structure of the matrix representation of se(3),
one has that

T̄0 ∈ {T̄ |T̄ ∈ SE(3), tr(T̄ ) 6= 0} (4.63)

Remark 4.3.2.

Note that by the same proof, replacing equation (4.52c) with

Ω̂ = Ω+ kPΩ
ξΩ (4.64)

is also a convergent observer. In this case, equation (4.55) becomes ˙̄R = [R̄,Ω×] +
kPΩ

R̄Pa(R̄)> and equation (4.56) becomes

V̇ R =− tr( ˙̄R),

=−kPΩ
tr([R̄,Ω×]+ R̄Pa(R̄)>),

=−kPΩ
‖Pa(R̄)‖2

F .

(4.65)

as the trace of the matrix commutator is zero. This alternate observer makes use of

the passivity of the error dynamics with respect to frame in which angular velocity

measurement is treated. This passivity in the rotation is identified and discussed in

detail in Mahony et al. (2008). The concept of passivity with respect to measurement

frames is built up in the next section, where it is applied to the SE(3) system as a

whole.

The observer defined in Theorem 4.3.1 suffers from coupling between measure-

ment errors. The angular velocity estimate multiplies the measured angular velocity by

with the measured rotation as part of an adjoint operation. This introduces additional

high frequency noise into the direct integration component of the angular velocity es-

timate. Using equation (4.64) prevents this issue.

Remark 4.3.3.

Both the observer proposed in Theorem 4.3.1 and the observer proposed in the above

remark are almost-globally asymptotically stable due to the topological constraints

discussed in Remark 4.2.4 . The region of non-convergence for both comprises an

unstable set of measure zero containing the anti-podal points to I ∈ SO(3). This is

unavoidable due to the compact nature of SO(3), which forms a part of SE(3).
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A weakness present in the observer of Theorem 4.3.1, and equally in the variant

proposed in Remark 4.3.2, is the multiplication of the instantaneous rotation measure-

ment with the linear velocity measurement in the feed-forward component of linear

velocity estimate, in equation (4.52d).

In particular, the coupling prohibits proposing a multi-rate implementation for this

observer. The inclusion of the low rate rotation measurement limits the rate at which

V̂ may be estimated and hence the observed run. Running the observers at a higher

rate would require the input of some estimate for R, rather than a straight forward

discretisation of the continuous time systems.

In both cases, the coupling of the high frequency stable inertial measurements with

the low frequency stable vision measurements result in feed-forward terms corrupted

by both high and low frequency noise.

4.4 Rigid Body Transformation Error Observer

The problems noted with the Coordinate Frame Transformation Error Observer stem

from the choice of error T̄ = T−1T̂ . Recalling the three interpretations of an element

of SE(3), in Section 4.3.1 the error T̄ was interpreted as the coordinate frame trans-

formation taking a point expressed in E to a point expressed in B .

Alternatively, the error T̄ can be viewed as the coordinates of E expressed in B .

This directly associates T̄ with the moving frame of reference B . This causes an

undesirable disturbance in the error dynamics when B changes, even when the motion

is perfectly estimated and replicated in E . That is, when B and E move but there is no

change in the error magnitude. For example, when a translationally-static rigid body

undergoes a rotation, the translational error p̄ will change despite p and p̂ remaining

constant. Representing the error in the inertial frame eliminates this coupling and leads

to a simpler estimator.

Analogous to the adjoint operator AdT , that changes the frame of reference asso-

ciated with elements of se(3), there is an inner-automorphism operator

IT : SE(3)→ SE(3), T ∈ SE(3)

IT (Q) := T QT−1,
(4.66)

that acts to change the frame of reference associated with an element of the Lie-group

SE(3). In particular, if T̄ is associated with B and T ∈ SE(3) is the coordinates of B
with respect to an inertial frame A , then IT (T̄ ) is associated with the inertial frame A .
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Let

T̃ := IT (T̄ ) = T̂ T−1 (4.67)

denote the error T̄ represented in the inertial frame of reference A . One has

T̃ =

(
R̃ p̃

0 1

)
(4.68)

and

T̃−1 =

(
R̃> P̃

0 1

)
(4.69)

where

R̃ = R̂RT , (4.70a)

p̃ = p̂− R̃p, (4.70b)

P̃ =−R̃> p̃ = R(P̂−P). (4.70c)

(4.70d)

Importantly, note that T̃ does not have an interpretation as a coordinate frame trans-

formation operator but still retains an interpretation as a rigid body transformation

operator, taking an object from pose E to pose B , represented in A .

As with T̄ , when T̃ → I then T̂ → T leading to the choice of positive definite cost

function

V (T̃ ) :=
1
2
‖I− T̃‖2

F . (4.71)

Theorem 4.4.1 (Rigid Body Transformation Observer on SE(3)). Consider the system

defined in equation (6.4). Let R>y = R>, Py = P, Ωy = Ω and Vy = V be measurements

free of noise and bias.

Define the observer

˙̂T = T̂ Ξ̂, (4.72a)

Ξ̂ =
(
Ω̂,V̂

)∧
, (4.72b)

Ω̂ = Ωy + kPΩ
ξΩ, (4.72c)

V̂ = Vy− (Ω̂−Ωy)×P̂+ kPpξV , (4.72d)

ξΩ = vex(Pa(R̂>Ry)), (4.72e)

ξV = P̂−Py, (4.72f)



§4.4 Rigid Body Transformation Error Observer 79

and recall the error T̃ = T̂ T−1 from equation (4.67)

Then for all positive choice of gains kPΩ
and kPp , and any initial condition

T̃0 ∈
{

T̃ |T̃ ∈ SE(3), tr(T̃ ) 6= 0
}

(4.73)

the error T̃ is almost-globally asymptotically convergent to I with locally exponential

convergence. Hence T̂ → T , R̂→ R and p̂→ p asymptotically and locally exponen-

tially.

Proof of Theorem 4.4.1. This proof follows similarly to that of Theorem 4.3.1.

• Firstly, we define a cost function on the error in SE(3)

• Secondly, we derive an identity that permits definition of independent cost func-

tions on the rotational and translational error in terms of the overall cost function.

• Convergence of rotation and translation errors are then proven independently.

• Lastly, the initial conditions of the two error components are considered and the

stable set on SE(3) derived.

Recall the cost function V from equation (4.71) and making calculations analogous

to equation (4.54), one has

V =
1
2
‖I− T̃‖2

F

= tr
(
I− R̃

)
+

1
2
‖p̃‖2

2

= V R +V P

(4.74)

where V R = tr
(
I− R̃

)
and V P = 1

2‖ p̃‖2
2.

Recall the rotation error R̃ from equation (4.70a). Setting Ry ≡ R and Ωy ≡Ω, one

has
˙̃R = R̃AdR(Ω̂−Ω)×

= kPΩ
R̃AdR(ξΩ)×

= kPΩ
R̃Pa(R̃)>

(4.75)

Taking the time derivative of V R and using the orthogonality of symmetric and

skew-symmetric matrices analogously to equation (4.56), one has

V̇ R =− tr( ˙̃R),

=−kPΩ
‖Pa(R̃)‖2

F .
(4.76)
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Again using an angle-axis formulation similar to equation (4.57c) and an argu-

ment identical to equation (4.58) and equation (4.59) one has V̇ R =−kPΩ
cos
(

θ̃

2

)2
V R.

Hence, for θ̃ 6= ±π one has that V R is decreasing to 0 and R̃→ I. Moveover, in the

neighbourhood of R = I, cos( θ̃

2) is bounded away from zero and one has locally expo-

nential stability.

Recall the translation error P̃ from equation (4.70c). Setting Ry ≡ R, Ωy ≡ Ω,

Py ≡ P and Vy ≡V , one has

˙̃P =
d
dt

(R(P̂−P))

= R(Ω×(P̂−P))− Ω̂×P̂−V̂ +Ω×P+V )

=−kPpP̃

(4.77)

Noting V P = 1
2‖p̃‖2

2 = 1
2‖P̃‖

2
2 and taking the time derivative of V P, one has

V̇ P = P̃> ˙̃P

=−kPpP̃>P̃

=−2kPp V P

(4.78)

Hence V P is exponentially decreasing to 0 and P̃→ 0 exponentially. Moreover, as

both V R and V P are decreasing to 0, V is almost-globally asymptotically stable and

locally exponentially stable.

The set of initial conditions for convergence of V is given by the intersection of

the set of convergent initial conditions for V R and V P. As with Theorem 4.3.1 it

is possible to express the convergent initial conditions in matrix form. Given V P is

globally convergent given convergence of V R, and one has that tr(T ) = tr(R)+1 due

to the structure of the matrix representation of se(3), one has

T̃0 ∈
{

T̃ |T̃ ∈ SE(3), tr(T̃ ) 6= 0
}

(4.79)

The rigid body transformation observer does not suffer the problem of multiplica-

tive measurement error coupling between high and low frequency stable measure-

ments, identified with the coordinate frame transformation observer. The innovation

and direct integration components of the estimate velocities contain no multiplications

between measurements.
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The rigid body transformation observer does however have additive coupling be-

tween inertial measurements in the direct integration component of the linear velocity

estimate. However, as will be demonstrated in the next section, this term may be

omitted and the result will still be an almost-globally asymptotically and locally expo-

nentially stable observer.

4.5 Zero-Coupling Rigid Body Transformation Error
Observer

Recall equation (4.72):

V̂ = Vy− (Ω̂−Ωy)×P̂+ kPp(P̂−Py) (4.80)

The (Ω̂−Ωy)×P̂ term will not exactly cancel with the (Ω̂−Ω)×P̂ term in the Lya-

punov function due to the noise in the measurement Ωy. While zero mean random

noise will ensure that the expected value of the resulting filter has the desired proper-

ties, the cross term increases the high frequency noise in the position estimate. One

may eliminate this source of estimation noise by discarding the problematic terms.

Corollary 4.5.1 (Zero-Coupling Rigid Body Transformation Error Observer). Con-

sider the statement of Theorem 4.4.1 in which the observer system is almost-globally

asymptotically and locally exponentially stable with equilibrium T̃ = I.

Assume that P(t) is a bounded signal such that

‖P(t)‖ ≤ ‖Pmax‖, for all t. (4.81)

Consider the modified observer with kinematics given in equation (4.72) with the

substitution

V̂ = Vy + kPpξV , (4.82)

Then for the same initial conditions and choice of gains as in Theorem 4.4.1, the error

T̃ is almost-globally asymptotically and locally exponentially stable. Hence T̂ → T ,

R̂→ R and p̂→ p with locally exponential convergence.

Proof of Corollary 4.5.1. Recall the translation error P̃ from equation (4.70c). Setting

Ry ≡ R, Ωy ≡Ω, Py ≡ P, Vy ≡V , V̂ = Vy + kPp(P̂−P), one has

˙̃P =−kPpP̃−R(Ω̂−Ω)×P̂ (4.83)
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Trivially, the system ˙̃P =−kPpP̃ is globally exponentially stable. Then, by Propo-

sition 4.2.6 the system ˙̃P =−kPpP̃+u(t) is ISS.

Let u(t) = −R(Ω̂−Ω)×P̂ be an exogenous input to the error system, which is

exponentially decreasing as R̂→ R from Theorem 4.4.1. Then P̃ in equation (4.83) is

ISS with an exponentially decreasing input when the rotation system is in the region

of locally exponential convergence. Consequently, on the same region P̃ is locally

exponentially stable with equilibrium P̃ = 0.

Hence the modified observer system is almost-globally asymptotically and locally

exponentially stable, with the same bowl of exponential convergence as the observer

system of Theorem 4.4.1.

The figures in Section 4.5.3 demonstrate that this modified form of V̂ allows a

temporary divergence in the position estimate, from the pseudo-input u(t), while the

system undergoes a transition to correct large orientation error. The selection of gains

kPΩ
and kPp , addressed in section 4.5.2, allows this deviation to be controlled to an

extent.

4.5.1 Discrete Integration on SE(3) for Rigid Body Transforma-
tion Error Observer

A range of discrete time integration techniques can be used to create a discrete time

implementation of the observers proposed in Sections 4.3, 4.4 and 4.5. In this section

I will present several choices of discrete integration scheme applied to the Rigid Body

Pose Error Observer presented in Section 4.4

The explicit, or forwards, Euler method is the simplest method of numerical inte-

gration. At each time step, the value of the differential equation is calculated using

the value of the equation and its derivative at the previous time step. On SE(3) the

forwards Euler integration step is given by

T (t + τ) = exp(τAdT (t) Ξ(t))T (t) (4.84)

where τ > 0 is the integration time step and AdT (t) Ξ(t) is used as a tangent represented

in the inertial frame. Note that there exist explicit forms of the matrix exponential on

se(3) (Park 1994) allowing direct implementation, albeit using sin and cos functions,

rather than computationally expensive approximations used in the general case (e.g.

Moler and Van Loan 2003).
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Explicit Euler integration is known to be sensitive to high frequency noise, and

may be corrupted by the IMU measurements in the velocity. An alternative is to use

a higher order method such as the Runge-Kutta methods. A general second-order

Runge-Kutta method, estimating the tangent at the midpoint of the time step, is given

by

yt+τ =yt + τk2

k2 =τ f(t +
1
2

τ,yt +
1
2

k1)

k1 =τ f(t,yt).

(4.85)

Applied to the observer presented in equation (4.72), one has

Ω̂(t) = Ωy(t)+ kPΩ
vex(Pa(R̂>(t)Ry(t))

V̂ (t) = Vy(t)− (Ω̂(t)−Ωy(t))×P̂(t)− kPp(P̂(t)−P(t))

Ξ̂(t) = (Ω̂(t),V̂ (t))∧

T̂ (t +
1
2

τ) = exp(
1
2

T̂ (t)Ξ̂(t)T̂−1(t))T̂ (t)

Ω̂(t +
1
2

τ) = Ωy(t)+ kPΩ
vex(Pa(R̂>(t +

1
2

τ)Ry(t))

V̂ (t +
1
2

τ) = Vy(t)− (Ω̂(t +
1
2

τ)−Ωy(t))×P̂(t +
1
2

τ)− kPp(P̂(t +
1
2

τ)−P(t))

Ξ̂(t +
1
2

τ) =
(

Ω̂(t +
1
2

τ),V̂ (t +
1
2

τ)
)∧

T̂ (t + τ) = exp(
1
2

T̂ (t +
1
2

τ)Ξ̂(t +
1
2

τ)T̂−1(t +
1
2

τ))T̂ (t)

(4.86)

It is also possible to apply symplectic integrator methods to this problem. Sym-

plectic integrators are numerical integration techniques with the key property that they

preserve symplectic invariants, in this case the group structure, while integrating the

equation. Symplectic integrators were first proposed by (De Vogelaere 1956) in unpub-

lished work and subsequently rediscovered by Ruth (1983) and Channell (1983). The

introductions of Crouch and Grossman (1993), Channell and Scovel (1990) provide

good historical reviews of symplectic integration. Park and Chung (2005) provides a

review of symplectic integration techniques with relevance to SE(3).
Symplectic integration techniques were not used in this work as simple Euler and

Runge-Kutta integration schemes were found to keep the solution on the Manifold

under all well behaved operating conditions. That is, if the solution left the mani-

fold, there were more serious problems than the choice integration scheme, such as an

incorrect design choice leading to unbounded growth of the innovation term.
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4.5.2 Gain selection

Corresponding to the analogy to linear complementary filters made in Section 4.1.2

for this family of observers, the values of gains kPΩ
and kPp determine the crossover

frequencies in the frequency response of the rotation and translation components of the

state estimate, respectively. Specifically, the gains determine the crossover frequencies

between the feed-forward components of estimates Ω̂ and V̂ , and the correction terms

ξΩ and ξV .

Gain values corresponds to the crossover frequencies in radians per second. Gain

values will typically be selected based on analysis of the sensors used, but will lie

somewhere between zero and the Nyquist frequency of the sampling rate of the pose

measurement. Values higher than the Nyquist frequency of the pose measurement may

be used to aggressively counteract off-set errors occurring due to dropped frames or

missing pose measurements when tracking moving targets.

Using the zero-coupling Rigid Body Transformation Error Observer of Section

4.5, it is observed that the rotation and translation errors are not individually strictly

decreasing. The cost function permits a trade of error energy between the rotation and

translation errors, causing the apparent divergence of the translation error in exchange

for convergence of the rotation error under periods of high angular velocity. The ratio
kPΩ

kPp
determines the relative timing and magnitude of this divergence. A high ratio will

delay the divergence and spread it over time. Conversely a low value may cause an

immediate, sharp, spike.

4.5.3 Simulation Results

The observers presented in Theorem 4.3.1 and Theorem 4.4.1 has been implemented

in MATLAB 7.1 as a discrete event simulation. The observers have been applied to

simulations of static systems (Ξ = 0), with the initial values of true system, T , and

estimate, T̂ , selected randomly such that

• The rotation, R, is initiated to a rotation of π−0.1 around random axis selected

uniformly.

• The position, p, is a selected from the cube (−10..10,−10..10,−10..10) under

a uniform random distribution.
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Gain Value
kPΩ

: Orientation gain 1

kPp: Position gain 1

Table 4.2: Observer gains used in simulations depicted in Figures 4.7, 4.8, 4.9, 4.10,

4.7

The simulations have been run at 100 Hz, using synchronized velocity and pose

measurements. White noise was added to measurements as per the measurement

model detailed in Section 4.1.2. Gains used are given in Table 4.2.

Figure 4.7 depicts a typical result when all noise variances are set to zero.

In simulations using noisy measurements, convergence rates of the system were

similar to the noiseless case for noise on the measurements Ry, Py, Vy and Ωy. Figure

4.8 depicts a simulation with even levels of noise on each measurement. The magni-

tude of the variance in the estimate, due to measurement noise, was small for noise in

measurements Ry, Py and Vy, but larger for comparative levels of noise in Ωy. Figure

4.10 depicts a typical result with no angular velocity measurement noise, while Figure

4.9 depicts a typical result with only angular velocity measurement noise. Contrasting

these figures with Figure 4.8 illustrates the impact of angular velocity measurement

noise on estimator performance.

Figures 4.11 and 4.12 depict typical results for the Zero Coupling Rigid Body

Transformation Error Observer of Section 4.5 in the absence of measurement noise.

Note the position estimate no longer converges in a purely exponential fashion. In-

stead, convergence is slowed while the rate of angular convergence is high, an effect

controlled by the ratio between gains kPΩ
and kPp as discussed in Section 4.5.2.

4.5.4 Experimental Results

The Zero Coupling Rigid Body Transformation Error Observer presented in section

observer presented in Section 4.5 has been implemented in MATLAB and applied

to the experimental data obtained by Thibault Cheviron (Cheviron et al. 2007), de-

scribed in Section 4.2.3. The experimental platform consisted of an IMU and webcam

mounted on a small scale helicopter. Data capture rates were 50 Hz for the IMU and

10 Hz for the vision sensor. The experiment consisted of a manual quasi-stationary
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Figure 4.7: Simulation result showing attitude and position error in the inertial frame

for Rigid Body Transformation Error Observer using observer gains given in Table

4.2. Static simulation with Ξ = 0, T (0) and T̂ (0) selected randomly and no sensor

noise. Typical result from repeated testing.
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Figure 4.8: Simulation result showing attitude and position error in the inertial frame

for Rigid Body Transformation Error Observer using observer gains given in Table 4.2.

Static simulation with Ξ = 0, T (0) and T̂ (0) selected randomly and noise variances of

1.0 on all sensors. Typical result from repeated testing.
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Figure 4.9: Simulation result showing attitude and position error in the inertial frame

for Rigid Body Transformation Error Observer using observer gains given in Table 4.2.

Static simulation with Ξ = 0, T (0) and T̂ (0) selected randomly and with noise variance

of 1.0 on only the angular velocity sensor. Typical result from repeated testing.



§4.5 Zero-Coupling Rigid Body Transformation Error Observer 89

0 5 10 15 20 25 30 35 40 45
−1

0

1

2

3
Anglular Deviation vs time − Static Simulation for RBT Error Observer − No Angular Velocity Noise

A
ng

ul
ar

 D
ev

ia
tio

n 
(r

ad
ia

ns
)

t

 

 
θ
Roll
Pitch
Yaw

0 5 10 15 20 25 30 35 40 45
−20

−10

0

10

20
Position Deviaiton vs time − Static Simulation for RBT Error Observer − No Angular Velocity Noise

P
os

iti
on

 D
ev

ia
tio

n 
(u

ni
ts

)

t

 

 
||p||
X
Y
Z

Figure 4.10: Simulation result showing attitude and position error in the inertial frame

for Rigid Body Transformation Error Observer using observer gains given in Table

4.2. Static simulation with Ξ = 0, T (0) and T̂ (0) selected randomly and with noise

variances of 1.0 on all sensors except the angular velocity sensor. Typical result from

repeated testing.
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Figure 4.11: Simulation result showing attitude and position error in the inertial frame

for Zero Coupling Rigid Body Transformation Error Observer using observer gains

given in Table 4.2. Static simulation with Ξ = 0, T (0) and T̂ (0) selected randomly

and no sensor noise. Typical result from repeated testing.



§4.5 Zero-Coupling Rigid Body Transformation Error Observer 91

0 5 10 15 20 25 30 35 40 45
−1

0

1

2

3
Anglular Deviation vs time − Static Simulation for ZC RBT Error Observer − Angular Velocity Noise

A
ng

ul
ar

 D
ev

ia
tio

n 
(r

ad
ia

ns
)

t

 

 
θ
Roll
Pitch
Yaw

0 5 10 15 20 25 30 35 40 45
−20

−10

0

10

20
Position Deviaiton vs time − Static Simulation for ZC RBT Error Observer − Angular Velocity Noise

P
os

iti
on

 D
ev

ia
tio

n 
(u

ni
ts

)

t

 

 
||p||
X
Y
Z

Figure 4.12: Simulation result showing attitude and position error in the inertial frame

for Zero Coupling Rigid Body Transformation Error Observer using observer gains

given in Table 4.2. Static simulation with Ξ = 0, T (0) and T̂ (0) selected randomly

and with noise variance of 1.0 on only the angular velocity sensor. Typical result from

repeated testing.
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Gain Value
kPΩ

: Orientation gain 1

kPp: Position gain 5

Table 4.3: Observer gains used experimental results with Zero Coupling Rigid Body

Transformation Error Observer

(i.e. hover) flight, such that no visual feature occlusion occurred. Data from the vision

sensor and IMU were harmonised as in Section 4.2.3.

The observer was initialised with T̂ (0) = I the gains given in Table 4.3. A pre-

filter was used to estimate velocity from acceleration and pose measurements. No bias

correction was performed on either the gyroscope measurements or velocity estimate.

The estimated helicopter attitude and position are depicted in figures 4.13 and 4.14.

Again, the estimated pose is depicted in blue and contrasted with the camera measure-

ments in red and, in the case of attitude, the industrial filter of the IMU in green.

These figures demonstrate the performance of the Zero Coupling Rigid Body Trans-

formation Error Observer on real world data and in the presence of substantial initial

value error.

4.6 Chapter Summary

In this chapter I have developed a series of observers for pose from inertial and vision

measurements. The key approach was to exploit the underlying SO(3)×R3 semi-

direct product structure of SE(3) to form observers for the attitude and position com-

ponents separately.

The first pose observer proposed in Section 4.2, the Cascaded Pose Observer, tack-

les the problem by proposing a non-linear attitude observer and cascading this result

into a non-linear position and velocity observer. Gyroscope and accelerometer biases

are also estimated. The resulting system is locally exponentially convergent. Exper-

imental results display good performance in the presence of measurement noise and

inexact initial conditions.

In Section 4.3 a pair of observers are proposed which estimate orientation and posi-

tion simultaneously. These observer are simple to design and tune, with a design analo-

gous to linear complementary filters. The observer are almost-globally asymptotically
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Figure 4.13: Estimate of helicopter attitude in the inertial frame produced by Zero

Coupling Rigid Body Transformation Error Observer using observer gains given in

Table 4.3.
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Figure 4.14: Estimate of helicopter position in the inertial frame produced by Zero

Coupling Rigid Body Transformation Error Observer using observer gains given in

Table 4.3.
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and locally exponentially stable. In Section 4.4, the Rigid Body Transformation Error

Observer is proposed, following from the identification of the Rigid Body Transfor-

mation error, T̃ = T̂ T−1; a representation of the state error in the inertial frame. This

observer maintain the simplicity and almost-global asymptotic and locally exponential

stability of the observers proposed in Section 4.3 but eliminates vision measurements

from the feed-forward term, permitting a multi-rate implementation.

A final observer is proposed in Section 4.5, by using input-to-state stability proper-

ties to simplify the Rigid Body Transformation Error Observer by further eliminating

coupling between measurements. The observer maintains the almost-globally asymp-

totic and locally exponential stability, straightforward tuning process and insensitivity

to initial conditions of the prior observers, with the addition of a separation of mea-

surement noise processes and excellent suitability for a multi-rate implementation.

A combination of simulation and experimental results demonstrate the perfor-

mance of these observers. Simulations demonstrate the convergence properties and

insensitivity to initial conditions. Experiments were performed using a scale helicopter

demonstrate tracking performance on real world data.
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Chapter 5

Observer Design on the Special
Euclidean Group SE(3)

This chapter describes the design of an observer for both pose and velocity measure-

ment bias, with the pose observer evolving directly on the the special Euclidean group

SE(3) of dimension four. Unlike in the previous chapter, the the special Euclidean

group SE(3) of dimension four manifold is treated holistically with no decomposi-

tions used.

A twelve state non-linear observer is developed that estimates pose together with

biases on angular and linear velocity measurements from measurements of pose and

angular and linear velocity. The observer is almost-globally asymptotically and locally

exponentially stable.

Of particular novelty in the design of the pose observer is the choice of and inter-

pretation given to the pose error used. It is shown that the correct pose measurement

error to use corresponds to the expression of the pose error as a rigid body transforma-

tion in the inertial frame. The design of the pose observer directly on SE(3) results in

the identification of innovation terms on the Lie Algebra se(3) over SE(3) and a state

evolving on SE(3)× se(3).

A key practical property of this pose observer is the separation in the state dynam-

ics between the pose and velocity inputs. This separation permits an asynchronous

multi-rate implementation, an architecture that is particularly appropriate in the situa-

tion where velocity measurements are available at a substantially higher rate than the

pose measurements. This separation together with the Lyapunov stability argument

posed directly on SE(3) permits the observer to be driven with velocity measurements

obtained in the inertial frame, the body-fixed frame or a specific orthogonal combina-

tion of the two.

97
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Simulation and experimental results are presented for the observer, demonstrating

performance in tracking, bias estimation and in the presence of measurement noise.

Experimental results have been obtained using data collected from the experimental

platform described in Chapter A.1, using an inertial and vision sensor attached to a

robotic manipulator. Comparison with ground-truth data demonstrates observer accu-

racy under experimental conditions.

The contributions of this chapter are

• Development of an observer for pose, and linear and angular velocity measure-

ment biase estimates, designed directly on SE(3), with an almost-global asymp-

totic Lyapunov stability argument and locally exponential stability argument.

• Formal identification of analogous observers using orthogonal combinations of

velocity measurements in both the inertial and body-fixed frames.

• An algorithm for implementation of this observer family using asynchronous

measurements arriving at multiple rates.

The material presented in this chapter extends material first reported in Baldwin

et al. (2008).

5.1 Problem Formulation

Let A again denote an inertial frame attached to the earth such that e3 points vertically

down. Let B denote a body-fixed frame attached to a vehicle of interest at the center

of mass. The origin of B expressed in A is given by the vector p and the attitude of B
expressed in A is given by the rotation matrix R.

The pose of the body-fixed frame, (R, p) comprises both the attitude and position

of B relative to A . The pose can be interpreted as an element of SE(3) with the matrix

representation, commonly known as homogenous coordinates,

T =

(
R p

0 1

)
. (5.1)

This representation identifies SE(3) as a subgroup of the general linear group GL(4)
of dimension four with the group operation of concatenation of transforms identified

with matrix multiplication.
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The homogenous coordinate 4×4 matrix has the triple interpretation as the pose of

B expressed in A , as the coordinate frame transformation mapping objects expressed

in B to objects expressed in A , and as the rigid body transformation moving an object

from the pose given by the attitude and position of A to the attitude and position of B ,

expressed in A .

As previously, we adopt the convention that positions and vectors expressed in

the inertial frame are denoted by lower case letters, and quantities expressed in other

frames are denoted by upper case letters.

The kinematics of B are given by

Ṙ = RΩ×, (5.2a)

ṗ = v, (5.2b)

where Ω denotes the angular velocity of the body-fixed frame, expressed in the body-

fixed frame, and v denotes the linear velocity of the body-fixed frame expressed in

the inertial frame. The operator (·)× takes the vector Ω ∈ R3 to the skew-symmetric

matrix

Ω× =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (5.3)

Represented in SE(3), the kinematics of B are

Ṫ = T Ξ (5.4)

where Ξ ∈ se(3) is the 6 dimensional velocity of B expressed in B , and

Ξ = (Ω,V )∧ , (5.5)

with the wedge superscript denoting the correspondence between the body-fixed frame

angular and linear velocities Ω and V to an element Ξ ∈ se(3),

(Ω,V )∧ =

(
Ω× V

0 0

)
. (5.6)

and V is the linear velocity of the origin of B expressed in B . That is,

V = R>v. (5.7)

It is easily verified that equation (6.4) is a matrix representation of the kinematics

in equation (5.2).
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Not that six-dimensional velocity vectors in se(3), such as Ξ in equation (6.4) are

associated with a frame of reference in which they are expressed. Thus Ξ gives the

velocity of the body-fixed frame B expressed in B .

The adjoint operator AdT : se(3)→ se(3) is defined, as in e.g. Murray et al. (1993),

as

AdT Ξ = T ΞT−1. (5.8)

The adjoint by T , AdT , applied to Ξ acts to map the velocity of B relative to A ex-

pressed in B to the negative of the velocity of A relative to B expressed in A . This is

illustrated by calculating the kinematics of T−1, the pose of A expressed in B .

Ṫ−1 =−ΞT−1 =−T−1 AdT Ξ. (5.9)

For a connected Lie group, such as SE(3), a relation between the group and the

Lie algebra of the group is given by the exponential map

exp : g→ G, σ 7→ exp(σ). (5.10)

The exponential map has the interpretation of mapping a direction and magnitude,

given by the element of the Lie algebra, to an element of the Lie group. For example,

mapping a velocity vector to the displacement obtained by moving with that velocity

for unit time. For a matrix Lie group, the exponential map is given by the matrix

exponential.

Finally, I present some definitions that will be required in the sequel. Define an

inner product and associated norm on the set of Rn×n matrices as

〈M,N〉= tr(M>N). (5.11)

and

‖M‖2
F = 〈M,M〉= tr(M>M) (5.12)

where ‖(·)‖F is the standard Frobenius norm.

Let Pa and Ps be orthogonal projection operators with respect to the inner product

equation (5.11), decomposing a matrix M ∈ Rn×n into an anti-symmetric component

Pa(M) and a symmetric component Ps(M). One has

Pa(M) =
1
2
(M−M>), (5.13a)

Ps(M) =
1
2
(M +M>). (5.13b)
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Note that the anti-symmetric projection, Pa, for n = 3 is also a projection from

R3×3 onto so(3). An orthogonal projection Pse(3) from R4×4 to se(3) is defined by

Pse(3)

([
A B

CT D

])
=

[
Pa(A) B

0 0

]
, (5.14)

where A is a 3×3 sub-matrix, B and C are 3×1 sub-matrices and D is a scalar.

5.1.1 Measurement Model

We again consider the vehicle of interest to be equipped with an inertial-vision sensor

package; an Inertial Measurement Unit (IMU) and a monocular camera; both affixed to

the craft and taking measurements in the body-fixed frame, B . As throughout this the-

sis, the IMU operates at a measurement rate up to two orders of magnitude faster than

the vision measurement rate. Additionally, the inertial measurements are corrupted

by low frequency noise, while the vision measurements are stable at low frequencies

and corrupted by high frequency noise. The complementary characteristics of these

measurements will be exploited to form a high quality estimate.

In this chapter, we assume that measurements of the system velocity Ξ, including

the angular and linear velocity components are available, such as from an IMU and

linear velocity estimator as discussed in Section 2.2.3. The velocity measurements

are assumed to be corrupted by slowly time-varying biases, bΩ and bV , and zero-

mean Gaussian noise processes nΩ and nV . In particular, we assume the biases are

sufficiently slowly varying that they may be treated as constant with respect to the

time scale of observer convergence.

Using a vision sensor, we make observations of a constellation of static points

whose position in the inertial frame is known. For each frame, from the observed im-

age coordinates of three or more points, the pose of the camera can be reconstructed; a

problem known as the perspective-n-point problem (Fischler and Bolles 1981). Using

the procedure outlined in Section 3.7.3, Chapter A.1, employing the pose estimation

algorithm of the compute extrinsic function of the MATLAB camera calibra-

tion toolbox (Bouguet 2008). As discussed in Section 2.2.2, alternate sensors, such

as Global Positioning System (GPS), may be substituted for a vision sensor under

appropriate conditions.

Consequently in this chapter we treat the camera as providing bias-free measure-

ments of T−1 at low rate, corrupted by zero-mean Gaussian noise process nT , which
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may be decomposed into orthogonal rotation and position noise processes nΩ and np

One has the measurement model

T−1
y = exp(nT (t))T−1 (5.15a)

=

(
R>y Py

0 1

)
=

(
exp(nR(t))R>y Py(t)+np

0 1

)
Ξy = Ξ+nΞ(t)+bΞ (5.15b)

= (Ωy,Vy)
∧ = (Ω+nΩ(t)+bΩ,V +nV (t)+bV )∧

where n(·)(t) denotes a zero-mean Gaussian noise process and b(·) denotes a constant

bias term.

To provide context for the following theoretical developments, it is worth noting

that commercial grade IMUs, such as the 3DM-GX1, supply velocity measurements at

rates of up to 300 Hz. With low frame rates and the additional overhead of calculating

pose estimates, vision sensors provide measurements at rates of around 5 to 10 Hz.

5.2 Pose and Velocity Bias Observer on SE(3)

In this section, I describe an almost-globally asymptotically and locally exponentially

convergent observer on SE(3) for estimation of pose and velocity measurement bias

from measurements of pose and velocity. I identify an error pose which exhibits invari-

ant to transformation of the body-fixed frame when such transformation is replicated

in the estimation frame. Using this error, I define a Lyapunov function and prove

almost-global asymptotic convergence to a critical set, the existence of a sole stable

critical point and locally exponential convergence for this observer.

From the system kinematics in equation (6.4) and the assumption of time-constant

sensor biases, one has the composite pose and bias system (T,bΞ)

Ṫ = T Ξ (5.16a)

ḃΞ = 0 (5.16b)

with T ∈ SE(3) and bΞ ∈ se(3).

Consider the problem of estimating the pose and velocity sensor bias for a vehicle.

Let T̂ denote an estimate of T and the define the estimation frame E as the pose given
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Figure 5.1: The rigid-body transformation from inertial frame, A , to the body-fixed

frame, B , is represented by T and the transformation from A to the estimation frame,

E , is represented by T̂ . The transformation T̃ , from the body fixed to estimation

frames, expressed in A , is then given by T̂ T−1.

by T̂ relative to the inertial frame A . Then

T̂ =

(
R̂ p̂

0 1

)
(5.17)

where R̂ is the rotation matrix giving the attitude of E in A and p̂ is the origin of E
expressed in A .

The homogenous representation of T and T̂ have the interpretation not only as the

origin and attitude of B and E respectively, but also as the rigid body transformation

moving an object an axes at the origin and identity attitude of A to the poses B and E ,

respectively, expressed in A . To obtain a well conditioned observer, we wish to also

express an error term T̃ as a rigid body transformation moving an axes at the pose B
to the pose E , expressed in A . To obtain this error, we apply the coordinate frame

transformation from A to B , T−1, then apply the rigid body transformation from B to

E expressed in B , T−1T̂ , and then apply the inverse coordinate frame transformation,

from B to A , T .

T̃ = T (T−1T̂ )T−1 = T̂ T−1 (5.18)

The relationship between T , T̂ and T̃ is depicted in Figure 5.1. T̃ corresponds to

the classical observer theory error x̃ = x̂− x; a vector from the true to the estimated

system. Note that T̃ can only be interpreted as a rigid body transformation and does

not have an interpretation as a coordinate frame transformation.
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Theorem 5.2.1 (Pose and Velocity Measurement Bias Observer on SE(3)). Consider

the system equation (5.16) and a bounded continuous solution T (t) with bounded driv-

ing term Ξ(t). Let Ξy = Ξ + bΞ be a noise-free, biased measurement and T−1
y = T−1

be a measurement free of bias and noise.

Define the observer

˙̂T =T̂ (Ξy− b̂Ξ + kPξ), (5.19a)
˙̂bΞ =− kIβ, (5.19b)

ξ =AdT−1
y

Pse(3)(T̃
−1

y ), (5.19c)

β =Pse(3)(AdT>y
Pse(3)(T̃

−1
y )); (5.19d)

the errors

T̃ =T̂ T−1, (5.20a)

b̃Ξ =b̂Ξ−bΞ; (5.20b)

and the set

U =
{
(T̃ , b̃Ξ) ∈ (SE(3),se(3)) | Pse(3)(T̃ ) = 0, b̃Ξ = 0

}
\{(I,0)} . (5.21)

Then, for all positive choices of gains kP, kI , the error coordinates (T̃ , b̃Ξ);

(i) converge to U ∪{(I,0)} for all initial conditions,

(ii) are locally exponentially stable about (I,0), and

(iii) in every neighbourhood of every point in U, there exists an initial condition

(T̃ (0), b̃Ξ(0)) of an error trajectory converging to (I,0). That is, the set U is

unstable.

Proof of Theorem 5.2.1. This proof is set out as follows:

• Firstly, we will show global asymptotic convergence of the system to U∪{(I,0)}
through application of Lyapunov’s direct method and Barbalat’s lemma.

• Secondly, we will show that in every neighbourhood of every point in the critical

set, U , there is an initial condition (T̃ (0), b̃Ξ(0)) of an error trajectory converging

to (I,0) by application of a Lyapunov argument in a suitable representation.
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• Thirdly, we compute a linearisation of a transformation of the error system and

show that this linearisation is locally exponentially stable for the given exoge-

nous signal T (t), and hence all T (t). This in turn is used to show locally expo-

nential stability of the error system.

Recalling the definition of T̃ and b̃Ξ, equation (5.20). Setting Ξy ≡ Ξ + bΞ, the

pose deviation and bias error kinematics are

˙̃T =T̃ AdT (kPξ− b̃Ξ), (5.22a)
˙̃bΞ =− kIβ, (5.22b)

Define a candidate Lyapunov function L

L = 1
2‖I− T̃‖2

F + 1
2kI
‖b̃Ξ‖2

F . (5.23)

Taking the time derivative of L yields

L̇ =−
〈

˙̃T, I− T̃
〉

+ 1
kI

〈
˙̃bΞ, b̃Ξ

〉
=−

〈
T̃ AdT (kPξ− b̃Ξ), I− T̃

〉
−
〈
β, b̃Ξ

〉
=−kP

〈
AdT (ξ), T̃>(I− T̃ )

〉
+
〈

b̃Ξ,Ad>T (T̃>(I− T̃ ))
〉
−
〈
β, b̃Ξ

〉
.

(5.24)

Substituting ξ and β from equation (5.19c) and equation (5.19d), and setting T−1
y ≡

T−1 yields

L̇ =−kP

〈
Pse(3)(T̃

−1), T̃>(I− T̃ )
〉

+
〈

Ad>T (T̃>(I− T̃ )), b̃Ξ

〉
−
〈
Pse(3)(AdT> Pse(3)(T̃

−1)), b̃Ξ

〉
=−kP

〈
Pse(3)(T̃

−1),Pse(3)(T̃
>(I− T̃ ))

〉
+
〈

Pse(3)(Ad>T (T̃>(I− T̃ )))−Pse(3)(AdT> Pse(3)(T̃
−1)), b̃Ξ

〉
(5.25)

where in the last step, the fact that Pse(3) is an orthogonal projector is used. Further,

the algebraic equalities

Pse(3)(T̃
>(I− T̃ )) = Pse(3)(T̃

−1), (5.26a)

Pse(3)(AdT>(T̃
>(I− T̃ ))) = Pse(3)(AdT> Pse(3)(T̃

−1)), (5.26b)

when substituted into L̇ , yield

L̇ =−kP ‖Pse(3)(T̃
−1)‖2

F (5.27)
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Consider the transformed variable S = T̃ − I. Note that Pse(3)(T̃−1) = Pse(3)((S +
I)−1). The right hand side of (Ṡ, ˙̃bΞ) is continuous in t, equal to 0 at (S, b̃Ξ) = 0, locally

Lipschitz in (S, b̃Ξ) and uniformly Lipschitz in t. In coordinates (S, b̃Ξ) it is easily seen

that L = 1
2‖S‖

2 + 1
2kI
‖b̃Ξ‖2 is radially unbounded, positive definite and has negative

definite time derivative. Applying Theorem 8.4 of Khalil (2002), a special case of of

Barbalat’s lemma, one obtains limt→∞ L̇ = 0.

From equation (5.27) one can see that L̇ = 0 contains only the trajectories where

Pse(3)(T̃−1) = 0. Direct calculations from equation (5.22a), identify the invariant set

for Pse(3)(T̃−1) = 0 as{
(T̃ , b̃Ξ) ∈ (SE(3),se(3)) | Pse(3)(T̃ ) = 0, b̃Ξ = 0

}
. (5.28)

Hence for all initial conditions (T̃ , B̃) is asymptotically convergent to U ∪ {(I,0)},
proving claim (i).

Consider the angle-axis-position representation of an element of SE(3), (γ,θ, p),
where γ and θ are the axis and angle of rotation of the attitude component of pose, and

p is the position. Note that restricted to b̃Ξ = 0 and p̃ = 0, L reduces to L = 2(1−
cos(θ)) by application of Rodrigues’ rotation formula, see e.g. Murray et al. (1993).

Moreover {T̃ ∈ SE(3) | Pse(3)(T̃−1) = 0}\{I} is characterised by θ =±π. Hence, any

open ball centred on (T̃U , b̃ΞU ) ∈ U contains points (T̃ , b̃Ξ) for which θ 6= ±π, and

thusL(T̃ , b̃Ξ) < L(T̃U , b̃ΞU ). By monotonicity of L , these points diverge from U and

must converge to (I,0), proving claim (iii).

To prove locally exponential stability, we use a linearisation of a system related to

the error system (T̃ , b̃Ξ). Let

R̄ =R−1R̃R, (5.29a)

∆P = = R̂−1 p̃ = P̂−P. (5.29b)

As (R̄,∆P, b̃ξ)→ (I,0,0), then (T̃ , B̃)→ (I,0) with corresponding rate of conver-

gence. A linearisation of (R̄,∆P, B̃) about (I,0,0) is given by R̄ = I + x1×, ∆P = x3,

b̃Ξ = (−x2,x4)
∧, where x1,x2,x3,x4 ∈ R3. The linearised dynamics are given by

ẋ1 =−Ω×x1− kPx1 + x2, (5.30a)

ẋ2 =− kIx1 +
kI

2
P×x3, (5.30b)

ẋ3 =−Ω×x3− kPx3 +P×x2 + x4, (5.30c)

ẋ4 =− kIx3. (5.30d)
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Consider a Lyapunov function given by

W =
α1

2
‖x1‖2

2−α2x>1 x2 +
α3

2
‖x2‖2

2 +
β1

2
‖x3‖2

2−β2x>3 x4 +
β3

2
‖x4‖2

2 , (5.31)

where α1, α2, α3, β1, β2 and β3 are positive constant chosen subject to algorithms

given in Appendix B.

A principally mechanical proof then shows global exponential stability of the lien-

arisation and hence locally exponential stability of (R̄,∆P, b̃Ξ), for all values of kP and

kI , and all bounded continuous T (t) and all bounded Ξ(t).
The calculations and choice of constants α1, α2, α3, β1, β2 and β3 are omitted here

for brevity. They are included, in full, in Appendix B.

It is easily verified that locally exponential stability of equation (5.29) implies lo-

cally exponential stability of (T̃ , b̃Ξ) about (I,0), proving claim (ii).

Remark 5.2.2. Theorem 5.2.1 and its proof have the following consequences:

1. Since in every neighbourhood of every point in the critical set U there is an initial

condition of an error trajectory leading to (I,0), we call U the unstable critical

set for the error system. The set U is identified as the set with orientation errors

of angle ±π and zero position and bias error. The geometry of U and (I,0) in

the system is depicted in Figure 5.2.

2. Real world measurements can often contain low-magnitude zero-mean noise and

time varying biases, as discussed in Section 5.1.1. The pose filter equation (5.19)

is applicable to systems with these measurements as its locally exponential con-

vergence properties act to dominate low-magnitude noise and an argument of

time scale separation ensures tracking of time varying biases.

3. Note that the pose estimate dynamics, Ξ̂ := Ξy− b̂Ξ +kPξ, and its gain, kP, may

be decomposed into rotational and translational components. Setting (Ω̂,V̂ )∧ :=
Ξ̂, and letting kPΩ

and kPp be the rotation and translational proportional gains,

one has

Ω̂× = Ωy×− b̂Ω×+ kPΩ
AdR−1

y

(
Pa(R̃−1

y )
)
, (5.32a)

V̂ = Vy− b̂V − kPp AdR−1
y

(
Pa(R̃−1

y )
)

Py + kPp(P̂−Py), (5.32b)

where R̃y = R̂R−1
y is the error composed using the measured rotation available

in a physical implementation.
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Figure 5.2: Sketch of the geometry of critical points of L on SE(3)×R6. On the half

sphere representing SO(3) we represent the angle of rotation, θ, by vertical height in

the bowl and the two dimensional axis of rotation by the angular position and head-

ing on the bowl. The bias subspace, bΞ = R6 and the translational position subspace

p = R3 are each attached at every point on the bowl, with p being attached in differ-

ent directions around SO(3) according to the connection on SE(3). The critical sets

(I,0) and U form the base and rim of the SO(3) bowl respectively. Further, in every

neighbourhood of every point (TU ,0)∈U , there is the initial conditions for a trajectory

converging to (I,0).

4. Similarly, the bias estimate kinematics, b̂Ξ, and gain, kI , can be decomposed into

angular and linear components. Setting (b̂Ω, b̂V )∧ := b̂Ξ and letting kIΩ
and kIp

be the rotation and translation bias gains, one has

˙̂bΩ× =− kIΩ
AdR−1

y
Pa(R̃−1

y )− kIΩ
Pa(P̂P>y ) (5.33a)

=− kIΩ
AdR−1

y
Pa(R̃−1

y )− kIΩ

1
2
(Py× P̂)×,

˙̂bV =− kIp(P̂−Py). (5.33b)

These equivalent disjoint terms may be used with independent positive gains kIΩ

and kIp , to tune the angular and linear velocity bias estimate dynamics indepen-

dently. For example, by setting a gain of kIp = 0, one may turn off linear velocity
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bias estimation in the case where linear velocity is supplied by an unbiased esti-

mator.

Excluding the addition of the bias terms, the filter dynamics expressed in equa-

tion (5.32a) and equation (5.32b) are similar to those proposed in equation (4.72) in

Chapter 4 for the Rigid Body Transformation observer. The sole difference being the

substitution of Py for P̂ in V̂ =Vy−kPp(Ω̂−Ω)P̂+kPp(P̂−Py), resulting from strict ad-

herence to the group structure. In the earlier work, I exploited the semi-direct product

structure of SE(3) to design a filter, using the identity ‖I−T‖2
F = ‖I−R‖2

F + ‖P‖2
2,

which permits partial exchange of quantities in the body-fixed and inertial frames in

the cost function, yielding the alternate innovation term. Conversely, in this chapter, I

perform observer design and analysis directly on SE(3).
Setting kPp = 0, p̂(0) = 0, kIp = 0 and b̂V = 0, we obtain an orientation estimator

on SO(3)

˙̂R = R̂(Ωy− b̂Ω + kPΩ
Pa(R̂>Ry))×, (5.34a)

˙̂bΩ× =−kIΩ
Pa(R̂>Ry). (5.34b)

This is the filter proposed in Equation (13) of Mahony et al. (2008). In Mahony

et. al. the filter equation (5.34) was termed the passive complementary filter with bias

correction, as a practical adjustment of their direct complementary filter. Both filters in

Mahony et al. (2008) were analysed using a pose deviation measured as the coordinate

frame transformation between the body-fixed and estimation frames. With Theorem

5.2.1, we have shown that the passive filter has an interpretation as the filter derived

when measuring pose deviation as the rigid-body transformation between the body-

fixed and estimation frame, represented in the inertial frame.

Note that the complementary filter may be depicted, analogously to linear sys-

tems, as a block diagram in Figure 5.3. This representation highlights the similarity to

traditional proportional-integral design noted by Mahony et al. (2008). As discussed

in Mahony et al. (2008) and presented in equation (5.34), the SO(3) sub-case is ex-

actly a proportional integral controller with feedback term Pa(R̂>R). In extending this

metaphor to SE(3), we find that the pose and bias feedback terms, ξ and β are related

but now depend on different non-linear adjoint transformations: AdT−1 and AdT> .

Lastly, note that as with the Rigid Body Transformation Error Observer and Zero-

Coupling Rigid Body Transformation Error Observer presented in Chapter 4, this ob-

server again demonstrates a separation of measurement noise processes in the estimate
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Figure 5.3: SE(3) Complementary Filter Block Diagram. Note the structure is analo-

gous to classical proportional-integral control structures.

dynamics. Additionally, with two, or four, scalar gains to tune, the gain tuning process

is straightforward.

5.2.1 Pose and Velocity Bias Observer for Partial Velocity Mea-
surements in Mixed Frames

The following corollary extends the Theorem 5.2.1 to the case where the system ve-

locity is measured using two or more measurement devices, with devices measuring

velocity components in either the body-fixed or inertial frames. In particular, angular

velocity is usually measurement in the body-fixed frame using an IMU. Linear velocity

however can be difficult to obtain and may be measured in either the inertial or body-

fixed frames. For example, a differential GPS system would provide inertial frame

measurements of linear velocity, while a doppler laser system provied linear velocity

in the body-fixed frame.

Consider the case where the system velocity Ξ is partially observable in each of two

frames of reference, as ζA and ζB, where ζA is an observation in the inertial frame and

ζB is an observation in the body-fixed frame. Let the velocity components observed in

ζA and ζB be such that when transformed into a common frame of reference, they sum

to give the total system velocity. That is

Ξ = AdT−1(ζA)+ζB. (5.35)

Let PA and PB be two mutually-orthogonal projections of se(3) conforming to one

of three cases:
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• PA is the identity function and PB the zero function,

• PA is the zero function and PB the identity function, or

• PA preserves the linear velocity component and PB preserves the angular veloc-

ity component.

Let ζA and ζB be related to the body-fixed frame velocity Ξ as

ζA = AdT PA(Ξ),

ζB = PB(Ξ).
(5.36)

Extending the measurement model introduced in Section 5.1.1, let measurements

of ζA and ζB be given by

ζAy = AdT PA(Ξ)+nζA
(t)+bζA

,

ζBy = PB(Ξ)+nζB(t)+bζB

(5.37)

where n(·)(t) is again a zero-mean Gaussian noise process and b(·) denotes a constant

bias term. Further, let nζA
, bζA

, nζB and bζB be restricted to projections of se(3) corre-

sponding to PA and PB respectively. That is, ζBy = PB(Ξy).
Note that we now have one bias in the body-fixed frame, bζB , and one bias in the

inertial frame, bζA
, though these biases are on mutually orthogonal components of

system velocity.

Corollary 5.2.3 (Pose and Velocity Measurement Bias Observer Driven By Velocity

Measurements in Mixed Frames). Consider the system equation (5.16) and a bounded

continuous solution T (t) with bounded driving term Ξ(t), with partial observations of

Ξ(t) as two mutually orthogonal components ζA(t), in the inertial frame, and ζB(t), in

the body-fixed frame, as per equation (5.36). Let ζAy = ζA +bζA
and ζBy = ζB +bζB be

noise-free, biased measurements and T−1
y = T−1 be a measurement free of bias and

noise.

Define the observer

˙̂T =AdT−1
y

(ζAy− b̂ζA
)T̂ + T̂ (ζBy− b̂ζB)+ T̂ (kPξ), (5.38a)

˙̂bζA
=− kIβA, (5.38b)

˙̂bζB =− kIβB, (5.38c)

βA =PA(Pse(3)(T̃
−1)), (5.38d)

βB =PB(β); (5.38e)
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and the errors

b̃ζA
=b̂ζA

−bζA
, (5.39a)

b̃ζB =b̂ζB−bζB; (5.39b)

and the set

U =
{
(T̃ , b̃ζA

, b̃ζB) ∈ (SE(3),se(3),se(3)) |

Pse(3)(T̃ ) = 0, b̃ζA
= 0, b̃ζB = 0

}
\{(I,0)} .

(5.40)

Let T̃ , ξ and β be defined as in equation (5.20a), equation (5.19c) and equation

(5.19d) respectively.

Then, for all positive choices of gains kP, kI , the error coordinates (T̃ , b̃ζA
, b̃ζB)

(i) converge to U ∪{(I,0,0)} for all initial conditions,

(ii) in every neighbourhood of every point in U, there exists an initial condition

(T̃ (0), b̃ζA
(0), b̃ζB(0)) of an error trajectory converging to (I,0,0). That is, the

set U is unstable.

Proof of Corollary 5.2.3. Recall the definition of T̃ , b̃ζA
and b̃ζB from equation (5.20a)

and equation (5.39). Setting ζAy ≡ ζA +bζA
and ζBy ≡ ζB +bζB , the pose deviation and

bias error kinematics are

˙̃T =T̃ AdT (kPξ−AdT−1(b̃ζA
)− b̃ζB) (5.41a)

˙̃bζA
=− kIβA (5.41b)

˙̃bζB =− kIβB (5.41c)

Define the candidate Lyapunov function W

W = 1
2‖I− T̃‖2

F + 1
2kI
‖b̃ζA
‖2

F + 1
2kI
‖b̃ζB‖

2
F (5.42)

Taking the time derivative of W yields

Ẇ =−
〈
AdT (kPξ−AdT−1(b̃ζA

)− b̃ζB), T̃
>(I− T̃ )

〉
−
〈
βA, b̃ζA

〉
−
〈
βB, b̃ζA

〉
=−kP

〈
AdT ξ,Pse(3)(T̃>(I− T̃ ))

〉
+
〈
b̃ζA

,PA(Pse(3)(T̃>(I− T̃ )))−βA
〉

+
〈
b̃ζB ,PB(Pse(3)(AdT>(T̃

>(I− T̃ ))))−βB
〉

=−kP
∥∥Pse(3)(T̃ 1)

∥∥2
F

(5.43)
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where in the last line we substitute for βA, βB and ξ from equation (5.38d), equation

(5.38e) and equation (5.19c), using β from equation (5.19d) and employ the algebraic

identities of equation (5.26).

From here, by an application of Barbalat’s Lemma and unstable set argument anal-

ogous to those in the proof of Theorem 5.2.1, we prove claims (i) and (ii).

Note that the estimate kinematics equation (5.38a) now explicitly couple the pose

measurement Ty to velocity measurement ζAy . This is required to retain the velocity

invariance of error T̃ , which is right invariant to synchronous velocity terms applied

to T and T̂ . Alternative definitions of ˙̂T , such as substituting T̂ for Ty result break this

property by driving T and T̂ with different velocities due to coordinate frame transfor-

mation errors introduced in the approximation. However, in a practical application, an

appropriate approximation of Ty at the sampling times of Ξy may yield acceptable re-

sults when used in feedback and under appropriate conditions. Such an approximation

may include T̂ for small initial condition errors or a zero-order hold of Ty for small

sampling times.

The restriction of PA and PB to the three cases explicitly listed is necessary as

these are the only three cases for which the corresponding measurement model, equa-

tion (5.37), admits a constant bias in both the body-fixed and inertial frames. Other

orthogonal decompositions, such where PA preserves the angular velocity component

and PB preserves the linear velocity component, result in measurement models that

couple linear velocity, angular velocity and position in such a way as to not admit a

physically realisable measurement model adhering to equation (5.35).

Further, from Corollary 5.2.3 further insight is gained into the innovation terms ξ

and β. In particular, that ξ corresponds to an error vector in the inertial frame and β

corresponds to an error vector in the body-fixed frame. Recall equation (5.43), one

may alternately proceed

L̇ =−kP
〈
AdT (ξ), T̃>(I− T̃ )

〉
+
〈

b̃Ξ,Ad>T (T̃>(I− T̃ ))
〉
−
〈
β, b̃Ξ

〉
=−kP

〈
ξ,Pse(3)(Ad>T (T̃>(I− T̃ )))

〉
+
〈

b̃Ξ,Pse(3)(Ad>T (T̃>(I− T̃ )))−β

〉 (5.44)

From which point setting ξ ≡ β and substituting β from equation (5.19d) with the

identities equation (5.26), one has

L̇ =−kP ‖β‖2
F (5.45)
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and the Barbalat argument for almost-global asymptotic stability continues as prior.

Similarly for Ẇ in equation (5.43).

With the inclusion of an inertial frame bias in the model for Corollary 5.2.3, it is

clear from the corresponding innovation term βA that Pse(3)(T̃−1) is an error vector on

the Lie algebra in the direction of the geodesic from T̃ to I. This corresponds to the

many familiar examples from linear systems where bias correction is accomplished by

integrating the error vector −(x̂− x).

Further, the innovations ξ and β are two methods of transforming this vector into

a vector from T̂ to T , which can then be used to drive the estimation frame dynamics

of T̂ . From equation (5.32) and equation (5.33), the difference between ξ and β is

in the how the coupling of the rotation and translation components induced by the

semi-direct product structure of SE(3) is represented.

5.3 Observer Implementation

In this section, I identify solutions to problems that can appear when implementing the

pose filter in a digital microprocessor with real-world sensor measurements. As de-

scribed in Section 5.1.1, the pose and velocity sensors operate at different measurement

rates which we seek to exploit in order to obtain a high-quality pose estimate at the

maximum possible update rate. This is addressed using a multi-rate implementation

of the pose and bias observer, exploiting the logical separation between the velocity

and pose measurement terms in the estimate dynamics. Additionally, the discretisation

of the continuous time equations was found to be numerically unstable under certain

avoidable conditions. Causes of numerical instability are identified and solutions pro-

vided. For clarity, observer algorithm based on these design choices is sketched.

5.3.1 Multi-rate Implementation

Section 5.1.1 describes a sensor suite containing two sensors, an velocity sensor and

a pose sensor, operating at different rates; the velocity sensor at up to 300 Hz and

the pose sensor at 5 Hz. Further, the measurements may not arrive at regular time

intervals, especially in the case of corrupt packets or dropped frames.

Examining the form of Equation (5.19) it is easy to decompose the bias and pose

estimate dynamics into two integration terms, one each for pose and velocity measure-
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ments, that can be applied when the corresponding measurement arrives. One has

Ξy measured:

 ˙̂T = T̂ Ξy

˙̂bΞ = 0,

Ty measured:


˙̂T = T̂ kP AdT−1

y
Pse(3)(T̃−1

y )
˙̂bΞ =−kIPse(3)(AdT>y

Pse(3)(T̃−1
y )).

(5.46)

For each integration case, one maintains a calculated integration time step, tδ, con-

taining the time difference between measurements from the same sensor. The integra-

tion step then proceeds with, for example, the standard euler integration

T̂ (tk) = T̂ (tk−1)exp(tδ
˙̂T (tk−1))

b̂Ξ(tk) = b̂Ξ(tk−1)+ tδ
˙̂bΞ(tk−1)

(5.47)

The idea here is that we essentially run a direct integration of the velocity measure-

ments and use the pose measurements as a correction term that is applied as an impulse

immediately when available. Other alternatives, such as a zero-order hold with regular

integration at a smaller time step, decrease the accuracy of the correction effect of the

pose measurement integration by partially applying it when the system and estimate

have already changed. Hence, the delayed portion of the pose measurement correction

term will be in the wrong frame of reference when integrated.

It is also possible to extend this separation further to separate angular and linear

velocity components provided the integration time step for each is sufficiently small.

The size of the time step becomes important in this case as in the explicit form of the

matrix exponential on se(3) (Park 1994), the translation in the exponential result is

dependent on both the linear and angular velocity components. However, for suffi-

ciently fast measurement rates, such as in the order of 100 Hz, this further separation

should result in acceptable performance when in combination with pose measurement

feedback.

5.3.2 Discretisation

Discrete implementation of the continuous time equations resulted in numerical insta-

bility due to two sources when using simple backwards Euler integration on experi-

mental data with velocity measurements at 63 Hz and pose measurements at up to 30

Hz.
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Firstly, when implementing the multi-rate integration scheme described in the pre-

vious section, it was found that following a large number of sequential pose mea-

surements were dropped, the system over-corrected when a new measurement was

received. This was due to dynamic integration time step, tδ, calculated as the differ-

ence between to the arrival time of the previous and new measurement. Applying an

upper bound, of three to five times the expected inter-measurement time, to tδ used in

integration prevented this disturbance.

Secondly, the angular velocity bias estimate update, equation (5.33a), is propor-

tional to the magnitude of the translational distance from the origin of the inertial

frame to the body-fixed and estimate frames.

˙̂bΩ ∝ (P× P̂) (5.48)

While asymptotically 0, at large displacements the term equation (5.48) becomes

stiff, numerically destabilising the filter. It has been verified in simulations that the

numerical instability is due to the product of the displacement magnitude and integra-

tion time step. Decreasing either numerically stabilises the filter. In simulations and

experiments, I have avoided the regions of numerical instability by restricting transla-

tional movement. Equivalently, pre-conditioning may be used to rescale translational

movement.

5.3.3 Observer Algorithm

An example implementation of the observer, equation (5.19), is depicted in Algorithm

1. This example includes the asynchronous multi-rate and numerical stability concepts

described in the previous two sections.

5.4 Simulation Results

The observer equation (5.19) has been implemented in MATLAB 2007b as a discrete

event simulation. Simulated velocity and pose sensor measurement have been gener-

ated with noise added as per the measurement model described in Section 5.1.1. The

simulation used velocity measurements at 100 Hz and pose measurements at 5 Hz with

synchronized measurement clocks.



§5.4 Simulation Results 117

Algorithm 1 Asynchronous Multi-rate Implementation

T̂ (0)← [ I4×4

b̂Ξ(0)←[ 04×4

tlast Ξ←[ 0
tlast T ←[ 0
tlast estimate←[ 0
tmax
δT
←[ external constant

repeat
wait for measurement available

if velocity measurement available then
tδΞ
← [ t− tlast Ξ

Ξy(t)←[ Sensor Data

Ξ̂(t) = Ξy(t)− b̂Ξ(tlast T )
T̂ (t)←[ T̂ (tlast estimate)exp(tδΞ

Ξ̂(t))
tlast estimate←[ t
tlast Ξ←[ t

else if pose measurement available then
tδT ←[ max(t− tlast T , tmax

δT
)

Ty(t)←[ Sensor Data

ξ(t)←[ AdT−1
y (t) Pse(3)

(
(T̂ (tlast estimate)T−1

y (t))−1 )
β(t)←[ Pse(3)

(
AdT>y (t) Pse(3)

(
(T̂ (tlast estimate)T−1

y (t))−1 ))
T̂ (t)←[ T̂ (tlast estimate)exp(tδT kPξ(t))
b̂Ξ(t)←[ b̂Ξ(tlast T )− tδT kIβ(t)
tlast estimate←[ t
tlast T ←[ t

end if
until end of data
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Gain Value
kPΩ

: Orientation proportional gain 1

kIΩ
: Orientation integral gain 1

kPp: Position proportional gain 0.1

kIp: Position integral gain 0.1

Table 5.1: Observer gains used in simulations depicted in Figures 5.4, 5.5 and 5.6.

Gain Value
nR: Orientation measurement noise variance 0.001

nP: Translation measurement noise variance 0.001

nΩ: Angular velocity measurement noise variance 0.1

nV : Linear velocity measurement noise variance 0.1

bΩ: Constant angular velocity measurement bias 0.1

bV : Constant linear velocity measurement bias 0.25

Table 5.2: Artificial noise and bias figures applied to measurements in simulations

depicted in Figures 5.4, 5.5 and 5.6.

r = 0.2 m

t f = 120 s

x0 = 0.2 m

y0 = 0 m

z0 = −0.7 m

δz = 0.2 m

ω = 4π

t f
rads−1

(
x(t)
y(t)

)
=

(
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

)(
r

0

)
+

(
x0− r

y0

)
z(t) = z0 + δz

t f
t

φ(t) = π

2 +ωt

θ(t) = arctan( ż(0)
ẋ(0)) = arctan( δz

t f r )

ψ(t) = 2θ(t)

T (t) =

Rψ(t)Rθ(t)Rφ(t)

x(t)
y(t)
z(t)

0 1


(5.49)

Figures 5.4, 5.5 and 5.6 depict the pose and bias estimate convergence for body

descending along a trim trajectory from above an observed target, described in equa-
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Figure 5.4: Simulation results for orientation component of pose estimate using simu-

lated measurements along a trim trajectory specified by equation (5.49), with observer

gains as per Table 5.1 and initial conditions T̂ (0) = I and b̂Ξ = 0. Artificial measure-

ment noise was added according to Table 5.2. The true pose is indicated by red marks

and the visual pose measurements by green marks. Note that while the vision mea-

surements are coincidental with the true pose, they are at a lower rate of 5 Hz. The

estimated pose is indicated by the blue path.



120 Observer Design on the Special Euclidean Group SE(3)

0 20 40 60 80 100 120
−0.5

0

0.5
X Position vs time − trim

P
os

iti
on

 (
m

)

 

 
True
Estimated
Vision

0 20 40 60 80 100 120
−0.5

0

0.5
Y Position vs time − trim

P
os

iti
on

 (
m

)

0 20 40 60 80 100 120
−1

−0.5

0

0.5
Z Position vs time − trim

P
os

iti
on

 (
m

)

t (s)

Figure 5.5: Simulation results for position component of pose estimate using simulated

measurements along a trim trajectory specified by equation (5.49), with observer gains

as per Table 5.1 and initial conditions T̂ (0) = I and b̂Ξ = 0. Artificial measurement

noise was added according to Table 5.2. The true pose is indicated by red marks and the

visual pose measurements by green marks. Note that while the vision measurements

are coincidental with the true pose, they are at a lower rate of 5 Hz. The estimated

pose is indicated by the blue path.
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Figure 5.6: Simulation results for velocity bias estimates using simulated measure-

ments along a trim trajectory specified by equation (5.49), with observer gains as per

Table 5.1 and initial conditions T̂ (0) = I and b̂Ξ = 0. Artificial measurement noise

was added according to Table 5.2.
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Gain Value
kPΩ

: Orientation proportional gain 1

kIΩ
: Orientation integral gain 1

kPp: Position proportional gain 0.1

kIp: Position integral gain 0.1

Table 5.3: Observer gains used in experiments depicted in Figures 5.7, 5.8 and 5.9.

tion (5.49), where the position is given by (x,y,z) and the orientation by a yaw about

the z axis of φ, followed by a pitch about the y axis of θ and roll about the x axis of ψ.

Observer gains used are listed in Table 5.1 and measurement noise in Tables 5.2.

Note the initial conditions for the simulation estimates were T̂ = I and b̂Ξ = 0. In

the estimate, we see rapid convergence over this substantial initial condition error in

both position and orientation.

5.5 Experimental Results

Experiments have been conducted using the apparatus and methods described in Chap-

ter A.1, consisting of an inertial and vision sensor attached to a large robotic manip-

ulator. Using the robotic manipulator, the sensor package has been moved through a

path and both sensor data and ground-truth measurements of the manipulator config-

uration recorded. Using the recorded data pose has been estimated offline, after the

experiment, using the observer specified in Theorem 5.2.1.

Vision measurement were recorded at 30 Hz, with regular patches of dropped

frames. Inertial measurements of angular velocity in the body-fixed frame were recorded

at a modal rate of 63 Hz, containing some time varying bias components. In the ab-

sence of an available linear velocity sensor, linear velocity in the body-fixed frame

was estimated using a numerical derivative of the recorded ground-truth pose mea-

surements. The linear velocity estimate was calculated at the same time points as the

angular velocity measurements and, as a numerical derivative contains no bias compo-

nent but substantial process noise.

Figures 5.7, 5.8 and 5.9 depict estimation results from sensor data collected while

driving the robot through a circular path of 1 m diameter with the sensor package

oriented to point at a spot on the ground at the center of the path.
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Figure 5.7: Experimental results for orientation component of pose estimate using in-

ertial and visual measurements from sensors attached to a robotic manipulator moved

through a circular path. Observer gains used are given in Table 5.3 and initial con-

ditions were T̂ (0) = Ty(0), b̂Ξ = 0. The estimated pose is indicated by the blue path

and visual pose measurements by green marks. The ground truth measurements of the

actual path recorded by the robot are indicated by the red marks.
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Figure 5.8: Experimental results for position component of pose estimate using iner-

tial and visual measurements from sensors attached to a robotic manipulator moved

through a circular path. Observer gains used are given in Table 5.3 and initial con-

ditions were T̂ (0) = Ty(0), b̂Ξ = 0. The estimated pose is indicated by the blue path

and visual pose measurements by green marks. The ground truth measurements of the

actual path recorded by the robot are indicated by the red marks.
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Figure 5.9: Experimental results for velocity bias estimates using inertial and visual

measurements from sensors attached to a robotic manipulator moved through a circular

path. Observer gains used are given in Table 5.3 and initial conditions were T̂ (0) =
Ty(0), b̂Ξ = 0.
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Figures 5.7 and 5.8 depict the ground-truth pose, the timing and accuracy of vi-

sion pose measurements and the estimated pose. Figure 5.9 depicts the angular and

linear velocity bias estimates. Note that the orientation and position pose components

track the true pose well over the full 4 minute period, even with significant blocks of

dropped frames. Additionally, in the unactuated z position axis the observer tracks the

pose measurements well despite a 10 cm estimation error between the results of the

measurement process and the true position.

5.6 Chapter Summary

In this chapter, I have developed a twelve state observer for pose and velocity mea-

surement bias. The observer evolves directly on SE(3) from measurements of pose

and angular and linear velocity. Almost-global asymptotic and locally-exponential

stability of the observer was proven. This observer also exhibits a straightforward gain

tuning process and separation of measurement noise processes.

In the process of designing this observer, a right invariant pose error metric was

identified, with an interpretation as the state error represented as a rigid body transfor-

mation expressed in the inertial frame.

The observer structure and its relationship to other position and orientation esti-

mators was discussed. A related observer and the necessary conditions for pose esti-

mation using mixed velocity measurements in both the inertial and body-fixed frames

was identified.

A scheme for an asynchronous multi-rate discrete implementation of the pose ob-

server was discussed together with resulting sources of numerical instability.

Simulation and experimental results were shown to demonstrate the convergence

properties in the presence of noise and insensitivity to initial conditions of this ob-

server.



Chapter 6

Observer Design from Direct Vision
Measurements of Feature Bearing

This chapter presents a pose observer evolving on the special Euclidean group SE(3)
of dimension four from velocity measurements and measurements of the bearing of

landmarks of known location. In contrast to previous chapters, this corresponds to

using the location of features on a spherical camera image directly rather than using

pose reconstructed from the image features. That is, instead of designing an observer

taking trajectories in SE(3) and se(3) to an estimate on SE(3), an observer is designed

to take trajectories on (S2)n and se(3) to an estimate on SE(3), where n is the number

of landmarks tracked.

The use of bearing-only vision measurements directly brings considerable benefits

and problems. By eliminating the use of a pose reconstruction algorithm from the

vision post-processing the computational requirements for the whole observer system

are significantly reduced. However, the complexity of the observer convergence proof

is significantly increased and only local stability is proven due to the projective nature

of bearing measurements.

As with work presented in the prior chapters, the observer presented in this chapter

maintains the key properties of separating measurement noise processs in estimate

dynamics and is suitable for an asynchronous multi-rate implementation.

Simulation and experimental results are presented for the observer, demonstrating

performance in the presence of measurement noise. To apply the observer to experi-

mental data, an extension is postulated adding velocity measurement bias estimation

as an integral of the pose correction innovation term, based on insight gained in Chap-

ters 4 and 5. Experimental results have been obtained using data collected from the

apparatus and methods described in Chapter A.1, using an inertial and visual sensor

127



128 Observer Design from Direct Vision Measurements of Feature Bearing

attached to a robotic manipulator. Comparison with ground-truth data demonstrates

observer accuracy under experimental conditions.

The contributions of this chapter are

• An observer for pose designed directly on SE(3) from measurements of bearing

to known landmarks on (S2)n and velocity on se(3), with a local asymptotic

Lyapunov stability argument.

• Experimental demonstration of the landmark bearing pose observer augmented

with a velocity bias estimate that is naturally defined by analogy to prior work.

This chapter is based upon material published in Baldwin et al. (2009).

6.1 Problem Description

Let A again denote an inertial frame attached to the earth such that e3 points vertically

down. Let B denote a body-fixed frame attached to a vehicle of interest at the center

of mass. The origin of B expressed in A is given by the vector p, and the attitude of B
expressed in A is given by the rotation matrix R.

The element of SE(3)

T =

(
R p

0 1

)
(6.1)

has the triple interpretation as the pose of B expressed in A , as the coordinate frame

transformation mapping objects expressed in B to objects expressed in A , and as the

rigid body transformation moving an object from the pose given by the attitude and

position of A to the attitude and position of B , expressed in A .

As previously, we adopt the convention that positions and vectors expressed in

the inertial frame are denoted by lower case letters, and quantities expressed in other

frames are denoted by upper case letters.

The kinematics of B are given by

Ṙ = RΩ×, (6.2a)

ṗ = v, (6.2b)

where Ω denotes the angular velocity of the body-fixed frame, expressed in the body-

fixed frame, and v denotes the linear velocity of the body-fixed frame expressed in the
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inertial frame. (·)× is an operator taking the vector Ω ∈ R3 to the skew-symmetric

matrix

Ω× =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (6.3)

Represented in SE(3), the kinematics of B are

Ṫ = T Ξ (6.4)

where

Ξ = (Ω,V )∧ (6.5)

and

(Ω,V )∧ =

(
Ω× V

0 0

)
. (6.6)

Let P = −R>p, the position of the origin of A expressed in B , then Ṗ = −Ω×P−V

where V = R>v, the velocity of B expressed in B . Ξ∈ se(3) is a representation of the 6

dimensional velocity of B expressed in B . The wedge operator, (·, ·)∧, maps between

the R6 and se(3) interpretations of the system velocity.

Consider an ensemble of three or more landmark points {zi} ∈A that are stationary

in the inertial frame and distributed in space such that they are non-colinear. This

arrangement is depicted in Figure 6.1. Let Yi = T−1zi, the position of the i-th landmark

expressed in B , where bold face denotes the homogeneous coordinate representation

of a point,

Y =

(
Y

1

)
. (6.7)

As the zi are stationary in the inertial frame, żi = 0 and

Ẏi =−Ω×Yi−V (6.8)

or

Ẏi =−ΞYi. (6.9)

Let πa and π⊥a denote the projection matrices onto the subspace spanned by a ∈Rn

and the subspace perpendicular to the span of a, respectively, such that I = πa + π⊥a .
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Figure 6.1: The true system state, T , contains the rotation and translation from the

origin of the inertial frame, A , to the origin of the body fixed frame, B . The landmarks

have location zi in the inertial frame and are observed from the body fixed frame.

One has

πa =
1
‖a‖2 aa>, (6.10a)

π
⊥
a =

1
‖a‖2 (I−aa>) (6.10b)

where ‖ · ‖ is the standard Euclidean norm.

The bearing of the i-th landmark from the origin of B , expressed in B , is then given

by the unit vector Xi ∈ S2,

Xi =
Yi

‖Yi‖
, (6.11)

with dynamics

Ẋi =−Ω×Xi−
1
‖Yi‖

π
⊥
Xi

V. (6.12)
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Figure 6.2: The true system state, T , contains the rotation and translation from the

origin of the inertial frame, A , to the origin of the body fixed frame, B . The landmarks

have location zi in the inertial frame and are observed from the body-fixed frame as

bearings Xi, represented on the unit sphere.

6.1.1 Measurement Model

We again consider the vehicle of interest to be equipped with an inertial-vision sensor

package; an Inertial Measurement Unit (IMU) and a monocular camera; both affixed to

the craft and taking measurements in the body-fixed frame, B . As throughout this the-

sis, the IMU operates at a measurement rate up to two orders of magnitude faster than

the vision measurement rate. Additionally, the inertial measurements are corrupted by

low frequency noise, while the vision measurements are stable at low frequencies and

corrupted by high frequency noise. We again use the complementary characteristics of

these measurements to form a high quality estimate.

In this chapter, we assume that measurements of the system velocity Ξ, including
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the angular and linear velocity components, are available, such as from an IMU and

linear velocity estimator as discussed in Section 2.2.3. The inertial measurements are

assumed to be free of bias and corrupted by a zero-mean noise process nΞ.

From the vision sensor we use measurements of the bearing of known landmarks,

Xi, represented as unit vectors on the unit sphere S2. These measurements are cor-

rupted by a zero-mean noise process, nXi , on the tangent plane to the measurement.

Let Ξy and Xyi denote measurements of system velocity and bearing of the i-th

landmark. The measurement model is then

Ξy = Ξ+nΞ, (6.13a)

Xyi =
Xi +nXi

‖Xi +nXi‖
. (6.13b)

6.1.2 Estimation Model and Error Terms

Let T̂ denote an estimate of T and define the estimation frame E as the pose given by

T̂ relative to the inertial frame. Then

T̂ =

(
R̂ p̂

0 1

)
(6.14)

where p̂ is the origin of E expressed in A and R̂ is the rotation matrix giving the

attitude of E expressed in A .

Given an ensemble of landmarks {zi}whose position is known in the inertial frame,

one may express the location and bearing of these landmarks relative to the estimated

frame E as

Ŷi = T̂−1zi, (6.15a)

X̂i =
Ŷi

‖Ŷi‖
. (6.15b)

X̂i is then an estimate of the measurement Xyi.

As discussed previously in Section 5.2, a right invariant error pose on SE(3) is

given by

T̃ = T̂ T−1, (6.16)

where T̃ has the interpretation as the rigid body transformation from B to E , expressed

in A . Further, recall the error metric used in Chapters 4 and 5 of

‖(I− T̃ )‖2. (6.17)
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measuring the difference between the target and actual error transformations.

The difference between the estimated and actual position of the landmarks rela-

tive to the vehicle, Ŷi and Yi respectively, is an error term that respects the invariance

properties of T̃ . Let Y ∆
i denote the difference between Ŷi and Yi, then

Y∆
i = Ŷi−Yi

= (T̂ −T )zi

= (I− T̃−1)T̂ zi

= (I− T̃−1)Ŷi,

(6.18)

or the difference between the inverse of the error and the identity applied to Ŷi. This

has the interpretation as the difference between the images of I and T̃−1 applied to

Ŷi. This difference is projection of the matrix errror I− T̃ , along the vector Ŷi. For

non-colinear {zi}, the ensemble ∑
n
i=1 ‖Y ∆

i ‖2 contains projections of the error across a

complete basis for R3, and is equal to zero only for T̃ = I.

Similarly, the difference between the estimated and actual bearing of the land-

marks relative to the vehicle, X̂i and Xi, is also an error term that respect the invariance

properties of T̃ . Let X∆
i denote the difference between X̂i and Xi, then

X∆
i = X̂i−Xi

= (
1
‖Ŷi‖

T̂ − 1
‖Yi‖

T )zi

= (
1
‖Ŷi‖

T̂ − 1
‖Yi‖

T )zi

= (I− ‖Ŷi‖
‖Yi‖

T̃−1)
1
‖Ŷi‖

T̂ zi

= (I− ‖Ŷi‖
‖Yi‖

T̃−1)X̂i.

(6.19)

When ‖Ŷi‖ ≈ ‖Yi‖, X∆
i again gives a projection of the error along the direction Ŷi.

Hence, {X∆
i } provides complete information about the error locally around T̃ = I for

non-colinear {zi}.
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6.2 Observer Design

In this section I defined a non-linear observer for pose on se(3) from inertial measure-

ments and bearing-only vision measurements. Firstly, I give a series of assumptions

about the behaviour of the system being estimated. I establish a necessary and suffi-

cient condition for convergence of the pose estimate and then present the observer and

prove it meets this condition with local asymptotic convergence. I present the observer

for time case with exact measurements and then, using the stability of the error system

to argue validity for the case of noisy measurements. Finally, I identify conditions that

would provide almost-global convergence.

6.2.1 System Assumptions

Consider a vehicle equipped with an inertial vision sensor package together with a set

of landmarks at fixed points in the environment. As detailed in Section 6.1, let {zi}
denote the location of the landmarks expressed in the inertial frame, A . Assume that

the landmarks are arranged such that there exists a separating hyperplane between the

region containing the landmarks and the region in which the vehicle operates. Such

a situation arises naturally when, for example, the vehicle operates in the air above

landmarks distributed across the ground.

Further, assume that the trajectory of the vehicle is bounded away from the land-

mark points for all time. That is there exists an ε ∈ R such that for all t and all land-

marks zi

‖Yi(t)‖> ε > 0. (6.20)

Recall the measurement model described in Section 6.1.1, with the IMU providing

measurements of the system velocity, Ξ, and the vision sensor providing measurements

of the bearing of landmarks, Xi. Consider that the locations {zi} are known and that

the correspondence between landmarks in different visual images can be solved.

6.2.2 Landmark Bearing Pose Observer

I now define a non-linear observer and prove local asymptotic convergence by a non-

linear Lyapunov analysis. Firstly, I establish that convergence of the estimated visual

measurements is a necessary and sufficient condition to ensure convergence of the

system pose estimate. I then define an observer evolving on SE(3) from measurements
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on S2 and se(3). Using Lyapunov arguments on the embedding space and a local

linearisation, I then prove local asymptotic convergence of the observer for the case

of exact measurements. Using this convergence result, I argue for the validity of the

observer to the case of noisy measurements. Lastly, I identify conditions that would

provide almost-global convergence.

Lemma 6.2.1. Consider the system equation (6.4) and constellation of landmarks

{zi}. For a set of three or more non-colinear landmarks {zi} then X̂i = Xi for all i

if and only if T̂ T−1 = I.

Proof of Lemma 6.2.1. Consider the stabiliser group for a single landmark bearing

measurement, Xi. It consists of translation along and rotation about the axis in di-

rection Xi,

GXi =

{
T
∣∣∣∣T =

(
exp(αXi) βXi

0 1

)
α,β ∈ R

}
. (6.21)

Noting that

X̂i =
‖Yi‖
‖Ŷi‖

T̃ Xi, (6.22)

then for any T̃ 6= I, as the zi are non-colinear at least one of the Xi will lie such that

X̂i 6= αXi for some α ∈ R. Hence, for a set {Xi} derived from a set {zi} of three or

more non-colinear elements, the intersection of the stabiliser groups contains only the

identity element,
n⋂

i=1

GXi = {I}. (6.23)

Theorem 6.2.2 (Landmark Bearing Pose Observer). Consider the system equation

(6.4) and constellation of landmarks {zi } such that at least three landmarks are non-

colinear, together with a bounded piecewise continuous driving term Ξ and trajectory

T such that, for all i and for all t, ‖Yi(t)‖ > ε > 0. Let Xyi = Xi and Ξy = Ξ be

measurements free of bias and noise.
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Define the observer

˙̂T = T̂ (Ξy +ξ) (6.24a)

ξ = (ξΩ,ξV )∧ (6.24b)

ξΩ =−kPΩ

n

∑
i=1

X̂i×Xyi (6.24c)

ξv =−kPp

n

∑
i=1

π⊥
X̂i

Xyi

‖Ŷi‖
, (6.24d)

and recall the error T̃ = T̂ T−1 from equation (6.16).

Then there exists kPp > 0 such that for all choices of kPΩ
> 0, T̃ is locally asymp-

totically stable about I.

Proof of Theorem 6.2.2. Recall the definition of X̂i from equation (6.15b). It is straight-

forward to verify that

˙̂X =−(Ω+ξΩ)× X̂i−
π⊥

X̂i
(V +ξV )

‖Ŷi‖
(6.25)

Consider the per-feature error X∆
i := X̂i−Xi. One has

Ẋ∆
i =−Ω×X∆

i −ξΩ× X̂i

−

(
π⊥

X̂i

‖Ŷi‖
−

π⊥Xi

‖Yi‖

)
V −

π⊥
X̂i

ξV

‖Ŷi‖
.

(6.26)

Define the positive definite cost function

V : (R3)n→ R

V =
n

∑
i=1

1
2

∥∥∥X∆
i

∥∥∥2
.

(6.27)

Then

V̇ =−
n

∑
i=1

〈
X̂i×X∆

i ,ξΩ

〉
−

n

∑
i=1

〈
X∆

i ,
π⊥

X̂i
ξV

‖Ŷi‖

〉
(6.28)

−
n

∑
i=1

〈
X∆

i ,

(
π⊥

X̂i

‖Ŷi‖
−

π⊥Xi

‖Yi‖

)
V

〉

=

〈
n

∑
i=1

X̂i×Xi,ξΩ

〉
+

〈
n

∑
i=1

π⊥
X̂i

Xi

‖Ŷi‖
,ξV

〉

+

〈
n

∑
i=1

π⊥
X̂i

Xi

‖Ŷi‖
+

π⊥Xi
X̂i

‖Yi‖
,V

〉
.
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Substituting ξΩ and ξV from equation (6.24c) and equation (6.24d) and setting

Ωy ≡Ω, Vy ≡V , and Xyi ≡ Xi. One has

V̇ = −kPΩ

∥∥∥∥ n
∑

i=1
X̂i×Xi

∥∥∥∥2

− kPp

∥∥∥∥ n
∑

i=1

π⊥
X̂i

Xi

‖Ŷi‖

∥∥∥∥2

+
〈

n
∑

i=1

π⊥
X̂i

Xi

‖Ŷi‖
+

π⊥Xi
X̂i

‖Yi‖ ,V
〉

.

(6.29)

The proof continues by considering a given trajectory T (t) and considering a local

analysis around the associated constant error trajectory T̃ (t) ≡ I. Consider the first

order local approximation X̂i = Xi +αi, ‖Ŷi‖= ‖Yi‖+βi, where αi ∈ TXiS2 and βi ∈ R
are small perturbations induced by small variations in T̃ , and TXiS2 denotes the tangent

plane to S2 at point Xi. One has that α>i Xi = 0. Hence

π
⊥
X̂i

Xi =−αi

π
⊥
Xi

X̂i = αi

π⊥
X̂i

Xi

‖Ŷi‖
+

π⊥Xi
X̂i

‖Yi‖
=

βiαi

‖Yi‖(‖Yi‖+βi)

Then

V =
n

∑
i=1

1
2
‖αi‖2 (6.31a)

V̇ =− kPΩ

∥∥∥∥∥ n

∑
i=1

αi×Xi

∥∥∥∥∥
2

− kPp

∥∥∥∥∥ n

∑
i=1

αi

‖Yi‖+βi

∥∥∥∥∥
2

(6.31b)

+

〈
n

∑
i=1

βiαi

‖Yi‖(‖Yi‖+βi)
,V

〉

≤− kPΩ

∥∥∥∥∥ n

∑
i=1

αi×Xi

∥∥∥∥∥
2

− kPp

∥∥∥∥∥ n

∑
i=1

αi

‖Yi‖+βi

∥∥∥∥∥
2

+

∥∥∥∥∥ n

∑
i=1

βiαi

‖Yi‖(‖Yi‖+βi)

∥∥∥∥∥Vmax

In the limit αi and βi are images of a perturbation η̃ ∈ TISE(3) ∼= se(3). Note

that for T̃ = I, then X̂i = Xi and ‖Ŷi‖ = ‖Yi‖. That is, to first order αi and βi are the

differentials of the mappings

gi : T̃ 7→ ‖Ŷi‖, (6.32a)

hi : T̃ 7→ X̂i. (6.32b)
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The derivatives of equation (6.32) around T̃ = I are

Dgi(t)〈η̃〉|T̃=I = (zi− p)>(Ω̃× zi +Ṽ ), (6.33a)

Dhi(t)〈η̃〉|T̃=I =−π
⊥
Xi

R>(Ω̃× zi +Ṽ )
‖zi− p‖

. (6.33b)

Where η̃ =
(
Ω̃,Ṽ

)∧ ∈ se(3) and Ṽ = V̂ −V .

As ‖Yi‖> ε > 0, choose η̃ such that ∀i, βi < ε

2 . Then∥∥∥∥ n
∑

i=1

αi
‖Yi‖+βi

∥∥∥∥2

≤
∥∥∥∥ n

∑
i=1

2αi
ε

∥∥∥∥2

,

= 4η̃>M>Mη̃ where M =
n
∑

i=1

Dhi
ε

,
(6.34)

and ∥∥∥∥ n
∑

i=1

βi
‖Yi‖

αi
‖Yi‖+βi

∥∥∥∥ ≤ ∥∥∥∥ n
∑

i=1

αi
ε

∥∥∥∥ ,

=
√

η̃>M>Mη̃

(6.35)

Observe that the null space of Dhi〈η̃〉|T̃=I is given by R>(Ω̃× zi + Ṽ ) = γXi, γ ∈ R.

Then M is full rank as the {zi} are non-colinear. Hence M>M is a positive definite

matrix with non-zero minimum eigenvalue λ2.

One has

V̇ ≤−kPΩ

∥∥∥∥∥ n

∑
i=1

αi×Xi

∥∥∥∥∥
2

− (4kPpλ
2−λVmax)‖η̃‖2

Then, choosing kPp such that

kPp ≥
Vmax

4λ
, (6.36)

V is negative definite. Applying Theorem 8.4 of (Khalil 2002) the local system lin-

earisation is stable and X̂i−Xi→ 0 ∀i locally. Further, by Lemma 6.2.1, T̃ → I locally.

Remark 6.2.3. On Theorem 6.2.2, note:

1. Similar to the arguments previously presented in Chapters, while this proof is

for the case of error system convergence from exact measurements, the observer

is applicable to the case of measurements corrupted by zero-mean noise process.

The local convergence properties ensure that following any perturbation T̃ = I

due to measurement noise, the system will converge back to T̃ = I.
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2. The requirement ∀i ‖Yi‖ > ε > 0 is not a constraint in a practical situation as

the set of landmarks {zi} may be modified online to dynamically remove any

landmarks the vehicle moves close to and return them when the vehicle moves

away.

3. This observer is low in complexity for both implementation and tuning. Exclud-

ing the matrix exponential in the time update (which may be approximated), the

innovation terms are composed entirely from vector-scalar and vector-vector op-

erations, eliminating computationally costly matrix operations. Additionally, to

tune the observer, only two scalar gains, kPΩ
and kPp , need to be considered.

4. The cross term, containing the linear velocity, V , in V̇ equation (6.28) is un-

avoidable when working with projective measurements. Each summand cor-

responds to the difference between components of linear velocity perpendicu-

lar to the actual and estimated i-th bearing, scaled by the inverse of the actual

or estimated distance to the landmark. As the actual landmark distance, ‖Yi‖
is not a measured quantity, the resulting error term can not be cancelled by a

clever choice of innovation term. In the analogous system with non-projective

measurements Yi, these terms cancel and the observer admits an almost-global

stability proof.

I believe that understanding the bounds of this cross term is critical to prov-

ing global observer properties. In particular, the existence of a uniform bound

between this cross term and the translation error innovation, i.e.∥∥∥∥∥ n

∑
i=1

π⊥
X̂i

Xi

‖Ŷi‖
+

π⊥Xi
X̂i

‖Yi‖

∥∥∥∥∥≤ c

∥∥∥∥∥ n

∑
i=1

π⊥
X̂i

Xi

‖Ŷi‖

∥∥∥∥∥ (6.37)

would permit a simple almost-global stability proof for this observer. However,

the existance of such bound is not known.

6.3 Simulation Results

The observer equation (6.24) has been implemented in MATLAB 2007b as a discrete

event simulation. Simulated velocity and feature bearing measurements have been

generated with noise added as per the measurement model detailed in Section 6.1.1.

The simulation used velocity measurements at 100 Hz and feature bearing measure-

ments at 20 Hz with synchronized measurement clocks. Simulations used a feature



140 Observer Design from Direct Vision Measurements of Feature Bearing

Gain Value
kPΩ

: Orientation gain 5

kPp: Position gain 10

Table 6.1: Observer gains used in simulations depicted in Figures 6.3, 6.4, 6.5 and 6.6.

Gain Value
nX : Bearing measurement noise variance 0.01

nΩ: Angular velocity measurement noise variance 0.1

nV : Linear velocity measurement noise variance 0.1

Table 6.2: Artificial noise figures applied to measurements in simulations depicted in

Figures 6.3, 6.4, 6.5 and 6.6.

constellation of {(1,1,0), (1,−1,0), (−1,−1,0), (−1,1,0)} with features never oc-

cluded by camera position or orientation.

r = 0.5 m

t f = 240 s

x0 = −0.5 m

y0 = 0 m

z0 = −1.5 m

δz = 0.5 m

ω = 2π

t f
rads−1

(
x(t)
y(t)

)
=

(
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

)(
r

0

)
+

(
x0− r

y0

)
z(t) = z0 + δz

t f
t

φ(t) = π

2 +ωt

θ(t) = arctan( ż(0)
ẋ(0)) = arctan( δz

t f r )

ψ(t) = 2θ(t)

T (t) =

Rψ(t)Rθ(t)Rφ(t)

x(t)
y(t)
z(t)

0 1


(6.38)

Figures 6.3 and 6.3 depict the pose estimate for a body descending along a trim

trajectory from above the observed feature constellation using an observer initialised

with T̂ (0) = I. The trim trajectory is described in equation (6.38). Observer gains used

in simulations are given in Table 6.1. For reference, the results of a pose reconstruction

from each frame of simulated landmark bearing measurements, calculated as described
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Figure 6.3: Simulation results for orientation component of pose estimate using simu-

lated measurements along a trim trajectory specified by equation (6.38), with observer

gains as per Table 6.1 and initial conditions T̂ (0) = I. Artificial measurement noise

was added according to Table 6.2. The true pose is indicated by red marks and the

visual pose measurements by green marks. Note that while the vision measurements

are coincidental with the true pose, they are at a lower rate of 20 Hz. The estimated

pose is indicated by the blue path.
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Figure 6.4: Simulation results for position component of pose estimate using simulated

measurements along a trim trajectory specified by equation (6.38), with observer gains

as per Table 6.1 and initial conditions T̂ (0) = I. Artificial measurement noise was

added according to Table 6.2. The true pose is indicated by red marks and the visual

pose measurements by green marks. Note that while the vision measurements are

coincidental with the true pose, they are at a lower rate of 20 Hz. The estimated pose

is indicated by the blue path.
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Figure 6.5: Simulation results for orientation component of pose estimate for large

initial condition error, using simulated measurements along a trim trajectory specified

by equation (6.38), with observer gains as per Table 6.1 and initial conditions given in

equation (6.39). Artificial measurement noise was added according to Table 6.2. The

true pose is indicated by red marks and the visual pose measurements by green marks.

Note that while the vision measurements are coincidental with the true pose, they are

at a lower rate of 20 Hz. The estimated pose is indicated by the blue path.
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Figure 6.6: Simulation results for position component of pose estimate for large initial

condition error, using simulated measurements along a trim trajectory specified by

equation (6.38), with observer gains as per Table 6.1 and initial conditions given in

equation (6.39). Artificial measurement noise was added according to Table 6.2. The

true pose is indicated by red marks and the visual pose measurements by green marks.

Note that while the vision measurements are coincidental with the true pose, they are

at a lower rate of 20 Hz. The estimated pose is indicated by the blue path.
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in Section 3.7.3, are plotted as vision measurements.

Tuning observer gains was found to be easy, with changes in gains resulting in

good performance for values between 0.001 ≤ kPΩ
≤ 10 and 0.01 ≤ kPp ≤ 10, with

gain choice governed by the tradeoff between convergence rate and overshoot due to

discrete time implementation.

Figures 6.5 and 6.5 depict the pose estimate for a body descending along the same

trim trajectory, this time with an observer initialised ‘far’ from the true system state

as given by equation (6.39). Note that using the same gains the observer remains

convergent.

T̂ (0) =


1 0 0 5

0 1 0 5

0 0 1 −10

0 0 0 1

 (6.39)

The depicted results are typical of those obtained from repeated experiments using

random noise, varied initial conditions and trajectories.

6.4 Experimental Results

Experiments have been conducted using the apparatus and methods described in Chap-

ter A.1, consisting of an inertial and vision sensor attached to a large robotic manip-

ulator. Using the robotic manipulator, the sensor package has been moved through a

path and both sensor data and ground-truth measurements of the manipulator config-

uration recorded. Using the recorded data pose has been estimated offline, after the

experiment, using the observer specified in Theorem 6.2.2.

Vision measurement were recorded at 30 Hz, with regular patches of dropped

frames. Inertial measurements of angular velocity in the body-fixed frame were recorded

at a modal rate of 63 Hz, containing some time varying bias components. In the ab-

sence of an available linear velocity sensor, linear velocity in the body-fixed frame

was estimated using a numerical derivative of the recorded ground-truth pose mea-

surements. The linear velocity estimate was calculated at the same time points as the

angular velocity measurements and, as a numerical derivative contains no bias compo-

nent but substantial process noise.

As discussed in Section 3.7.2 and demonstrated in the results of Section 5.5, the

experimental angular velocity measurements included a slowly time varying bias com-
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Gain Value
kPΩ

: Orientation proportional gain 5

kIΩ
: Orientation integral gain 0.25

kPp: Position proportional gain 10

kIp: Position integral gain 0.25

Table 6.3: Observer gains used in experiments depicted in Figures 6.7, 6.8 and 6.9.

ponent. Consequently, for stable pose estimation from experimental measurements it

was also necessary to maintain an estimate of the velocoity measurement biases. Using

insight from the results of Theorems 4.2.1 and 5.2.1, I postulate the observer

˙̂T = T̂ (Ξy− b̂Ξ +ξ), (6.40a)
˙̂bΞ =−kIβ, (6.40b)

ξ =
(
kPΩ

ξΩ,kPpξV
)∧

, (6.40c)

β =
(
kIΩ

ξΩ,kIpξV
)∧

, (6.40d)

ξΩ =−
n

∑
i=1

X̂i×Xyi, (6.40e)

ξv =−
n

∑
i=1

π⊥
X̂i

Xyi

‖Ŷi‖
. (6.40f)

That is, adding a bias estimate defined as the integral of the pose correction innovation

with an independent gain.

Figures 6.7, 6.8 and 6.9 depict estimation results from sensor data collected while

driving the robot through a circular path of 1 m diameter with the sensor package

oriented to point at a spot on the ground at the center of the path. For reference, the

results of a pose reconstruction from each frame of landmark bearing measurements,

calculated as described in Section 3.7.3, are plotted as vision measurements.

Figures 6.7 and 6.8 depict the ground-truth pose, the timing and accuracy of vision

pose measurements and the estimated pose. Figure 6.9 depicts the angular and linear

velocity bias estimates. Note that again the orientation and position pose components

track the true pose well over the full 4 minute period, even with significant blocks of

dropped frames, with initial drift from misestimated biases corrected as the experiment

proceeds.
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Figure 6.7: Experimental results for orientation component of pose estimate using in-

ertial and visual measurements from sensors attached to a robotic manipulator moved

through a circular path. Observer gains used are given in Table 6.3 and initial con-

ditions were T̂ (0) = Ty(0), b̂Ξ = 0. The estimated pose is indicated by the blue path

and visual pose measurements by green marks. The ground truth measurements of the

actual path recorded by the robot are indicated by the red marks.
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Figure 6.8: Experimental results for position component of pose estimate using iner-

tial and visual measurements from sensors attached to a robotic manipulator moved

through a circular path. Observer gains used are given in Table 6.3 and initial con-

ditions were T̂ (0) = Ty(0), b̂Ξ = 0. The estimated pose is indicated by the blue path

and visual pose measurements by green marks. The ground truth measurements of the

actual path recorded by the robot are indicated by the red marks.



§6.4 Experimental Results 149

0 50 100 150 200
−0.02

−0.01

0

0.01
Roll Bias vs time − angle circle 1

A
ng

. V
el

 (
ra

d 
s−

1 )

0 50 100 150 200
−0.02

−0.01

0

0.01
Pitch Bias vs time − angle circle 1

A
ng

. V
el

 (
ra

d 
s−

1 )

0 50 100 150 200
−0.02

−0.01

0

0.01
Yaw Bias vs time − angle circle 1

A
ng

. V
el

 (
ra

d 
s−

1 )

t (s)

0 50 100 150 200
−0.01

−0.005

0

0.005

X Velocity Bias vs time − angle circle 1

V
el

. (
m

 s
−

1 )

0 50 100 150 200
−0.01

−0.005

0

0.005

Y Velocity Bias vs time − angle circle 1
V

el
. (

m
 s

−
1 )

0 50 100 150 200
−0.01

−0.005

0

0.005

0.01
Z Velocity Bias vs time − angle circle 1

V
el

. (
m

 s
−

1 )

t (s)

Figure 6.9: Experimental results for velocity bias estimates using inertial and visual

measurements from sensors attached to a robotic manipulator moved through a circular

path. Observer gains used are given in Table 6.3 and initial conditions were T̂ (0) =
Ty(0), b̂Ξ = 0.
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6.5 Chapter Summary

In this chapter I have developed an observer for pose from measurements directly

from an inertial-vision sensor suite. The observer evolves directly on SE(3) from

measurements on (S2)n×se(3) of bearing to known landmarks and angular and linear

velocity. Local asymptotic stability of the observer is proven and arguments given in

support of global observer properties. The observer is computationally simple, with

innovations composed from vector-vector and vector-scalar operations, is suitable for

multi-rate implementation, and exhibits a straightforward gain tuning process and a

separation of measurement noise processs.

Simulations and experimental results demonstrate the convergence properties of

the observer in the presences of substantial measurement noise. In particular, simula-

tions demonstrate the wide basin of attraction in which the observer is stable. Exper-

imental results include postulation and demonstration of an additional velocity mea-

surement bias estimate based on insight gained work presented in earlier chapters.



Chapter 7

Conclusions

In this thesis I have reported on the development and analysis of a series of estimators

for attitude and position from a combination of inertial and vision sensor measure-

ments by use of non-linear observers evolving on the special Euclidean group SE(3)
of dimension four.

A range of sensor models and observer designs were investigated, including:

• A cascaded pose observer design using independently designed observer for at-

titude and position to combine unbiased measurements of pose from vision with

biased inertial measurements of angular velocity and linear acceleration. The

resulting system was proven almost-globally asymptotically and locally expo-

nentially stable.

• Designing a pose observer for simultaneous estimation of attitude and position

using a single Lyapunov argument that decomposes into separately analysable

attitude and position components. This investigation lead to the identification of

the Rigid Body Transformation error, T̃ = T̂ T−1 as a right invariant error term,

representing the state error in the inertial frame. Again, these observers were

proven to be almost-globally asymptotically and locally exponentially stable.

• Development of an observer for both pose and velocity measurement biases,

with design and the argument for almost-global stability posed directly on SE(3).
Again, almost-global asymptotic and locally exponential stability were proven.

Additionally, the case where velocity is partially measured in multiple frames of

reference with independent bias process was considered.

• Substitution of vision measurements of pose with vision measurements of bear-

ing to known landmarks, from which pose was calculated in the prior cases.

In this case, pose was estimated from a combination of velocity measurements
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and landmark bearing measurements with the observer again evolving on SE(3).
Locally asymptotic stability was proven.

In addition to the theoretical development, simulation and experimental results are

presented demonstrating performance in the presence of measurement noise and bi-

ases, and large initial condition errors. Experimental results presented include ground

truth data for performance evaluation.

The observers developed in this research have achieved the goals of robustness,

insensitivity to initial conditions, capacity for multi-rate implementation, straightfor-

ward tuning processes and have the backing of formal mathematical stability proofs.

The techniques developed in this thesis demonstrate the utility and effectiveness

of using non-linear observers to fuse high frequency inertial measurements with low

frequency vision measurements to obtain high quality, high rate estimates of attitude

and position.
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Appendix A

Data Structure Descriptions for
Attached Data Sets

A DVD attachment to this thesis contains an electronic copy of this thesis and all fig-

ures contained within, raw and pre-processed experimental data sets and the MATLAB

code used to produce the simulation and experimental results presented in this thesis.

Please refer to the readme document in the root directory of the DVD file system for

the location of specific items on the DVD.

A.1 Experimental Paths

Four experimental data sets were obtained using the methods and equipment described

in Chapter . The programmed paths for the robotic manipulator in each are

• Angle Circle 1: Circular path of 1 m diameter, centered above the optical

target, with camera axis pointed towards the center of the optical target

• Angle Fig8 1: Figure 8 shape of 1 m size on the long axis, centered above the

optical target, with camera axis pointed towards the center of the optical target.

• Angle Clover 1: Continuous four-leaved-clover shape, fitted within a 1 m

× 1 m square, with vertical movement added, centered above the optical target,

with camera axis pointed towards the center of the optical target.

• Halfangle Circle 1: Circular path of 1 m diameter, centered above the

optical target, with camera axis pointed halfway between vertically down and

towards the center of the optical target
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Additionally, calibration data was obtained for each of the six IMU axes and cam-

era calibration data.

A.2 Raw Data Data Structures

The raw outputs from each sensor are recorded in text files using a structured output.

IMU data packets are stored over five lines, representing an instantaneous vector

packet Mic (2006a). The first line contains the time in seconds from the Unix epoch,

and microseconds. The second through fourth lines contain the components of the

magnetometer, accelerometer and gyrometer measurements respectively. The last line

contains the tick count from the IMU and the packet checksum. For example:

1231910139 66420

M: ( 1.470, 1.471, 0.061 )

A: ( -5.991, 1.588, -3.324 )

R: ( -5.027, 0.930, -5.953 )

T: 57630 Check: -1530

Camera frames are recorded as a bitmap file (later converted to jpeg) and single

line in a log file. Each log file line contains, in order, the time in seconds from the

Unix epoch, and the time component in microseconds, the frame number and the path

and filename for the recorded image. For example:

1231910139 123632: frame 1 - images/frame1.bmp

Pose data recorded on the robot controller is stored as a single line in a pose log

file. Each line contains, in order, the time in hours, minutes and seconds, the 3-vector

giving the position of the tooltip in mm, the unit quaternion giving the attitude of the

tooltip, and a 4-vector giving coordinates representing the robot configuration (e.g.

elbow up, elbow down). For example:

06:29:08 [ 42.0084 -1161.5 1529.46 ]

[ 0.111617 0.700829 -0.696231 0.107902 ] [ -1 -1 -2 0 ]
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A.3 MATLAB Data Structures

When loaded into MATLAB, data is arranged in structure containing multiple matrices

such that the last dimension of each matrix is of the same size and represents a discrete

time index. For example T.T(:, :, k) is the pose measurement at time T.t(k).

Four main data structures are used, Tf, T, Xi, IMU and vis, containing data for

the programmed path, the recorded path, the calculated velocity (angular and linear),

the inertial measurement unit and the camera measurements.

Within these structures, for fully pre-processed data, specific fields include:

• Tf Programmed (‘forward’) path. Due to the robot controller, does not always

correspond to actual path T.

– Tf.t - 1× k: Time from experiment t0.

– Tf.T - 4×4× k: Pose ∈ SE(3) of Camera focal point.

• T Pose recorded from robot at approximately 40 Hz

– T.t - 1× k: Time from experiment t0.

– T.T - 4×4× k: Pose ∈ SE(3) of camera focal point.

• IMU IMU Measurements

– IMU.t - 1× k: Time from experiment t0.

– IMU.tick - k×1: 3DM-GX1 data packet tick field.

– IMU.Omega - 3×k: 3DM-GX1 instantaneous angular rate measurement,

rotated into camera frame.

– IMU.A - 3× k: 3DM-GX1 instantaneous acceleration measurement, ro-

tated into camera frame with gravity cancelled using T.

– IMU.M - 3× k: 3DM-GX1 instantaneous magnetic field measurement.

• vis Video capture at approximately 30Hz

– vis.t - 1× k: T Time from experiment t0.

– vis.frame - 1× k: Frame number.

– vis.filename - 1× k: Cell array containing filename of image file for

each frame.
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– vis.inner - 1×1: Flag indicating feature constellation used. 1 for the

smaller ’inner’ set and 0 for the larger ’outer’ set.

– vis.f - 2×n× k: Pixel coordinates of identified image features.

– vis.X - 3×n× k: Bearing ∈ S2 calculated from f.

– vis.T - 4× 4× k: Pose ∈ SE(3), reconstructed from features f using

modernPosit.

– vis.T inv - 4×4× k: Inverse of vis.T.

• Xi System velocity as elements of se(3), computed from numerical derivative

of measured pose (T).

– Xi.t - 1× k: Time from experiment t0

– Xi.Xi - 4×4× k: Velocity ∈ se(3).

The inner and outer feature constellations referred to by vis.inner have com-

mon centre and the following dimensions. The inner visual target consists of four

points in a square with 10 cm sides. The points are at (in order clockwise) {(5,5),
(5,−5), (−5,−5), (−5,5)} cm. The outer visual target is four points in a square with

50 cm sides. The points are at (in order clockwise) {(25,25), (25,−25), (−25,−25),
(−25,25)} cm.



Appendix B

Full Proof of Theorem 5.2.1, Chapter
5, Claim (ii): Linearisation of (T̃ , b̃Ξ)

In this appendix, I present a full proof of the linearisation argument for locally-exponential

stability for Theorem 5.2.1 of Chapter 5, for all values of kP and kI , and all bounded

continuous T (t) and all bounded Ξ(t). This long and largely mechanical proof was

ommitted from the main body of the thesis for brevity and continued narative, but is

presented here for completeness.

Previously, in Proof 5.2, I have show global asymptotic convergence of the system

(T̃ , b̃Ξ) to the union of the set U and(I,0). I then demonstrate that U is an unstable set

leaving a sole stable equilibrium point.

In this part of the proof, I show that about (I,0) the system is locally-exponentially

convergent by algebraic analysis a matrix Lyapunov argument posed on a linearisation.

Proof. Expanding the matrix representation of (T̃ , b̃Ξ) one obtains

(T̃ , b̃Ξ) =

((
R̃ p̃

0 1

)
,

(
b̃Ω× b̃V

0 0

))
(B.1)

and the corresponding component-wise system

(
R̃, p̃, b̃Ω×, b̃V

)
(B.2)

Consider the linearly related system equation (B.3a), equation (B.3b)1 and equa-

1A restatement of Equation (5.29a)
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tion (B.3c)2. (
R̄,∆P, b̃Ω×, b̃V

)
(B.3a)

where R̄ = Ad−1
R R̃ (B.3b)

and ∆P =−R̂−1 p̃ = P̂−P (B.3c)

By linearity one has (
R̄,∆P, b̃Ω×, b̃V

)
→ (I,0,0,0)

⇒
(
R̃, p̃, b̃Ω×, b̃V

)
→ (I,0,0,0)

⇒
(
T̃ , b̃Ξ

)
→ (I,0)

A linearisation of
(
R̄,∆P, b̃Ω×, b̃V

)
about (I,0,0,0) is given by

R̄' I + x1× (note: x1 ' vex(Pa(R̄))) (B.4a)

∆P' x3 (B.4b)

b̃Ω '−x2 (B.4c)

b̃V ' x4 (B.4d)

The linearised dynamics are given by equation (B.5a)3, equation (B.5b)4, equation

(B.5c)5 and equation (B.5d)6,

ẋ1 =−Ω×x1− kPx1 + x2, (B.5a)

ẋ2 =− kIx1 +
kI

2
P×x3, (B.5b)

ẋ3 =−Ω×x3− kPx3 +P×x2 + x4, (B.5c)

ẋ4 =− kIx3. (B.5d)

Consider a Lyapunov function given by equation (B.6)7

W =
α1

2
‖x1‖2

2−α2x>1 x2 +
α3

2
‖x2‖2

2 +
β1

2
‖x3‖2

2−β2x>3 x4 +
β3

2
‖x4‖2

2 , (B.6)

where α1, α2, α3, β1, β2 and β3 are each > 0.

2A restatement of Equation (5.29b)
3A restatement of Equation (5.30a)
4A restatement of Equation (5.30b)
5A restatement of Equation (5.30c)
6A restatement of Equation (5.30d)
7A restatement of Equation (5.31)
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W is positive definite for choices of α1, α2, α3, β1, β2, β3 such that

α
2
2 < α1α2 (A)

and β
2
2 < β2β3 (B)

The time derivative of W is

Ẇ =−x>1 (α1kP−α2kI)x1 + x>1 (α1I +α2kPI−α2Ω×−α3kII)x2−α2x>2 x2

− x>3 (β1kP−β2kI)x3 + x>3 (β1I +β2kPI−β2Ω×−β3kII)x4−β2x>4 x4

− 1
2

α2kIx>1 P×x3

+(
1
2

α3ki−β1)x>2 P×x3

+β2x>2 P×x4

(B.7)

Taking scalar bounds, one obtains

Ẇ ≤−x>Qx (B.8a)

where x =


‖x1‖
‖x2‖
‖x3‖
‖x4‖

 (B.8b)

Q =


a1 −b

2 − c
2 0

−b
2 a2 −d

2 − e
2

− c
2 −d

2 a3 − f
2

0 − e
2 − f

2 a4

 (B.8c)

and

a1 = α1kP−α2kI b = α1 +α2(kP + |Ωmax|)−α3kI

a2 = α2 c = 1
2α2kI|Pmax|

a3 = β1kP−β2kI d = (1
2α3kI−β1)|Pmax|

a4 = β2 e = β2|Pmax|
f = β1 +β2(kP + |Ωmax|)−β3kI

where |Pmax| and |Ωmax| denote the maximum values attained by the bounded ex-

ogenous signals P(t) and Ω(t).

Ensuring Ẇ is negative definite is equivalent to ensuring Q is a positive definite

matrix. This is equivalent to the determinants of all leading principal minors being
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positive

|Q1×1|> 0 (C)

|Q2×2|> 0 (D)

|Q3×3|> 0 (E)

|Q4×4|> 0 (F)

Where Qn×n is the leading principal minor of size n of Q (i.e. the upper left n×n

block of Q.)

Choosing

β1 =
1
2

α3kI, (i)

α3 =
1
kI

(α1 +α2(kP + |Ωmax|)), (ii)

and β3 =
1
kI

(β1 +β2(kP + |Ωmax|)), (iii)

sets b, d and f = 0, leaving

Q =


a1 0 − c

2 0

0 a2 0 − e
2

− c
2 0 a3 0

0 − e
2 0 a4

 (B.9)

Choosing

α1 = q
kI

kP
α2, q > 1 (iv)

ensures conditions equation (C) and equation (D):

|Q1×1|= a1 = (q−1)kIα2 (B.10a)

|Q2×2|= a1a2 = (q−1)kIα
2
2 (B.10b)

Substituting equation (i), equation (ii), equation (iii) and equation (iv) into Q equa-
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tion (B.8c) yields

Q =


a1 0 − c

2 0

0 a2 0 − e
2

− c
2 0 a3 0

0 − e
2 0 a4

 (B.11)

a1 = (q−1)kIα2 b = 0

a2 = α2 c = 1
2α2kI|Pmax|

a3 = 1
2(qkI + k2

P + kP|Ωmax|)α2−β2kI d = 0

a4 = β2 e = β2|Pmax|
f = 0

Note that |Q3×3| and |Q4×4| factorise as

|Q3×3|= a1a2a3−
1
4

a2c2 = a2(a1a3−
1
4

c2) (B.12a)

|Q4×4|= a1a2a3a4−
1
4

a2c2a4−
1
4

a1a3e2 +
1

16
e2c2 (B.12b)

= (a2a4−
1
4

e2)(a1a3−
1
4

c2)

Hence conditions equation (E) and equation (F) can be satisfied by ensuring

a2 > 0 (B.13a)

(a2a4−
1
4

e2) > 0 (B.13b)

(a1a3−
1
4

c2) > 0 (B.13c)

As a2 = α2, equation (B.13a) is trivially satisfied by the prior requirement all αi

and βi are positive.

Choosing

α2 =
1
4

γβ2|Pmax|2, γ > 0 (v)

and substituting into equation (B.13b) yields

a2a4−
1
4

e2 = α2β2−
1
4

β
2
2|Pmax|2

= (γ−1)
1
4

β
2
2|Pmax|2 > 0

(B.14)
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Substituting equation (v) into a1, a3 and 1
4c2, equation (B.11),

a1 =
1
4
(q−1)γkI|Pmax|2β2 (B.15a)

a3 =
(

1
8

γ|Pmax|2(qkI + k2
P + kP|Ωmax|)− kI

)
β2 (B.15b)

1
4

c2 =
1

256
γ

2k2
I |Pmax|6β

2
2 (B.15c)

Noting the common factor β2
2 in (a1a3− 1

4c2) one finds (a1a3− 1
4c2)/β2

2 is a posi-

tive quadratic in q, so that equation (B.13c), and hence equation (E) and equation (F),

may be satisfied by selecting q sufficiently large.

From equation (B.13c) one has

0 <
a1a3− 1

4c2

β2
2

=
1

32
γ

2|Pmax|4kIq2 +
1
4

γ|Pmax|2kI

+
(

1
32

γ
2|Pmax|4kI(k2

P + kP|Ωmax|− kI)−
1
4

γ|Pmax|2kI

)
q

− 1
32

γ
2|Pmax|4kI(k2

P + kP|Ωmax|+
1
8
|Pmax|2kI)

(B.16)

Direct calculations show equation (B.16) holds for

q >
4

γ|Pmax|2
+

kI− k2
P− kP|Ωmax|

2kI

+

√
|Pmax|2

8
+
(

k2
P + kP|Ωmax|+ kI

2kI
− 4

γ|Pmax|2

)2 (vi)

satisfies equation (B.16). Hence, selecting a q > 1 such that equation (vi) is satisfied,

together with choices equation (i), equation (ii), equation (iii), equation (iv) and equa-

tion (v) satisfies equation (C), equation (D), equation (E) and equation (F). Hence Q

is positive definite and Ẇ negative definite.

It remains to show W is positive definite for choices equation (i) to equation (vi).

That is, that equation (A) and equation (B) are satisfied.

Substituting equation (i), equation (ii), equation (iii), equation (iv), equation (v)

and equation (vi) into equation (A)

α
2
2 <α1α3

α
2
2 <

q(qkI + k2
P + kP|Ωmax|)α2

2

k2
P

1 <
kI

kP
q2 +

(
1+
|Ωmax|

kp

)
q

(B.17)
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or

q >
kP

2kI

(
−(kP + |Ωmax|)+

√
(kP + |Ωmax|)2 +4kI

)
(vii)

Substituting equation (i), equation (ii), equation (iii), equation (iv), equation (v)

and equation (vi) into equation (B)

β
2
2 <β1β3

β
2
2 <γ|Pmax|2(qkI + k2

P + kP|Ωmax|)β2
2.(

8k2
P +8kP|Ωmax|+ γ|Pmax|2(qkI + k2

P + kP|Ωmax|)
)

64k2
PkI

1 <
γ2|Pmax|4kI

64k2
P

(
q+

kP(8+ |Pmax|2kI)(kP + |Ωmax|)
γ|Pmax|2kI

)
.(

q+
kP(kP + |Ωmax|)

kI

)
(B.18)

or

q >− kP(kP + |Ωmax|)
kI

(
1+

4
γ|Pmax|2

)
+

4kP

γ|Pmax|2kI

√
(kP + |Ωmax|)2 +4kI

(viii)

Thus, selecting a q > 1 such that lower bounds equation (vi), equation (vii) and

equation (viii) are satisfied together with choices equation (i), equation (ii), equation

(iii), equation (iv) and equation (v) ensures conditions equation (A) and equation (B),

and hence W is positive definite.

As W is positive definite and Ẇ is negative definite, W is a Lyapunov function

for the system (x1,x2,x3,x4) and hence (x1,x2,x3,x4) is exponentially stable.

Hence, for all choice of gains

kP > 0, kI > 0

and all bounded exogenous signals

|P(t)| ≤ |Pmax| |Ω(t)| ≤ |Ωmax|

the system (R̄,∆P, b̃Ω×, b̃V ) is locally exponentially stable about (I,0,0,0) and hence

(T̃ , b̃Ξ) is locally exponentially stable about (I,0).
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Remark B.0.1. Choices for Lyapunov function constants α1, α2, α3, β1, β2, β3, q and

γ may be made as follows:

1. Select arbitrary

γ > 1

β2 > 0

and δ > 1

2. From equation (iv), equation (vi), equation (vii) and equation (viii), set

q = δmax



1,

4
γ|Pmax|2

+
kI− k2

P− kP|Ωmax|
2kI

+

√
|Pmax|2

8
+
(

k2
P + kP|Ωmax|+ kI

2kI
− 4

γ|Pmax|2

)2

,

kP

2kI

(
−(kP + |Ωmax|)+

√
(kP + |Ωmax|)2 +4kI

)
,

− kP(kP + |Ωmax|)
kI

(
1+

4
γ|Pmax|2

)
+

4kP

γ|Pmax|2kI

√
(kP + |Ωmax|)2 +4kI


3. From equation (v), set

α2 =
1
4

γβ2|Pmax|2

4. From equation (iv), set

α1 = q
kI

kP
α2

5. From equation (ii), set

α3 =
1
kI

(α1 +α2(kP + |Ωmax|))

6. From equation (i), set

β1 =
1
2

α3kI

7. From equation (iii), set

β3 =
1
kI

(β1 +β2(kP + |Ωmax|))



Appendix C

Observer for Linear Velocity and its
Interconnection with Pose Observers

Much of the work presented in this thesis considers the estimation of pose from vision

measurements and measurements of both angular and linear velocity. As discussed

in Section 2.2.3, angular velocity is easily measured using widely available intrinsic

sensors, but there does not exist a cheap, simple, intrinsic sensor for linear velocity.

In the absence of a specific sensor, it is possible to estimate linear velocity using mea-

surements from accelerometers, which are cheap and widely available.

Observers for linear velocity have been considered by many authors relating to a

range of sensor types and models (e.g. Pascoal et al. 2000, Zhu and Lamarche 2007),

in addition to the application of Kalman filter techniques (e.g. Titterton and Weston

2004). In this appendix, I present an example observer designed to facilitate a multi-

rate implementation using inertial and vision sensors, consistent with work presented

in the main body of this thesis.

C.1 Linear Velocity Estimation

Assume that linear acceleration is measured in the body-fixed frame as Ay = A + bA,

where bA is a constant bias term. Depending on the frame in which they are repre-

sented, the kinematics of linear velocity require estimation or measurement of either

attitude, Ry or angular velocity, Ωy.

For the inertial vision systems considered in this thesis, it is desired that a measure-

ment of linear velocity be available at a high rate, equal to the inertial measurement

rate of Ay and Ωy. Given true dynamics v̇ = RA, one can not construct a high rate esti-

mator for linear velocity in the inertial frame without either estimating R or measuring

183
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Ry at high rate. However, estimation of linear velocity in the body-fixed frame requires

accurate measurement of Ω, including correction of measurement biases.

Consider the following estimator for linear velocity and accelerometer and gyrom-

eter measurement biases.

Theorem C.1.1 (Linear Velocity Observer). Consider the linear velocity and bias sys-

tem

V̇ = A−Ω×V, (C.1a)

ḃA = 0, (C.1b)

ḃΩ = 0, (C.1c)

with bounded driving terms Ω(t) and A(t), such that V (t) is bounded. Let Ωy = Ω +
bΩ, Ay = A+bA and Vy = V be noise free measurements.

Consider the observer

˙̂V = Ay− b̂A− (Ωy− b̂Ω)×V̂ − kV (V̂ −Vy), (C.2a)
˙̂bA = kA(V̂ −Vy), (C.2b)
˙̂bΩ = kΩ(V̂ ×Vy), (C.2c)

and the errors

V ∆ = V̂ −V, (C.3a)

b̃A = b̂A−bA, (C.3b)

b̃Ω = b̂Ω−bΩ. (C.3c)

Then, for any positive choice of gains kV , kA and kΩ, the error system (V ∆, b̃A, b̃Ω)
is globally asymptotically to (0,0,0) and hence V̂ , b̂A, and b̂Ω are globally asymptoti-

cally to their true values.

Proof of Theorem C.1.1. Recall the definition of V ∆, b̃A and b̃Ω from equation (C.2).

Set Ωy ≡Ω+bΩ, Ay ≡ A+bA and Vy ≡V . One has

V̇ ∆ =−b̃A− b̃Ω×V̂ −Ω×V ∆− kVV ∆, (C.4a)
˙̃bA = kAV ∆, (C.4b)
˙̃bΩ = kΩ(V̂ ×Vy). (C.4c)
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Let

L =
1
2
‖V ∆‖2 +

1
2kA
‖b̃A‖2 +

1
2kΩ

‖b̃Ω‖2 (C.5)

and one has

L̇ =−kVV ∆>V ∆−V ∆>
Ω×V ∆ +V ∆> b̃Ω×V̂ + b̃>Ω(V̂ ×V ). (C.6)

Recalling that x>(y× x) = 0 and x>(y× z) = y>(z× x), one has

L̇ =−kV‖V ∆‖2. (C.7)

Noting that the dynamics of x = (V ∆, b̃A, b̃Ω) can be written

ẋ =

−(kV +Ω×) −I V×
kAI 0 0

kΩV× 0 0

x−

V ∆× b̃Ω

0

0

 , (C.8)

one has ẋ = f(t,x) where f(t,x) is continuous in t and locally Lipschitz in x, uniformly

in t, and that f(t,0) is uniformly bounded for all t. Choose the energy function V = L
and note that V is radially unbounded, continuous, positive definite, a function only of

x and V̇ is continuous and negative semi-definite. Then by application of Theorem 8.4

from Khalil (2002), x is globally asymptotically stable.

Hence V̂ , b̂A, and b̂Ω are asymptotically convergent V , bA and bΩ respectively.

Note that for convergence of the gyrometer bias estimate b̂Ω, a persistence of exci-

tation in V is required such that V (t) is not excitation along a single direction. That is,

that {V (t)} over all t spans R2. Practically, this is not likely to be an issue in the type

of systems considered in this thesis.

Further, if the gyrometer measurements are bias free then when turning off the

gyrometer bias estimate the system is trivially globally exponentially convergent.

C.2 Cascading Linear Velocity Estimates into Pose Es-
timators

Interconnection of estimation systems is a well studied area (e.g. Sepulchre et al.

1997), including the application of results from input-to-state stability (Sontag 1989,

Sontag and Wang 1995) to the cascade of one estimator to the inputs of another, and

the creation of feedback cycles connecting the outputs an estimator to its inputs.
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As applied earlier in this thesis, in Chapter 4, Section 4.2, the following conditions

hold:

• For the system ẋ = f(t,x,u) which satisfies certain continuity conditions (e.g.

Lemma 4.6, Khalil 2002), if f(t,x,0) is exponentially stable, then x is input-to-

state stable. If f(t,x,0) is locally asymptotically stable, then x locally input-to-

state stable (Christofies and El-Farra 2005).

• If ż = g(t,z) is (locally) asymptotically stable then (x,z) for ẋ = f(t,x,z) is (lo-

cally) asymptotically stable (Sepulchre et al. 1997).

• If ż = g(t,z) is exponentially stable then (x,z) for ẋ = f(t,x,z) is exponentially

stable.

Hence, for asymptotic stability of a pose estimate whose inputs include a linear

velocity estimation such as from the observer posed in Theorem C.1.1, it is sufficient

for the pose observer to be locally asymptotically stable.


